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Abstract

In this paper, we explore the possibility of transforming queries with minimum and maximum predicates into

equivalent queries that can be computed more efficiently. The main contribution of the paper is an algorithm for

propagating min and max predicates while preserving query equivalence under certain monotonicity constraints. We

show that the algorithm is correct and that the transformed query is often safe when the original one is not. Although in

this paper we use logic rules, the technique presented can be used to optimize (possibly recursive) queries expressed

using SQL3. r 2002 Published by Elsevier Science Ltd.
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1. Introduction

The rising demand for applications which support the decisional process and perform reporting has led
to increasing interest in the problem of efficiently computing aggregate queries, which are widely used in
such systems [1,2]. Thus, due to its practical importance, the study of logics and declarative languages with
aggregates has received significant attention in the literature [3–8]. Most of the research has concentrated on
the study of declarative programs containing recursive predicates with monotonic aggregates [9–11]. These
works pursue the general objective of ensuring the existence of formal semantics and achieving an efficient
computation for such programs [9,10,12–15].
The predicates min and max allow a declarative specification of queries but their computation is often not

efficient. Here we consider queries containing min or max constructs, such as the one which searches for the
minimum path connecting two nodes in a weighted graph, and propose a technique for transforming them
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into equivalent queries that can be computed more efficiently. Example 1, below, presents a query
containing a minimum predicate.

Example 1. Stratified shortest path. Given a weighted directed graph represented as a base relation arc,
where all edge weights are nonnegative, the predicate path computes the set of all triples ðx; y; cÞ such that
there is a path from node x to node y whose cost is c: The predicate sh path yields all the triples ðx; y; cÞ
such that c is the least cost among all paths from node x to node y:

sh pathðX; Y; CÞ’minðC; ðX; YÞ; pathðX; Y; CÞÞ:

pathðX; Y; CÞ’arcðX; Y; CÞ:

pathðX; Y; CÞ’pathðX; Z; C1Þ; arcðZ; Y; C2Þ; C ¼ C1 þ C2:

In the above example, the meaning of the min predicate min(C,(X,Y),path(X,Y,C)) is to select among
the tuples of path with the same values of X and Y the ones with the least value for the attribute C. This
predicate has second order syntax but its semantics is first order, and a precise semantics can be assigned to
our program, by simply viewing the rules containing the min predicate as a shortcut for rules with negated
body literals. For instance, the first rule is a shorthand for the following rules:

sh pathðX; Y; CÞ’ pathðX; Y; CÞ; :a lesser pathðX; Y; CÞ:

a lesser pathðX; Y; CÞ’ pathðX; Y; CÞ; pathðX; Y; C0Þ;C0oC:

where a lesser path is a new predicate symbol not appearing elsewhere in the program. This has
formal semantics because, by rewriting the min predicates by means of negation, we get a stratified
program [16,17]. However, a straightforward evaluation of such a stratified program would materialize
the predicate path and then choose the smallest cost tuple for every pair of nodes x and y: There
are two problems with this approach: first, it is very inefficient, and second, the computation could
be non-terminating if the relation arc is cyclic and the domain of the cost attribute is infinite
(if the cost domain is finite the complexity of the computation depends on the dimension of the
domain).
To solve these problems we begin by observing that all minimum paths of length n þ 1 can be generated

from the minimum paths of length n; since the weights are nonnegative. Thus, the min predicate can be
pushed into recursion, in such a way that the generation of new paths is interwoven with the computation
of shortest paths, yielding the program of Example 2.

Example 2. Unstratified shortest path.

pathðX; Y; CÞ’arcðX; Y; CÞ:

pathðX; Y; CÞ’sh pathðX; Z; C1Þ; arcðZ; Y; C2Þ; C ¼ C1þC2:

sh pathðX; Y; CÞ’minðC; ðX; YÞ; pathðX; Y; CÞÞ:

Unfortunately, as we attempt to give a meaning to Example 2, by rewriting it using negation, as in the
previous example, we obtain a non-stratified program, with all the accompanying semantics and
computational problems: the answer (under the well-founded semantics) could contain undefined atoms
and the computation could be inefficient. [3,8,9,11,13,18–24].
In this paper, we consider the problem of taking a program such as that of Example 1, where a min

predicate is given as a post-condition on a recursive graph computation, and transform the program into an
equivalent one where the min predicate is pushed into the recursive rules. Once a query is rewritten, as in

F. Furfaro et al. / Information Systems 27 (2002) 321–343322



Example 2, the greedy fixpoint procedure [9] can be used to compute the transformed program efficiently.
Thus, we allow the user to write stratified queries which have clear and intuitive semantics [25] but are
expensive to answer, and leave the system the task of efficiently computing the queries by rewriting them.
We concentrate on the class of cost-monotonic programs which, because of their syntactic structure and
stratification conditions induced by the underlying cost domain, have a total well-founded model. Although
our discussion deals explicitly with min programs only, the symmetric properties of max programs follow
by duality.
We point out that we use Datalog to present how min and max aggregates are propagated down into

queries for the sake of simplicity of presentation. As shown in the following example, the technique
presented here can also be used to optimize (recursive) queries expressed by means of SQL3 [26,27].
For instance, assuming that the schema for the relation arc is Arc(Source,Dest,Cost), the query of
Example 1 can be expressed in SQL3 as follows:

CREATE RECURSIVE VIEW Path(Source,Dest,Cost) AS

( SELECT Source, Dest, Cost

FROM Arc

UNION

SELECT Path.Source, Arc.Dest, Path.Cost+Arc.Cost AS Cost

FROM Path, Arc

WHERE Path.Dest¼ Arc.Source

)

SELECT Source, Dest, MIN(Cost)

FROM Path

GROUP BY Source, Dest

whereas an SQL3-like1 query equivalent to the query of Example 2 can be expressed as follows:

CREATE RECURSIVE VIEW Path(Source,Dest,Cost) AS

( SELECT Source, Dest, MIN(Cost) AS Cost

FROM Arc

GROUP BY Source, Dest

UNION

SELECT Path.Source, Arc.Dest, MIN(Path.Cost+Arc.Cost) AS Cost

FROM Path, Arc

WHERE Path.Dest ¼ Arc.Source

GROUP BY Path.Source, Arc.Dest

)

SELECT Source, Dest, MIN(Cost)

FROM Path

GROUP BY Source, Dest.

The rest of the paper is organized as follows. In the next section, we review the syntax, the semantics of min
programs and the notion of monotonic min queries. In Section 3, we review the computation of min
queries. In Section 4, we present a technique for the rewriting of queries into equivalent ones where the min
predicate is pushed into the recursive rules. In Section 5, we present our conclusions and suggestions to
extend the technique to larger classes of queries.

1SQL3 queries must be aggregate stratified.
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2. Basic definitions

2.1. Datalog

We assume finite countable sets of constants, variables and predicate symbols. A (simple) term is either a
constant or a variable. A (standard) atom is of the form pðt1;y; tnÞ where p is a predicate symbol and
t1;y; tn are terms. A literal is an atom A or its negation :A: A rule is of the form A’B1;y;Bn; where A

(called head) is an atom and B1;y;Bn (called body) is a conjunction of literals. A ground rule with an
empty body is called a fact. A (Datalog) program is a finite set of rules.
Given a program P; the Herbrand universe for P; denoted HP; is the set of all constants occurring in P:

The Herbrand Base of P; denoted BP; is the set of all ground atoms whose predicate symbols occur in P and
whose arguments are elements from the Herbrand universe. A ground instance of a rule r in P is a rule
obtained from r by replacing every variable X in r by a constant in HP: The set of ground instances of r is
denoted by groundðrÞ; accordingly, groundðPÞ denotes

