
Deductive Databases-Theory Meets Practice

Carlo Zaniolo

MCC

3500 West Balcones Center Drive

Austin, Texas 78759

USA

Abstract

Deductive Databases are coming of age with the emergence of efficient and easy to use

systems that support queries, reasoning, and application development on databases through
declarative logic-based languages. Building on solid theoretical foundations, the field has ben-
efited in the recent years form dramatic advances in the enabling technology. This progress
is demonstrated by the completion of prototype systems offering such levels of generality, per-
formance and robustness that they support well complex application development. Valuable
know-how has emerged from the experience of building and using these systems: we have

learned about algorithms and architectures for building powerful deductive database systems,
and we begin to understand the programming environments and paradigms they are conducive
to. Thus, several application areas have been identified where these systems are particularly

effective, including areas well beyond the domain of traditional database applications. Finally,

the design and deployment of deductive databases has provided new stimulus and a focus to
further research into several fundamental issues. As a result, the theory of the field has made

significant progress on topics such as semantic extensions to Horn logic and algorithms for

compilation and optimization of declarative programs. Thus, a beneficial interaction between
theory and practice remains one of the strengths of Deductive Databases as the field is entering
the ‘90s and the age of technological maturity.

1 Background

Deductive Databases are coming of age with the emergence of efficient and easy to use systems

that support queries, reasoning, and application development on databases through declarative

logic-based languages.

Interest in the area of Deductive Databases began in the “7Os, with most of the early work
focusing on establishing the theoretical foundations for the field. An excellent review of this
work and the beneficial impact that it had on various disciplines of computing, and the database
area in particular, is given in [GMN]. Throughout the ‘70s and the first part of the ‘80s concrete

2

system implementations of these ideas were limited to few ground breaking experiments [Kell]. This
situation contrasted quite dramatically with the significant system-oriented developments that were
taking place at the same time in two fields very close to deductive databases. The first field was
relational databases, where systems featuring logic-based query languages of good performance,
but limited expressive power, were becoming very successful in the commercial world. The second
field is Logic Programming, where successive generations of Prolog systems were demonstrating
performance and effectiveness in a number of symbolic applications, ranging from compiler writing

to expert systems.

A renewed interest in deductive database systems came about as a result of the flare-up of
attention and publicity generated by the idea of Fifth Generation Computing. It was realized that
the rule based reasoning of logic, combined with the capability of database systems of managing
and efficiently storing and retrieving large amounts of information could provide the basis on which
to build the next-generation of knowledge base systems. As a result, several projects were started
that focused on extending Prolog systems with persistent secondary-based storage management
facilities [Rash] or on coupling Prolog with relational databases [JaCV, KuYo, Li, CeGW]. Several
commercial systems are now available that support the coupling of SQL databases with Prolog or
expert system shells. In particular, is the system described in [Boc, Levi] provides close integration
between Prolog and Database facilities, and smart algorithms for supporting recursive queries
against the database.

Yet several other researchers were critical of the idea of using Prolog as a front-end to relational
databases. In particular, it was noted that the sequential left-to right execution model of Prolog
was a throw-back to navigational query languages used before relational systems. In relational
systems, the user is primarily responsible for correct queries, and the system takes care of finding
efficient sequencing of joins (query conjuncts), thus optimizing navigation through the database-a
special module called the query optimizer sees to that [Seta]. In Prolog, instead, the programmer
must carefully select the order of rules and of goals in the rules, since the correctness, efficiency
and termination of the program depend on it. A second problem follows from the fact that efficient
Prolog implementations are based on a abstract machine (WAM) and features (pointers) that rely
on the assumption that data resides in main memory rather than secondary store [War]. Thus
a number of research projects opted for an approach that builds more on extensions of relational
database technology than on adaptations of Prolog technology. While several of these projects
limited their interests to extending query languages with specific constructs such as rules and
recursion, projects such as NAIL! [Meta] and f!DL [Cetal, NaTs] feature declarative languages
of expressive power comparable to Prolog. This paper recounts and summarizes the author’s
experience in designing, developing and deploying the tDL: system.

2 Overview

The motivation for designing and building the LDL: system was twofold:

l To provide support for advanced database applications, with a focus on expert systems and
knowledge based applications.

l To provide better support for traditional database applications by integrating the application
development and database queries into one language-thus solving the impedance mismatch
problem.

3

A serious problem with current database applications is due to the limited power of languages
such as SQL, whereby the programmer has to write most of the application in a procedural lan-
guage with embedded tails to the query language. Since the computing paradigm of a procedural
language, such as COBOL, is so different from the set-oriented declarative computation model of
a relational language, an impedance mismatch occurs that hinders application development and
can also cause slower execution [CoMa]. R ea ization of this problem has motivated a whole line 1
of database research into new languages, commonly called database languages (BaBu]. The typical
approach taken by previous researchers in database languages consisted in building into proce-
dural languages constructs for accessing and manipulating databases [Sch77, Rosh]. Persistent
languages, where the database is merely seen as an extension of the programming language, rep-
resent an extreme of this emphasis on programming languages. In a sharp departure from these
approaches, f!Dt focuses on the query language, and extends it into a language powerful enough
to support the development of applications of arbitrary complexity. Rather than extending cur-
rent database query languages such SQL, however, LDL: builds on the formal framework of Horn
clause logic-a choice that had less to do with the well-known shortcomings of SQL, than with
the influence of Prolog (a language based on Horn clause logic). In fact, we were impressed with
the fact that this rule-based language was effective for writing symbolic applications and expert
applications as well as being a powerful and flexible database query language [Zanl].

