
Efficient Complex Query Support
for Multiversion XML Documents�

Shu-Yao Chien1, Vassilis J. Tsotras2, Carlo Zaniolo1, and Donghui Zhang2

1 Department of Computer Science, University of California, Los Angeles, CA 90095
{csy,zaniolo}@cs.ucla.edu

2 Computer Science Department, University of California, Riverside, CA 92521
{tsotras,donghui}@cs.ucr.edu

Abstract. Managing multiple versions of XML documents represents a
critical requirement for many applications. Also, there has been much
recent interest in supporting complex queries on XML data (e.g., regular
path expressions, structural projections, DIFF queries). In this paper,
we examine the problem of supporting efficiently complex queries on
multiversioned XML documents. Our approach relies on a scheme based
on durable node numbers (DNNs) that preserve the order among the
XML tree nodes and are invariant with respect to updates. Using the
document’s DNNs various complex queries are reduced to combinations
of partial version retrieval queries. We examine three indexing schemes to
efficiently evaluate partial version retrieval queries in this environment. A
thorough performance analysis is then presented to reveal the advantages
of each scheme.

1 Introduction

The management of multiple versions of XML documents finds important ap-
plications [28] and poses interesting technical challenges. Indeed, the problem is
important for application domains, such as software configuration and coopera-
tive work, that have traditionally relied on version management. As these appli-
cations migrate to a web-based environment, they are increasingly using XML
for representing and exchanging information—often seeking standard vendor-
supported tools and environments for processing and exchanging their XML
documents.

Many new applications of versioning are also emerging because of the web;
a particularly important and pervasive one is assuring link permanence for web
documents. Any URL becoming invalid causes serious problems for all documents
referring to it—a problem that is particularly severe for search engines that risk
directing millions of users to pages that no longer exist. Replacing the old version
with a new one, at the same location, does not cure the problem completely, since
the new version might no longer contain the keywords used in the search. The
� This work was partially supported by NSF grants IIS-0070135, IIS-9907477, EIA-
9983445, and the Department of Defense.

C.S. Jensen et al. (Eds.): EDBT 2002, LNCS 2287, pp. 161–178, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

162 Shu-Yao Chien et al.

ideal solution is a version management system supporting multiple versions of
the same document, while avoiding duplicate storage of their shared segments.
For this reason, professionally managed sites and content providers will have
to use document versioning systems; frequently, web service providers will also
support searches and queries on their repositories of multiversion documents.
Specialty warehouses and archives that monitor and collect content from web
sites of interest will also rely on versioning to preserve information, track the
history of downloaded documents, and support queries on these documents and
their history [18].

Various techniques for versioning have also been proposed by database re-
searchers who have focused on problems such as transaction-time management of
temporal databases [19], support for versions of CAD artifacts in O-O databases
[12] and, more recently, change management for semistructured information [7].

In the past, the approaches to versioning taken by database systems and
document management systems have often been different, because of the different
requirements facing the two application areas. In fact:

– Database systems are designed to support complex queries, while document
management systems are not, and

– Databases assume that the order of the objects is not significant—but the
lexicographical order of the objects in a document is essential to its recon-
struction.

This state of affairs has been changed dramatically by XML that merges
applications, requirements and enabling technology from the two areas. Indeed
the differences mentioned above are fast disappearing since support for complex
queries on XML documents is critical. This is demonstrated by the amount
of current research on this topic [22,24] and the emergence of powerful XML
query languages [2,11,5,29,6,30]. A particularly challenging problem is that of
supporting efficiently path expression queries such as:

doc/chapter/ ∗ /figure.

This query specifies figures that are immediate elements of chapters or their
transitive sub-elements (e.g., figures in sub-sections). Various techniques have
been proposed to support regular path expressions [14,15,16] in the literature.
These techniques use durable numbering schemes to preserve the logical docu-
ment structure in the presence of updates.