S
rAP groundðrÞ: A ground atom is called tuple of

fact.
Given a literal A; ::A denotes A: Let I be a set of ground literals; then :I denotes the set f:A j AAIg;

and Iþ (resp., I
) denotes the set of all literals (resp., negated atoms) in I : Given a Datalog program P; we
denote with %I ¼ BP 
 ðIþ,:I
Þ the set of facts in the Herbrand base which are undefined in the
interpretation I : I is a (partial) interpretation of P if it is consistent, i.e., Iþ-:I
 ¼ |: Moreover, if
Iþ,:I
 ¼ BP; the interpretation I is called total.
Let I be an interpretation for a program P; then the truth value of an atom AABP with respect to

interpretation I ; denoted by IðAÞ; is equal to (i) true if AAI ; (ii) false if :AAI and undefined otherwise, i.e.,
AA %I: We assume the linear order falseoundefinedotrue and :undefined ¼ undefined:
A rule A’A1;y;Am in groundðPÞ is satisfied w.r.t. an interpretation I if IðAÞXminfIðAiÞ j 1pipmg: An

interpretation I is a model if all rules in groundðPÞ are satisfied. The semantics of logic programs is given in
terms of partial stable model semantics [28] which we briefly recall next.
An interpretation M of P is a P-stable (partial stable) model if it is the minimal model of the positive

program PM obtained from groundðPÞ by replacing each negated body literal :A with the complement of
the truth value of A w.r.t. M: A P-stable model M of P is (i) T-stable (total stable) if it is a total
interpretation of P; and (ii) well-founded if it is the intersection of all P-stable models of P: T-stable model
was the first notion of stable model and was defined in [28]; existence of a T-stable model for any program is
not guaranteed. It is well known that every program admits a unique well-founded model which can be
computed in polynomial time. Positive programs have a total well founded model (and consequently a
unique total stable model) which coincides with the minimum model [28].
Let I be an interpretation for a program P: The immediate consequence operator TPðIÞ is defined as the set

containing the heads of each rule rAgroundðPÞ s.t. the body of r is true in I : The semantics of a positive (i.e.
negation-free) program P is given by the unique minimal model; this minimum model coincides with the
least fixpoint TN

P ð|Þ of TP [29].
The dependency graph GP of a program P is a directed graph whose nodes are predicate symbols in P:

There is an arc from a node q to a node p if there is a rule r in P such that a q-atom appears in the body and
a p-atom appears in the head. Moreover, an arc from q to p is labelled with : if q appears negated in r:
Given two predicate symbols p and q in a program P; we say that p depends on q if there is a path from q

to p in GP: The maximal strong components of GP will be called recursive components. Predicates in the
same recursive component are mutually recursive. A rule is recursive if its head predicate symbol is mutually
recursive with some predicate symbol occurring in the rule body. A maximal set of rules of a program P

whose head predicate symbols belong to the same recursive component of the graph GP is called sub-
program of P: Sub-programs can be (partially) ordered on the base of the dependencies among predicate
symbols.
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A program P is stratified if GP does not contain cycles with marked arcs [16]. Stratified programs have a
total well-founded model which coincides with the unique stable model; this model is also called perfect

model or stratified model [30]. The perfect model of a stratified program can be computed by partitioning
the program into an ordered number of suitable subprograms (called ‘strata’) and computing the fixpoints
of every stratum from the lowest one up [16,31,32].
Locally stratified programs are defined in an analogous way by considering the dependency graph

GgroundðPÞ of groundðPÞ: GgroundðPÞ is constructed as follows: for each ground atom in groundðPÞ there is a
node in GgroundðPÞ and there is an arc from the atom q to the atom p if there is a rule r in groundðPÞ with p as
head and q appear in the body; moreover, an arc from q to p is labelled with : if q appears negated in r [30].
Locally stratified programs also have a total well-founded model (also called perfect model [30]) which
coincides with the unique total stable model.
In general, the predicate symbols of a program can be partitioned into extensional and intensional

predicates (called EDB and IDB predicates, respectively). EDB predicates never occur in the rule heads as
they are assumed to be defined by a number of ground facts stored in some database D: A (Datalog) query

Q is a pair /gðX Þ;PS where P is a (Datalog) program, g is a predicate symbol in P; with arity nX0; and X

is a list of n variables; the atom gðX Þ is said to be the query-goal. Given a database D; the answer to Q on D;
denoted by QðDÞ; is the set of relations on g denoted as Ag ¼ fMðgÞ j M is a model defining the semantics of
P,Dg:2 We say that two queries Q1 and Q2 are equivalent ðQ1 � Q2Þ if for each database D the answers to
Q1 and Q2 on D are the same.

2.2. Min queries

The notion of a minimum naturally assumes the existence of a domain of constants over which a total
order is defined. Formally, we assume the existence of an alphabet of constants, functions and predicate
symbols. We assume also that there are a built-in set of constants K ; called cost domain, two built-in binary
predicates o and p; and built-in functions whose arguments are elements of K : In our examples, we will
use the cost domain of real numbers, where the built-in predicateso andp are the usual operators defined
for real numbers and the built-in functions are the usual arithmetic operators ðþ;
; * ; etc.).

Definition 1. A special atom is of the form minðC;S;QÞ where: (1) Q is a standard atom of first order logic,
called minimized atom, (2) S is a set of variables, appearing as arguments in Q; called grouping variables, (3)
CeS is a variable, appearing as an argument of Q; called the cost variable. Cost variables can only take
values from the cost domain.

A min atom is either a special atom or a standard atom. A min rule is of the form A’B1;y;Bn where A

is a standard atom and B1;y;Bn are min atoms. A (min) program is defined by a set of min rules P; its
underlying cost domain KP plus an additional constraint defining the subrange of the cost domain whose
values can be assigned to cost arguments. We will call such a subrange the valid cost sub-domain. Both
examples 1 and 2 are min programs. A (min) query Q is a pair /gðX Þ;PS where P is a min program, gðX Þ is
a standard atom.
For the sake of simplicity, we consider min programs without negation. The extension to programs with

stratified negation is straightforward. Without loss of generality, we assume that min rules are either
standard Horn rules or non-Horn rules of the form H’minðC;S;QÞ where H and Q are standard atoms.
The semantics of a min program is defined by taking a min program P and defining a first order formula

foeðPÞ; called the first order extension of P; obtained by replacing every occurrence of special atoms
minðC;S; qð %Y;CÞÞ by the pair of goals qð %Y;CÞ; :a lesser qð %Y;CÞ: The distinguished a lesser q predicate is

2With a little abuse of notation D denotes here the set fpðtÞ j tArelation p of Dg:
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defined by the additional rule of the form:

a lesser qð %Y;CÞ’qð %Y;CÞ; qð %X;C0Þ; C0oC;

where an argument variable in %X coincides with the corresponding variable in %Y if this variable
appears in the grouping set S and is a new variable otherwise. The new variable C0 corresponds to the
variable C:
Given a min program P and an interpretation M for foeðPÞ; MP denotes the set of atoms in M whose

predicate symbols appear in P; i.e. MP is derived from M by deleting atoms defining predicate symbols
introduced in the rewriting of P into foeðPÞ: Since we view a min program simply as a shorthand of foeðPÞ;
we will say that if a set of atoms M is an interpretation (resp. a (minimal) model) for foeðPÞ; then MP is an
interpretation (resp. a (minimal) model) for P: Therefore, we can define the semantics of min programs in
terms of rewritten programs, using concepts such as stratification, well founded model and stable models,
developed for Datalog with negation.
In order to guarantee query equivalence between the source and the rewritten programs, we consider

classes of min programs such that the well-founded model of the rewritten program is total (and,
consequently, there is a unique stable model) [32,33]. In this paper we concentrate on the class of cost
monotonic programs which, because of their syntactic structure, define a (local) stratification of the ground
program and, therefore, have a total well-founded model. This model can be computed efficiently, using the
greedy fixpoint procedure introduced in [9] (see Section 3). However, our technique can also be used for
classes of weakly stratified programs [31] such as the modularly stratified class of [34] or the XY-stratified
class [35].
We will assume that certain database predicates arguments called cost arguments can only take values

from the cost domain, or a subset of this domain called a valid cost sub-domain. In most examples of this
paper, we will assume that the set of non-negative numbers is our valid cost sub-domain. The presence of
database goals with cost arguments, and the fact that built-in predicates can be true only if their arguments
are from the cost domain, imply that certain arguments in the derived predicates also belong to the cost
domain. We point out that the introduction of the valid cost domain is motivated by the fact that programs
satisfy some particular properties only if we consider a subset of the cost domain.
A valid instantiation of a rule r in a program foeðPÞ is a ground instance of r that is obtained by replacing

