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Abstract. In this paper, we propose a query language and data model
for spatio-temporal information, including objects of time-changing ge-
ometry. Our objective is to minimize the extensions required in SQL, or
other relational languages, to support spatio-temporal queries. We build
on the model proposed by Worboys where each state of a spatial object
is captured as a snapshot of time; then, we use a directed-triangulation
model to represent spatial data, and a point-based model to represent
time at the conceptual level. Spatio-temporal reasoning and queries can
be fully expressed with no new constructs, but user-defined aggregates,
such as AREA and INSIDE for spatial relationships, DURATION and CON-
TAIN for temporal ones, and MOVING_DISTANCE for spatio-temporal ones.
We also consider the implementation problem under the assumption that,
for performance reasons, the representation at the physical level can be
totally different from the conceptual one. Thus, alternative physical rep-
resentations and mappings between conceptual and physical representa-
tions are discussed.

1 Introduction

Spatio-temporal data models and query languages have received much attention
in the database research community because of their practical importance and
the interesting technical challenges they pose. Because of space limitation, we
will only discuss previous research that most influenced our approach.

Much previous work focuses on either temporal information or spatial infor-
mation, rather than both. For instance in the temporal domain, interval-based
time models [17] were followed by TSQL2’s implicit-time model [21], and point-
based time models [22,23]. SQL extensions to express spatial queries were pro-
posed by several authors, including [8] and [9].

In a seminal paper, Worboys [25] defines a spatio-temporal object as a unified
object which has both spatial and temporal extents, and is represented by at-
taching a temporal element to the components of a collection of non-overlapping
spatial objects that include points, straight line segments and triangular areas.
This model is extended in [5] to allow the vertices of triangles to be linear func-
tions of time. The constraint database framework in [16] is used to characterize
the expressiveness of the data model.



2 C.X. Chen and C. Zaniolo

In [12] and [13], a spatio-temporal data model also based on linear con-
straints is proposed. The model restricts the orthographic dimension of an ob-
ject, then it processes queries independently on each dimension of the compo-
nents. A d—dimensional object is stored as constraints on d variables, with an
upper bound on the number of variables that can occur in a single constraint. A
spatio-temporal query language based on this model will have to add many new
constructs to existing query languages such as SQL.

A topic of growing interest is that of modeling and storing moving objects. A
framework for specifying spatio-temporal objects is presented in [6]. The paper
defines a number of classes of spatio-temporal objects and studies their closure
properties. However, implementation requires the database to store functions as
tuple components (function objects). In [4], a model based on parametric rect-
angles is proposed for representing spatio-temporal objects, where the vertices
of triangles are linear functions of time. In [10], a design of moving points and
moving regions is discussed, which focuses on generality, closure and consistency,
but only discusses the abstract level of modeling. The approach discussed in [10]
introduces new spatio-temporal data types, such as mregion and mpoint, for
moving region and moving points, respectively.

In this paper, we propose a minimalist’s solution to the problem of support-
ing spatio-temporal data models and queries in databases, insofar as we want to
achieve the desired functionality and expressive power with minimal extensions
to current SQL3 standards. Indeed, we want to minimize the effort needed to im-
plement spatio-temporal extensions on the new generation of object relational
databases, and thus facilitate the incorporation of such extensions into com-
mercial systems and SQL standards. Toward this goal, we apply several lessons
learned with SQL?, where we were able to support valid-time queries by mini-
mal extensions of SQL [7]—specifically, by extensions that could be supported
in current Object-Relational systems with the help of user-defined functions and
aggregates [15].

Thus our paper is organized as follows. In the next section we give an overview
of our data model SQLS?. Then, in Sections 3 and 4, we introduce the temporal,
spatial and spatio-temporal operators supported in SQLS” in a way that is con-
ducive to their implementation through user-defined aggregates or user-defined
functions. Then, in Section 5, we show how these operators are used to provide
a simple and expressive formulation for complex spatio-temporal queries. The
final two sections discuss implementation issues and the opportunities for further
research.

