
XBiT: An XML-based Bitemporal Data Model

Fusheng Wang and Carlo Zaniolo

Department of Computer Science, University of California, Los Angeles,
Los Angeles, CA 90095, USA

{wangfsh, zaniolo}@cs.ucla.edu

Abstract. Past research work on modeling and managing temporal in-
formation has, so far, failed to elicit support in commercial database sys-
tems. The increasing popularity of XML offers a unique opportunity to
change this situation, inasmuch as XML and XQuery support temporal
information much better than relational tables and SQL. This is the im-
portant conclusion claimed in this paper where we show that valid-time,
transaction-time, and bitemporal databases can be naturally viewed in
XML using temporally-grouped data models. Then, we show that com-
plex historical queries, that would be very difficult to express in SQL
on relational tables, can now be easily expressed in standard XQuery
on such XML-based representations. We first discuss the management of
transaction-time and valid-time histories and then extend our approach
to bitemporal histories. The approach can be generalized naturally to
support the temporal management of arbitrary XML documents and
queries on their version history.

1 Introduction

While users’ demand for temporal database applications is only increasing with
time [1], database vendors are not moving forward in supporting the management
and querying of temporal information. Given the remarkable research efforts
that have been spent on these problems [2], the lack of viable solutions must be
attributed, at least in part, to the technical difficulties of introducing temporal
extensions into the relational data model and query languages.
In the meantime, database researchers, vendors and SQL standardization

groups are working feverishly to extend SQL with XML publishing capabili-
ties [4] and to support languages such as XQuery [5] on the XML-published
views of the relational database [6]. In this context, XML and XQuery can re-
spectively be viewed as a new powerful data model and query language, thus
inviting the natural question on whether they can provide a better basis for rep-
resenting and querying temporal database information. In this paper, we answer
this critical question by showing that transaction-time, valid-time and bitempo-
ral database histories can be effectively represented in XML and queried using
XQuery without requiring extensions of current standards. This breakthrough
over the relational data model and query languages is made possible by (i) the
ability of XML to support a temporally grouped model, which is long-recognized
as natural and expressive [7, 8] but could not be implemented well in the flat

structure of the relational data model [9], and (ii) the greater expressive power
and native extensibility of XQuery (which is Turing-complete [10]) over SQL.
Furthermore, these benefits are not restricted to XML-published databases; in-
deed these temporal representations and queries can be naturally extended to
arbitrary XML documents, and used, e.g., to support temporal extensions for
database systems featuring native support for XML and XQuery, and in pre-
serving the version history of XML documents, in archives [11] and web ware-
houses [12].
In this paper, we build and extend techniques described in previous papers.

In particular, support for transaction time was discussed in [13], and techniques
for managing document versions were discussed in [12]. However, the focus of
this paper is supporting valid-time and bitemporal databases, which pose new
complexity and were not discussed in previous papers.
The paper is organized as follows. After a discussion of related work in the

next section, we study an example of temporal relations modeled with a temporal
ER model. In Section 4 we show that the valid time history of relational database
history can be represented as XML, and queried with XQuery. Section 5 briefly
reviews how to model transaction-time history with XML. In Section 6, we focus
on an XML-based bitemporal data model to represent the bitemporal relational
database history, and show that complex bitemporal queries can be expressed
with XQuery based on this model, and database update can also be supported.
Section 7 concludes the paper.

2 Related Work

Temporal ER Modeling There has been much interesting work on ER-based
temporal modeling of information systems at the conceptual level. For instance,
ER models have been supported in commercial products for database schema
designs, and more than 10 temporal enhanced ER models have been proposed
in the research community [14]. As discussed in the survey by Gregersen and
Jensen [14], there are two major approaches of extensions to ER model for tem-
poral support, devising new notational shorthands, or altering the semantics of
the current ER model constructs. The recent TIMEER model [15] is based on
an ontological foundation and supports an array of properties. Among the tem-
poral ER models, the Temporal EER Model (TEER) [16] extends the temporal
semantics into the existing EER modeling constructs.