A closer examination on why Horn clauses represent such a desirable rule-based query language
reveals the following reasons:

l Horn Clauses are akin to domain relational calculus [Ull], which offer two important advan-
tages with respect to tuple calculus on which languages such as SQL are based-but the
two calculi are known to be equivalent in terms of expressive power. One advantage is that
domain calculus supports the expression of joins without explicit equality statements; the
other is that lends itself to the visualization of queries -both benefits vividly demonstrated
by QBE [Ull].

l Horn clauses support recursion and complez terms (through function symbols) thus eliminat-
ing two important limitations of relational query languages and systems.

l Horn clauses have a declarative semantics based on the equivalent notions of minimal model
and least fixpoint [Llo, vEKo].

l Horn clauses can also be used effectively as a navigational query language.

As the last two points suggest, Horn clauses can be used effectively as either a declarative
query language or navigational one [Zanl]. In the declarative interpretation of Horn Clauses, the
order of goals in a rule is unimportant (much in the same way in which the order of conjuncts
in a relational query is immaterial). The navigational interpretation of Horn clauses follows from
the operational semantics of Prolog. Under this interpretation, goals are executed respectively
in a left-to-right order, and the programmer is basically entrusted with the task of using this
information to write terminating and efficient programs, For instance, when the goals denote
database relations, the order defines a navigation through the database records; the programmer

A

must carefully select the best navigation, e.g., one that takes advantage of access structures and
limits the size of intermediate results.

A most critical decision in designing f!DLl was to follow the path of relational systems and
build on the declarative semantics, rather than on the operational interpretation of Horn clauses.
This approach was considered to be superior in terms of data independence and ease of use.
Indeed this approach enables the user to concentrate on the meaning of programs, while the
system is now entrusted with ordering goals and rules for efficient and safe executions. A further
step toward declarative semantics was taken by freeing the user from the concern of whether
forward chaining or backward chaining should be used in executing a set of rules. Current expert
system shells frequently support only one of these two strategies; when they provide for both,
they leave to the programmer the selection of the proper strategy for the problem at hand and
its encoding as part of the program. In f!DL, the actual implementation is largely based on
a forward chaining strategy which is more suitable for database applications [CetaO]. But the
compiler has also the capability of using rule rewrite methods, such as the magic set method
or the counting method [BMSU, SaZl, SaZZ], to mimic backward chaining through a bottom-
up computation. Thus the f!D.C user is also provided automatically by the system with the
functionality and performance benefits of backward chaining. This substantial progress toward
declarative programming represents one of the most significant contributions to the technology of
rule-based systems brought about by the research on deductive database systems in the recent
years.

Another major area of progress for deductive databases is that of semantics. Indeed many
other constructs beyond Horn clauses are needed in a language such as f DL to support application
development. In particular, f!DL: includes constructs supporting the following notions:

l Negation [ApBW, Naq, Przl],

l Sets, including grouping and nested relations [BNST, ShTZ],

l Updates [NaKr, KNZ]

l Don’t-care non-determinism [KrNl].

Most of these constructs (excluding set terms) are also in Prolog-they were added because
they were needed for writing actual applications. But, in Prolog, their semantics is largely based
on Prolog’s operational model. Therefore, a major challenge of the L DL research was to define a
formal declarative semantics for these constructs, in a way that naturally extends the declarative
semantics of Horn clauses. The problem of extending the power of declarative logic is in fact the
second main area of recent advances promoted by research in deductive databases. Of particular
interest is the fact that many open problems in knowledge representation and non-monotonic
reasoning have been given a clearer definition, and in some cases brought close a solution by these
new advances [MaSu, Prs2]

The combined challenge of designing a powerful and expressive language, with declarative
semantics, and efficient techniques for compilation and optimization describes the whole first phase
of LDL research. This began in mid 1984, and culminated in the implementation of the first
prototype at the end of 1987. This prototype compile L: DL: into a relational algebra based language
FAD for a parallel database machine [Bor]. Rule rewriting methods, such as magic set and counting,

5

were used to map recursive programs into equivalent ones that can be supported efficiently and
safely by fixpoint iterations [BMSU, SaZl, SaZ2]. A d escription of this system is given in [Cetal].

The implementation of the first LDL prototype confirmed the viability of the new technology,
but did little to transfer this technology from the laboratory to actual users, since FAD is only
available on an expensive parallel machine. Seeking a better vehicle for technology transfer, a new
prototype system was designed with the following characteristics:

l Portability,

l Efficiency,

l Open System Architecture.