2 The Data Model of SQLST

Many applications only use temporal information, other only use spatial infor-
mation, finally many use both. Therefore, following Worboys’ suggestion [25],
we define an SQL” component that is effective at supporting temporal informa-
tion, and a SQL® component that is effective at supporting spatial information;
then, we combine the two representations into SQL°T and show that this is
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effective in supporting spatio-temporal information, including two-dimensional
spatial objects whose geometry and shape change with time.

To model time at the conceptual level, we use a point-based time model [22],
where information is repeated for each time granule where it is valid, thus elim-
inating the need for temporal coalescing that besets interval-based approaches
[17]. Moreover, temporal aggregates can easily express interval operators in a
point-based model [7].

A point-based representation of two-dimensional spatial objects was initially
considered for SQL®, but a polygon-oriented representation was finally selected
for two reasons. One is that coalescing is needed much less frequently than in
temporal queries. The second is that two dimensional shapes offer a more natu-
ral representation for many application domains. For instance a region in a GIS
system can be drawn, enlarged, moved, or split; it is hard to associate these be-
haviors and operations with the points in the region. On the other hand, temporal
intervals do not represent any concrete application object; in fact, an interval-
based representation is often less appealing than a point-based representation
(that models snapshots of reality), or an event-based representation (that mod-
els transitions between two successive states of reality). Therefore, SQL5? views
reality as a sequence of snapshots of objects that are moving and/or changing
in shape.

Figure 1 is an example of spatial ob-
jects changing with time. At time ¢ = 0,

0<=t <10
e o - there are two spatial objects in the graph,
4 a square O1 and a triangle O2. At time
2 t = 10, O1 changes its shape and O2 is
moved to a new position. At time ¢ = 20,
z 4 5 810 01 has some more changes in shape while

02 stays unchanged.
10<=t <20

An internal representation of the spatio-
temporal objects shown in Figure 1 could
be as follows:

(01, [(2,6),(2,2), (6,2), (6,6)],0,10))

(02, [(6,6), (6,2), (10,4)], [0, 10))

(O1, [(2,6), (2,2), (4,2), (4,4, (6,4), 6,6)],
[10, 20))

6 (02, [(4,4),(4,0), (8,2)], [10, 20))

4 (013 [(2’ 6)’ (2’ 2)! (6’ 6)]3 [207 30))

(02, [(4,4),(4,0), (8,2)],[20, 30))

Here, the regions are represented by a
circular list of vertexes, and the time el-
ements are stored as intervals. Mapping
Fig.1. Graphs representing spatio- method between internal representation
temporal data and the conceptual model will be discussed
in Section 6.
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Table 1 shows how the changes

are recorded in the database at the g 110 (72 (s (s |Us (‘)’Time
conceptual level. From time ¢t = 0
on, the square O1 is represented 8; g g g g g g g
by two triangles and the triangle
02 is represented by one triangle. 8;2 g 2 ; fo 2 g
At time ¢t = 10, changes of the
shape of O1 and position of 02 gf g g g g (150 é ?0
occur and their representation also 8 DU D T
change accordingly. Now O1 is rep- g} g (25 i i g j ig
resented by three triangles while O2 RPN AP DO VO IO DO Y D
is still represented by one triangle g}g j 3 3 g 3 }g
with changed coordinates of the ver- BN POV TRV DUV R Y P F
texes. This representation is valid géi 3 Z g ‘é g ig
from time ¢ = 10 till further change A POV AU DOV DR Y D F
occurs. At time ¢t = 20, the shape of 8? ‘é ; ; g 2 g ;g
O1 is changed further while O2 re- RPN PR POV DUV N DO I P
mains unchanged. Now O1 is repre- 8; 2 i i g g g gg
sented by one triangle and O2 stays B PV RO VUV DR Y P F
unchanged. o204 |4 |4 Jo |8 |2 |29

Table 1. Conceptual model of the spatio-temporal

In Table 1, we also notice that the  ga¢s shown in Figure 1

valid time of each fact is recorded as
a time instant VTime.

