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Abstract 

Deductive Databases are coming of age with the emergence of efficient and easy to use 

systems that support queries, reasoning, and application development on databases through 
declarative logic-based languages. Building on solid theoretical foundations, the field has ben- 
efited in the recent years form dramatic advances in the enabling technology. This progress 
is demonstrated by the completion of prototype systems offering such levels of generality, per- 
formance and robustness that they support well complex application development. Valuable 
know-how has emerged from the experience of building and using these systems: we have 

learned about algorithms and architectures for building powerful deductive database systems, 
and we begin to understand the programming environments and paradigms they are conducive 
to. Thus, several application areas have been identified where these systems are particularly 

effective, including areas well beyond the domain of traditional database applications. Finally, 

the design and deployment of deductive databases has provided new stimulus and a focus to 
further research into several fundamental issues. As a result, the theory of the field has made 

significant progress on topics such as semantic extensions to Horn logic and algorithms for 

compilation and optimization of declarative programs. Thus, a beneficial interaction between 
theory and practice remains one of the strengths of Deductive Databases as the field is entering 
the ‘90s and the age of technological maturity. 

1 Background 

Deductive Databases are coming of age with the emergence of efficient and easy to use systems 

that support queries, reasoning, and application development on databases through declarative 

logic-based languages. 

Interest in the area of Deductive Databases began in the “7Os, with most of the early work 
focusing on establishing the theoretical foundations for the field. An excellent review of this 
work and the beneficial impact that it had on various disciplines of computing, and the database 
area in particular, is given in [GMN]. Throughout the ‘70s and the first part of the ‘80s concrete 
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system implementations of these ideas were limited to few ground breaking experiments [Kell]. This 
situation contrasted quite dramatically with the significant system-oriented developments that were 
taking place at the same time in two fields very close to deductive databases. The first field was 
relational databases, where systems featuring logic-based query languages of good performance, 
but limited expressive power, were becoming very successful in the commercial world. The second 
field is Logic Programming, where successive generations of Prolog systems were demonstrating 
performance and effectiveness in a number of symbolic applications, ranging from compiler writing 

to expert systems. 

A renewed interest in deductive database systems came about as a result of the flare-up of 
attention and publicity generated by the idea of Fifth Generation Computing. It was realized that 
the rule based reasoning of logic, combined with the capability of database systems of managing 
and efficiently storing and retrieving large amounts of information could provide the basis on which 
to build the next-generation of knowledge base systems. As a result, several projects were started 
that focused on extending Prolog systems with persistent secondary-based storage management 
facilities [Rash] or on coupling Prolog with relational databases [JaCV, KuYo, Li, CeGW]. Several 
commercial systems are now available that support the coupling of SQL databases with Prolog or 
expert system shells. In particular, is the system described in [Boc, Levi] provides close integration 
between Prolog and Database facilities, and smart algorithms for supporting recursive queries 
against the database. 

Yet several other researchers were critical of the idea of using Prolog as a front-end to relational 
databases. In particular, it was noted that the sequential left-to right execution model of Prolog 
was a throw-back to navigational query languages used before relational systems. In relational 
systems, the user is primarily responsible for correct queries, and the system takes care of finding 
efficient sequencing of joins (query conjuncts), thus optimizing navigation through the database-a 
special module called the query optimizer sees to that [Seta]. In Prolog, instead, the programmer 
must carefully select the order of rules and of goals in the rules, since the correctness, efficiency 
and termination of the program depend on it. A second problem follows from the fact that efficient 
Prolog implementations are based on a abstract machine (WAM) and features (pointers) that rely 
on the assumption that data resides in main memory rather than secondary store [War]. Thus 
a number of research projects opted for an approach that builds more on extensions of relational 
database technology than on adaptations of Prolog technology. While several of these projects 
limited their interests to extending query languages with specific constructs such as rules and 
recursion, projects such as NAIL! [Meta] and f!DL [Cetal, NaTs] feature declarative languages 
of expressive power comparable to Prolog. This paper recounts and summarizes the author’s 
experience in designing, developing and deploying the tDL: system. 