For multiversion documents, we have to support such complex queries on
any user-selected version. Furthermore, we need to support difference queries
between two versions, and queries on the evolution of documents or selected
parts of it, such as for lineage queries.

In [8] and [9] we proposed schemes for the efficient storage and retrieval of
multiversion documents and showed that these provide significant improvements
with respect to traditional schemes such as RCS [23] and SCCS [20]. To enhance
the version retrieval efficiency, [8] places document elements in disk pages us-
ing a clustering mechanism called UBCC (for Usefulness Based Copy Control).

Efficient Complex Query Support for Multiversion XML Documents 163

The UBCC mechanism achieves better version clustering by copying elements
that live through many versions. A variation of UBCC was used in [9], where a
reference-based versioning scheme was presented.

While the versioning schemes proposed in [8,9] are effective at supporting
simple queries, they cannot handle complex queries such as the path-expression
queries. For complex queries, we have recently outlined [10] the SPaR scheme
that adapts the durable node numbers [16] to a multiversion environment. Fur-
thermore, SPaR uses timestamping to preserve the logical structure of the doc-
ument and represent the history of its evolution. In this paper, we expand the
properties of the SPaR scheme and investigate efficient physical realizations
for it. Different storage and indexing strategies are examined so as to optimize
SPaR’s implementation. Our study builds on the observation that evaluating
complex version queries mainly depends on the efficiency of evaluating one basic
type of query: the partial version retrieval query. Such query retrieves a specific
segment of an individual version instead of the whole version. Retrieving a seg-
ment for a single-versioned XML document is efficient since the target elements
are clustered on secondary store by their logical order, but this might not be the
case for a multiversion document. For a multiversion document, a segment of a
later version may have its elements physically scattered in different pages due
to version updates. Therefore, retrieving a small segment could require reading
a lot of unnecessary data.

While UBCC is very effective at supporting full version retrieval queries,
complex queries on content and history combined call for indexing techniques
such are the Multiversion B-Tree [17,3,27] and the Multiversion R-Tree [13]. We
investigate the following three approaches:
Scheme 1: single Multiversion B-Tree,
Scheme 2: UBCC with a Multiversion B-Tree, and
Scheme 3: UBCC with a Multiversion R-Tree.

The last two approaches still use the UBCC mechanism as the main storage
scheme for the document elements. The additional indices are used as secondary
indices so that partial version retrievals are efficiently supported. The first ap-
proach lets the Multiversion B-Tree organize the document elements in disk
pages and at the same time uses the index for partial retrievals. The Multiver-
sion B-Tree also uses a clustering technique. However, this technique is more
elaborate and uses more disk space, since it clusters by versions and (durable)
element numbers. A performance evaluation is presented to compare the the
different schemes.

The rest of this paper is organized as follows. Section 2 provides background,
while section 3 presents the SPaR scheme. In section 4, the three storage and
indexing combinations are described. Their performance is presented in section
5 while conclusions appear in section 6.

2 Background

A new document version (Vj+1) is established by applying a number of changes
(object insertions, deletions or updates) to the current version (Vj). In a typical

164 Shu-Yao Chien et al.

RCS scheme, these changes are stored in a (forward) edit script. Such script
could be generated directly from the edit commands of a structured editor, if
one was used to revise the XML document. In most situations, however, the
script is obtained by applying, to the pair (Vj , Vj+1), a structured DIFF package
[4].

For forward editing scripts, the RCS scheme stores the script and the data
together is successive pages. Thus, to reconstruct version (Vj) all pages stored
by successive versions up to version (Vj) must be retrieved. The SCCS tries to
improve the situation by keeping an index that identifies the pages used by each
version. However, as the document evolves, document objects valid for a given
version can be dispersed in various disk pages. Since a given page may contain
very few of the document objects for the requested version, many more pages
must be accessed to reconstruct a version.