In our spatial model we use triangles to represent polygons; a similar ap-
proach was proposed in [11, 18]. A polygon having n vertexes can be decomposed
into n — 2 triangles in O(nlogn) TIME. Decomposing a polygon into a set of
triangles makes determine spatial relationships between two polygons easy to do.
We extended the triangulation method to use sets of directed triangles to repre-
sent polygons at the conceptual level. The three edges of a triangle are directed
lines and form a counterclockwise circle. The directed triangulation method not
only makes testing whether a point is inside a triangle need fewer calculations
than the method proposed in [18] but also can handle holes in polygons.

We use user-defined aggregates [24] to support spatial operators such as
area, inside, etc., temporal operators such as duration, overlap, etc., and spatio-
temporal operators such as moving_distance, etc.

3 Temporal Operators

As has been discussed in [7,15], an important requirement of all temporal lan-
guages is to support Allen’s interval operators such as overlap, precede, contain,
equal, meet, and intersect [1]. Figure 2 shows the meaning of these operators.
Temporal languages that are based on temporal intervals [17] use the overlap
operator to express temporal joins. In a point-based temporal model, no explicit
use of overlap is needed since two intervals overlap if and only if they share
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I overlap II

I

I contain IT

I equal IT

o I meet IT

Fig. 2. Allen’s interval operators

some common points [2,22]. Moreover, since intervals are sets of contiguous
points, set aggregates should be used to support interval-oriented reasoning [7].
For instance the duration operator that compute the total time span of a set of
intervals is in fact equivalent to a count of time points (but a new name is used
in SQLT to improve its intuitive appeal and to allow its direct and more efficient
implementation).

For example, consider the following SQL” relation:

Example 1. Define the employ relation

CREATE TABLE employ
(name CHAR(30), title CHAR(30), salary DECIMAL(2),
mgrname CHAR(256), VTime DATE)

Then, a query such as: “find employees who for a time had the same manager
as Melanie, and show their history during such time” can be expressed as follows:

Example 2. Employees who had the same manager as Melanie and their history
during such time.

SELECT E2.name, E2.title, E2.VTime

FROM employ AS E1 E2

WHERE El.name = “Melanie”
AND El.mgrname = E2.mgrname AND E2.name <> “Melanie”
AND E1.VTime = E2.VTime

This example illustrates that project-select-join queries can be expressed in a
very natural fashion in SQL”. The “same time” notion is simply expressed as the
equality of the points in time in which E1 and E2 worked for the same manager.
The same notion in an interval-oriented language would be expressed by a condi-
tion stating that the time intervals in which E1 and E2 worked for a same man-
ager overlap. Supporters of interval-based approaches would hereby point that
the notion of overlapping periods is quite intuitive; however, detractors would
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point out that the coalescing issue limits the appeal of this approach. For in-
stance if we modify Example 2 by dropping E.title from the SELECT clause, then
histories of employees who had a change of title while working under Melanie’s
manager must be consolidated by coalescing their intervals into larger ones. Ex-
ample 3 below, also discusses this important issue.

The desire of avoid coalescing was a motivation in implicit valid time ap-
proach followed by TSQL2. In TSQL2, there would be no “VTime DATE” col-
umn in Example 1, and an annotation will be used instead to denote that this is
a valid-time relation, rather than an ordinary non-temporal relation. Likewise,
there is no valid time attribute in TSQL2 queries; in fact if we take Exam-
ple 2 and drop E2.VTime from the SELECT clause, and E1.VTime = E2.VTime
from the WHERE clause, we obtain a correct TSQL2 formulation for our query.
Therefore, “at the same time” becomes the default interpretation for all queries
in TSQL2, and the coalescing operations needed to support this interpretation
are implicitly derived by the system.