2 Overview 

The motivation for designing and building the LDL: system was twofold: 

l To provide support for advanced database applications, with a focus on expert systems and 
knowledge based applications. 

l To provide better support for traditional database applications by integrating the application 
development and database queries into one language-thus solving the impedance mismatch 
problem. 
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A serious problem with current database applications is due to the limited power of languages 
such as SQL, whereby the programmer has to write most of the application in a procedural lan- 
guage with embedded tails to the query language. Since the computing paradigm of a procedural 
language, such as COBOL, is so different from the set-oriented declarative computation model of 
a relational language, an impedance mismatch occurs that hinders application development and 
can also cause slower execution [CoMa]. R ea ization of this problem has motivated a whole line 1 
of database research into new languages, commonly called database languages (BaBu]. The typical 
approach taken by previous researchers in database languages consisted in building into proce- 
dural languages constructs for accessing and manipulating databases [Sch77, Rosh]. Persistent 
languages, where the database is merely seen as an extension of the programming language, rep- 
resent an extreme of this emphasis on programming languages. In a sharp departure from these 
approaches, f!Dt focuses on the query language, and extends it into a language powerful enough 
to support the development of applications of arbitrary complexity. Rather than extending cur- 
rent database query languages such SQL, however, LDL: builds on the formal framework of Horn 
clause logic-a choice that had less to do with the well-known shortcomings of SQL, than with 
the influence of Prolog (a language based on Horn clause logic). In fact, we were impressed with 
the fact that this rule-based language was effective for writing symbolic applications and expert 
applications as well as being a powerful and flexible database query language [Zanl]. 

A closer examination on why Horn clauses represent such a desirable rule-based query language 
reveals the following reasons: 

l Horn Clauses are akin to domain relational calculus [Ull], which offer two important advan- 
tages with respect to tuple calculus on which languages such as SQL are based-but the 
two calculi are known to be equivalent in terms of expressive power. One advantage is that 
domain calculus supports the expression of joins without explicit equality statements; the 
other is that lends itself to the visualization of queries -both benefits vividly demonstrated 
by QBE [Ull]. 

l Horn clauses support recursion and complez terms (through function symbols) thus eliminat- 
ing two important limitations of relational query languages and systems. 

l Horn clauses have a declarative semantics based on the equivalent notions of minimal model 
and least fixpoint [Llo, vEKo]. 

l Horn clauses can also be used effectively as a navigational query language. 

As the last two points suggest, Horn clauses can be used effectively as either a declarative 
query language or navigational one [Zanl]. In the declarative interpretation of Horn Clauses, the 
order of goals in a rule is unimportant (much in the same way in which the order of conjuncts 
in a relational query is immaterial). The navigational interpretation of Horn clauses follows from 
the operational semantics of Prolog. Under this interpretation, goals are executed respectively 
in a left-to-right order, and the programmer is basically entrusted with the task of using this 
information to write terminating and efficient programs, For instance, when the goals denote 
database relations, the order defines a navigation through the database records; the programmer 
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must carefully select the best navigation, e.g., one that takes advantage of access structures and 
limits the size of intermediate results. 

A most critical decision in designing f!DLl was to follow the path of relational systems and 
build on the declarative semantics, rather than on the operational interpretation of Horn clauses. 
This approach was considered to be superior in terms of data independence and ease of use. 
Indeed this approach enables the user to concentrate on the meaning of programs, while the 
system is now entrusted with ordering goals and rules for efficient and safe executions. A further 
step toward declarative semantics was taken by freeing the user from the concern of whether 
forward chaining or backward chaining should be used in executing a set of rules. Current expert 
system shells frequently support only one of these two strategies; when they provide for both, 
they leave to the programmer the selection of the proper strategy for the problem at hand and 
its encoding as part of the program. In f!DL, the actual implementation is largely based on 
a forward chaining strategy which is more suitable for database applications [CetaO]. But the 
compiler has also the capability of using rule rewrite methods, such as the magic set method 
or the counting method [BMSU, SaZl, SaZZ], to mimic backward chaining through a bottom- 
up computation. Thus the f!D.C user is also provided automatically by the system with the 
functionality and performance benefits of backward chaining. This substantial progress toward 
declarative programming represents one of the most significant contributions to the technology of 
rule-based systems brought about by the research on deductive database systems in the recent 
years. 

Another major area of progress for deductive databases is that of semantics. Indeed many 
other constructs beyond Horn clauses are needed in a language such as f DL to support application 
development. In particular, f!DL: includes constructs supporting the following notions: 

l Negation [ApBW, Naq, Przl], 

l Sets, including grouping and nested relations [BNST, ShTZ], 

l Updates [NaKr, KNZ] 

l Don’t-care non-determinism [KrNl]. 