Temporal Databases A body of previous work on temporal data models and
query languages include [17–20]; thus the design space for the relational data
model has been exhaustively explored [2, 21]. Clifford et al. [9] classified them
as two main categories: temporally ungrouped and temporally grouped data mod-
els. Temporally grouped data model is also referred to as non-first-normal-form
model or attribute time stamping, in which the domain of each attribute is
extended to include the temporal dimension [8], e.g., Gadia’s temporal data
model [22]. It is shown that the temporally grouped representation has more
expressive power and is more natural since it is history-oriented [9]. TSQL2 [23]

tries to reconcile the two approaches [9] within the severe limitations of the rela-
tional tables. Our approach is based on a temporally grouped data model, which
dovetails perfectly with the hierarchical structure of XML documents.
The lack of temporal support in commercial DBMS can be attributed to the

limitations of SQL, the engineering complexity, and the difficulty to implement
it incrementally [24].

Publishing Relational Databases in XML There is much current interest
in publishing relational databases in XML. A middleware-based approach is used
in SilkRoute [25] and XPERANTO [6]. For instance, XPERANTO can build a
default view on the whole relational database, and new XML views and queries
upon XML views can then be defined using XQuery. XQuery statements are
then translated into SQL and executed on the RDBMS engine. SQL/XML is
emerging as a new SQL standard supported by several DBMS vendors [4, 26], to
extend RDBMS with XML support.

Time in XML Some interesting research work has recently focused on the
problem of representing historical information in XML. In [27] an annotation-
based object model is proposed to manage historical semistructured data, and
a special Chorel language is used to query changes. In [28] a new <valid>

markup tag for XML/HTML documents is proposed to support valid time on
the Web, thus temporal visualization can be implemented on web browsers with
XSL. In [29], a dimension-based method is proposed to manage changes in XML
documents, however how to support queries is not discussed.
In [30], a data model is proposed for temporal XML documents. However,

since a valid interval is represented as a mixed string, queries have to be sup-
ported by extending DOM APIs or XPath. Similarly, in [31, 32], extensions of
XPath is needed to support temporal semantics. (In our approach, we instead
support XPath/XQuery without any extension to XML data models or query
languages.) A τXQuery language is proposed in [33] to extend XQuery for tem-
poral support, which has to provide new constructs for the language.
An archiving technique for scientific data using XML was presented in [34],

but the issue of temporal queries was not discussed. Both the schema proposed
in [34] and our schema are generalizations of SCCS [35].

Fig. 1. TEER Schema of Employees and Departments (with Time Semantics Added)

3 An Example

The Temporal EER Model (TEER) [16] extends the temporal semantics into the
existing EER modeling constructs, and works for both valid time and transaction
time. TEER model associates each entity with a lifespan, and an attribute’s value
history is grouped together, and assigned with a temporal element (a union
of valid temporal spans). Each relationship instance is also associated with a
temporal element to represent the lifespan.
This temporal ER model is believed by the authors to be more natural

to manage temporal aspects of data than in a tuple-oriented relational data
model [16]. Suppose that we have two relations employees and departments,
and each employee has a name, title, salary, and dept (name is the key), and
each dept has a name and manager(name is the key). To model the history of
the two relations, we use a TEER diagram as shown in Figure 1. (For simplicity,
only valid time is considered, and transaction time can be modeled in a similar
way.) Figure 1 looks exactly like a normal ER diagram except that the time
semantics is added.
In this schema, the entity employee (or e) will have the following temporal

attribute values:

SURROGATE(e) = {[1995-01-01,now] -> surrogate_id}
NAME(e) = {[1995-01-01,now] -> Bob}
TITLE(e) = {[1995-01-01,1997-12-31] -> Engineer,

[1998-01-01,now] -> {Sr Engineer} }
SALARY(e) = {[1995-01-01,1997-12-31]-> 65000,

[1998-01-01,1999-12-31]-> 70000,
[2000-01-01,now] -> 85000}

Here each attribute value is associated with a valid time lifespan. surrogate is
a system-defined identifier, which can be ignored if the key doesn’t change.
The following is the list of temporal attribute values of entity dept (or d) :