This effort produced a portable and efficient LDf system under UNIX, called SALAD. ’ This
implementation assumes a single-tuple, get-next interface between the compiled LDL: program and
the underlying fact manager (record manager). This provides for more flexible execution modes
than those provided by relational algebra [Cetal, Zanl]. The new design yields better performance,
since the optimizer can now take advantage of different execution modes, and the compiler can cut
out redundant work in situations where intelligent backtracking or existential optimization can be
used [CGKZ, RaBK]. SALAD includes a fact manager for a database residing in virtual memory
that supports efficient access to the complex and variabie record structures provided in LDL. By
using C as an intermediate target language and an open system architecture, SALAD ensures
portability, support for modules, and for external procedures written in procedural languages-
including controlled access by these routines to internal SALAD objects.

The SALAD prototype was completed in November 1988, and has undergone improvements
and extensions during 1989. By the end of 1989, the system includes a fully functional optimizer, a
powerful symbolic debugger with answer justification capability and an X-windows interface. The
availability of SALAD led to the writing of significant applications and to the emergence of an f Df
programming style. It was found that, in addition to supporting well database applications, f DC is
effective as a rule-based system for rapid prototyping of applications in the Cenvironment. Also in
1989, a complete description of the f D f language with sample applications appeared at bookstores
(NaTs], and the first executable copies of SALAD were given to universities for experimentation.

I interpret these events as signs of a maturing technology. But, in the end, only the level
of satisfaction experienced by users with SALAD or similar systems can confirm or disprove my
claim that deductive databases are coming of age. To promote this goal, however, this paper will
summarize the highlights of my experience with the f Df system, hoping that the readers will be
enticed to experiment with it and then become enthusiastic users of the system. Therefore, the
paper focuses on the functionality and usability aspects of the system. The reader interested in
the architecture and enabling technology is referred to a recent overview [Ceta2]

3 Declarative Programming and Debugging

A declarative semantics for rules offer several advantages over the operational one, including the
following ones:

‘SALAD-System for Advanced Logical Applications on Data.

6

l Naturalness,

l Expressive Power,

l Reusability and Data Independence.

Frequently, the most natural definition of a programming object is inductive. For instance,
the following LlDf! program defines all the integers between zero and K, using Peano’s inductive
definition (zero is an integer and if J is an integer, so is J+l).

int(K.0).
int(K.J) +- int(K.1). I< K. J = I+l.

The CDL compiler has no problem turning this definition into an efficient fixpoint iteration.
This pair of rules, or any one obtained by scrambling the order of their goals, cannot be supported
by any interpreter or compiler implementing the backward chaining strategy. For instance, in
Prolog the user must be go through some interesting contortions to recast this program to fit the
operational model.

As the next example, consider the situation where there is a binary tree of atoms. For instance
a tree with leaves a and b will be represented by the complex term tree (a, b) . Associated with
the leaf nodes of a tree there is a weight represented by facts such as

node(a. 1).
node(aa. 2).
nodecab. 3).

The weight of a tree is inductively defined as the sum of the weights of its two subtrees. We want
now to define all the trees with weight less than a certain M. Immediately from these definitions
we derive the following rules.

w(N. W, Ml c node(N. W). W < M.
w(tree(Tl.T2). W, M) + w(Tl.W1), w(T2. W2>. W = W1+W2. w < M.

This simple definition is not implementable with backward chaining and, unlike the previous
example, we do not know of any set of rules that will support this predicate well in Prolog (assuming
that the weights of the nodes are not known before hand). While forward chaining is the preferred
strategy for these two examples, there are many situations where backward chaining is instead the
only reasonable strategy. For instance, say that a tree is at hand and its weight must be computed,
as per the the following query goal (where 10000 denotes a value high enough not to be a factor
in the computation).

? w(tree(aa,tree(a,ab)), X, 10000).

In this situation, the f Df compiler simply mimics backward chaining by the use of a rewriting
method-the efficient counting method in this particular case [SaZS]. What is most important here
is that the program has not changed. The same program works for different situations and the

7

compiler/optimizer takes care of matching the actual execution method to the problem at hand.
The final result is a level of reusability of programs that is well beyond that of Prolog programs. The
elimination of cuts, replaced by the choice and if -then-else constructs, is also very beneficial in
terms of reusability [Zanl]. The concept of reusability for database programs is an extension of the
notion of data independence, defined as the ability of queries and applications to survive changes
in the database physical organization. In relational databases the key instrument in delivering
data independence is the optimizer. In SDS the optimizer ensures data independence, reusability
of code and economy of programming, since the user can call the same module or predicate with
different set of bindings.

The previous example was inspired by an Alkane Molecules generation problem [Tsur] that
was first proposed to illustrate the power of functional languages. The same problem was quite
easily formulated in SDS due to the ability of expressing inductive definitions and to the ease
of checking equivalent structures while avoiding cyclic loops, discussed next. Semantically the
structures previously discussed are unordered trees. Thus, a given tree is equivalent to those
obtained by recursively exchanging the left subtree with the right one. Equivalence can be expressed
by following set of rules:

eq(T. T).
eq(tree(Tl,T2), tree(T2.7’3)) + eq(T3, Tl).

