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ABSTRACT
Approximate Query Processing (AQP) based on sampling is critical
for supporting timely and cost-effective analytics over big data. To
be applied successfully, AQP must be accompanied by reliable esti-
mates on the quality of sample-produced approximate answers; the
two main techniques used in the past for this purpose are (i) closed-
form analytic error estimation, and (ii) the bootstrap method. Ap-
proach (i) is extremely efficient but lacks generality, whereas (ii) is
general but suffers from high computational overhead. Our recently
introduced Analytical Bootstrap method combines the strengths of
both approaches and provides the basis for our ABS system, which
will be demonstrated at the conference. The ABS system models
bootstrap by a probabilistic relational model, and extends relational
algebra with operations on probabilistic relations to predict the dis-
tributions of the AQP results. Thus, ABS entails a very fast com-
putation of bootstrap-based quality measures for a general class of
SQL queries, which is several orders of magnitude faster than the
standard simulation-based bootstrap. In this demo, we will demon-
strate the generality, automaticity, and ease of use of the ABS sys-
tem, and its superior performance over the traditional approaches
described above.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing
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1. INTRODUCTION
Today’s business, science and engineering disciplines are pre-

dominantly data-driven. The ever-growing size of data calls for
timely and cost-effective analysis. This situation has brought even
more attention to the already-active area of Approximate Query
Processing (AQP). As a critical and general approach for coping
with massive datasets, sampling is widely used in databases [4, 6,
9, 11, 12, 13, 18], Map-Reduce systems [5, 16], and data stream
management systems [7, 17].

Sampling refers to the commonly used technique of evaluating
the queries froma small random sample of the original database.
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The quality of the obtained approximate query answers plays an
important role to their utility. As an example, during exploratory
analysis, the analyst will seek assurance that the answer derived
from the small sample is of “good quality”, e.g., within ±1% of
the correct answer with probability ≥ 95%. Thus, assessing the
quality (i.e. error estimation) is a fundamental aspect of AQP.

The past two decades have seen much work on error estimation,
which can be categorized into two main approaches. The first ap-
proach [5, 8, 9, 11, 19, 22] analytically derives closed-form er-
ror estimates. Although computationally appealing, analytic error
quantification is restricted to a very limited set of queries (simple
group-by-aggregate queries) [20].

To address this problem, a second approach, named bootstrap,
has emerged as a more general method for error estimation [15,
16, 20], and is becoming increasingly popular due to its wide ap-
plicability and automaticity [15, 16, 20]. Bootstrap [10, 21] is a
Monte-Carlo procedure, which given an initial sample (i) repeat-
edly forms simulated datasets by resampling tuples i.i.d. (identi-
cally and independently) from the given sample, (ii) recomputes the
query on each of the simulated datasets, and (iii) assesses the qual-
ity of answer on the basis of the empirical distribution of the pro-
duced query answers. However, bootstrap is highly computation-
demanding, since it requires hundreds or even thousands of trials
to obtain a reliable estimate [15, 20].

In this demonstration, we introduce the ABS system, a fast error
estimation system for AQP. The ABS system is designed and devel-
oped to bridge the gap between the two aforementioned approaches
by dovetailing their merits while avoiding their limitations: ABS in-
herits the general and automatic nature of bootstrap, and thus can be
applied to a much more general class of SQL queries, but does not
require the Monte-Carlo simulation, and thus is highly computa-
tionally efficient. These merits of ABS enable complex exploratory
data analysis on large volumes of data.