SURROGATE(d) = {[1995-01-01,now] -> surrogate_id}
NAME(d) = {[1995-01-01,now] -> RD}

Similarly, for the instance rb of the relationship belongs to between em-
ployee ‘Bob’ and dept ‘RD’, the lifespan is T(rb)=[1995-01-01,now], and for
the instance rm of the relationship manages between employee ‘Mike’ and dept
‘RD’, the lifespan is T(r)=[1999-01-01,now].
In the next section, we show that such temporal ER model can be supported

well with XML.

4 Valid Time History in XML

While transaction time identifies when data was recorded in the database, valid
time concerns when a fact was true in reality. One major difference is that
while transaction time is appended only and cannot be updated, valid time can
be updated by users. We show that, with XML, we can model the valid time
history naturally.

Fig. 2. Valid Time History of Employees

Figure 2 shows a valid time history of employees, where each tuple is times-
tamped with a valid time interval. This representation assumes valid time homo-
geneity, and is temporally ungrouped [9]. It has several drawbacks: first, redun-
dancy information is preserved between tuples, e.g., Bob’s department appeared
the same but was stored in all the tuples; second, temporal queries need to fre-
quently coalesce tuples, which is a source of complications in temporal query
languages.
These problems can be overcome using a representation where the times-

tamped history of each attribute is grouped under the attribute [9]. This pro-
duces a hierarchical organization that can be naturally represented by the hi-
erarchical XML view shown in Figure 3 (VH-document). Observe that every
element is timestamped using two XML attributes vstart and vend.

Fig. 3. XML Representation of the Valid-time History of Employees(VH-document)

In the VH-document, each element is timestamped with an inclusive valid
time interval (vstart, vend). vend can be set to now to denote the ever-increasing
current date, which is internally represented as “9999-12-31”(Section 4.2). Please
note that an entity (e.g., employee ‘Bob’) always has a longer or equal lifespan
than its children, thus there is a valid time covering constraint that the valid
time interval of a parent node always covers that of its child nodes, which is
preserved in the update process(Section 4.3).
Unlike the relational data model that is almost invariably depicted via tables,

XML is not directly associated with a graphical representation. This creates the
challenge and the opportunity of devising the graphical representation most con-
ducive for the application at hand—and implementing it using standard XML

Fig. 4. Temporally Grouped Valid Time History of Employees

tools such as XSL [36]. Figure 4 shows a representation of temporally grouped ta-
bles that we found effective as user interface (and even more so after contrasting
colored backgrounds and other browser-supported embellishments).

4.1 Valid Time Temporal Queries

The data shown in Figure 4 is the actual data stored in the database—with the
exception of the special “now” symbol discussed later. Thus a powerful query
language such as XQuery can be directly applied to this data model. In terms
of data types, XML and XQuery support an adequate set of built-in temporal
types, including datetime, date, time, and duration [5]; they also provide a com-
plete set of comparison and casting functions for duration, date and time values,
making snapshot and period-based queries convenient to express in XQuery. Fur-
thermore, whenever more complex temporal functions are needed, they can be
defined using XQuery functions that provide a native extensibility mechanism
for the language.
Next we show that we can specify temporal queries with XQuery on the

VH-document, such as temporal projection, snapshot queries, temporal slicing,
temporal joins, etc.

Query V1: Temporal projection: retrieve the history of departments where Bob
was employed:

<dept>
for $s in doc("emps.xml")/employees/employee[name="Bob"]/dept
return $s

</dept>

Query V2: Snapshot: retrieve the managers of each department on 1999-05-01:

for $m in doc("depts.xml")/depts/
dept/mgrno[vstart(.)<="1999-05-01" and vend(.)>="1999-05-01"]

return $m

Here depts.xml is the VH-document that includes the history of dept names
and managers. vstart() and vend() are user-defined functions (expressed in

XQuery) that return the starting date and ending date of an element’s valid
time respectively, thus the implementation is transparent to users.