Thus two trees are equivalent, if they are equal or if their subtrees have been exchanged and
possibly replaced with equivalent ones. The problem is that the composition of several exchanges
can return the original structure, and the SLD-resolution will cycle. Thus in Prolog the programmer
has to carry around a bag of previous solutions and check for cycles at the cost of inefficiency of
programming and execution. In SDS instead, the system can deal with cycles automatically and
efficiently. This feature is particularly important in situations involving negations, since it is the
key to a complete realization of stratified negation which avoids the floundering problem of negation
by failure IPrzl, Llo].

One of the most interesting aspects of programming with a declarative language is debugging.
Any trace-based debugger would be a little use in SDS since the optimizer rearranges the rules to
a point that they do not resemble the original program. On the other hand, the logical nature of
the system makes it possible to explain and justify the answers, and thus support a truly logical
debugger. The current SDS system provides logical debugging and answer justification capabilities
as sophisticated as those of any expert shell or rule-based system available today.

The conceptual basis for the logical debugger consists in combined why and whynot explanation
capabilities, whereby the system carries out a conversation with the user explaining why a certain
answer was returned., and why another was not returned.

Thus to a user asking

why eq(tree(a. tree(b.c)). tree(a. tree(c.b)).

the system will return the instantiated rule that produced it:

eq(tree(a. tree(b.c)), tree(a. tree(c.b))) + eq(tree(c.b) .tree(b.c)).

a

If the user is still not convinced and ask

eq(tree(c.b) ,tree(b.c)).

then the system returns the unit clause eq(c , c) .

In the whynot interaction, the user asks an explanation on why some tuple was not returned.
This capability is needed for supporting why answers in rules with negation, and yields a level of
reasoning about programs which is not possible with traditional debuggers. For instance, if the
user ask the question

whynot eq(tree(tree(a.b) .c)>, tree(tree(b.a), c>)>.

then, the system request the user to point out the rule that should have produced this answer.
When the user does so, the system tries to instantiate this rule. In our example, the user will
probably point out the second rule; then, the system reports back that no instantiation is possible
since T2 cannot be unified with both tree (a, b) and tree (b , a>. That identifies the problem: the
given rules do not capture the correct notion of unordered tree.

This was not a contrived example: I had actually written the program above, and, in a attempt
to save a rule, combined the switching of arguments and the recursive equivalence of the subtrees

into one rule. Only through the debugger I was able to recognize my mistake (which can be
fixed by either adding a new eq goal or an additional rule). Exploring ,CDL programs with the
logical debugger is indeed a very interesting experience-further enhanced by an X-window based
visualization capability.

4 Open System Architecture

An f DC program calling a graphic routine or a windowing system calling an f?Df. program are two
concrete examples that motivated the open system architecture of the system. This architecture
also follows from the realization that the combination of a high-level declarative language with a
procedural language frequently offers the greatest flexibility and effectiveness in actual applications.
Typical situations where this bilingual programming paradigm is useful are as follows:

l Building on ezisting software. Existing libraries are often at hand for performing specific
tasks, including computation-intensive operations such as graphics or Fast Fourier Trans-
forms. The natural solution consists in importing these routines into f!DLl applications while
preserving f? 012 amenities such as safety and optimization.

l Rapid prototyping and hot spot refinement. As many rule-base systems, L1 DL! is a good vehicle
for the rapid prototyping of applications. Large applications can be easily developed and
modified until their functionality and behavior satisfy specifications and clients’ requirements.
Once this validation is completed, the programmer can turn his attention to the performance
problem by identifying the hot spots. These are predicates or segments of the L3 D f! program
that, because of taking too long to execute and being executed very often, slow down the
execution of the whole program. Then the programmer can re-code these hot spots for
efficiency, using a procedural language, such as C.

9

l Eztensibility. It is often convenient to use higher order predicates or metalevel predicates.
These are not provided as part of f!D.lJ; however they can be written as external procedures,
say in C. Since external procedures can be given access to the internal objects of SALAD
and can be made behave exactly as .LDfJ predicates, this becomes a very effective way to
add new built-ins.

Support for an open architecture required the following components to be provided [CGKl):

1. L Df language extensions to allow external predicates,

2. An optimization strategy and optimizer extensions to deal with external predicates,

3. Run time interfaces between fDf and external procedures.

There are actually two kinds of external procedures recognized by fDf. The first kind are
ezternal junctions, which are traditional procedures written in languages such as C or FORTRAN
that are simply imported by statements such as:

import strlen($Str: string, Len:integer) from C.

Then an fDt rule to select strings of length greater than 80 can be written as follows:

long-atom(Str) <- strlen(Str , Len), Len > 80.