ABS achieves these merits by exploiting a new technique, called
the analytical bootstrap. Analytical boostrap succinctly models the
set of all possible simulated datasets generated by bootstrap trials
as a single probabilistic multiset database (PMDB for short), by
annotating each tuple in the database with an integer-valued ran-
dom variable. The random variable represents the possible multi-
plicity with which the tuple would appear in the simulated datasets.
Then, ABS extends relational operators to manipulate these random
variables during query evaluation, which produces an annotated re-
lation where the annotations encode the distribution of all possi-
ble answers that could be generated by bootstrap. In particular,
ABS evaluates the query only once, but can accurately estimate the
empirical distribution of the query answers that would be produced
by hundreds or thousands of bootstrap trials. Furthermore, analyti-
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cal bootstrap can be easily integrated into existing database engines
through user-defined types and user-defined functions.

During the demonstration, users will experience, through hands-
on experience on real-life databases and queries, the convenience
and efficiency of using ABS for error estimation in approximate
query answering. The user interacts with ABS by simply provid-
ing the target query and specifying the desired error measure. The
ABS will transparently rewrite the query to add quality quantifi-
cation support, execute the rewritten query and deliver the query
result as well as the quality measure in an interactive manner. The
user can also compare analytical bootstrap against the closed-form
approach and the standard simulation-based bootstrap to experi-
ence the generality and efficiency of the ABS system.

The rest of the paper is organized as follows: Section 2 provides
a summary of the theoretical background. We present the system
architecture in Section 3. Section 4 briefly describes the demon-
stration we are proposing. We conclude in Section 5.

2. ANALYTICAL BOOTSTRAP
We briefly review the background on bootstrap, and exemplify

the analytical bootstrap method which is the key technique of the
ABS system. Interested readers are referred to [23] for more details
on analytical bootstrap.
Sampling and Bootstrap Sampling is widely used in approximate
query processing, which consists in (i) taking a random sample D
from the original database, (ii) evaluating a potentially modified
query q on D, and (iii) using q(D) as an approximation for the
original query. However, the obtained approximate results are of
little use if they are not accompanied with accuracy estimation.

Bootstrap [10, 21] is powerful tool for estimating the quality of
q(D), which consists in a simple Monte-Carlo procedure: it re-
peatedly carries out a sub-routine, called a trial. Each trial gen-
erates a simulated database, say D̂i, which is of the same size as
D (by sampling |D| tuples i.i.d. from D with replacement), and
then computes query q on D̂i. Consider a simplified version of the
lineitem relation and the “Small-quantity-order Revenue” query q
(see Example 1) from the TPC-H benchmark [3]. A sample D of
lineitem is shown in shown in Figure 1(a).1 Figure 1(b) and 1(c)
show one possible resample from a bootstrap trial and the corre-
sponding query result, respectively. The collection {q(D̂i)} from
all the bootstrap trials forms an empirical distribution, based on
which various accuracy measures, e.g., variance and confidence in-
tervals, can be computed.

EXAMPLE 1 (SMALL-QUANTITY-ORDER REVENUE).
SELECT l_partkey, SUM(l_extendedprice) as revenue
FROM lineitem as outer
WHERE l_quantity < (

SELECT SUM(l_quantity) / 3
FROM lineitem as inner
WHERE inner.l_partkey = outer.l_partkey)

GROUP BY l_partkey

Bootstrap is effective and robust over a wide range of practical
situations [15, 20, 16]. However, as mentioned above, bootstrap
suffers from high computational overhead, as it requires hundreds
or even thousands of bootstrap trials in order to obtain an accurate
quality estimate. Next, we introduce analytical bootstrap, which
has been proven equivalent to the simulation-based bootstrap, but
avoids the computational overhead [23].
Probabilistic Multiset Database Each bootstrap resample gener-
ates a multiset relation. E.g., in the resample shown in Figure 1(b),
1We use l_pk, l_q and l_ep as short for l_partkey, l_quantity and
l_extendedprice, respectively.

lineitem
D = l_pk l_q l_ep
t1 p01 4 20
t2 p01 5 25
t3 p01 3 15
t4 p02 1 10
t5 p02 8 80

(a)

lineitem
D̂ = tuple

t1
t2
t2
t4
t5

(b)

l_pk revenue
p01 20
p02 10

(c)

Figure 1: (a) An example database sample D, (b) a resample of
D, and (c) the corresponding query result

tuple t2 is drawn twice, while tuple t3 is not selected. These mul-
tiset relations can be represented in a functional way, where each
tuple t is annotated with an integer π(t), representing its multiplic-
ity in the resample. Figure 3(a) shows the functional representation
of Figure 1(b).