Consider now a query such as: “Find all the positions held by Melanie for
more than 90 days.” This can be expressed in SQL” as follows:

Ezample 3. Melanie’s positions of more than 90 consecutive days.

SELECT title

FROM employ

WHERE name = “Melanie”

GROUP BY title

HAVING DURATION(VTime) > 90

The fact that the time span of each position must be computed irrespective
of the change of manager is expressed naturally and explicitly by the group-by
qualifications attached to the new SQL7T aggregate duration. In fact, all period
oriented operators, such as contain and precede from Allen’s interval algebra,
can be expressed naturally by new temporal aggregates. Rather than relying on
constructs such as group-bys and aggregates already in SQL, TSQL2 introduces
two new constructs to express the same query: one is the “snapshot” annotation
in the “select” clause, and the other is the restructuring construct in the “from”
clause. Furthermore, TSQL2 constructs cannot be extended to languages such
as QBE or Datalog that do not have select clauses and from clauses— a lack of
robustness called “lack of universality” in [7]. More sample queries of temporal
queries using user-defined aggregates can be found in [7,15]

An efficient implementation for SQLT called TEnORs (for Time Enhanced
Object Relational system) is available for DB2 [15]. In TEnORs, the point-
based representation for valid time is mapped into a modified internal model
based on intervals that are segmented, indexed and allocated to temporal blocks
to optimize temporal clustering and storage utilization. User defined aggregates
[24] are then used to map the queries expressed on the point-based model into
equivalent queries expressed on the segmented interval-based model. The design
and implementation of SQLST discussed in this paper apply and extend to the
spatio-temporal domain the lessons learned with TEnORs.
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4 Spatial Operators

Our representation method of a spatial object is based on directed triangulation.
The three basic spatial data types, i.e., points, lines (straight line segments),
regions (polygons), are represented by triangles at the conceptual level as follows:

e point (z,y): is represented as ((z,y), (z,y), (z,y))-

o line ((1,41), (#2,92)): is represented as ((1,91), (2,y2), (2522, BF22)),
where (z1,y1) is the start point and (z2,y2) is the end point of the line, and
(Ttea yi1du2) g the center of mass of the line.

° region [(z.l: y1)7 (w27 y2)7 (.’173, y3) LR (mn—hyn—l): (xﬂd yn)] is represented
as a set of directed triangles, i.e., {({(z1,v1), (Z2,Y2), (23,¥3)),- - -, ((Tn—2,Yn—2),
(Tn-1,Yn-1), (Tn,yn))}- The region is represented as a circular list at the phys-
ical level and the line with two ends as (z;,y;) and (z;41,¥:11) is an edge of
the region. The algorithm to decompose a region into a set of triangles will be
discussed in Section 6. For each triangle the region is decomposed into, the three
vertexes are ordered according to a counterclockwise orientation.

If a region has a hole, the vertexes of the hole also form a circular list but
prefixed with a negative sign. And the vertexes of each triangle in the set that
the hole is decomposed into are clockwisely orientated.

The commonly used spatial predicates [19, 5] are equal, disjoint, overlap,
meet, contain, adjacent and common border, etc. Spatial operations include
intersect, area, perimeter, distance, etc.

4.1 Properties of Directed Triangles

First, we define the direction of border lines of a triangle as counterclockwise.

Definition 1: a triangle is a counterclockwisely directed triangle if its
three vertexes, pointl (z1,y1), point2 (z2,y2), and point3 (z3,y3) are counter-
clockwisely orientated, i.e.,

.’Elyl].
.'Egyzl >0
z3ys3 1

Next, we define the following basic spatial predicates. According to [5], these
are first-order queries with linear arithmetic constraints.