The second kind of external procedures are ezternd predicates which, although written in
languages such as C or FORTRAN, behave as fDf predicates: they can fail or return more
than one solution. External predicates can manipulate all internal SALAD objects, including sets,
complex terms and relations. Thus, when invoking an external predicate, the calling L D L program
initializes a temporary relation which is passed to the external procedure. This adds the computed
results to the relation, and returns control to f Df that reads the tuples of this relation as from any
other internal relation. Likewise, by creating a temporary relation and calling an fDf precompiled
module, conventional programs can also call L3 D L. Of course, an impedance mismatch between the
procedural language and the underlying system could be a problem for the last situation. This is
not the case for the previous situations, where the external module becomes completely integrated
into fDf.

*The main problem with an open architecture, is to have the optimizer “understand” external
predicates and use them effectively in optimization. The first problem, dealing with safety, is
directly handled through the notion of finiteness constraint, whereby the finiteness of an argument
implies the finiteness of others. For instance in the previous strlen relation, the finiteness of the
first argument implies that of the second. This information is directly extracted from the import
statement and used by the optimizer in creating a safe ordering of goals. In order to predict and
minimize the execution cost, the optimizer uses descriptors characterizing the selectivity, fan-out
and cost of the external predicates. The user has to supply this information that can be deduced
either from known properties of the external procedure, or from some experimental runs [CGKl]

An interesting example of the benefits offered by this architecture, is the problem of coupling
fDf with an SQL database. Basically, precompiled SQL modules can simply be imported as
externals into f Df. The f Df system views each precompiled query as another computed relation.
Once the usual information about finiteness constraints, cost, selectivity and fan-out is given, the
system deal with it without any further complication (at least in those SQL systems where this

10

information is easy to access). The simplicity of this task contrasts with the challenges encountered
by various projects coupling Prolog with SQL [JaCV, Boc]. A more interesting problem, which
we are now investigating, consists in taking a pure f?Df program using SQL schema relations and
translate it into a mixure of f D1: rules and SQL statements. This involves translation of segments
of f?DLl programs into equivalent SQL queries, and extensions to the LDf optimizer to determine
optimum load sharing between the f! Df front-end and the SQL back-end.

4.1 L DL Applications

In the end, the utility of the f Df technology can only be assessed through application development.
We first experimented with traditional applications, such as parts explosion, inventory control and
job shop scheduling, which are currently implemented by a procedural application program with
embedded query calls. Our experience with these applications, has been uniformly positive: we
found them easy to write and maintain and extend using LDL. As a result, we moved to more
advanced applications, in areas beyond those of traditional DBMSs. Next, we discuss two new
areas of particular interest, data dredging and harnessing software.

4.1.1 Data Dredging

The paradigm that we will describe in this section includes a iarge class of scientific and engineering
problems. The source of the data is typically a large volume of low-level records, collected from the
measurement or the monitoring of some empirical process or a system simulation. The objective
is to ascertain whether this data lends support to certain abstract concepts where, conceptually,
the level of abstraction of the concepts may be far-removed from the level at which the data was
collected. The procedure adopted to meet the objective is as follows:

1. Formulate hypothesis or concept;

2. Translate (1) into an f DC rule-set and query;

3. Execute query against the given data and observe the results;

4. If the results do not verify or deny (1) then, reformulate and goto (2); otherwise exit.

Obviously, the decision to exit the process is entirely subjective and is decided by the programmer.
At this stage he/she may have either decided that the concept is now properly defined or, that the
data does not support this concept and that it should be abandoned or tried out with different data.
The use of L: D L over procedural languages offered the advantage of supporting the formulation at
a more abstract level where the “iteration time” through reformulations is significantly shortened.
With respect to existing database query languages, L: DL supported a more natural expression of
higher and higher levels of abstraction via rules, and the ease of incorporating efficient C-based
routines for the filtering and preprocessing of low-level data-a demonstration of the two languages
programming paradigm. These benefits were observed in experiments with data dredging in two
different domains: computer system performance evaluation and scientific data analysis in the
area of Molecular Biology. The first application [NaTs] involved the formulation of the “convoy”
concept in a distributed computing system. Intuitively, a convoy is a subset of the system entities
(processes, tasks) that move together for some time from one node to the other in the network

11

of processors and queues. The recorded data is low-level and consists of arrival/departure records
of individual entities at certain nodes. The convoy concept was defined in tDL using a small set
of rules, and actual instances were detected in the simulation data that were used. The second
instance of data dredging-performed in collaboration with researchers from the Harvard Medical
School and the Argonne National Laboratories-involves the identification of DNA sequences from
(very) low-level, digitized autoradiographs, that record the results of the experiments that are
performed in the sequencing of the E.Coli bacteria [GENE88]. Again, the task is to extract the
definitions for the four DNA bases A,C,G,T from this low-level, noisy and often imperfect data.
Thus, the interpretation proceeds in two phases:

1. An alignment phase during which the raw, digitized data is brought to a common base value
and smoothed, using standard signal-processing techniques.

2. An interpretation phase during which the aligned data is interpreted, using a set of domain-
specific heuristics.

This is a good example of the use of the dual language programming paradigm, since the first
phase is best supported by procedural routines, mostly library ones, and the second part requires
a high-level rule-based language. In fact, a large number of heuristics need to be applied in this
case and the use of LIDS: has the additional advantage that it is simple to add special definitions,
that need to be used within narrow contexts, to the general definitions. It is thus relatively simple
to add additional knowledge to the system as the experience with its use increases. The problem
just described can also be viewed as that of writing an expert application to do gel-interpretation.
However, the approach is more data-driven than in a typical expert application: the focus has been
on extracting knowledge from data, rather than capturing human expertise in the area.