To solve these problems, in [8] we introduced an edit-based versioning scheme
that (i) separates the actual document data from the edit script, and (ii) uses
the usefulness-based clustering scheme (UBCC) for page management. Because
of (i) the script is rather small and can be easily accessed. The usefulness-based
clustering is similar to a technique used in transaction-time databases [17,25,3]
to cluster temporal data and is outlined below.

2.1 Usefulness-Based Clustering

Consider the actual document objects and their organization in disk pages. For
simplicity, assume the only changes between document versions are object ad-
ditions and deletions. As objects are added in the document, they are stored
sequentially in pages. Object deletions are not physical but logical; the objects
remain in the pages where they were recorded, but are marked as deleted. As the
document evolution proceeds, various pages will contain many “deleted” objects
and few, if any, valid objects for the current version. Such pages, will provide
few objects for reconstructing the current version. As a result, a version retrieval
algorithm will have to access many pages. Ideally we would like to cluster the
objects valid at a given version in few, useful pages. We define the usefulness of a
full page P , for a given version V , as the percentage of the page that corresponds
to valid objects for V .

For example, assume that at version V1, a document consists of five objects
O1, O2, O3, O4 and O5 whose records are stored in data page P . Let the size
of these objects be 30%, 10%, 20%, 25% and 15% of the page size, respectively.
Consider the following evolving history for this document: At version V2, O2
is deleted; at version V3, O3 is deleted, and at version V4, object O5 is deleted.
Hence page P is 100% useful for version V1. Its usefulness falls to 90% for version
V2, since object O2 is deleted at V2. Similarly, P is 70% useful for version V3.
For version V4, P is only 55% useful.

Clearly, as new versions are created, the usefulness of existing pages for the
current version diminish. We would like to maintain a minimum page usefulness,
Umin, over all versions. When a page’s usefulness falls below Umin, for the current
version, all the records that are still valid in this page are copied (i.e., salvaged)

Efficient Complex Query Support for Multiversion XML Documents 165

to another page (hence the name UBCC). When copied records are stored in
new disk pages they preserve their relative document order. For instance, if
Umin = 60%, then page P falls below this threshold of usefulness at Version 4;
at this point objects O1, and O4 are copied to a new page. The value of Umin is
set between 0 and 1 and represents a performance tuning parameter.

We note that the above page usefulness definition holds for full pages. A
page is called an acceptor for as long as document objects are stored in this
page. While being the acceptor (and thus not yet full), a page is by definition
useful. This is needed since an acceptor page may not be full but can still contain
elements alive for the current version. Note that there is always only one acceptor
page. After a page becomes full (and stops being the acceptor) it remains useful
only as long as it contains enough alive elements (the Umin parameter).

The advantage of UBCC is that the records valid for a given version are
clustered into the disk pages that are useful for that version. Reconstructing
the full document at version Vi is then reduced to retrieving only the pages
that were useful at Vi. Various schemes can be used to assure that only useful
pages are accessed for full version retrieval. For example [8] uses the edit script
to determine the useful pages for each version, while [9] facilitates the object
references.

While the UBCC clustering is very effective for full version retrieval queries, it
is not efficient with complex queries like path-expression queries. Path-expression
queries need to maintain the logical document order and UBCC does not.

2.2 Path-Expression Queries

A path-expression query is described by a regular expression on the document
tree. For example, the query “find all the figures in chapter 10 of the document”
is supported in XML query languages [6] by a special path-expression nota-
tion: chapter[10]/*/figure. Figures may be anywhere in the subtree rooted
in the chapter[10] node of the document. To answer such queries efficiently
(in a single-version environment) without fully traversing document subtrees, a
method is needed to quickly identify ancestor-descendant relationships between
document elements. [16] proposes a numbering scheme for the document ele-
ments, whereby the numbers assigned to elements remain unchanged even if
elements are added/deleted from the document. This is achieved by sorting the
nodes as in the pre-order traversal, but leaving space between them to make
room for future insertions.