Query V3: Continuous Period: find employees who worked as a manager for
more than 5 consecutive years (i.e., 1826 days):

for $e in doc("emps.xml")/employees/employee[title="Manager"]
for $t in $e/title[.="Manager"]
let $duration := subtract-dates(vend($t), vstart($t))
where dayTimeDuration-greater-than($duration,"P1826D")
return $e/name

Here “P1826D” is a duration constant of 1826 days in XQuery.

Query V4: Temporal Join: find employees who were making the same salaries
on 2001-04-01:

for $e1 in doc("emps.xml")/employees/employee
for $e2 in doc("emps.xml")/employees/employee
where $e1/salary[vstart(.)<=’2001-04-01’
and vend(.)>= ’2001-04-01’] =
$e2/salary[vstart(.)<= ’2001-04-01’ and vend(.)>=’2001-04-01’]
and $e1/name != $e2/name

return ($e1/name , $e2/name)

This query will join emps.xml with itself. It is also easy to support since and
until connectives of first-order temporal logic [18], for example:

Query V5: A Until B: find the employee who was hired and worked in dept
“RD” until Bob was appointed as the manager of the dept:

for $e in doc("emps.xml")/employees/employee
for $b in doc("emps.xml")/employees/employee[name=’Bob’]
let $t := $b/title[.=’manager’]
let $bd := $b/dept[.=’RD’]
let $d := $e/dept [1][.=’RD’]
where vmeets($d, $t) and vcontains($bd,$t)
return <employee>{$e/name}</employee>

4.2 Temporal Operators

In the temporal queries, we used functions such as vstart and vend to shield
users from the implementations of representing time. Functions predefined in-
clude: timestamp referencing functions, such as vstart, vend; interval compari-
son functions, such as voverlaps, vprecedes, vcontains, vequals, vmeets,
voverlapinterval; and during and date/time functions, such as vtimespan,
vinterval. For example, vcontains is defined as follows:

define function vcontains($a, $b){
if ($a/@vstart<= $b/@vstart and $a/@vend >= $b/@vend)
then true()
else false()

}

Internally, we use “end-of-time” values to denote the ‘now’ and ‘UC’ symbol.
For instance for dates we use “9999-12-31.” The user does not access this value
directly, but accesses it through built-in functions. For instance, to refer to the
ending valid time of a node s, the user uses the function vend(s), which returns
s’s end, if this is different from ‘9999-12-31” and current date otherwise.
The nodes returned in the output, normally use the “9999-12-31” representation
used for internal data. However, for data returned to the end-user, two different
representations are preferable. One is to return the current date by applying
function rvend() that, recursively, replaces all the occurrence of “9999-12-31”
with the value of current date. The other is to return a special string, such
as now to be displayed on the end-user screen.
These valid-time queries are similar to those transaction time history, as dis-

cussed in [13]. However, unlike transaction-time databases, valid time databases
must also support explicit update. This is not discussed in [13] and will be dis-
cussed next.

4.3 Database Modifications

An update task force is currently working on defining standard update constructs
for XQuery [37]; moreover, update constructs are already supported in several
native XML databases [38]. Our approach to temporal updates consists in sup-
porting the operations of insert, delete, and update via user-defined functions.
This approach will preserve the validity of end-user programs in the face of dif-
ferences between vendors and evolving standards. It also shields the end-users
from the complexity of the additional operations required by temporal updates,
such as the coalescing of periods, and the propagation of updates to enforce the
covering constraints.