— left(point, line): a point (zg, yo) is on the left side of a line ((z1,y1), (22, y2)),
which is an edge of a directed triangle, iff

.’L’1y11
.’L’2y21 ZO
Zo Yo 1

A point is considered to be on the left side of a line if it is on the (extended)
line, i.e., if the above determinant equals zero.
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v3
" P2
vl v2
0 2 4 6 8 10

Fig. 3. An example of counterclock-
wisely directed triangle

Figure 3 is an example of a directed
triangle and the meanings of left and
inside operators are showed. The vertexes
of the triangle T'— v1, v2 and v3 are coun-
terclockwisely orientated. The edges vl —
v2, v2 = v3 and v3 — vl are directed
lines and form the counterclockwisely di-
rected triangle T'. For example, point P1
is on the left side of all three edges, so P1
is inside T. On the other hand, point P2
is on the left side of edges v1 — v2 and
v3 — vl but not on the left side of edge
v2 — v3, so P2 is not inside T

inside(point, triangle): a point is inside a triangle iff the point is on the
left side of all three edges of the triangle.
vertex(point, triangle) — iff the point is one of the vertexes of the triangle

Zo Yo 1

on(point, line) — iff |z y1 1| = 0 and (min(z1,z2) < 2o < maz(z1,x2)

) y21

or min(y1,y2) < yo < maz(yi,y2))
boundary(point, triangle) — iff the point is on an edge of the triangle
equal(linel, line2) — iff the set of the end points of linel is equal to the

set of the end points of line2

overlaps(linel, line2) — iff for two lines, linel ((x1,y1), (x2,y2)) and line2

(=1, 91), (22,92))

) re—x1 | TH—

Ty

! !
Y2—y1 _ Y2— Y1 and

7

(z1,y1) is on line2.

boundary(line, triangle) — iff the line overlaps with an edge of the tri-

angle

edge(line, triangle) — iff the two end points of the line are two neighboring

vertexes of the triangle.

crosspoint(linel, line2) — the cross point of two lines, linel ((z1,y1), (%2,
y2)) and line2 ((z},y1), (z},y5)) is point0 (x,y) with the coordinates as:

zh T
e - o
xTr =
(y1 — y2) (7] — o) — (¥ — ¥5) (21 — 72)
_ T Y1 (ot ) |1 YL
~ e D e el el )
(y1 —y2)(z] — 25) — (y1 — y5) (21 — 2)

and (min(z1,z2) <z < maz(zy,z2) or min(y1,y2) <y < max(yi,y2))-
When there is no solution to the above equations, we say point0 = null.

— cross(linel, line2) — iff the cross point of the two lines is not null
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4.2 Spatial Relationships

Based on the basic operators discussed in the above section, we can compute
relationships between triangles as follows:

— equal(trianglel, triangle2) — iff the set of the vertexes of trianglel are
equal to the set of the vertexes of triangle2

— overlap(trianglel, triangle2) — iff at least one vertex of triangle2 is
inside trianglel

— contain(trianglel, triangle2) — iff the three vertexes of triangle2 are all
inside trianglel

— disjoint(trianglel, triangle2) — iff non of the vertexes of trianglel is
inside triangle2 and vice versa; and non of the edges of trianglel crosses
with any edge of triangle2

— adjacent(trianglel, triangle2) — iff one edge of trianglel overlaps with
an edge of triangle2 and at least one vertex of trianglel is not inside triangle2

— commonborder(trianglel, triangle2) — iff an edge of trianglel is equal
to an edge of triangle2 and one vertex of trianglel is not inside triangle2

— meet(trianglel, triangle2) — iff one vertex of trianglel is on an edge of
triangle2 and two vertexes of trianglel are not inside triangle2

Figure 4 illustrates the definition of
these relationships between two triangles.
For example, (i) T'1 and T2 which have the
same set of vertexes are equal to each other.
(if) T1 and T'3 share a commonborder, so
do T2 and T'3; (iii) T'1, T2, and T'3 are dis-
joint with T5 and T'6, also T'1 and T2 are
AN disjoint with T4; (iv) T3 and T4 are adja-
A cent because an edge of T'3 overlaps with
an edge of T4 and two vertexes of T'3 are
not inside T'4; (v) T4 meets T'5 because one
Fig. 4. Example of Relationships Be- vertex of 74 is on an edge of T'5 and the
tween Triangles other two vertexes of T'4 are not inside T'5;
(vi) T'6 overlaps T4 because one vertex of
T4 is inside T'6; and (vii) T'6 contains T'5
because all three vertexes of T'5 are inside
T6.