Such a durable numbering scheme is advantageous since it automatically
maintains the logical document tree structure. An ordered list with the node
durable numbers is enough to reconstruct the document in logical order. More-
over since the numbering scheme does not change, it allows indexing various
document elements in a persistent way. In [10] we outlined SPaR, a new ver-
sioning scheme that adapts the durable numbers of [16] as well as timestamps
in order to efficiently support complex queries on multiversion XML documents.
Below we expand the SPaR scheme properties and justify the reduction on var-
ious complex multiversion queries to partial version retrieval queries.

166 Shu-Yao Chien et al.

3 The SPaR Versioning Scheme

The new versioning scheme assigns durable structure-encoding ID numbers and
timestamps to the elements of the document. SPaR stands for Sparse Preorder
and Range, i.e., the numbering consists of two numbers: a Durable Node Number
(DNN) and a Range, discussed next.

3.1 The Numbering Scheme

An XML document is viewed as an ordered tree, where the tree nodes corre-
sponds to document elements (and the two terms will be used as synonyms).
A pre-order traversal number can then to identify uniquely the elements of the
XML tree. While this easy to compute, it does not provide a durable reference
for external indexes and other objects that need to point to the document ele-
ment, since insertions and deletions normally change the pre-order numbers of
the document elements which follow. Instead, we need durable node IDs that
can be used as stable references in indexing the elements and will also allow
the decomposition of the documents in several linked files [16]. Furthermore,
these durable IDs must also describe the position of the element in the original
document— a requirement not typically found for IDs in O-O databases. The
DNN establishes the same total order on the elements of the document as the
pre-order traversal, but, rather than using consecutive integers, leaves as much
an interval between nodes as possible; thus DNN is a sparse numbering scheme
that preserves the lexicographical order of the document elements.

The second element in the SPaR scheme is the Range. This was proposed
in [16] as a mechanism for supporting efficiently path expression queries. For
instance, a document might have chapter elements and figure elements contained
in such chapters. A typical query is: “Retrieve all titles under chapter elements”.
Using recently proposed XML query languages ([6], etc.) this query is described
as a path expression, as follows:

doc/chapter/ ∗ /figure

In the XML document tree, figure elements could be children of chapter el-
ements, or they might be descendants of chapter elements (e.g., contained in
sections or subsections). To support the efficient execution of such path expres-
sion queries we need the ability of finding all the sub-elements of a given elements
provided by the SPaR scheme. Let dnn(E) and range(E) denote the DNN and
the range of a given element E; then a node B is descendant of a node A 1 iff:

dnn(A) ≤ dnn(B) ≤ dnn(A) + range(A).

Therefore, the interval [dnn(X), dnn(X) + range(X)] is associated with ele-
ment X. When the elements in the document are updated, their SPaR numbers
1 If the pre-order traversal number is used as DNN, range(A) is equal to the number
of descendants of A.

Efficient Complex Query Support for Multiversion XML Documents 167

remain unchanged. When new elements are inserted, they are assigned a DNN
and a range that do not interfere with the SPaR of their neighbors—actually, we
want to maintain sparsity by keeping the intervals of nearby nodes as far apart
as possible.

Consider two consecutive document elements X and Z where dnn(X) <
dnn(Z). Then, element Z can either be (i) the first child of X, (ii) the next
sibling of X, or (iii) the next sibling of an element K who is an ancestor of
X. If a new element Y is inserted between elements X and Z, it can similarly
be the first child of X, the next sibling of X or the next sibling of one of X’s
ancestors. For each of these three cases, the location of Z creates three subcases,
for a total of nine possibilities. For simplicity, we discuss the insertion of Y as
the first child of X and consider the possible locations for element Z (the other
cases are treated similarly). Then we have that:

1. Z becomes the first child of Y . In this case the following conditions should
hold: dnn(X) < dnn(Y) < dnn(Z) and dnn(Z) + range(Z) ≤ dnn(Y) +
range(Y) ≤ dnn(X) + range(X).