all the variables of r with ground terms from HfoeðPÞ,K 0
P where K 0

P is a valid cost sub-domain, and such
that each goal corresponding to a built-in predicate is true. Hence, valid instantiations will not contain a
goal such as 3 > 4þ 1 which is always false and thus inconsequential. The valid instantiation of program
foeðPÞ is simply the set of all valid instantiations of all rules of foeðPÞ: The valid dependency graph of a (min)
program P; denoted GgroundðPÞ; is a directed graph whose nodes are ground atoms of foeðPÞ: GP contains an
arc from a node A to another node B if there is a valid instantiation of some rule r in foeðPÞ such that A

appears in the body and B appears in the head of r; moreover if A appears negated then the arc is marked,
and will be said to be negative.
We assume that predicates symbols are partitioned into two sets: standard predicates and cost predicates;

cost predicates have a particular argument, called cost argument, which takes values from the valid cost sub-
domain. Atoms whose predicate symbol is a cost predicate are called cost atoms. In the following, the last
argument of a cost atom denotes the cost argument. Thus, given a ground cost atom A ¼ pðt1;y; tn; cÞ;
then the cost value of A; denoted by costðAÞ; is c: Moreover, we say that two ground cost
atoms pðt1;y; tn; c1Þ and pðu1;y; un; c2Þ are contradicting on the cost attribute if ti ¼ ui for all iA½1::n

and c1ac2:
Thus, given a min program P it is possible to divide the predicate symbols appearing in P into the two

distinguished sets of cost predicates and standard predicates. We will only consider programs where each
recursive set of predicates consists of cost predicates (called min sub-program) or standard predicates (called
standard sub-program). Predicates that appear inside special atoms will be called minimized predicates.
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3. Cost monotonic programs and fixpoint computation

As mentioned in the previous section, we concentrate on the class of cost monotonic programs which are
locally stratified w.r.t. the cost argument and which can be computed very efficiently using the greedy
fixpoint algorithm defined in [9].

3.1. Cost monotonic programs

The following definitions characterize such a class of programs.

Definition 2. Let P be a min program with valid dependency graph GP: P is said to be cost monotonic if for
every recursive cost predicate symbol q and for each pair of ground atoms /A ¼ qðt1;y; tnÞ; B ¼
qðu1;y; unÞS; the following two conditions hold:

(1) if there exists a path from A to B in GgroundðPÞ; then there exists iA½1::n
 such that tipui;
(2) if such a path contains a negated arc, then tioui:

It follows from the above definition that in order to determine whether a program is cost monotonic it
suffices to find only one argument satisfying the expected property among the several possible ones of a
recursive predicate. Consider for instance the following example:

Example 3. Modified shortest path.

pðX; Y; CÞ’arcðX; Y; CÞ:

pðX; Y; CÞ’spðX; Z; C1Þ; arcðZ; Y; C2Þ; C ¼ C1þC2
2:

spðX; Y; KÞ’minðC; ðX; YÞ; pðX; Y; CÞÞ; K ¼ Cþ 1:

The database predicate arc(X,Y,C) describes a set of arcs and their costs. The third argument of arc is a
number representing the edge weight, and so the third argument of p and the third argument of sp are cost
arguments. Such a program is cost monotonic if we restrict the valid cost sub-domain to real numbers > 1:
Indeed, by assuming that the weight of arcs is > 1; for each pair of tuples t1 ¼ pðx1; y1; c1Þ and t2 ¼
pðx2; y2; c2Þ (resp. t1 ¼ spðx1; y1; c1Þ and t2 ¼ spðx2; y2; c2ÞÞ such that t1 depends on t2; we have that c1 > c2
whereas for weights p1 the program is not monotonic since we have c1pc2:

Theorem 1 (Ganguly et al. [9]). Every cost monotonic min program is locally stratified.

The main consequence of the above theorem is that cost monotonic programs always have a total well-
founded model which coincides with the perfect model. Although the problem of determining whether a
program is monotonic is undecidable [9], simple sufficient conditions can be given that are general enough
to deal with the common situations of practical interest. We now define the notion of uniformly cost

monotonic program using cost graphs.
The cost graph CGP of a program P is a directed graph whose nodes are cost predicate symbols in P:

There is an arc from a node q to a node p with label r if there is a rule r in P such that a q-atom appears in
the body and a p-atom appears in the head. Moreover, an arc from q to p labelled with rule r is marked with
X if the arc is derived from a Horn rule and the value of the cost argument of p is X the value of the cost
argument of q for every ground interpretation of r: If the arc is derived from a non-Horn rule then it is
marked with min and is called min arc. The cost graph for the program of Example 2 contains an arc from
path to sh path marked with r3=min and an arc from sh path to path marked with r2=X:
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Definition 3. Let P be a min program with cost graph CGP and let SC be a strong component in CGP

containing cost predicates and let SP be the min sub-program whose head predicate symbols are in SC:We
say that SP is uniformly cost monotonic if

(1) all arcs connecting nodes of SC are marked with min or X; and
(2) each cycle contains at least one arc marked with X:

Moreover, we say that P is uniformly cost monotonic if all min sub-programs are uniformly cost monotonic.

Observe that for a given min program P; the cost monotonic property is defined on the (dependency
graph of the) rewritten program foeðPÞ whereas the uniformly cost monotonic property is defined directly
on P:

Theorem 2 (Ganguly et al. [9]). Uniformly cost monotonic min programs are cost monotonic.

The program of Example 2 under the cost domain of positive real numbers is uniformly cost monotonic.
The program of Example 3 is monotonic but not uniformly cost monotonic if we restrict the valid cost sub-
domain to real numbers greater than 1 (for numbers o2; the condition CXC1 does not hold); however, it
becomes uniformly cost monotonic if we restrict the valid cost domain to real numbers X2:

Proposition 1. Let P be a min program. Checking if P is uniformly cost monotonic can be done in polynomial

time.

Proof. The check can be made by (i) constructing the cost graph CGP of P; and (ii) checking if there is a
strong component of CGP containing a cycle without arcs marked with X: Clearly, the construction of the
cost graph is polynomial. To verify condition (ii) it is sufficient to remove from the graph CGP the arcs
marked with X and check if the graph is still cyclic.

In practice, the construction of the cost graph would begin by drawing the dependencies between
recursive predicate names in strong components involving cost predicates. In our example, we have two
nodes, namely path and sh path: From the second rule we derive the arc from sh path to path; that is
labelled with r2=X since the we have costðpathðX ;Y ;CÞÞXcostðsh pathðX ;Y ;CÞÞ for all possible
instantiations of the rule. From the third rule we derive the arc from path to sh path labelled with
r3=min since it is derived from a special rule. It is reasonable to expect that an intelligent compiler will be
able to perform this simple analysis on arithmetic expressions. But, the introduction of an explicit
additional goal CXC1 would make the monotonic cost constraint detectable by even a very
unsophisticated compiler.

3.2. Fixpoint computation

We now recall how the intended model MP of a min program P is computed. We assume that P is
partitioned into a partially ordered set of sub-programs which are computed following the topological
order among predicates symbols: standard sub-programs are computed using the standard fixpoint
operator TP whereas min sub-programs are computed using the greedy fixpoint operator UP below defined.
The clauses of a min (sub-)program P can be partitioned into (1) the set of Horn Clauses H and (2) the

set of non-Horn Clauses N: The immediate consequence operators for H ; N and P denoted, respectively,
by TH ; TN and TP are defined in the usual way [31,32].
Under the restriction of uniform monotonic cost, any arbitrary min program can be evaluated efficiently

using a procedure derived by combining the procedure described in [36] with the no-backtracking
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improvement which follows from Dijkstra’s algorithm as shown in [9]. This ‘new’ procedure, called greedy

fixpoint, consists of applying a modified immediate consequence operator UP until saturation to produce
the unique stable model of the program [28]. The operator UP takes two arguments: the first argument I is
used to build up the stable model, and the second argument L is an auxiliary set that contains the set of
least elements computed so far. The operator UP; basically, alternates between two phases: in the first phase
all the Horn clauses are fired (VP), while, in the second phase the new minima are collected and the non-
Horn clauses are fired (GP). The operator GP uses a leastðI ;LÞ operator which returns the set of facts in I

that are minimal in cost and do not contradict any fact that is already in L w.r.t. the arguments specified by
the grouping variables.