INSERT. When a new entity is inserted, the new employee element with its
children elements is appended in the VH-Document; the vstart attributes are
set to the valid starting timestamp, and vend are set to now. Insertion can be
done through the user-defined function VInsert($path,$newelement). The new
element can be created using the function VNewElement($valueset, $vstart,
$vend).
For example, the following query inserts Mike as an engineer into RD dept

with salary 50K, starting immediately:

for $s in doc("emps.xml")/employees/employee[last()]
return VInsert($s, VNewElement(
["Mike", "Engineer", "RD", "50000"], current-date(),"now"))

DELETE. There are two types of deletion: deletion without valid time and
deletion with valid time. The former assumes a default valid time interval: (cur-
rent date, forever), and can be implemented with the user defined function VN-

odeDelete($path). For deletion with a valid time interval v on node e, there
can be three mutually exclusive cases: (i) e is removed if its valid time interval

is contained in v, (ii) the valid time interval of e is extended if the two intervals
overlap, but do not contain each other, or (iii) e’s interval is split if it properly
contains v. Deletions on a node are then propagated downward to its children
to satisfy the covering constraint. Node deletion (with downward propagation)
is supported by the function VTimeDelete($path, $vstart, $vend).

UPDATE. Updates can be on values or valid time, and coalescing is needed.
There are two functions defined: VNodeReplace($path,$newValue), and VTimeRe-
place($path, $vstart,$vend). For value update, propagation is not needed; for
valid time update, it is needed to downward update the node’s children’s valid
time. If a valid time update on a child node violates the valid time covering
constraint, then the update will fail.

5 Viewing Transaction Time History as XML

In [13] we have proposed an approach to represent the transaction-time his-
tory of relational databases in XML using a temporally grouped data model.
This approach is very effective at supporting complex temporal queries using
XQuery [5], without requiring changes in this standard query language.
In [13] we used these features to show that the XML-viewed transaction

time history(TH-document) can be easily generated from the evolving history of
the databases, and implemented by either using native XML databases or, after
decomposition into binary relations, by relational databases enhanced with tools
such as SQL/XML [4]. We also showed that XQuery without modifications can
be used as an effective language for expressing temporal queries.
A key issue not addressed in [13] was whether this approach, and its unique

practical benefits of only requiring off-the-shelf tools, can be extended to support
bitemporal databases. With two dimensions of time, bitemporal databases have
much more complexity, e.g., coalescing on two dimensions, explicit update com-
plexity, and support of more complex bitemporal queries. In the next section,
we explore how to support a bitemporal data model based on XML.

6 An XML-based Bitemporal Data Model

6.1 The XBiT Data Model

In practice, temporal applications often involve both transaction time and valid
time. We show next that, with XML, we can naturally represent a temporally
grouped data model, and provide support for complex bitemporal queries.

Bitemporal Grouping Figure 5 shows a bitemporal history of employees, us-
ing a temporally ungrouped representation. Although valid time and transaction
time are generally independent, for the sake of illustration, we assume here that
employees’ promotions are scheduled and entered in the database four months
before they occur.
XBiT supports a temporally grouped representation by coalescing attributes’

histories on both transaction time and valid time. Temporal coalescing on two

Fig. 5. Bitemporal History of Employees

temporal dimensions is different from coalescing on just one. On one dimension,
coalescing is done when: i) two successive tuples are value equivalent, and ii)
the intervals overlap or meet. The two intervals are then merged into maximal
intervals.

For bitemporal histories, coalescing is done when two tuples are value-equivalent
and (i) their valid time intervals are the same and the transaction time intervals
meet or overlap; or (ii) the transaction time intervals are the same and the valid
time intervals meet or overlap. This operation is repeated until no tuples satisfy
these conditions.

For example, in Figure 5, to group the history of titles with value ‘Sr Engi-
neer’ in the last three tuples, i.e., (title, valid time, transaction time), the last
two transaction time intervals are the same, so they are coalesced as (Sr En-

gineer, 1998-01-01:now, 1999-09-01:UC). This one again has the same valid
time interval as the previous one: ((Sr Engineer, 1998-01-01:now, 1997-09-

01:1999-08-31), thus finally they are coalesced as (Sr Engineer, 1998-01-

01:now, 1997-09-01:UC), as shown in Figure 7.