2. Z becomes the next sibling of Y under X. The interval of new element Y
is inserted in the middle of the empty interval between dnn(X) and dnn(Z)
(thus, the conditions dnn(X) < dnn(Y) and dnn(Y) + range(Y) ≤ dnn(Z)
must hold).

3. Z becomes the next sibling of an ancestor of Y . Then element Y is “cov-
ered” by element X which implies that: dnn(X) < dnn(Y) and dnn(Y) +
range(Y) ≤ dnn(X) + range(X).

Thus, our insertion scheme assumes that an empty interval is at hand for
every new element being inserted. When integers are used, occasional SPaR
reassignments might be needed to assure this property. A better solution is
to use floating point numbers, where additional decimal digits can be added
as needed for new insertions. Nevertheless, for simplicity of exposition, in the
following examples we will use integers.

Figure 1 shows a sample XML document with SPaR values. The root ele-
ment is assigned range [1,2100]. That range is split into five sub-ranges — [1,199],
[200,1200], [1201,1299], [1300,2000], and [2001,2100] for its two direct child ele-
ments, CH 1 and CH 2, and three insertion points, before CH 1, after CH 1 and
after CH 2. The range assigned to each of these chapter element continues to be
split and assigned to their direct child elements until leaf elements are met.

3.2 The Version Model

Since the SPaR numbering scheme maintains the logical document order and
supplies durable node IDs, it makes it possible to use timestamps to manage
changes in both the content and the structure of documents. Hence the record
of each XML document element contains the element’s SPaR and the element’s
version lifespan. The lifespan is described by two timestamps (Vstart, Vend)—
where Vstart is the version where the element is created and Vend is the version
where the element is deleted (if ever). An element is called “alive” for all versions

168 Shu-Yao Chien et al.

CH A
LifeSpan(1,now)
SPaR[200,1200]

PCDATA
LifeSpan(1,now)
SPaR[1400,1500]

PCDATA
LifeSpan(1,now)
SPaR[900,1000]

BOOK
LifeSpan(1,now)

SPaR[1,2100]

FIGURE B
LifeSpan(1,now)
SPaR[500,600]

SEC E
LifeSpan(1,now)
SPaR[400,799]

SEC F
LifeSpan(1,now)
SPaR[800,1100]

CH C
LifeSpan(1,now)
SPaR[1300,2000]

SEC I
LifeSpan(1,now)
SPaR[1600,1900]

FIGURE J
LifeSpan(1,now)
SPaR[1700,1700]

Element NodeE

T Text Node

Author
LifeSpan(1,now)
SPaR[210,210]

A Attribute Node

Page P1

Page P1

Page P2

Page P2 Page P3

Page P3

FIGURE H
LifeSpan(1,now)
SPaR[1010,1010]

Fig. 1. An XML document version represented in the SPaR model.

in its lifespan. If an element is alive in the current version, its Vend value is now
which is a variable representing the ever increasing current version number. A
lifespan interval is left-closed and right-open; moreover, the lifespan of an element
contains the lifespans of its descendants (much in the same way in which its SPaR
interval contains those of its descendants). An example is shown in Figure 1.

The elements of the initial version, are stored as records in disk pages, ordered
by their document order. In Figure 1 it was assumed that a page can hold four
records (for simplicity all document elements have same size); the elements of
the first version are stored in pages P1, P2 and P3, based on their SPaR order.

Successive versions are described as changes with respect to the previous ver-
sion. Such changes are contained in an edit script generated from the structured
XML editor, or otherwise by a package that computes the structured DIFF be-
tween the two documents. For simplicity we consider the following basic change
operations: DELETE, INSERT and UPDATE. (Additional operations, such as
MOVE or COPY elements can be reduced to these.) A new version is created
by applying the basic operations on elements of the previous version. Below we
discuss the effect of performing each basic operation, to create version VN :

– DELETE — This operation updates the Vend timestamp of the deleted
element and all its descendants from now to Version VN . The SPaR range
of the deleted elements is freed for reuse.