T6
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Furthermore, the relationships between these spatial operators are:

equal = contain
equal = overlap
contain = overlap
adjacent = overlap
commonborder = overlap
meet = overlap
commonborder => adjacent

For example, if equal(trianglel, triangles2) evaluates to TRUE, then it implies
that contain(trianglel, triangle2) also evaluates to TRUE.

4.3 Spatial Operations

The main operations associated with spatial objects are as follows:

— intersect(trianglel, triangle2, region) — calculates the intersection form-
ed by the cross points of the edges of the two triangles. The steps are showed
in Algorithm 1 where t1 and ¢2 are the two input triangles and L is the cir-
cular list of the vertexes of the intersected region.

Algorithm 1 intersect two triangles into a region
Require: initially t1, t2, L = 0.

1: for each edge el of t1 do

2:  for each edge e2 of t2 do

3 point0 = crosspoint(el, e2)
4 if point0 # null then

5 append point0 to L

6: end if
7

8:

9:

end for
end for
return L

A triangle ((x1,y1), (22,y2), (23, y3)) has the following properties [3]:

.’L'lyl].
fareaaz% T2 Ya 1
x3 Y3 1

— perimeter p = \/(z2 — 21)2 + (y2 — y1)2 + /(@3 — 22)2 + (y3 — y2)2 +
V(@1 —23)% + (y1 — y3)?

— centerofmass g, = Dteatis 4 — y1+3’32+y3
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The distance between two triangles are defined as the distance between their
centers of mass:

— distance d = \/(z2c — 1c)% + (Y2c — Y1c)?

5 Spatio-Temporal Queries

In this section, we express various queries in SQL®T. We use examples taken
from [10].

The database contains three relations: (i) forest relation in which the location
and the development of forests changing over time are recorded; (ii) forest_fire
relation in which the evolution of forest fires are recorded; and (iii) fire_fighter
relation which records the motion of fire fighters.

First, we define the schema in SQL®T as follows:

Ezxample 4. Define the forest relation

CREATE TABLE forest (forestname CHAR(30), territory REGION, VTime DAY)
Example 5. Define the forest_fire relation

CREATE TABLE forest_fire (firename CHAR(30), extent REGION, VTime DAY)
Example 6. Define the fire_fighter relation

CREATE TABLE fire_fighter (fightername CHAR(30), location POINT, VTime DAY)

The columns territory and extent have a spatial data type as REGION and
location has a type as POINT; temporal data column VTime has a granularity
of DAY.

Example 7. When and where did the fire called “The Big Fire” reach what
largest extent?

SELECT F1.VTime, F2.extent, AREA(F1l.extent)

FROM forest_fire as F1 F2

WHERE F1l.firename = “The Big Fire” AND F2.firename = “The Big Fire”

AND F1.VTime = F2.VTime
GROUP BY F1.VTime
HAVING AREA(F1.extent) = (SELECT MAX(AREA (extent))
FROM forest_fire WHERE firename = “The Big Fire”)

We only use an user-defined spatial aggregate area and a built-in aggregate
max to express the query. We group-by F1.VTime to calculate the area of the
fire extent at each time instant. On the contrary, [10] introduces several special
constructs plus a new clause LET to accomplish the same query.

Ezample 8. When and where was the spread of fires larger than 500 km??

SELECT F1.VTime, F2.extent

FROM forest_fire as F1 F2

WHERE F1.VTime = F2.VTime AND F1l.firename = F2.firename
GROUP BY F1.VTime, F2.extent, Fl.firename

HAVING AREA(F1l.extent) > 500
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Ezxample 9. How long was fire fighter Th. Miller enclosed by the fire called “The
Big Fire” and which distance did he cover there?