Most of these constructs (excluding set terms) are also in Prolog-they were added because 
they were needed for writing actual applications. But, in Prolog, their semantics is largely based 
on Prolog’s operational model. Therefore, a major challenge of the L DL research was to define a 
formal declarative semantics for these constructs, in a way that naturally extends the declarative 
semantics of Horn clauses. The problem of extending the power of declarative logic is in fact the 
second main area of recent advances promoted by research in deductive databases. Of particular 
interest is the fact that many open problems in knowledge representation and non-monotonic 
reasoning have been given a clearer definition, and in some cases brought close a solution by these 
new advances [MaSu, Prs2] 

The combined challenge of designing a powerful and expressive language, with declarative 
semantics, and efficient techniques for compilation and optimization describes the whole first phase 
of LDL research. This began in mid 1984, and culminated in the implementation of the first 
prototype at the end of 1987. This prototype compile L: DL: into a relational algebra based language 
FAD for a parallel database machine [Bor]. Rule rewriting methods, such as magic set and counting, 
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were used to map recursive programs into equivalent ones that can be supported efficiently and 
safely by fixpoint iterations [BMSU, SaZl, SaZ2]. A d escription of this system is given in [Cetal]. 

The implementation of the first LDL prototype confirmed the viability of the new technology, 
but did little to transfer this technology from the laboratory to actual users, since FAD is only 
available on an expensive parallel machine. Seeking a better vehicle for technology transfer, a new 
prototype system was designed with the following characteristics: 

l Portability, 

l Efficiency, 

l Open System Architecture. 

This effort produced a portable and efficient LDf system under UNIX, called SALAD. ’ This 
implementation assumes a single-tuple, get-next interface between the compiled LDL: program and 
the underlying fact manager (record manager). This provides for more flexible execution modes 
than those provided by relational algebra [Cetal, Zanl]. The new design yields better performance, 
since the optimizer can now take advantage of different execution modes, and the compiler can cut 
out redundant work in situations where intelligent backtracking or existential optimization can be 
used [CGKZ, RaBK]. SALAD includes a fact manager for a database residing in virtual memory 
that supports efficient access to the complex and variabie record structures provided in LDL. By 
using C as an intermediate target language and an open system architecture, SALAD ensures 
portability, support for modules, and for external procedures written in procedural languages- 
including controlled access by these routines to internal SALAD objects. 

The SALAD prototype was completed in November 1988, and has undergone improvements 
and extensions during 1989. By the end of 1989, the system includes a fully functional optimizer, a 
powerful symbolic debugger with answer justification capability and an X-windows interface. The 
availability of SALAD led to the writing of significant applications and to the emergence of an f Df 
programming style. It was found that, in addition to supporting well database applications, f DC is 
effective as a rule-based system for rapid prototyping of applications in the Cenvironment. Also in 
1989, a complete description of the f D f language with sample applications appeared at bookstores 
(NaTs], and the first executable copies of SALAD were given to universities for experimentation. 

I interpret these events as signs of a maturing technology. But, in the end, only the level 
of satisfaction experienced by users with SALAD or similar systems can confirm or disprove my 
claim that deductive databases are coming of age. To promote this goal, however, this paper will 
summarize the highlights of my experience with the f Df system, hoping that the readers will be 
enticed to experiment with it and then become enthusiastic users of the system. Therefore, the 
paper focuses on the functionality and usability aspects of the system. The reader interested in 
the architecture and enabling technology is referred to a recent overview [Ceta2] 

3 Declarative Programming and Debugging 

A declarative semantics for rules offer several advantages over the operational one, including the 
following ones: 

‘SALAD-System for Advanced Logical Applications on Data. 



6 

l Naturalness, 

l Expressive Power, 

l Reusability and Data Independence. 

Frequently, the most natural definition of a programming object is inductive. For instance, 
the following LlDf! program defines all the integers between zero and K, using Peano’s inductive 
definition (zero is an integer and if J is an integer, so is J+l). 

int(K.0). 
int(K.J) +- int(K.1). I< K. J = I+l. 