– INSERT — An INSERT operation creates a record for the newly inserted
element and initializes its lifespan to (VN , now). An unused range is assigned
to the new element based on the weighted range allocation algorithm. The
new record is stored in the acceptor page.

Efficient Complex Query Support for Multiversion XML Documents 169

– UPDATE — The Vend timestamp of the updated element is changed to
Version VN . Subsequently, a new record is created with lifespan initialized
to (VN , now). This new record keeps the same SPaR values as the original
record (since the position of the updated element in the document did not
change).

UBCC and Full Version Retrieval. Consider a SPaR scheme that adopts the
UBCC clustering strategy (section 2.1) as its physical storage management.
In addition to the above updates, records are copied due to the UBCC page
usefulness threshold. We will now discuss how UBCC leads to fast full version
reconstruction.

The first step of reconstructing a complete version is to identify the useful
pages for the specified version. The notion of usefulness associates with each page
a usefulness interval. This interval has also the form of (Vstart, Vend), where
Vstart is the version when the page became acceptor and Vend is the version
when the page became non-useful. As with the document element records, a
page usefulness interval is initiated as (Vstart, now) and later updated at Vend.
Identifying the data pages that were useful at Vi is then equivalent to finding
which pages have intervals that contain Vi. This problem has been solved in
temporal databases [19] with an access method called the Snapshot Index [25,21].
If there were k useful pages at Vi, they are located with O(k) effort.

These useful pages contain all document elements at Vi, however, the ele-
ments may be stored out of their logical document order. Therefore, the second
step is to sort the elements by their SPaR number. (It should be noted that
versioning schemes not based on durable numbers [8,9] use the edit script or
object references to reconstruct the document order). A straightforward sort
over all useful pages is not as efficient as it may require reading various useful
pages many times. A better solution takes advantage of the partial order existing
among the elements stored in a useful page and uses a one-pass sort-merge ap-
proach. Finally, using the SPaR numbers and a stack mechanism, the document
tree structure is reconstructed.

In the next subsection we reduce various complex versioning queries to partial
version retrievals. Since the UBCC does not maintain the SPaR order additional
indexing schemes will be needed.

3.3 Complex Queries

While full version retrieval is important, many other versioning queries are of
interest. For example, we might want to find only the abstract (or the conclusions
section) that the document had at version Vi, or the part of the document from
the fifth until the tenth chapter in version Vi. Similarly, we may need subsections
two through six in the fourth section of chapter ten in version Vi. A common
characteristic of the above queries is that a path in the document tree is provided.
Yet, other interesting queries are those that instead of providing an exact path,
they use a regular expression to specify a pattern for the path. For example,
an expression such as version[i]/chapter[10]/*/figure might be used to

170 Shu-Yao Chien et al.

find all figures in chapter 10 of version Vi (or, symmetrically, the chapter that
contains a given figure in version Vi).

To address these queries efficiently, additional indices are needed. Consider
the set of all element DNNs (and their SPaR ranges) in the first document ver-
sion. As the document evolves to a new version, this set evolves by adding/delet-
ing DNNs to/from the set. Assume that an index is available which (i) indexes
this version-evolving set and (ii) can answer retrieval queries of the form: “given
a DNN range (x, y) and a version Vi, find which DNNs were in this range during
version Vi”. Since this index indexes all document elements, we will refer to it
as the full-index.

The full-index assumes that the document SPaR DNNs are available. How-
ever, SPaR numbers are invisible to the user who expresses queries in terms
of document tag names (abstract, chapter, etc.). Therefore, given a tag and a
version number, the DNN of this tag in the given version must be identified.