The key idea of analytical bootstrap is to model all possible
bootstrap resamples as a single relation, where tuples are anno-
tated with nondeterministic multiplicities, and thus a query can
be evaluated once on this relation, instead of on many different
resamples. Since the annotations are probabilistic, the obtained
database is called a probabilistic multiset database (PMDB). For
instance, Figure 3(f) is the PMDB modeling all possible bootstrap
resamples of Figure 1(a), where the nondeterministic multiplici-
ties (π1, π2, π3, π4, π5) jointly follow a multinomial distribution
Multinomial(5, [0.2, 0.2, 0.2, 0.2, 0.2]). Figure 1(b) is an instan-
tiation of Figure 3(f) by assigning π1 = 1, π2 = 2 and so on.
Extending Relational Algebra Evaluating queries on bootstrap re-
samples simply follows relational algebra with multiset semantics.
Green et al. [14] showed that one can query a multiset database by
extending the relational algebra with the + and · operators, which
manipulate the annotated multiplicities: for projection, we add the
multiplicities of all input tuples that are projected to the same result
tuple, while for join, we multiply the multiplicities of joined tuples.
I.e., inductively:
• Selection σc(R). πσc(R)(t) = πR(t)·1(c(t)), where1(c(t))

returns 1 if c(t) is true and 0 otherwise.
• Projection ΠA(R). πΠA(R)(t) =

∑
t′[A]=t πR(t′) where

t′[A] is the projection of t′ on A.
• Join R1 ./ R2. πR1./R2(t) = πR1(t1) · πR2(t2), where ti

is t on Ui.
Consider the query plan for Example 1 as shown in Figure 2.2 Fig-
ure 3(b) to 3(e) demonstrate the evaluation steps using the extended
relational algebra.

Figure 2: Query plan for the running example

Even with the extended relational algebra, the simulation-based
bootstrap still needs to evaluate the query many times on different
resample instances. In contrast, the analytical bootstrap extends
relational algebra with operators that directly manipulate the anno-
tations in the PMDB, i.e., random variables representing the nonde-
terministic multiplicities. Specifically, the analytical bootstrap in-
troduces two operators on the annotated random variables, namely
+ convolution (⊕) and · convolution (�), defined as: for any two
random variables r1 and r2, r1 ⊕ r2 (r1 � r2) is a new random
variable, where

Pr(r1 ⊕ r2 = s) =
∑
{Pr(r1 = x ∧ r2 = y) | ∀x, y, x+ y = s}

Pr(r1 � r2 = s) =
∑
{Pr(r1 = x ∧ r2 = y) | ∀x, y, x · y = s}

2γA,α(B) denotes applying aggregate α on B group by A.
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lineitem
t π
t1 1
t2 2
t3 0
t4 1
t5 1

(a)

l_pk $sum π
p01 4 × 1 + 5 × 2 1(1 + 2

+3 × 0 = 14 +0) = 1
p02 1 × 1 + 8 × 1 1(1 + 1)

= 9 = 1

(b) Step À in Figure 2

t $sum π
t1 14 1 × 1 = 1
t2 14 2 × 1 = 2
t3 14 0 × 1 = 0
t4 9 1 × 1 = 1
t5 9 1 × 1 = 1

(c) Step Á in Figure 2

t π
t1 1(14 > 12) × 1 = 1
t2 1(14 > 15) × 1 = 0
t3 1(14 > 9) × 0 = 0
t4 1(9 > 3) × 1 = 1
t5 1(9 > 24) × 1 = 1