SELECT DURATION(fire_fighter.VTime),
MOVING_DISTANCE(fire_fighter.location, fire_fighter.VTime)
FROM forest_fire, fire_fighter
WHERE forest_fire.VTime = fire_fighter.VTime
AND firename = “The Big Fire” AND fightername = “Th. Miller”
GROUP BY forest_fire.VTime
HAVING INSIDE(location, extent)

Example 10. Determine the times and locations when “The Big Fire” started.

SELECT VTime, extent
FROM forest_fire
WHERE firename = “The Big Fire”
AND VTime = (SELECT MIN(VTime)
FROM forest_fire WHERE firename = “The Big Fire”)

These examples suggest that SQLS7 (i) provides a simple and expressive for-
mulation for complex spatio-temporal queries, and (ii) represents a minimalist’s
extensions for SQL that preserves the syntax and the flavor of SQL3, since only
new functions and aggregates are required.

6 Implementation of SQLST

As we have discussed before, at the conceptual level and physical level, the
spatio-temporal objects should have different data models. At conceptual level,
we have used point-based time model and directed-triangulation-based spatial
data model. At physical level, an interval-based time model is used, and the
same approach should be taken for spatial data, i.e., a region should be stored
by its vertexes. Mapping methods between the conceptual level and the physical
level representation is thus needed.

6.1 Mapping Between Different Representations

Mapping to an interval-based time model at the physical level solves the space
efficiency problem associated with the point-based time model used at the con-
ceptual level. Then, tuples in our internal relations are timestamped with two
time instants: one indicates the start-point and the other indicates the end-point
of the interval.

Each temporal join is mapped into an intersect operation. A coales aggre-
gation is required on the temporal argument when various columns have been
projected. However, coalescing is not needed for those rules where (i) there is
no temporal argument in the SELECT clause of a query, or (ii) all variables
appearing in the WHERE clause of a query also appear in its SELECT clause.
[15]
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To map a set of triangles which have the same timestamp into one region, we
use Algorithm 2. In Algorithm 2, the input 7 is a set of triangles and the output
L is a circular list of the vertexes of the region that the triangles are merged
into.

Algorithm 2 map a set of triangles into a region
Require: initially 7', L = 0.

1: for each triangle t1 = (v1,v2,v3) € T do

2:  for each triangle t2 = (v4,v5,v6) € T do

3: if commonborder(t1,t2) then

4: v = {vl,v2,v3} — {v4, v5, v6}
5: v' = {v4,v5,v6} — {v1,v2,v3}
6: vs € {vl,v2,v3} — {v}

7 ve € {v1,v2,v3} — {v} — {vs}
8: if left(v, (vs,ve)) and — left(v’, (vs,ve)) then
9: append [v,vs,v,ve] to L
10: end if

11: end if

12: end for

13: end for

14: return L

To decompose a region R into a set of directed-triangles T', we use Algorithm
3 where the input and output are just opposite to that of Algorithm 2.

v5 v3 V5 v3 v3 v3
\ \ v
R
t3
vl 2vl 2vl 2vl 2
(i)

(ii) (iii) (iv)

Fig. 5. Decomposing a region into triangles

Figure 5 is an example of decomposing a region R into set of triangles T
Step (i) showed the region with v1,v2,v3,v4 and v5 as its vertexes. So, initially,
L = [vl,v2,v3,v4,v5] and T = 0.

In step (ii), we start with v1 which has the smallest z and y values, and get
v2 = next(vl) and v5 = previous(vl). Since v4 is inside the triangle (v1,v2, v5)
so we move on to start with v5 and get vl = next(v5) and v4 = previous(vd).
Since no other vertex of R is inside the triangle (v5,v1,v4) (namely ¢1) so we
set T = {t1}, L = [v1,v2,v3,v4].