4.1.2 Harnessing Software

We mentioned that external C procedures can be used in the definition of L DL programs. In the
LDLl context, these are regarded as evaluable predicates. While normally we expect the use of
external code to be the exception rather than the rule (reserved for special purposes e.g., graphical
routines), we can think of situations that lay at the other extreme: the bulk of the software is
written in standard, procedural code and only a small fraction of it is rule-based and encoded
in LCDL. In this situation the rule-set forms the “harness” around which the bulk of the code is
implemented. The rule portion forms a knowledge base that contains:

1. The definition of each of the C-module types used in the system.

2. A rule set that defines the various ways in which modules can be combined: inheritance and
export/import relationships between modules, constraints on their combinations, etc.

The advantage of this organization becomes apparent in information systems where most new
service requests can be supported by building on a Lego-set of basic, reusable modules. The knowl-
edge base and rule-based harness externally encode the logic of module interaction and subsets of
instances of the existing module types can now be recombined, subject to the rule-restrictions, to
support different task-specifications. An added advantage is that each of the individual module-
types can be verified using any of the existing verification methods and their global behavior is

-..

12

controlled by the rule-set. We are currently experimenting with such an application in the domain
of banking software.

5 Looking Ahead

Coming of age also means having to accept the limitations of reality. Foremost among these is
that the novelty of a technology and the soundness of the underlying theory will not ensures

the acceptance a new system or, even less, or a new paradigm for application development. For
acceptance, there must be commercial potential, and obvious benefits to the users- the theory
must meet practice. Perhaps the most significant aspect off Df research is a serious determination
of bridging the gap between theory and practice. This is demonstrated by the fact that a team of six
to eight people with a wide spectrum of interests and backgrounds-from very theoretical ones to
very applied ones-closely collaborated during the last five years in the design and implementation
effort. The result is a system that supports the declarative semantics of LDf and its underlying
theory completely and efficiently.

An healthy interaction between theory and practice remains a distinctive mark of some of the
most recent developments in LDLI. On the theory side, the focus is still on defining key semantic
concepts, in areas such as negation and non-monotonic logic [SaZ3], higher order extensions [KrN2],
and support for object identity and inheritance [Zan3, BNS]. In the longer term, we expect
many of these concepts will become an integral par of the next generation of deductive database
systems. The shorter term focus, however, is on deploying the current technology and on developing
application areas particularly suitable for deductive databases. Among these we find the area of
rapid prototyping and development development of applications-an important area poorly served
by existing systems. In fact, the most popular use of rapid prototyping relies on SQL, often
enhanced with 4GL facilities [CoSh, DM89, Gane]. Because of its power, open architecture, and
support of Knowledge based programming, LDL can be used in this role much more effectively
than SQL, which has obvious the functionality limitations. To further extend the capabilities of
the f?Dl system in this domain, we are enhancing its environment, (e.g., by providing a standard
interface to SQL databases) and addressing the ease-of-use problem. In terms of ease of use, the
challenge is not doing better than SQL. Standard relational queries are normally easier to express
in f!Dl than in SQL. The real research challenge is make it easier and more natural to express
the much more complex applications which can now be written in f Df; e.g., those which require
complex terms and non-linear recursion. We are currently exploring with the use of visualization,
since Horn clauses provide a good conceptual basis on which to support visual programming and
debugging. Clearly the conceptual task of solving a complex problem will remain complex; but
we expect that the task of coding or debugging the solutions can be greatly facilitated by these
interfaces. Our first experience with a visual debugger is encouraging in this respect.

Acknowledgments

The author would like to recognize the following persons for their contribution to the f l7.C project:
Brijesh Agarwal, Danette Chimenti, Francois Bancilhon, Ruben Gamboa, Fosca Giannotti, Charles
Kellogg, Ravi Krishnamurthy, Tony O’Hare, Shamim Naqvi, Kayliang Ong, Oded Shmueli, Leona
Slepetis, Carolyn West, and, last but not least, Shalom Tsur on whose work the section on Appli-
cations is based.

References

13

[APBWI

[BaBu]

IBN Sl

P4

[BNST]

[BMSU]

POCI

(Cetal]

[Ceta2]

[CeGW]

[CGW]

[CGK~]

[CGKS]

[CoMa]

[CoSh]

[DM89]

[Fost]

[Gane]

Wf Nl

Apt, K., H. Blair, A. Walker, “Towards a Theory of Declarative Knowledge,” in Foun-
dations of Deductive Databases and Logic Programming, (Minker, J. ed.), Morgan
Kaufman, Los Altos, 1987.

Bancilhon, F. and P. Buneman (eds.), *Workshop on Database Programming Lan-
guages ,n Roscoff, Finistere, France, Sept. 87.