Definition 4. Greedy alternating operator. Let P be a min program, the three operators GP; UP and VP from
2BP � 2BP-2BP � 2BP are defined as follows:

VPðI ;LÞ ¼ ðI,TH ðIÞ;LÞ;

GPðI ;LÞ ¼ ðI,TN ðAÞ;L,AÞ;

UPðI ;LÞ ¼ GPðVPðI ;LÞÞ;

where A ¼ leastðI ;LÞ

Intuitively, the set L contains the set of ‘smallest’ tuples that were produced so far. The basic step in the
greedy operator is to choose a tuple from I that (1) does not contradict existing minima in L and (2) is the
smallest among all such elements. This tuple is then used to fire the non-Horn rules (see Example 4). Un

P is
defined for every finite n as follows: U0

P ¼ ð|; |Þ and Un
P ¼ Un

Pð|; |Þ ¼ UPðUn
1
P Þ if n > 0: For n ¼ N; UN

P is
defined as

S
n finite Un

P: If A is a ground atom with a cost attribute then costðAÞ denotes the value of this cost
attribute. If S is a set of ground atoms then costðSÞ denotes the largest value of the set fcostðAÞ j AASg:
The following theorem state the soundness and completeness of greedy fixpoint procedure.

Theorem 3 (Ganguly et al. [9]). Let P be a uniformly cost monotonic min program such that UN

P ð|; |Þ ¼
ðM ;LÞ then M is the unique stable model of foeðPÞ:

The UP operator generates tuples by alternating between the Horn clauses and the non-Horn clauses. It
fires the Horn rules once using TH and uses the greedy idea to obtain tuples using TN : The strict alternation
between VP and GP is not entirely necessary, since the following operator U 0

P also computes the intended
model for any countable ordinal n > 0 [9]:

U 0
PðI ;LÞ ¼ GPðVn

PðI ;LÞÞ:

In particular, if n ¼ N then the operator reduces to the operator used to construct the stable model in [36]
(except that backtracking is never needed). In the shortest path query of Example 2 the above observation is
quite trivial because TH ¼ TN

H implying that V n
P ¼ VP for all countable ordinals n > 0: The following

example presents a trace of the greedy fixpoint procedure on an example program.

Example 4. Consider the following program computing the shortest distance of the nodes in a given graph
from the source node a:

arcða; b; 1Þ:

arcðb; c; 1Þ:

arcða; c; 3Þ:

arcðc; d; 2Þ:
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pathða; 0Þ:

pathðY; CÞ’spathðX; C1Þ; arcðX; Y; C2Þ; C ¼ C1þC2:

spathðX; CÞ’minðC; ðXÞ; pathðX; CÞÞ:

Here the graph is represented by the database D consisting of the single relation arc: Let us step through the
computations of the UP operator. Initially I ¼ | and L ¼ |: In the first step, after firing the Horn rules we
obtain I ¼ D,fpathða; 0Þg with L unchanged. We now wish to find the set of tuples of I that do not
contradict minima in L and also do not belong to L: Since L is empty, clearly this is fpathða; 0Þg: We now
choose the least element from this set, include it in L and use it to fire the non-Horn rule to obtain the tuple
spathða; 0Þ: Thus I ¼ D,fpathða; 0Þ; spathða; 0Þg and L ¼ fpathða; 0Þg after the completion of the first
iteration.
We now return to firing the Horn rules using the VP operator and obtain L ¼ fpathða; 0Þg and I ¼

D,fpathða; 0Þ; pathðb; 1Þ; pathðc; 3Þ; spathða; 0Þg: At this point we have to find the set of tuples whose
minima are not contradicted by tuples in L: These tuples are spathða; 0Þ; pathðb; 1Þ and pathðc; 3Þ: We
choose the least of these tuples, and obtain A ¼ fspathða; 0Þg; then add A to L: This set is also used to fire
the non-Horn rule. Hence at the end of the second iteration, the values for I and L are as follows:
I ¼ D,fpathða; 0Þ; pathðb; 1Þ; pathðc; 3Þ; spathða; 0Þg and L ¼ fpathða; 0Þ; spathða; 0Þg:
In the next step we fire the Horn rules again but do not obtain new tuples. Then we find the set of tuples

in I whose minima are not contradicted by tuples in L and this set is A ¼ fpathðb; 1Þg: Therefore, the tuple
pathðb; 1Þ is added to L and the non-Horn rule is fired. Hence, at the end of the third iteration, we have
I ¼ D,fpathða; 0Þ; pathðb; 1Þ; pathðc; 3Þ; spathða; 0Þ; spathðb; 1Þg and L ¼ fpathða; 0Þ; spathða; 0Þ; pathðb; 1Þg:
In the fourth step, from the firing of the Horn rules, the tuple pathðc; 2Þ is inferred and the tuple

spathðb; 1Þ is added to L; from the firing of the non-Horn rule no new tuples are derived. Therefore, at the
end of the step we have I ¼ D,fpathða; 0Þ; pathðb; 1Þ; pathðc; 3Þ; pathðc; 2Þ; spathða; 0Þ; spathðb; 1Þg and L ¼
fpathða; 0Þ; spathða; 0Þ; pathðb; 1Þ; spathðb; 1Þg:
In the next step from the firing of the Horn rule no new tuples are derived, the tuple pathðc; 2Þ is added to

L and the tuple spathðc; 2Þ is derived from the firing of the non-Horn rule.
At the end of the process we get the following sets: I ¼ D,fpathða; 0Þ; pathðb; 1Þ; pathðc; 3Þ;

pathðc; 2Þ; pathðd; 4Þ; pathðd; 5Þ; spathða; 0Þ; spathðb; 1Þ; spathðc; 2Þ; spathðd; 4Þg and L ¼ fpathða; 0Þ;
pathðb; 1Þ; pathðc; 2Þ; pathðd; 4Þ; spathða; 0Þ; spathðb; 1Þ; spathðc; 2Þ; spathðd; 4Þg: The tuples pathðc; 3Þ
and pathðd; 5Þ are not added to L because they contradict, respectively, the tuples pathðc; 2Þ and
pathðd; 4Þ already present in L:

The Greedy fixpoint algorithm can be improved in a way which is similar to the improvement of the semi-
naive over the naive computation [37]. Moreover, the computation of finding the set of tuples that do not
contradict the minima already in L can be made much more efficient by using appropriate data structures
(i.e., the data structure heap can be used to store the elements in I 
 L). After making these optimizations it
can be shown that the evaluation of the above program mimics Dijkstra’s algorithm for shortest paths
(having a as source node) and therefore has the same complexity.

4. Propagation of min predicates

In this section, we present an algorithm for transforming monotonic min programs into query-equivalent

programs which can be more efficiently implemented using simple variations of the semi-naive algorithm
such as the semi-naive greedy operator GP:
Let S and T be sets of natural numbers. Then, minðS,TÞ ¼ minðfminðSÞ;minðTÞgÞ: If S and T are

extension of predicates p and q then we have minðp3qÞ ¼ minðminðpÞ3minðqÞÞ: The minimum of a
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disjunction of predicates is the minimum of the disjunction of the minimum of each of the individual
predicates. This is the basic idea behind propagation. In turn, if p and q are defined in terms of other
predicates then the above step could be carried further.
Therefore, in this section we design an algorithm for propagating min predicates while preserving query

equivalence under certain monotonicity constraints. We first present an example and then develop the
theory for propagation.