(d) Step Â in Figure 2

l_pk $SUM
p01 1 × 20 + 0 × 25

+0 × 15 = 20
p02 10 × 1 + 80 × 0

= 10

(e) Step Ã in Figure 2

lineitem
t π
t1 π1

t2 π2

t3 π3

t4 π4

t5 π5

(f)

l_pk $sum π
p01 $1 = 4π1⊕ π′

1 = 1(π1⊕
5π2 ⊕ 3π3 π2 ⊕ π3)

p02 $2 = π′
2 =

1π4 ⊕ 8π5 1(π4 ⊕ π5)

(g) Step À in Figure 2

t $sum π
t1 $1 π1 � π′

1

t2 $1 π2 � π′
1

t3 $1 π3 � π′
1

t4 $2 π4 � π′
2

t5 $2 π5 � π′
2

(h) Step Á in Figure 2

t π
t1 π′′

1 = 1($1 > 12) � π1 � π′
1

t2 π′′
2 = 1($1 > 15) � π2 � π′

1

t3 π′′
3 = 1($1 > 9) � π3 � π′

1

t4 π′′
4 = 1($2 > 3) � π4 � π′

2

t5 π′′
5 = 1($2 > 24) � π5 � π′

2

(i) Step Â in Figure 2

l_pk $sum
p01 20π′′

1 ⊕ 25π′′
2

⊕15π′′
3

p02 10π′′
4 ⊕ 80π′′

5

(j) Step Ã in Figure 2

Figure 3: (a) One resample instance with annotations, (b)-(e) evaluation steps in multiset semantics, (f) the PMDB for Figure 1(a),
and (g)-(j) evaluation steps of analytical bootstrap

Figure 4: ABS Architecture
Similar to the extended relational algebra for multiset semantics,
analytical bootstrap applies ⊕ operator whenever summing the an-
notations, and applies � operator whenever multiplying the anno-
tations. Figure 3(g) to 3(j) show the corresponding evaluation steps
of analytical bootstrap for Figure 2.
Efficient Evaluation It is both space and time consuming to ma-
nipulate random variables symbolically. Thus, at query time, ana-
lytical bootstrap represents and manipulates the random variables
by their marginal distributions. Specifically, analytical bootstrap
represents each annotation π by a pair (n,p), namely the multino-
mial representation, where (i) n is the number of multinomial trials
in a bootstrap trial, which is the size of the relation being resam-
pled, and (ii) p is the probability vector of a single multinomial
trial, i.e., probability of this tuple being picked (p[1]) or not picked
(p[0]). E.g., π1 is represented by (5, [p[1] = 0.2,p[0] = 0.8]).

In contrast to symbolic manipulation, this evaluation technique
can only be applied to the cases where tuples in any intermediate
results are generated from disjoint set of tuples from the base re-
lation. Fortunately, query plans that satisfy the requirement, called
eligible plans [23], can be detected at compile time.

3. SYSTEM ARCHITECTURE
Figure 4 shows the high-level architecture of the ABS system,

which can be divided into two main components: (1) Query Trans-
lation Engine: transparently compiling, checking and rewriting the
query to support error estimation. (2) DB Execution Engine: eval-
uating the query augmented with error estimation operations, and

delivering the accuracy measures in user-specified metrics. The
two components are decoupled by the rewritten query plans:
Query Translation Engine Taking a SQL query, the compiler gen-
erates a query plan expressed in relational algebra. Then, the com-
piler passes the execution plan along with the basic settings of the
input database to the eligibility checking module. Based on the
eligibility rules defined in [11, 23], the eligibility checking mod-
ule verifies if the input query plan is suitable to perform analytical
bootstrap and/or the closed-form method.