The CDL compiler has no problem turning this definition into an efficient fixpoint iteration. 
This pair of rules, or any one obtained by scrambling the order of their goals, cannot be supported 
by any interpreter or compiler implementing the backward chaining strategy. For instance, in 
Prolog the user must be go through some interesting contortions to recast this program to fit the 
operational model. 

As the next example, consider the situation where there is a binary tree of atoms. For instance 
a tree with leaves a and b will be represented by the complex term tree (a, b) . Associated with 
the leaf nodes of a tree there is a weight represented by facts such as 

node(a. 1). 
node(aa. 2). 
nodecab. 3). 

The weight of a tree is inductively defined as the sum of the weights of its two subtrees. We want 
now to define all the trees with weight less than a certain M. Immediately from these definitions 
we derive the following rules. 

w(N. W, Ml c node(N. W). W < M. 
w(tree(Tl.T2). W, M) + w(Tl.W1), w(T2. W2>. W = W1+W2. w < M. 

This simple definition is not implementable with backward chaining and, unlike the previous 
example, we do not know of any set of rules that will support this predicate well in Prolog (assuming 
that the weights of the nodes are not known before hand). While forward chaining is the preferred 
strategy for these two examples, there are many situations where backward chaining is instead the 
only reasonable strategy. For instance, say that a tree is at hand and its weight must be computed, 
as per the the following query goal (where 10000 denotes a value high enough not to be a factor 
in the computation). 

? w(tree(aa,tree(a,ab)), X, 10000). 

In this situation, the f Df compiler simply mimics backward chaining by the use of a rewriting 
method-the efficient counting method in this particular case [SaZS]. What is most important here 
is that the program has not changed. The same program works for different situations and the 
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compiler/optimizer takes care of matching the actual execution method to the problem at hand. 
The final result is a level of reusability of programs that is well beyond that of Prolog programs. The 
elimination of cuts, replaced by the choice and if -then-else constructs, is also very beneficial in 
terms of reusability [Zanl]. The concept of reusability for database programs is an extension of the 
notion of data independence, defined as the ability of queries and applications to survive changes 
in the database physical organization. In relational databases the key instrument in delivering 
data independence is the optimizer. In SDS the optimizer ensures data independence, reusability 
of code and economy of programming, since the user can call the same module or predicate with 
different set of bindings. 

The previous example was inspired by an Alkane Molecules generation problem [Tsur] that 
was first proposed to illustrate the power of functional languages. The same problem was quite 
easily formulated in SDS due to the ability of expressing inductive definitions and to the ease 
of checking equivalent structures while avoiding cyclic loops, discussed next. Semantically the 
structures previously discussed are unordered trees. Thus, a given tree is equivalent to those 
obtained by recursively exchanging the left subtree with the right one. Equivalence can be expressed 
by following set of rules: 

eq(T. T). 
eq(tree(Tl,T2), tree(T2.7’3)) + eq(T3, Tl). 

Thus two trees are equivalent, if they are equal or if their subtrees have been exchanged and 
possibly replaced with equivalent ones. The problem is that the composition of several exchanges 
can return the original structure, and the SLD-resolution will cycle. Thus in Prolog the programmer 
has to carry around a bag of previous solutions and check for cycles at the cost of inefficiency of 
programming and execution. In SDS instead, the system can deal with cycles automatically and 
efficiently. This feature is particularly important in situations involving negations, since it is the 
key to a complete realization of stratified negation which avoids the floundering problem of negation 
by failure IPrzl, Llo]. 

One of the most interesting aspects of programming with a declarative language is debugging. 
Any trace-based debugger would be a little use in SDS since the optimizer rearranges the rules to 
a point that they do not resemble the original program. On the other hand, the logical nature of 
the system makes it possible to explain and justify the answers, and thus support a truly logical 
debugger. The current SDS system provides logical debugging and answer justification capabilities 
as sophisticated as those of any expert shell or rule-based system available today. 

The conceptual basis for the logical debugger consists in combined why and whynot explanation 
capabilities, whereby the system carries out a conversation with the user explaining why a certain 
answer was returned., and why another was not returned. 

Thus to a user asking 

why eq(tree(a. tree(b.c)). tree(a. tree(c.b)). 

the system will return the instantiated rule that produced it: 

eq(tree(a. tree(b.c)), tree(a. tree(c.b))) + eq(tree(c.b) .tree(b.c)). 
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If the user is still not convinced and ask 

eq(tree(c.b) ,tree(b.c)). 

then the system returns the unit clause eq(c , c) . 