Example 5. Consider a program P for evaluating the shortest path.

spðX; Y; CÞ’minðC; ðXÞ; pðX; Y; CÞÞ:

pðX; Y; CÞ’arcðX; Y; CÞ:

pðX; Y; CÞ’pðX; Z; C1Þ; pðX; Y; C2Þ; C ¼ C1þ C2:

Suppose the query goal is of the form sp(X,Y,C). If we try to evaluate this using the greedy algorithm we
face the problem of having to compute the predicate p(X,Y,C) first. However, it is clear that tuples in sp

are members of the predicate cp which is defined as below:

cpðX; Y; CÞ’minðC; ðXÞ; arcðX; Y; CÞÞ:

cpðX; Y; CÞ’minðC1; ðXÞ; pðX; Z; C1ÞÞ; minðC2; ðXÞ; pðX; Y; C2ÞÞ; C ¼ C1þ C2:

The second rule of cp can be replaced by

cpðX; Y; CÞ’spðX; Z; C1Þ; spðX; Y; C2ÞÞ; C ¼ C1þ C2:

Moreover, in order to rewrite our programs, instead of propagating min predicates (as in the above
example), we associate adornments to minimized atoms and propagate such adornments in a similar way to
the magic-set rewriting technique [38].
As in the magic-set method, adornments specify the role played by variables. In particular, we associate

adornments to cost predicates by assigning to each of their arguments one of the three labels u; e; or m as
follows:

(1) the cost argument may be labelled m; denoting that the predicate is ‘minimized’;
(2) an argument not contained in the set of grouping variables is labelled e; denoting that the

corresponding variable is existentially quantified;
(3) an argument appearing in the set of grouping variables is labelled u; denoting that the corresponding

variable is universally quantified.

Consider, for instance, the min atom minðC; ðX ;Y Þ; pðX ;Z;Y ;CÞÞ: The adorned atom associated with the
minimized atom is pueumðX ;Z;Y ;CÞ: Predicates that are not minimized will then be assigned the default
adornment e: For instance, in Example 1, the adornment for sh path is e whereas the adornment for path is
uum:
Thus, we use the concept of adornments to abbreviate minimized predicates. The basic component of the

transformation algorithm is the propagation of an adornment from the head of a rule into the body of the
rule. We discuss this for Horn rules and non-Horn rules next.

4.1. Propagating adornments into horn rules

Consider the following rule for which we wish to propagate the adornment uum for p into the body.

pðX; Z; CÞ’qðX; Y; C1Þ; sðY; Z; C2Þ; C ¼ C1þC2:
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In this case, a particular tuple p(X,Z,C) is a possible candidate member of puum provided that the
conjunction quumðX; Y; C1Þ; suumðY; Z; C2Þ is true. Clearly, this condition is necessary but not sufficient for two
reasons: (i) the combination of two tuples from quum and suum may give a tuple whose cost could not be
minimum with respect to a fixed adornment, and (ii) the predicate p can appear in the head of some other
rule. This motivates us to introduce a new surrogate predicate cpuum (the name for the surrogate predicate
symbol is obtained by prefixing c to the name of the predicate and by superscripting the adornment) whose
definition is intended to collect the set of candidate minimum tuples for the given adornment. Thus, the
propagation of the adornment uum in the above rule results in the following rule:

cpuumðX; Z; CÞ’quumðX; Y; C1Þ; suumðY; Z; C2Þ; C ¼ C1 þ C2:

If there are multiple rules that define the predicate p, we generate one of such adorned rules for each rule of
the ‘original’ program. Consequently, we define puum as the minimum over cpuum as follows:

puumðX; Z; CÞ’minðC; ðX; ZÞ; cpuumðX; Z; CÞÞ:

The above rule is called the minima definition of p, in terms of the surrogate predicate cpuum for the
adornment uum. In this manner, we generate the adorned definition of a predicate for a given adornment,
which is the union of the adorned rules for the predicate and the minima definition of the predicate in terms
of the surrogate predicate for that adornment.

4.1.1. Adorning variables by u

In the above example, the variable Y is shared by both qðX; Y; C1Þ and sðY; Z; C2Þ in the body of the rule. In
this case, and in all the cases analogous to this one, it is safe to adorn Y as u in both the q and s predicates in
the body. It is not safe to adorn Y as e in either or both the predicates. Suppose that, for instance, we adorn
Y by e in qðX; Y; C1Þ and by u in sðY; Z; C2Þ: This would give the following adorned rule:

cpuumðX; Z; CÞ’quemðX; Y; C1Þ; suumðY; Z; C2Þ; C ¼ C1þC2:

It should be clear that cpuum may be a proper subset of cpuum since there may not be any Y value in sðY; Z; C2Þ
(and therefore in suumðY; Z; C2ÞÞ

3 corresponding to the Y value in quemðX; Y; C1Þ: Hence, shared variables in the

body of a rule are adorned as u.
Furthermore, consider the variables X and Z in the body which are not shared and whose adornments are

prescribed as u in the head. These variables are also adorned as u: variables that are adorned as u in the head

are adorned as u in the body, irrespective of whether they are shared or not.

4.1.2. Adorning variables by e

Consider the following rule and the adornment uem to be propagated to the body:

pðX; Z; CÞ’qðX; U; C1Þ; sðW; Z; C2Þ; C ¼ C1 þ C2:

Clearly, X must be adorned as u since it is adorned as u in the head. Let us now consider the variables U and
W. These variables are neither shared nor do they appear in the head. We adorn these variables by e; since
their values are inconsequential. The variable Z in the body is also adorned as e; since it appears only once
in the body and is adorned as e in the head. Thus, variables that appear only once in the body and do not

appear in the head are adorned as e: Variables that appear only once in the head as e and appear only once in

the body are also adorned as e:

3Unless s is total in its first argument.
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4.2. Monotonicity conditions

The program of Section 4.1, assuming a cost domain of not negative numbers, is uniformly
cost monotonic. This property ensures that the resulting rewritten program has a well-defined
formal meaning and can be implemented efficiently with the greedy fixpoint algorithm. However, the
propagation of min predicates can be applied to a larger class of queries satisfying monotonic conditions
defined below. Clearly, the pushing of min predicates depends on the properties of the functions used to
compute the cost argumentsFnot every function is as well-behaved as the addition used to compute
C ¼ C1þC2:

4.2.1. Monotonicity of the cost functions used in the body

We now consider the constraints that cost predicates and functions computing cost values must satisfy in
order to make the propagation of adornments allowed. Consider the following rule (which is identical to
the one considered previously, except for the equation computing the head cost argument) and the
adornment uum (same as before).

pðX; Z; CÞ’qðX; Y; C1Þ; sðY; Z; C2Þ; C ¼ C1þðC2 mod 5Þ:

In this case, the adornment cannot be propagated into the body predicate sðY; Z; C2Þ since the minimum
value of C2 (as an integer) may not necessarily imply the minimum contribution of ðC2 mod 5Þ to C. However,
the cost variable for the head is a non-decreasing monotonic function of the cost variable for the q-
predicate (see Definition 5) and hence the adornment can be propagated into the q-predicate. The adorned
rule is

cpuumðX; Z; CÞ’quumðX; Y; C1Þ; sðY; Z; C2Þ; C ¼ C1þðC2 mod 5Þ:

This example shows that some body predicates may stay unadorned and are called unadornable predicates.
All adornments to unadornable predicates resulting from the propagation process in the previous rules are
ignored.

4.2.2. Totality of the cost predicate in the body

We now consider the issue of totality of the cost predicate that is raised by the following example:

pðX; Z; CÞ’qðX; Y; C1Þ; sðY; Z; C2Þ; C ¼ logðC1 þ C2 
 5Þ:

Suppose that (as before) we wish to propagate the adornment uum into the body. In this case, however, it is
not possible to propagate the adornment into any of the body predicates. Suppose that for a certain X, Y

and Z, the minimum value for both C1 and C2 is 2. Since C ¼ logð
1Þ is undefined, the adorned rule for this
example is:

cpuumðX; Z; CÞ’qðX; Y; C1Þ; sðY; Z; C2Þ; C ¼ logðC1þC2
5Þ:

We formally define total monotonic mappings below.