Beeri, C., R. Nasr and S.Tsur, “Embedding psi-terms in a Horn-clause Logic Lan-
wage”, Procs. Third Int. Conf. on Data and Knowledge Bases-improving usability
and responsiveness, Jersualem, June 28-30, pp. 347-359, 1989

Boral, H. “Parallelism in Bubba,” Proc. Int. Symposium on Databases in Parallel and
Distributed Systems, Austin, TX, Dec. 1988.

Beeri C., S. Naqvi, 0. Shmueli, and S. Tsur. “Set Constructors in a Logic Database
Language”, to appear in the Journal of Logic Programming.

Bancilhon, F., D. Maier, Y. Sagiv, J. Ullman, “Magic sets and other strange ways to
implement logic programs”, Proc. 5th ACM SIGMOD-SIGACT Symp. on Principles
of Database Systems, 1986.

Bocca, J., “On the Evaluation Strategy of Educe,” Proc. 1986 ACM-SIGMOD Con-
ference on Management of Data, pp. 368-3’78, 1986.

Chimenti, D. et al., “An Overview of the LDL System,” Database Engineering Bul-
letin, Vol. 10, No. 4, pp. 52-62, 1987.

Chimenti, D. et al., “The LDL System Prototype,” IEEE Journal on Data and Knowl-
edge Engineering, March 1990.

Ceri, S., G. Gottlob and G. Wiederhold, “Interfacing Relational Databases and Prolog
Efficiently,” Expert Database Systems, L. Kerschberg (ed.), Benjamin/Cummings,
1987.

Chimenti, D. and R. Gamboa. ‘<The SALAD Cookbook: A User’s Guide,” MCC
Technical Report No. ACA-ST-064-89.

Chimenti, D., R. Gamboa and R. Krishnamurthy. “Towards an Open Architecture for
LDL,” Proc. 15th VLDB, pp. 195-203, 1989.

Chimenti, D., R. Gamboa and R. Krishnamurthy, “Abstract Machine for LDL,” Proc.
2nd Int. Conf on Extending Database Technology, EDBT’SO, Venice, Italy, 1990.

Copeland, G. and Maier D., “Making SMALLTALK a Database System,” Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp. 316-325, 1985.

Connell, J.L. and Shafer, L.B., “Structured Rapid Prototyping”, Prentice Hall, 1989.

“The Rapid Prototyping Conundrum”, DATAMATION, June 1989.

Foster, R.K. “Feature Comparison of LDL and SQL”, Control Data Corporation In-
teroffice Memorandum, March 23, 1987.

Gane, C. “Rapid System Development,” Prentice Hall, 1989.

Gallaire, H.,J. Minker and J.M. Nicolas,“Logic and Databases: a Deductive Ap-
proach,” Computer Surveys, Vol. 16, No. 2, 1984.

14

[GENE881 R. Herdman. et al. “MAPPING OUR GENES Genome Proiects: How Big. How
Fast?” Congress of the United States, Office of Technology Assessment. The John
Hopkins University Press, 1988.

(JaCV]

[Kell]

PZI

[KrNl]

[KrN2]

[KrZa]

[KuYo]

P-4

[Levi]

v4

[Ma%]

[Meta]

[Mi68]

[NaKr]

Pwl

[NaTs]

[Przl]

Jarke, M., J. Clifford and Y. Vassiliou, “An Optimizing Prolog Front End to a Re-
lational Query System,” Proc. 1984 ACM-SIGMOD Conference on Management of
Data, pp. 296-306, 1986.

Kellogg, C., “A Practical Amalgam of Knowledge and Data Base Technology” Proc.
of AAAI Conference, Pittsburg, Pa., 1982.

Krishnamurthy, S. Naqvi and Zaniolo, “Database Transactions in f DL”, Proc. Logic
Programming North American Conference 1989, pp. 795-830, MIT Press, 1989.

Krishnamurthy and S. Naqvi, “Non-Deterministic Choice in Datalog,” Proc. 3rd Int.
Conf. on Data and Knowledge Bases, June 27-30, Jerusalem, Israel.

Krishnamurthy and S. Naqvi, “Towards a Real Horn Clause Language,” Proc. 1988
VLDB Conference, Los Angeles, California, August 1988.

Krishnamurthy, R. and C. Zaniolo, “Optimization in a Logic Based language for
Knowledge and Data Intensive Applications, n in Advances in Database Technology,
EDBT’88, (Schmidt, Ceri and Missikoff, Eds), pp. 16-33, Springer-Verlag 1988.

Kunifii S., H. Yokota, “Prolog and Relational Databases for 5th Generation Computer
Systems, n in Advances in Logic and Databases, Vol. 2 (Gallaire, Minker and Nicolas
eds.), Plenum, New York, 1984.

Li, D. “A Prolog Database System,” Research Institute Press, Letchworth, Hertford-
shire, U.K., 1984

Lefebvre, A. and Vieille, L. “On Deductive Query Evaluation in the DedGin System,”
Proc. 1st Int. Conf. on Deductive and O-O Databases, Dec. 4-6, 1989, Kyoto, Japan.