In step (iii), we start with v4, and get a triangle (v4,v1,v3). Since no other
vertex of R is inside this triangle (namely ¢2), so we set T = {t1,t2}, L =
[v1,v2,v3].
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A

Igorithm 3 decompose a region into a set of triangles

Require: initially L, T = §.

: for each element v € L do
if z, = min(all z,;) and y, = min(all y,,;) then
v0=wv
end if
end for
vl = next(v0) and v2 = previous(v0)
if length(L) > 3 then
for each element v’ € L do
if inside(v’, (v0,v1,v2)) and v’ ¢ {v0, v1,v2} then
v0) = v2
goto line 6
end if
end for
insert triangle (v0,v1,v2) into T
remove v0 from L
: end if
: insert triangle (v0,v1,v2) into T
: return T

Lastly, we get the triangle (v3,v1,v2) (namely ¢3), and set T' = {t1,¢2,¢3}.

The procedure stops.

6.2 Spatial Operators for Regions

The spatial operators defined for triangles in Section 4 can be used towards
regions with little change.

Let S and S’ denote sets of triangles that two regions R1 and R2 are de-

composed into, and ¢ and ¢' denote an element in S and S’, respectively. The
operators proposed in Section 4 can be used on two regions in the following ways:

1.

Tl W N

R1is equal to R2if S = 5"

. Rl overlaps R2if At € S, t' € S', such that ¢ overlaps t'.

. R1 contains R2if V' € S', Vvertexes v of ', 3t € S, such that v is inside t.
. Rlis disjoint with R2 if Vt € S, =3t' € S’, such that t overlaps t'.

. R1is adjacent with R2 if 3t € S, 3t' € S’ where t is adjacent with t' and
the two ends of the adjacent edge are neighbouring vertexes of both R1 and
R2.

. R1 and R2 have a commonborder if 3¢t € S, It' € S’ where ¢t and ¢’ have

a common border and the two ends of the common border are neighboring
vertezes of both R1 and R2.

. Rl meets R2if 3t € S, It' € S’, such that t meetst' and Vt1 € S, Vtl' € S',

t1 # t, t1 does not overlap t1'.

Since a region with n vertexes can be decomposed into n — 2 triangles while

the relationships between two triangles can be determined in constant time, so
the comparison of two regions can be done in O(n?) TIME.
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To find the intersected part of two regions, we only need to find the intersected
parts of the triangles decomposed from them. Similarly, The area of a region is
simply the sum of the areas of all the triangles it decomposed into. The perimeter
of a region is the sum of the length of all its edges. The center of mass of a region
can be calculated in a similar way to the calculation of the center of mass of a
triangle. The distance between two regions is also defined as the distance between
their centers of mass.

7 Conclusion

In this paper, we propose a spatio-temporal data model and query language
— SQLST that satisfies Worboys’ prescription for spatio-temporal model. A
cornerstone to the simplicity and generality of this approach, is the use of a point-
based representation of time and directed-triangulation-based representation of
spatial objects at the conceptual level. Whereas query languages proposed in
the past rely on the introduction of new spatio-temporal constructs, we have
taken a minimalist’s approach, and showed that the basic syntactic constructs
and semantic notions provided by current query languages are sufficient if user-
defined functions and user-defined aggregates are supported [24]. With these
minimal extensions, SQLST can express queries as powerful as those expressible
in other works [14,10] in a simple and intuitive fashion.

Efficient support for spatio-temporal queries can be obtained by using inter-
nal representations that are different from the conceptual one, and then map-
ping conceptual queries into equivalent queries on the internal representations.
This approach has already produced an efficient implementation for SQL”. In
this paper we have laid the foundations for efficient implementations of spatial
structures by using directed triangular representations and defining equivalent
operators on general polygons in terms of these. The subject of efficient imple-
mentation for objects whose shape or position continuously changes with time
has been left for later research.
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