Data Modeling of Bitemporal History with XML With temporal group-
ing, the bitemporal history is represented in XBiT as an XML document (BH-
document). This is shown in the example of Figure 6, which is snapshot-equivalent
to the example of Figure 5. Each employee entity is represented as an employee
element in the BH-document, and table attributes are represented as employee
element’s child elements. Each element in the BH-document is assigned two pairs
of attributes tstart and tend to represent the inclusive transaction time inter-
val, and vstart and vend to represent the inclusive valid time interval. Elements
corresponding to a table attribute value history are ordered by the starting trans-
action time tstart. The value of tend can be set to UC (until changed), and
vend can be set to now. There is a covering constraint whereby the transaction
time interval of a parent node must always cover that of its child nodes, and
likewise for valid time intervals.

Figure 7 displays the resulting temporally grouped representation, which is
appealing to intuition, and also effective at supporting natural language inter-
faces, as shown by Clifford [7].

Fig. 6. XML Representation of the Bitemporal History of Employees(BH-document)

Fig. 7. Temporally Grouped Bitemporal History of Employees

6.2 Bitemporal Queries with XQuery

The XBiT-based representation can also support powerful temporal queries, ex-
pressed in XQuery without requiring the introduction of new constructs in the
language. We next show how to express bitemporal queries on employees.

Query B1: Temporal projection: retrieve the bitemporal salary history of em-
ployee “Bob”:

<salary_history>
for $s in doc("emps.xml")/employees/employee[name="Bob"]/salary
return $s

</salary_history>

This query is exactly the same as query V1, except that it retrieves both
transaction time and valid time history of salaries.

Query B2: Snapshot: according to what was known on 1999-05-01, what was
the average salary at that time?

let $s := doc("emps.xml")/employees/employee/salary
where tstart($s)<="1999-05-01" and tend($s) >= "1999-05-01"
and vstart($s)<="1999-05-01" and vend($s) >= "1999-05-01"

return avg($s)

Here tstart(), tend(), vstart() and vend() are user-defined functions that
get the starting date and ending date of an element’s transaction-time and valid-
time, respectively.

Query B3: Diff queries: retrieve employees whose salaries (according to our
current information) didn’t changed between 1999-01-01 and 2000-01-01:

let $s := doc("emps.xml")/employees/employee/salary
where tstart($s)<=current-date() and tend($s)>=current-date()
and vstart($s)<="1999-01-01" and vend($s)>= "2000-01-01"

return $s/..

This query will take a transaction time snapshot and a valid time slicing of
salaries.

Query B4: Change Detection: find all the updates of employee salaries that
were applied retroactively.

for $s in doc("emps.xml")/employees/employee/salary
where tstart($s) > vstart($s) or tend($s) > vend($s)

Query B5: find the manager for each current employee, as best known now:

for $e in doc("emps.xml")/employees/employee
for $d in doc("depts.xml")/depts/dept/name[.=$e/dept]
where tend($e)="UC" and tend($d)="UC"
and vend($e)="now" and vend($d)="now"

return $e, $d

This query will take the current snapshot on both transaction time and valid
time.

6.3 Database Modifications

For valid time databases, both attribute values and attribute valid time can be
updated by users, and XBiT must perform some implicit coalescing to support
the update process. Note that only elements that are current (ending transaction
time as UC) can be modified. A modification combines two processes: explicit
modification of valid time and values, and implicit modification of transaction
time.

Modifications of Transaction Time Databases Transaction time modifi-
cations can also be classified as three types: insert, delete, and update.

INSERT. When a new tuple is inserted, the corresponding new element (e.g.,
employee ‘Bob’) and its child elements in BH-document are timestamped with
starting transaction time as current date, and ending transaction time as UC.
The user-defined function TInsert($node) will insert the node with the trans-
action time interval(current date, UC).

DELETE. When a tuple is removed, the ending transaction time of the cor-
responding element and its current children is changed to current time. This can
be done by the function TDelete($node).

UPDATE. Update can be seen as a delete followed by an insert.

Database Modifications in XBiT Modifications in XBiT can be seen as the
combination of modifications on valid time and transaction time history. XBiT
will automatically coalesce on both valid time and transaction time.