Lloyd, J. W., Foundations of Logic Programming, Springer Verlag, (2nd Edition),
1987.

Marek, V. and V.S. Subramanian, “The Relationship between Logic Program Seman-
tics and Non-Monotonic Reasoning,” Proc. 6th Int. Conference on Logic Program-
ming, pp. 598616, MIT Press, 1989.

Morris, K. et al. “YAWN! (Yet Another Window on NAIL!), Data Engineering, Vol.10,
No. 4, pp. 28-44, Dec. 1987.

Michie, D. “‘Memo’ Functions and Machine Learning” in Nature, April 1968.

Naqvi, S. and R. Krishnamurthy, “Semantics of Updates in logic Programming”, Proc.
7th ACM SIGMOD-SIGACT Symp. on Principles of Database Systems, pp. 251-261,
1988.

Naqvi, S. “A Logic for Negation in Database Systems,” in Foundations of Deductive
Databases and Logic Programming, (Minker, J. ed.), Morgan Kaufman, Los Altos,
1987.

S. Naqvi, and S. Tsur. “A Logical Language for Data and Knowledge Bases,” W. H.
Freeman Pub]., 1989.

Przymusinski, T., “On the Semantics of Stratified Deductive Databases and Logic
Programs”, in Foundations of Deductive Databases and Logic Programming, (Minker,
J. ed.), Morgan Kaufman, Los Altos, 1987.

15

[Pm21

[RaBK]

[Rash]

[Rosh]

[SaZl]

[SaZ2]

[SaZ3]

[Sch77]

[Seta]

[ShNa]

[ShTZ]

[Tsur]

WI

[vEKo]

ParI

[Zanl]

[Zan2)

[Zan3]

Przymusinski, T., “Non-Monotonic Formalism and Logic Programming,” Proc. 6th
Int. Conference on Logic Programming, pp. 656-674, MIT Press, 1989.

Ramakrishnan, R., C. Beeri and Krishnamurthy, ‘Optimizing Existential Datalog
Queries,” Proc. 7th ACM SIGMOD-SIGACT Symp. on Principles of Database Sys-
tems, pp. 89-102, 1988.

Ramamohanarao, K. and J. Sheperd, “Answering Queries in Deductive Databases”,
Proc. 4th Int. Conference on Logic Programming, pp. 1014-1033, MIT Press, 1987.

Rowe, L. and K.A. Shones, “Data Abstraction, Views and Updates in RIGEL”, Proc.
ACM SIGMOD Int. Conf. on Management of Data, pp. 71-81, 1979.

Sac& D., Zaniolo, C., “Implementation of Recursive Queries for a Data Language
based on Pure Horn Logic,” Proc. Fourth Int. Conference on Logic Programming,
Melbourne, Australia, 1987.

Sac& D., Zaniolo, C., “The Generalized Counting Method for Recursive Logic
Queries,” Journal of Theoretical Computer Science, 61, 1988.

Sac& D., Zaniolo, C., “Stable Models and Non-Determinism in Logic Programs with
Negation,” MCC Tech. Rep., ACT-ST-202, 1989.

Schmidt, J., “Some High Level Language Constructs for Data of Type Relations”,
ACM Transactions on Database Systems, 2(3), pp. 149-173, 1977.

Selinger, P.G. et al. “Access Path Selection in a Relational Database Management
System,” Proc. ACM SIGMOD Int. Conf. on Management of Data, 1979.

Shmueli, 0. and S. Naqvi, “Set Grouping and Layering in Horn Clause Programs,”
Proc. of 4th Int. Conf. on Logic Programming, pp. 152-177, 1987.

Shmueli, O., S. Tsur and C. Zaniolo, “Rewriting of Rules Containing Set Terms in a
Logic Data Language (LDL),” Proc. 7th ACM SIGMOD-SIGACT Symp. on Principles
of Database Systems, pp. 15-28, 1988.

Tsur S., “Applications of Deductive Database Systems,” Proc. IEEE COMCON
Spring ‘90 Conf., San Francisco, Feb 26March 2.

Ullman, J.D., Database and Knowledge-Based Systems, Vols I and II, Computer Sci-
ence Press, Rockville, Md., 1989.

van Emden, M.H., Kowalski, R., ‘The semantics of Predicate Logic as a Programming
Language”, JACM 23, 4, 1976, pp. 733-742.

Warren, D.H.D., “An Abstract Prolog Instruction Set,” Tech. Note 309, AI Center,
Computer Science and Technology Div., SRI, 1983.

Zaniolo, C. “Prolog: a database query language for all seasons,” in Expert Database
Systems, Proc. of the First Int. Workshop L. Kerschberg (ed.), Benjamin/Cummings,
1986.

Zaniolo, C. “Design and implementation of a logic based language for data inten-
sive applications. Proceedings of the International Conference on Logic Programming,
Seattle, 1988.

Zaniolo, C. “Object Identity and Inheritance in Deductive Databases: an Evolutionary
Approach,” Proc. 1st Int. Conf. on Deductive and O-O Databases, Dec. 4-6, 1989,
Kyoto, Japan.