Definition 5. Let P be a min program with cost domain CP and valid cost sub-domain KP: Let f ðX1;y;XnÞ
be an n-ary function on the cost domains. We say that the equality goal Y ¼ f ðX1;y;XnÞ defines a total

monotonic mapping from Xi; ð1pipnÞ to Y when the following two conditions are satisfied:

totality: if X1;y;XnACP then f ðX1;y;XnÞAKP; and
monotonicity: if X1;y;Xn;U ;VACP and VpU then

f ðX1;y;Xi
1;V ;Xiþ1;y;XnÞpf ðX1;y;Xi
1;U ;Xiþ1;y;XnÞ:

The rules for propagating adornments into the body of Horn rules are summarized below. We use the
following running example:
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Example 6.

cpuemðX; Y; CÞ’qðX; Z; N1; C1Þ; rðZ; Y; N2; C2Þ; sðZ; W; C3Þ;

N1 ¼ N2þ1; C ¼ C1þC2þðC3 mod 5Þ:

where the last goal in the body of the rule defines a total monotonic mapping from C1 and C2 to C; the
mapping from C3 to C is not monotonic.

4.2.3. Propagation of adornments

Given a rule r with head predicate pð %X;CÞ; we denote with BðrÞ the set of cost predicates in the body of r

and with TCðrÞ the set of cost predicates in BðrÞ such that for each qð %Y;C0ÞABðrÞ there is a total-monotonic
mapping from C0 to C and C0 is a variable not appearing in any other predicate in BðrÞ: In our example
TCðrÞ ¼ fqðX; Z; N1; C1Þ; rðZ; Y; N2; C2Þg and BðrÞ ¼ TCðrÞ,fsðZ; W; C3Þg:
Given a variable X we denote with jðX Þ the set of variables containing X plus all variables whose values

depend on the value of X ; i.e., all variables which are connected to X through some equational condition.
For instance, in Example 6 we have jðN1Þ ¼ fN1; N2g and jðC1Þ ¼ fC; C1; C2; C3g:

(1) Predicates in BðrÞ 
 TCðrÞ are adorned with the empty adornment e: We call such predicates non-

adorned predicates.
(2) Predicates in TCðrÞ are adorned with the adornment aae: We call such predicates adorned predicates.

Each predicate qðX1;y;Xn;CÞATCðrÞ; where C is the variable denoting the cost argument, is adorned
as follows:
(a) The cost argument C is labelled with m ðC1 and C2 in Example 6);
(b) Each variable labelled as u in the head is labelled as u in the body (X in Example 6).
(c) Each variable Xi ðip1pnÞ is labelled as u if there is a variable in jðXiÞ appearing in some other

non built-in goal ðZ; N1 and N2 in Example 6).
(d) Each variable Xi ðip1pnÞ which has not be labelled by m or u in steps ðaÞ 
 ðcÞ is labelled as e

(This labels Y as e in Example 6.)
The adorned rule for the Example 6 is:

cpuemðX; Y; CÞ’quuumðX; Z; N1; C1Þ; rueumðZ; Y; N2; C2Þ; sðZ; W; C3Þ;

N1 ¼ N2þ1; C ¼ C1þC2þðC3 mod 5Þ:

4.2.4. Minima definition of a predicate in terms of its surrogate predicate

Given a Horn clause with head predicate symbol p; the above rules generate the adorned version of each
rule defining p; for a given adornment a: The adorned version of each rule defines a surrogate predicate cpa:
We complete the minima definition of p in terms of cpa for the adornment a by introducing the following
rule in the transformed program.

paðX1;y; XnÞ’minðXi; W; cp
aðX1;y; XnÞÞ;

where Xi is the cost argument and W is the set of variables adorned as u in a: The above rule is denoted by
mindef ðp; cpa; aÞ and is read as the minima definition of p in terms of cpa as determined by the adornment a:

4.3. Propagating adornments into non-Horn rules

The propagation of an adornment b into a min rule pðX Þ’minðC;W ; qðY ÞÞ is performed by rewriting the
rule as pbðX Þ’qaðY Þ where a is the adornment associated to the min atom.
In the following example we illustrate how an adornment is propagated into a minimized

predicate.
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Example 7. Consider the following rules where q is a base predicate symbol and the query goal is
sðX ;Y ;CÞ:

sðX; Y; CÞ’minðC; ðXÞ; pðX; Y; CÞÞ;

pðX; Y; CÞ’minðC; ðYÞ; qðX; Y; CÞÞ:

The adornment associated to s is e: By propagating e; the adornment uem for the predicate p is derived. By
propagating uem in the second rule we derive the adornment eum for q.

Moreover, in the propagation of the adornment a into the rule pðX Þ’minðC;W ; qðY ÞÞ if every variable
adorned as u in a appears in W ; all remaining variables in W can also be adorned as e: For instance, the
propagation of the adornment uem into the rule

pðX ;Y ;CÞ’minðC; ðX ;Y ;ZÞ; qðX ;Y ;Z;V ;CÞÞ

produces the adornment ueeem for q:

4.4. Adorning predicates and rules

So far, we have discussed how to propagate an adornment from the head of a rule into its body to
generate the adorned version of the same rule.
For derived predicates, the adorned definition of a predicate p w.r.t. an adornment a is the set of rules

containing all the rules which define the surrogate predicate cpa and the rule which expresses the minima
definition of p in terms of cpa w.r.t. the same adornment a; i.e.,

paðX1;y;XnÞ’minðXi;W ; cpaðX1;y;XnÞÞ;

where Xi is the variable adorned as m in a and W is the set of variables adorned as u in a:
If p is a base predicate, then the adorned definition of p w.r.t. the adornment a is the minima definition p

in terms of p w.r.t. the adornment a; i.e.,

paðX1;y;XnÞ’minðXi;W ; pðX1;y;XnÞÞ:

where Xi is the variable adorned as m in a and W is the set of variables adorned as u in a:
The minima definition of any predicate p in terms of another predicate q w.r.t. e is the empty set of rules,

i.e. no minima definition for p is produced. Thus, if p is defined by Horn rules, every rule defining p is
rewritten by replacing every predicate symbol q with qe:
We now formally define the adorned definition of a predicate p w.r.t. a given adornment a: In order to do

so, we use the following terminology:

(1) adorn-ruleðr; aÞ is the adorned rule obtained by propagating the adornment a for the head of r into the
body of r:

(2) mindef ðp; q; aÞ denotes the rule that defines p as the minima of q w.r.t. the adornment a:

The adorned definition of a predicate p w.r.t. an adornment a; denoted by adorn-predðp; aÞ is
equal to

* mindef ðp; p; aÞ; if p is a base predicate
* fadorn-ruleðr; aÞ j r defines pg,fmindef ðp; cpa; aÞg; otherwise.

Example 8. Consider the program of Example 1. The adorned definition of the predicate sh path w.r.t. the
adornment e is:

adorn-predðsh path; eÞ ¼ fsh patheðX; Y; CÞ’pathuumðX; Y; CÞg:
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Thus, the adorned definition of the predicate path appearing in the program with the adornment uum is

adorn-predðpath; uumÞ ¼

cpathuumðX; Y; CÞ’arcuumðX; Y; CÞ;

cpathuumðX; Y; CÞ’pathuumðX; Z; C1Þ;arc
uumðZ; Y; C2Þ; C ¼ C1þC2;

pathuumðX; Y; CÞ’minðC; ðX; YÞ; cpathuumðX; Y; CÞÞ;

8><
>:

whereas the adorned definition of the predicate arc appearing in the program with the adornment uum is

adorn-predðarc; uumÞ ¼ farcuumðX; Y; CÞ’minðC; ðX; YÞ; arcðX; Y; CÞÞg:

The resulting program corresponds to the program of Example 2.

4.5. Algorithm for adorning a program

In this subsection, we discuss an algorithm that generates an adorned program from a given min program
and a query predicate.
The algorithm begins by generating the adorned definition of the query predicate, whose symbol we

assume to be q: This may generate new adorned predicate symbols. The adorned definitions of these
predicate symbols are (recursively) included in the adorned program until all definitions of generated
adorned predicates have been included.
General min-programs may have predicates without cost arguments or predicates whose cost arguments

are either non-monotonic or are not total. These predicates may not yield any adorned definitions during
the propagation algorithm. Hence, the definition of such predicates must be included in the adorned
program.
A simple way of achieving this purpose is to initiate the adornment propagation algorithm with

the query predicate symbol q and the adornment e: After all adorned definitions are generated, the
set of rules reachable from qe form the adorned program. Finally, in the adorned program, all
occurrences of qe are replaced by q: The algorithm which propagates min predicates is shown in
Fig. 1. The variables S and T contain, respectively, the set of predicate symbols to be adorned and
the set of predicate symbols already adorned, and bodyðrÞ denotes the set of atoms in the body of
a rule r:
The following example shows how the algorithm works.