In the whynot interaction, the user asks an explanation on why some tuple was not returned. 
This capability is needed for supporting why answers in rules with negation, and yields a level of 
reasoning about programs which is not possible with traditional debuggers. For instance, if the 
user ask the question 

whynot eq(tree(tree(a.b) .c)>, tree(tree(b.a), c>)>. 

then, the system request the user to point out the rule that should have produced this answer. 
When the user does so, the system tries to instantiate this rule. In our example, the user will 
probably point out the second rule; then, the system reports back that no instantiation is possible 
since T2 cannot be unified with both tree (a, b) and tree (b , a>. That identifies the problem: the 
given rules do not capture the correct notion of unordered tree. 

This was not a contrived example: I had actually written the program above, and, in a attempt 
to save a rule, combined the switching of arguments and the recursive equivalence of the subtrees 

into one rule. Only through the debugger I was able to recognize my mistake (which can be 
fixed by either adding a new eq goal or an additional rule). Exploring ,CDL programs with the 
logical debugger is indeed a very interesting experience-further enhanced by an X-window based 
visualization capability. 

4 Open System Architecture 

An f DC program calling a graphic routine or a windowing system calling an f?Df. program are two 
concrete examples that motivated the open system architecture of the system. This architecture 
also follows from the realization that the combination of a high-level declarative language with a 
procedural language frequently offers the greatest flexibility and effectiveness in actual applications. 
Typical situations where this bilingual programming paradigm is useful are as follows: 

l Building on ezisting software. Existing libraries are often at hand for performing specific 
tasks, including computation-intensive operations such as graphics or Fast Fourier Trans- 
forms. The natural solution consists in importing these routines into f!DLl applications while 
preserving f? 012 amenities such as safety and optimization. 

l Rapid prototyping and hot spot refinement. As many rule-base systems, L1 DL! is a good vehicle 
for the rapid prototyping of applications. Large applications can be easily developed and 
modified until their functionality and behavior satisfy specifications and clients’ requirements. 
Once this validation is completed, the programmer can turn his attention to the performance 
problem by identifying the hot spots. These are predicates or segments of the L3 D f! program 
that, because of taking too long to execute and being executed very often, slow down the 
execution of the whole program. Then the programmer can re-code these hot spots for 
efficiency, using a procedural language, such as C. 
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l Eztensibility. It is often convenient to use higher order predicates or metalevel predicates. 
These are not provided as part of f!D.lJ; however they can be written as external procedures, 
say in C. Since external procedures can be given access to the internal objects of SALAD 
and can be made behave exactly as .LDfJ predicates, this becomes a very effective way to 
add new built-ins. 

Support for an open architecture required the following components to be provided [CGKl): 

1. L Df language extensions to allow external predicates, 

2. An optimization strategy and optimizer extensions to deal with external predicates, 

3. Run time interfaces between fDf and external procedures. 

There are actually two kinds of external procedures recognized by fDf. The first kind are 
ezternal junctions, which are traditional procedures written in languages such as C or FORTRAN 
that are simply imported by statements such as: 

import strlen($Str: string, Len:integer) from C. 

Then an fDt rule to select strings of length greater than 80 can be written as follows: 

long-atom(Str) <- strlen(Str , Len), Len > 80. 

The second kind of external procedures are ezternd predicates which, although written in 
languages such as C or FORTRAN, behave as fDf predicates: they can fail or return more 
than one solution. External predicates can manipulate all internal SALAD objects, including sets, 
complex terms and relations. Thus, when invoking an external predicate, the calling L D L program 
initializes a temporary relation which is passed to the external procedure. This adds the computed 
results to the relation, and returns control to f Df that reads the tuples of this relation as from any 
other internal relation. Likewise, by creating a temporary relation and calling an fDf precompiled 
module, conventional programs can also call L3 D L. Of course, an impedance mismatch between the 
procedural language and the underlying system could be a problem for the last situation. This is 
not the case for the previous situations, where the external module becomes completely integrated 
into fDf. 