If an eligible plan is found, the compiler passes the plan to the
rewriter. The rewriter takes into consideration the user-specified
quality measures, and rewrites the plan into a new query plan with
annotation enhanced operations in order to support error estima-
tion, i.e., with additional annotations, and functions that propagate
the annotations according to the methods discussed in Section 2.
The rewritten query plan preserves the result of the original query,
and adds the desired error measures specified by the user.
DB Execution Engine The rewritten query plan is then submit-
ted to the execution engine. Through user-defined type and user-
defined aggregates/functions, the execution techniques of the ABS
system, i.e., extended relational algebra in Section 2, can be easily
integrated into common database engines as an extension module
(ABS extension as shown in Figure 4). Specifically, the ABS sys-
tem expresses the annotations in the form of user-defined types,
and the convolution operations of the annotations as user-defined
aggregates/functions. Currently, we implement the ABS system on
top of Hive [1], an open source distributed data warehouse that sup-
ports efficient query evaluation on massive data sets. Furthermore,
since our implementation is built as an extension module of Hive,
it is easy to deploy ABS on other query engines (e.g., Shark [2]).

4. DEMONSTRATION DESCRIPTION
The demonstration is organized into three phases: (1) a brief in-

troduction to the main system functionalities, in which we will ex-
hibit the key components and features of our system; (2) a “hands-
on” phase in which the public is invited to directly interact with
the system and test its capabilities; and (3) a performance compari-
son, in which we demonstrate the superior performance of ABS by
comparing it against the closed-form approach and the standard
simulation-based bootstrap.

In the demonstration of the system functionalities, we will show
how the system interface (e.g., figure 5) guides the user through the
steps of query processing:
(i) Query Eligibility Verification. In this step, the ABS system first
loads the database and the corresponding database sample speci-
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Figure 5: ABS Web Interface: analytical bootstrap evaluation

fied by user. Then the user can submit the query of interest to be
evaluated on the loaded database. The system compiles the input
query to a query plan explained in relational algebra, and provides
users a visualization of the query plan. Based on this query plan,
the system checks whether it is eligible for applying efficient an-
alytical bootstrap method and/or closed-form method to estimate
the approximation error of the query. Non-eligible operators will
be marked out with detailed information indicating which eligible
rule is violated.

In addition, the system will also provide a list of applicable er-
ror estimation methods, which could include one or more of (i)
closed-form evaluation, (ii) analytical bootstrap method, and (iii)
the standard bootstrap. If neither analytical bootstrap nor closed
form evaluation is not applicable, the system will choose the stan-
dard bootstrap as default. At this point, the user can determine the
evaluation method for the submitted query.
(ii) Query Rewriting. In this step, the ABS system presents how a
query is rewritten into a new query that can provide error measures
alongside the approximate answers. For analytical bootstrap evalu-
ation, ABS extends the query plan by augmenting the query plan
with annotation manipulation operations; while for closed form
evaluation, the query plan will be augmented with functions to col-
lect the statistics required in the prediction formulas, such as mean
and variance of target columns in the query. The new query plan is
then passed to our database engine.
(iii) Query Evaluation and Error Measurement. Once the rewritten
query plan is ready, our database engine evaluates it on the chosen
database sample. To demonstrate the result of query evaluation,
the ABS system provides different kinds of error measures (e.g.,
variance, quantiles and confidence intervals) for the user to choose
from based on the application purpose. Figure 5 shows the web
interface of analytical bootstrap in ABS.
(iv) Performance Comparison. To better explore the various error
estimation methods supported, the user can compare the methods
in terms of the result accuracy and the evaluation efficiency. We
have prepared several TPC-H datasets in different scales for com-
parison purposes. Since the standard bootstrap requires hundreds
of iterations to reach reliable estimation, we have also prepared the
bootstrap results for a few queries in advance.

5. CONCLUSION
The ABS system represents a major step forward for error estima-

tion in AQP, achieving a level of generality, automaticity and supe-
rior efficiency that have not been obtained by previous approaches.
The demonstration highlights the main functionalities of the sys-

tem, and exhibits how this important error estimation technique can
be easily integrated into existing database systems.
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