INSERT. Insertion is similar to valid time database insertion except that the
added element is timestamped with transaction time interval as (current date,
UC).
This can be done by the funciton BInsert($path, $newelement), which

combines VInsert and TInsert.
DELETE. Deletion is similar to valid time database insertion, except that

the function TDelete is called to change tend of the deleted element and its
current children to current date. Node deletion is done through the function
BNodeDelete($path), and valid time deletion is done through the function
BTimeDelete($path, $vstart, $vend).

UPDATE. Update is also a combination of valid time and transaction time,
i.e., deleting the old tuple with tend set to current date, and inserting the new
tuple with new value and valid time interval, tstart set to current date and tend
set to UC. This is done by the functions BNodeReplace($path, $newValue) and
BTimeReplace($path, $vstart, $vend) respectively.

6.4 Temporal Database Implementations

Two basic approaches are possible to manage the three types of H-documents
discussed here: one is to use a native XML database, and the other is to use
traditional RDBMS. In [13] we show that a transaction time TH-document can
be stored in a RDBMS and has significant performance advantages on temporal
queries over a native XML database. Similarly, RDBMS-based approach can be
applied to the valid history and bitemporal history. First, the BH-document is
shredded and stored into H-tables.
For example, the employee BH-document in Figure 6 is mapped into the

following attribute history tables:
employee name(id,name,vstart,vend,tstart,tend)
employee title(id,title,vstart,vend,tstart,tend)
employee salary(id,salary,vstart,vend,tstart,tend)
...

Since the BH-document and H-tables have a simple mapping relationship,
temporal XQuery can be translated into SQL queries based on such mapping
relationship, using the techniques discussed in [13].

7 Conclusions

In this paper, we showed that valid-time, transaction-time, and bitemporal
databases can be naturally managed in XML using temporally-grouped data
models. This approach is similar to the one we proposed for transaction-time
data bases in [13], but we have here shown that it also supports (i) the temporal
EER model [16], and (ii) valid-time and bitemporal databases with the com-
plex temporal update operations they require. Complex historical queries, and
updates, which would be very difficult to express in SQL on relational tables,
can now be easily expressed in XQuery on such XML-based representations.
The technique is general and can be applied to historical representations of

relational data, XML documents in native XML databases, and version manage-
ment in archives and web warehouses [12]. It can also be used to support schema
evolution queries [39].

Acknowledgments

The authors would like to thank Xin Zhou for his help and comments.
This work was supported by the National Historical Publications and Records
Commission and a gift by NCR Teradata.

References

1. R. T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Mor-

gan Kaufmann, 1999.
2. G. Ozsoyoglu and R.T. Snodgrass. Temporal and Real-Time Databases: A Survey.

IEEE Transactions on Knowledge and Data Engineering, 7(4):513–532, 1995.
3. F. Grandi. An Annotated Bibliography on Temporal and Evolution Aspects in the

World Wide Web. In TimeCenter Technical Report TR-75, 2003.
4. SQL/XML. http://www.sqlx.org.
5. XQuery 1.0: An XML Query Language. http://www.w3.org/XML/Query.
6. M. Carey, J. Kiernan, J. Shanmugasundaram, and et al. XPERANTO: A Mid-

dleware for Publishing Object-Relational Data as XML Documents. In VLDB,
2000.

7. J. Clifford. Formal Semantics and Pragmatics for Natural Language Querying.
Cambridge University Press, 1990.

8. J. Clifford, A. Croker, and A. Tuzhilin. On completeness of historical relational
query languages. ACM Trans. Database Syst., 19(1):64–116, 1994.

9. J. Clifford, A. Croker, F. Grandi, and A. Tuzhilin. On Temporal Grouping. In
Recent Advances in Temporal Databases, pages 194–213. Springer Verlag, 1995.

10. S. Kepser. A Proof of the Turing-Completeness of XSLT and XQuery. In Technical

report SFB 441, Eberhard Karls Universitat Tubingen, 2002.
11. ICAP: Incorporating Change Management into Archival Processes.

http://wis.cs.ucla.edu/projects/icap/.