*The main problem with an open architecture, is to have the optimizer “understand” external 
predicates and use them effectively in optimization. The first problem, dealing with safety, is 
directly handled through the notion of finiteness constraint, whereby the finiteness of an argument 
implies the finiteness of others. For instance in the previous strlen relation, the finiteness of the 
first argument implies that of the second. This information is directly extracted from the import 
statement and used by the optimizer in creating a safe ordering of goals. In order to predict and 
minimize the execution cost, the optimizer uses descriptors characterizing the selectivity, fan-out 
and cost of the external predicates. The user has to supply this information that can be deduced 
either from known properties of the external procedure, or from some experimental runs [CGKl] 

An interesting example of the benefits offered by this architecture, is the problem of coupling 
fDf with an SQL database. Basically, precompiled SQL modules can simply be imported as 
externals into f Df. The f Df system views each precompiled query as another computed relation. 
Once the usual information about finiteness constraints, cost, selectivity and fan-out is given, the 
system deal with it without any further complication (at least in those SQL systems where this 
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information is easy to access). The simplicity of this task contrasts with the challenges encountered 
by various projects coupling Prolog with SQL [JaCV, Boc]. A more interesting problem, which 
we are now investigating, consists in taking a pure f?Df program using SQL schema relations and 
translate it into a mixure of f D1: rules and SQL statements. This involves translation of segments 
of f?DLl programs into equivalent SQL queries, and extensions to the LDf optimizer to determine 
optimum load sharing between the f! Df front-end and the SQL back-end. 

4.1 L DL Applications 

In the end, the utility of the f Df technology can only be assessed through application development. 
We first experimented with traditional applications, such as parts explosion, inventory control and 
job shop scheduling, which are currently implemented by a procedural application program with 
embedded query calls. Our experience with these applications, has been uniformly positive: we 
found them easy to write and maintain and extend using LDL. As a result, we moved to more 
advanced applications, in areas beyond those of traditional DBMSs. Next, we discuss two new 
areas of particular interest, data dredging and harnessing software. 

4.1.1 Data Dredging 

The paradigm that we will describe in this section includes a iarge class of scientific and engineering 
problems. The source of the data is typically a large volume of low-level records, collected from the 
measurement or the monitoring of some empirical process or a system simulation. The objective 
is to ascertain whether this data lends support to certain abstract concepts where, conceptually, 
the level of abstraction of the concepts may be far-removed from the level at which the data was 
collected. The procedure adopted to meet the objective is as follows: 

1. Formulate hypothesis or concept; 

2. Translate (1) into an f DC rule-set and query; 

3. Execute query against the given data and observe the results; 

4. If the results do not verify or deny (1) then, reformulate and goto (2); otherwise exit. 

Obviously, the decision to exit the process is entirely subjective and is decided by the programmer. 
At this stage he/she may have either decided that the concept is now properly defined or, that the 
data does not support this concept and that it should be abandoned or tried out with different data. 
The use of L: D L over procedural languages offered the advantage of supporting the formulation at 
a more abstract level where the “iteration time” through reformulations is significantly shortened. 
With respect to existing database query languages, L: DL supported a more natural expression of 
higher and higher levels of abstraction via rules, and the ease of incorporating efficient C-based 
routines for the filtering and preprocessing of low-level data-a demonstration of the two languages 
programming paradigm. These benefits were observed in experiments with data dredging in two 
different domains: computer system performance evaluation and scientific data analysis in the 
area of Molecular Biology. The first application [NaTs] involved the formulation of the “convoy” 
concept in a distributed computing system. Intuitively, a convoy is a subset of the system entities 
(processes, tasks) that move together for some time from one node to the other in the network 
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of processors and queues. The recorded data is low-level and consists of arrival/departure records 
of individual entities at certain nodes. The convoy concept was defined in tDL using a small set 
of rules, and actual instances were detected in the simulation data that were used. The second 
instance of data dredging-performed in collaboration with researchers from the Harvard Medical 
School and the Argonne National Laboratories-involves the identification of DNA sequences from 
(very) low-level, digitized autoradiographs, that record the results of the experiments that are 
performed in the sequencing of the E.Coli bacteria [GENE88]. Again, the task is to extract the 
definitions for the four DNA bases A,C,G,T from this low-level, noisy and often imperfect data. 
Thus, the interpretation proceeds in two phases: 

1. An alignment phase during which the raw, digitized data is brought to a common base value 
and smoothed, using standard signal-processing techniques. 