Example 9. Consider the program of Example 1 and the query sh path(X,Y,C). In the first step, the rule
immediately below is produced:

r1 : sh patheðX; Y; CÞ’pathuumðX; Y; CÞ:

At step 2, the algorithm generates the rules

r2 : cpath
uumðX; Y; CÞ’arcuumðX; Y; CÞ:

r3 : cpath
uumðX; Y; CÞ2pathuumðX; Z; C1Þ; arcuumðZ; Y; C2Þ; C ¼ C1þC2:

r4 : path
uumðX; Y; CÞ-minðC; ðX; YÞ; cpathuumðX; Y; CÞÞ:

Finally, at step 3, the rule

r5 : arc
uumðX; Y; CÞ’minðC; ðX; YÞ; arcðX; Y; CÞÞ:

is produced.
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4.6. Query equivalence of original and adorned programs

In this section, we discuss the proof of query equivalence between a given query and the adorned query
obtained as the output of Algorithm 1.
Note that Algorithm 1 includes the adorned definition of predicates into the source program P at

each iteration. Hence, until termination, there is at least one adorned predicate symbol in P which
is not defined in P; making it ‘incomplete’. In order to prove the equivalence of the adorned
program and the original program, we begin by completing the definition of such incomplete
programs.
The adorn-completionðPÞ; for a given set of rules P; is P union with mindef ðp; p; aÞ; for every pa which

appears in the body of some rule in P but is undefined in P: That is, for each undefined n-ary predicate
symbol pa a rule of the form

paðX1;y;XnÞ’minðXi;W ; pðX1;y;XnÞÞ;

where Xi is the cost argument and W is the set of variables adorned as u in a; is added to adorn-

completionðPÞ:

Lemma 1. Let Q ¼ /q;P0S be the input query of the Algorithm 1 and let P1 ¼ P0, adorn-predðq; eÞ be the

set of rules contained in P at the end of the first step of the Algorithm 1: Then:

(1) /q;P0S � /q;adorn-completionðP1ÞS;
(2) /q;adorn-completionðP1ÞS � /qe;adorn-completionðP1ÞS:

Proof. In the first step of the algorithm and in the adorn-completion process no rule is removed
from P: only rules which are not reachable from q are added to P: Hence, /q;P0S �
/q; adorn-completionðP1ÞS:
Moreover, the rules added in the adorn-completion process make all the rules of P1 that can be reached

from q reachable from qe: no rule which is ‘inherited’ from the original set P0 and which cannot be reached
from q can be reached from qe in adorn-completionðP1Þ: Hence /q;adorn-completionðP1ÞS �
/qe; adorn-completionðP1ÞS: &

Fig. 1. Propagation of min predicates.
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Lemma 2. Let /q;P0S be the input query of the Algorithm 1 and let Pi and Piþ1 be the set of rules contained

in P; respectively, at the end of the ith and ði þ 1Þth steps. Then, /qe; adorn-completionðPiÞS �
/qe; adorn-completionðPiþ1ÞS:

Proof. At the ði þ 1Þth step of the Algorithm 1, one of the not yet ‘expanded’ symbols pa is chosen and the
set adorn-predðp; aÞ is added to P: Hence, we have that:

adorn-completionðPiþ1Þ ¼ ðadorn-completionðPiÞ 
 mindef ðp; p; aÞÞ,adorn-predðp; aÞ,minset;

where minset ¼ fmindef ðq; q; aÞ j qa appears in the body of some rule r such that rAadorn-predðp; aÞ and
readorn-completionðPiÞg:
If p is a base predicate adorn-predðp; aÞ ¼ mindef ðp; p; aÞ; and so adorn-completionðPiþ1Þ ¼

adorn-completionðPiÞ: Otherwise, the set of rules contained in adorn-predðp; aÞ,minset computes the same
minimum calculus defined by mindef ðp; p; aÞ in terms of the adorned predicates obtained from the
predicates appearing in the body of the rules defining p: Indeed, if p is defined by the rules r1;y; rm; where ri

is of the form ri : p’qi1 ;y; qin ; the rule mindef ðp; p; aÞ searches among all p-atoms which satisfy some ri

(where iA½1::m
) for the ones having the minimum cost argument (according to the adornment a) and
returns them. The adorned rule corresponding to ri and contained in adorn-predðp; aÞ is of the form:
r0i : cpa’qa1

i1
;y; qan

in
and minset contains the rules mindef ðq1; q1; a1Þ;y;mindef ðqn; qn; anÞ: According to the

definition of propagated adornments, if a p-atom obtained from the rule ri is returned by mindef ðp; p; aÞ; for
each qij -atom occurring in the body of ri there exists a qs

ij
-atom (where s is the propagation of a) with the

same values for the corresponding arguments.
Thus, in both cases (either p is a base predicate or a derived one) we have that /qe; adorn-

completionðPiÞS � /qe; adorn-completionðPiþ1ÞS: &

Essentially, Lemma 1 states that query equivalence is preserved at the first iteration step of Algorithm 1
whereas Lemma 2 states that query equivalence is preserved at each subsequent iteration step of
Algorithm 1. The following theorem formally states the query equivalence of the original and the adorned
program.

Theorem 4. Let Q be the program output by Algorithm 1 applied to the input query /q;PS: Then /q;PS �
/q;QS:

Proof. Algorithm 1 terminates in a finite number k of steps, since P contains a finite number of rules and of
predicates, and a predicate that is adorned in a certain step of the algorithm cannot be re-elaborated, for the
same adornment, in any of the successive steps (see Proposition 2). Let P0 be the set of rules contained
in P before the execution of the first step of the algorithm, and let Pi (for 1pipkÞ denote the set
of rules contained in P at the end of the ðiÞ-th iteration. It follows from Lemma 1 that /q;P0S �
/qe; adorn-completionðP1ÞS: Lemma 2 states that, for any 1piok; /qe; adorn-completionðPiÞS �
/qe; adorn-completionðPiþ1ÞS; so we have that /q;P0S � /qe; adorn-completionðPkÞS: Since the definition
of all adorned predicates of Pk is in Pk; it holds that adorn-completionðPkÞ ¼ Pk: Hence, since Q is obtained
extracting from Pk the set of rules reachable from qe; and then by replacing qe with q; we have that
/q;P0S � /q;QS: &

In the following example we present the completion of the adorned program at the various steps.

Example 10. Consider again the program of Example 1 and the query sh pathðX ;Y ;CÞ: In the first step the
program P1 consists of the rules in P plus the adorned rule.

r1 : sh patheðX; Y; CÞ’pathuumðX; Y; CÞ:
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The adorn-completion of P1 consists of P1 plus the rule

pathuumðX ;Y ;CÞ’minðC; ðX ;Y Þ; pathðX ;Y ;CÞÞ:

At step 2 the algorithm generates the program P2 ðadorn-completionðP1ÞÞ obtained by adding to P1 the rules

r2 : cpath
uumðX; Y; CÞ’arcuumðX; Y; CÞ:

r3 : cpath
uumðX; Y; CÞ’pathuumðX; Z; C1Þ; arcuumðZ; Y; C2Þ; C ¼ C1þC2:

r4 : path
uumðX; Y; CÞ’minðC; ðX; YÞ; cpathuumðX; Y; CÞÞ:

The program adorn-completionðP2Þ is obtained by adding to P2 the rules

arcuumðX ;Y ;CÞ’minðC; ðX ;Y Þ; arcðX ;Y ;CÞÞ:

At the third and final step the algorithm generates the new program P3 by adding to P2 the rule

r5 : arc
uumðX; Y; CÞ’minðC; ðX; YÞ; arcðX; Y; CÞÞ:

The adorn-completion of P3 coincides with P3 since all adorned predicates are defined. Observe that at each
step the queries ðsh patheðX; Y; CÞ;PiÞ and ðsh pathðX; Y; CÞ;PÞ are equivalent.