12. F. Wang and C. Zaniolo. Temporal Queries in XML Document Archives and Web
Warehouses. In TIME-ICTL, 2003.

13. F. Wang and C. Zaniolo. Publishing and Querying the Histories of Archived Re-
lational Databases in XML. In WISE, 2003.

14. H. Gregersen and C. S. Jensen. Temporal Entity-Relationship Models - A Survey.
Knowledge and Data Engineering, 11(3):464–497, 1999.

15. H. Gregersen and C. Jensen. Conceptual Modeling of Time-varying Information.
In TIMECENTER Technical Report TR-35, September 1998., 1998.

16. R. Elmasri and G.T.J.Wuu. A Temporal Model and Query Language for ER
Databases. In ICDE, pages 76–83, 1990.

17. R. T. Snodgrass. The TSQL2 Temporal Query Language. Kluwer, 1995.
18. J. Chomicki, D. Toman, and M.H. Böhlen. Querying ATSQL Databases with

Temporal Logic. TODS, 26(2):145–178, June 2001.
19. M. H. Böhlen, J. Chomicki, R. T. Snodgrass, and D. Toman. Querying TSQL2

Databases with Temporal Logic. In EDBT, pages 325–341, 1996.
20. J. Chomicki and D. Toman. Temporal Logic in Information Systems. In Logics for

Databases and Information Systems, pages 31–70. Kluwer, 1998.
21. C. S. Jensen and C. E. Dyreson (eds). A Consensus Glossary of Temporal Database

Concepts - February 1998 Version. Temporal Databases: Research and Practice,
pages 367–405, 1998.

22. S. K. Gadia and C. S. Yeung. A Generalized Model for a Relational Temporal
Database. In SIGMOD, 1988.

23. C. Zaniolo, S. Ceri, C.Faloutsos, R.T. Snodgrass, V.S. Subrahmanian, and R. Zi-
cari. Advanced Database Systems. Morgan Kaufmann Publishers, 1997.

24. Adam Bosworth, Michael J. Franklin, and Christian S. Jensen. Querying the Past,
the Present, and the Future. In ICDE, 2004.

25. M. Fernandez, W. Tan, and D. Suciu. SilkRoute: Trading Between Relations and
XML. In 8th Intl. WWW Conf., 1999.

26. Oracle XML. http://otn.oracle.com/xml/.
27. S.S. Chawathe, S. Abiteboul, and J. Widom. Managing Historical Semistructured

Data. Theory and Practice of Object Systems, 24(4):1–20, 1999.
28. F. Grandi and F. Mandreoli. The Valid Web: An XML/XSL Infrastructure for

Temporal Management of Web Documents. In ADVIS, 2000.
29. M. Gergatsoulis and Y. Stavrakas. Representing Changes in XML Documents

using Dimensions. In Xsym, 2003.
30. T. Amagasa, M. Yoshikawa, and S. Uemura. A Data Model for Temporal XML

Documents. In DEXA, 2000.
31. C.E. Dyreson. Observing Transaction-Time Semantics with TTXPath. In WISE,

2001.
32. S. Zhang and C. Dyreson. Adding valid time to xpath. In DNIS, 2002.
33. D. Gao and R. T. Snodgrass. Temporal Slicing in the Evaluation of XML Queries.

In VLDB, 2003.
34. P. Buneman, S. Khanna, K. Tajima, and W. Tan. Archiving scientific data. ACM

Trans. Database Syst., 29(1):2–42, 2004.
35. M.J. Rochkind. The Source Code Control System. IEEE Transactions on Software

Engineering, SE-1(4):364–370, 1975.
36. The Extensible Stylesheet Language (XSL). http://www.w3.org/Style/XSL/.
37. M. Rys. Proposal for an XML Data Modification Language. In Microsoft Report,

2002.
38. Tamino XML Server. http://www.tamino.com.
39. F. Wang and C. Zaniolo. Representing and Querying the Evolution of Databases

and their Schemas in XML. In Intl. Workshop on Web Engineering, SEKE, 2003.