2. An interpretation phase during which the aligned data is interpreted, using a set of domain- 
specific heuristics. 

This is a good example of the use of the dual language programming paradigm, since the first 
phase is best supported by procedural routines, mostly library ones, and the second part requires 
a high-level rule-based language. In fact, a large number of heuristics need to be applied in this 
case and the use of LIDS: has the additional advantage that it is simple to add special definitions, 
that need to be used within narrow contexts, to the general definitions. It is thus relatively simple 
to add additional knowledge to the system as the experience with its use increases. The problem 
just described can also be viewed as that of writing an expert application to do gel-interpretation. 
However, the approach is more data-driven than in a typical expert application: the focus has been 
on extracting knowledge from data, rather than capturing human expertise in the area. 

4.1.2 Harnessing Software 

We mentioned that external C procedures can be used in the definition of L DL programs. In the 
LDLl context, these are regarded as evaluable predicates. While normally we expect the use of 
external code to be the exception rather than the rule (reserved for special purposes e.g., graphical 
routines), we can think of situations that lay at the other extreme: the bulk of the software is 
written in standard, procedural code and only a small fraction of it is rule-based and encoded 
in LCDL. In this situation the rule-set forms the “harness” around which the bulk of the code is 
implemented. The rule portion forms a knowledge base that contains: 

1. The definition of each of the C-module types used in the system. 

2. A rule set that defines the various ways in which modules can be combined: inheritance and 
export/import relationships between modules, constraints on their combinations, etc. 

The advantage of this organization becomes apparent in information systems where most new 
service requests can be supported by building on a Lego-set of basic, reusable modules. The knowl- 
edge base and rule-based harness externally encode the logic of module interaction and subsets of 
instances of the existing module types can now be recombined, subject to the rule-restrictions, to 
support different task-specifications. An added advantage is that each of the individual module- 
types can be verified using any of the existing verification methods and their global behavior is 

-.. 
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controlled by the rule-set. We are currently experimenting with such an application in the domain 
of banking software. 

5 Looking Ahead 

Coming of age also means having to accept the limitations of reality. Foremost among these is 
that the novelty of a technology and the soundness of the underlying theory will not ensures 

the acceptance a new system or, even less, or a new paradigm for application development. For 
acceptance, there must be commercial potential, and obvious benefits to the users- the theory 
must meet practice. Perhaps the most significant aspect off Df research is a serious determination 
of bridging the gap between theory and practice. This is demonstrated by the fact that a team of six 
to eight people with a wide spectrum of interests and backgrounds-from very theoretical ones to 
very applied ones-closely collaborated during the last five years in the design and implementation 
effort. The result is a system that supports the declarative semantics of LDf and its underlying 
theory completely and efficiently. 

An healthy interaction between theory and practice remains a distinctive mark of some of the 
most recent developments in LDLI. On the theory side, the focus is still on defining key semantic 
concepts, in areas such as negation and non-monotonic logic [SaZ3], higher order extensions [KrN2], 
and support for object identity and inheritance [Zan3, BNS]. In the longer term, we expect 
many of these concepts will become an integral par of the next generation of deductive database 
systems. The shorter term focus, however, is on deploying the current technology and on developing 
application areas particularly suitable for deductive databases. Among these we find the area of 
rapid prototyping and development development of applications-an important area poorly served 
by existing systems. In fact, the most popular use of rapid prototyping relies on SQL, often 
enhanced with 4GL facilities [CoSh, DM89, Gane]. Because of its power, open architecture, and 
support of Knowledge based programming, LDL can be used in this role much more effectively 
than SQL, which has obvious the functionality limitations. To further extend the capabilities of 
the f?Dl system in this domain, we are enhancing its environment, (e.g., by providing a standard 
interface to SQL databases) and addressing the ease-of-use problem. In terms of ease of use, the 
challenge is not doing better than SQL. Standard relational queries are normally easier to express 
in f!Dl than in SQL. The real research challenge is make it easier and more natural to express 
the much more complex applications which can now be written in f Df; e.g., those which require 
complex terms and non-linear recursion. We are currently exploring with the use of visualization, 
since Horn clauses provide a good conceptual basis on which to support visual programming and 
debugging. Clearly the conceptual task of solving a complex problem will remain complex; but 
we expect that the task of coding or debugging the solutions can be greatly facilitated by these 
interfaces. Our first experience with a visual debugger is encouraging in this respect. 
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