4.7. Complexity

We conclude by presenting the complexity of the rewriting algorithm and showing how the
computational complexity improves for the single source shortest path.

Proposition 2. The complexity of Algorithm 1 applied to a min query /gðX Þ;PS is bounded by Oð
P

p 2
np �

sizeðdef ðpÞÞ þ sizeðPÞÞ where i) p is a cost predicate in P; ii) np þ 1 is the arity of p; iii) def ðpÞ is the set of rules

in P defining p; iv) sizeðdef ðpÞÞ measures the size of def ðpÞ; and vÞ sizeðPÞ measures the size of P:

Proof. The maximum number of steps, equal to the number of possible adornments for the cost predicates,
is
P

p 2
np where p is a cost predicate with arity np þ 1: ( p can be adorned in 2np þ 1 different manners since

the cost argument can be adorned only with the symbol m; whereas the other arguments with either u or e; if
no adornment is propagated on p; it is adorned with e:) At each step of the algorithm, a predicate pa is
chosen from the set S containing all the adorned predicates which have not been defined in any of the
previous steps and adorn-predðp; aÞ is computed. The construction of adorn-predðp; aÞ consists in the
rewriting of all rules defining p by propagating a in their body. The cost of this operation is linear with
respect to the dimension of the set of rules defining p (here denoted by sizeðdef ðpÞÞ).
Standard predicates relevant for computing the (rewritten) query are copied in the rewritten program

with cost bounded by sizeðPÞ: &

It is important to note that although the size of the rewritten program could be exponential in the arity of
predicates (as for the well-known magic-set technique), in practical case, for each cost predicate there are
only a few different adornments (often only one).
Observe that, for an input min program P rewritten into Pa by Algorithm 1, for each predicate q in P and

for each adorned predicate qb in Pa derived from q; the number of qb-atoms obtained from the computation
of Pa (using the operator GP) cannot be greater than the number of q-atoms obtained by computing P

(using the operator TP). The same result also holds for the surrogate predicate cqb: the number of cqb-
atoms obtained from the computation of Pa (using GP) cannot be greater than the number of q-atoms
obtained by computing P (using TP).
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Thus, if for each predicate q appearing in P there is only a constant number of adorned predicates qb in
Pa; the size of GN

Pa ð|; |Þ is bounded by OðTN

P ð|ÞÞ; the constant factor depends on the number of possible
adornments.
The following example shows how the complexity of the single source shortest path is improved by

propagating minimum.

Example 11. Assume we are given a weighted directed graph G ¼ ðN;EÞ stored by means of the relation arc

and a cost domain D: The query dðY ;CÞ over the following program P

dðY; CÞ’minðC; ðYÞ; pðY; CÞÞ:

pða; 0Þ:

pðY; CÞ’pðX; C1Þ; arcðX; Y; C2Þ; C ¼ C1þC2:

computes the minimum distance of nodes in G from the source node a: The rewritten program P0 is

dðY; CÞ’pumðY; CÞ:

pumðY; CÞ’minðC; ðYÞ; cpumðY; CÞÞ:

cpumða; 0Þ:

cpumðY; CÞ’pumðX; C1Þ; arcuumðX; Y; C2Þ; C ¼ C1þC2:

arcuumðY; CÞ’minðC; ðX; YÞ; arcðY; CÞÞ:

which can be simplified to the program P00

dðY; CÞ’minðC; ðYÞ; cpumðY; CÞÞ:

cpumða; 0Þ:

cpumðY; CÞ’dðX; C1Þ; arcðX; Y; C2Þ; C ¼ C1þC2:

since the definitions of d and pum coincide.
For the computation of the complexity we assume that the cost of accessing and storing a tuple is

constant and that at each step only the tuples computed in the previous step are used to compute new tuples
(semi-naive optimization [37]).
For the evaluation of P we first compute the rules defining p and next the rule defining d: The number of

tuples in p is bounded by OðjN j � jDjÞ and for each tuple pðx; c1Þ we select the set of arcs with source node x

at cost OðjN jÞ since each node may have OðjN jÞ arcs starting in the node x: The rule defining d can be
computed at cost OðjN j � jDjÞ (the cardinality of p). Therefore, the global cost is OðjN j2 � jDjÞ:
For the evaluation of program P00; observe that the number of d-tuples is bounded by OðjN jÞ whereas the

number of cpum-tuples is bounded by OðjN j2Þ: Assuming that at each step only one tuple with least cost is
selected from cpum and stored into d; the computation terminates in OðjN jÞ steps.4 At each step, a tuple
dðx; c1Þ is stored into d and we select the set of arcs with source node x at cost OðjN jÞ: Therefore, the global
cost is OðjN j2Þ: &

The above example shows that the complexity is independent from the size of the cost domain. Therefore,
for a large domain D; the complexity improves dramatically. Similar results can be obtained from other

4The complexity does not change if we relax the assumption of selecting only one tuple with least cost.
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greedy or dynamic programming problems where the early application of minima cuts the domain of
evaluation.

5. Conclusion

In this paper, we have presented a technique for the propagation of extrema predicates into
possibly recursive queries. The propagation of such meta-level predicates assures an efficient computation,
by using simple variations of the seminaive fixpoint, such as the greedy fixpoint operator [9]. It
has been shown that by using appropriate data structures, the computation of programs with extrema by
means of specialized algorithms has complexity comparable to that of procedural languages [19]. For
instance, the computation of the shortest paths program of Example 1, after the propagation of the min
predicates, has the same complexity as Floyd’s algorithm; furthermore, the following single source shortest
path program,

sh pathðY; CÞ’minðC; ðYÞ; pathðX; Y; CÞÞ:

pathðY; CÞ’arcða; Y; CÞ:

pathðY; CÞ’pathðZ; C1Þ; arcðZ; Y; C2Þ; C ¼ C1þC2:

after the propagation of the min predicates, has the same complexity as the celebrated Dijkstra’s
algorithm.
The technique introduced here can also be applied to larger classes of queries such as XY-stratified and

modularly stratified queries. We present here two examples of programs which are not uniform cost
monotonic but present such forms of stratification that propagation of extrema can be performed and
computation can be done by means of specialized algorithms [35,10].

Example 12. Transportation problem. An airplane can carry on a scheduled flight a cargo with maximum
weight of 10 000 lb: There are n different items that could be transported, with item i weighing ai lb and
providing a profit of ci dollars if transported. The problem consists in maximizing the global profit of the
item transported.

max
 cargoðValueÞ’maxðValue; ðÞ; cargoðI; Weight; ValueÞÞ:

cargoð0; 0; 0Þ:

cargoðIþ 1; Weight; ValueÞ’cargoðI; Old Weight; Old ValueÞ;

itemðIþ 1; W; VÞ; elementsðI; XÞ;

Weight ¼ Old Weightþ X*W; Weighto10000;

Value ¼ Old Valueþ X*V:

The recursive rules defining the predicate cargo are XY-stratified (i.e. there is a stratification induced by
the first argument of cargo) and, therefore, we could safely propagate the max aggregate.

Example 13. We are given a number of basic components stored by means of a relation basic-part and a
relation fix which stores for each basic component the time to fix it (e.g. the time to substitute the
component). A complex component is constituted by a set of components (either basic or complex). The
maximum time to fix a component is 0 if the component has been tested or if it has no suspected parts. A
part is suspected if some of its components are not working. Moreover, if a component has some suspected
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part then the time to make it work depends on the time to fix its basic components.

max
 timeðX; CÞ’maxðC; ðXÞ; workingðX; CÞÞ:

workingðX; 0Þ’testedðXÞ:

workingðX; 0Þ’partðX; YÞ; :has
 suspect 
 partðXÞ:

workingðX; CÞ’partðX; YÞ; has
 suspect 
 partðXÞ; fix
 timeðX; CÞ:

has
 suspect
 partðXÞ’partðX; YÞ; :workingðY; 0Þ:

fix
 timeðX; CÞ’basic
 partðXÞ; fixðX; CÞ:

fix
 timeðX; CÞ’partðX; YÞ; fixðY; CÞ:

The above program is not stratified, but, if the relation part is ‘acyclic’ it is modularly stratified [34]. Also in
this case the max predicate can be safely propagated.
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