Document tags are typically of two types. First, there are individual tags that
only occur a small number of times in the document. Most of these tags, such
as example, abstract, references and conclusions might occur only once in the
document, although some individual tags can occur a few times (e.g., we might
have an address tag for both sender and receiver). Then, there are list tags,
such as: chapters, sections, and all the tags under them. Such tags can occur an
unlimited number of times in a document. For simplicity assume that individual
tags have a SPaR DNN and range that remain unchanged over versions. This
information can be stored and accessed on request.

Consider for example a query requesting the abstract in version 10. Assume
that under the abstract tag, the document contains a subtree that maintains
the abstract text, and a list of index terms. While the abstract SPaRs remained
unchanged, the subtree under the abstract tag may have changed. That is, the
abstract text and the index terms could have changed between versions. To
answer the above query we simply perform a range search (using the abstract’s
SPaR range) on the full-index for version 10. Determining the SPaR numbers
of list tags is more complex. This is because a new tag added in the list affects
the position of all tags that follow it. For example, adding a new chapter after
the first chapter in a document, makes the previously second, third,.., chapters
to become third, fourth etc. Hence to identify the DNN of the tenth chapter
in version 20, we need to maintain the ordered list of chapter DNNs. Such a
list can also been maintained by using an index on the SPaR DNNs (and SPaR
ranges) of chapter tags (the ch index). Similarly with the full-index the ch-index
can answer partial version retrieval queries specified by a version number and a
range of chapter DNNs. We also maintain one index per list tag in the document
(for example, sec index indexes the DNNs of all document sections while fig index
indexes all figure DNNs.)

The overall index architecture is illustrated in Figure 2. This figure assumes
that at the bottom level, the disk pages are organized by UBCC. Each UBCC
page has a usefulness interval and contains three element records. Each UBCC
record has its tag, SPaR range, lifespan and data (not shown). The records in the

Efficient Complex Query Support for Multiversion XML Documents 171

 full-index

... ...

UBCC pages

Page P1 (1, now) Page P15 (3, now)

...

 CH-index SEC-index

CH A
Life:(1,now)
SPaR:(200,1200)
Loc:Page P1

CH D
Life:(3,now)
SPaR:(510,550)
Loc:Page P15

...

...

......

SEC P
Life:(1,now)
SPaR:(220,230)
Loc:Page P3

SEC W
Life:(2,now)
SPaR:(270,280)
Loc:Page P7

...BOOK
Life:(1,now)
SPaR:(1,2100)
Loc:Page P1

CH A
Life:(1,now)
SPaR:(200,1200)
Loc:Page P1

...
SEC E

Life:(3,now)
SPaR:(690,720)
Loc:Page P15

BOOK
Life:(1,now)
SPaR:(1,2100)

CH A
Life:(1,now)

SPaR:(200,1200)

AUTHOR
Life:(1,now)

SPaR:(210,210)

CH D
Life:(3,now)

SPaR:(510,550)

TITLE K
Life:(3,3)

SPaR:(600,630)

SEC E
Life:(3,now)

SPaR:(690,720)...

Fig. 2. The overall index architecture.

leaf pages of the full- and tag- indices contain pointers to the UBCC pages that
contain these records. An index leaf page contains more records than a UBCC
page since the latter stores the element data as well.

Using the above index combination various complex queries can be answered
efficiently. These queries are first translated into partial version retrieval queries
as the following examples indicate.

Structural Projection — Project the part of the document between the second
and the fifth chapters in version 20. To answer this query we first access the
ch index and retrieve the ordered list of chapter DNNs as it was in version 20.
From this list we identify the SPaR range between chapters 2 and 5. With this
SPaR range we perform a range search for version 20 in the full index. This
search will identify all elements with DNNs inside this range. From the SPaR
properties, all such elements are between chapters 2 and 5.

Regular Path Expression— Find all sections under the third chapter in version
10. We first identify the SPaR range of the third chapter in version 10 from
ch index. With this SPaR range we perform a range search in the sec index for
version 10. Only the sections under the third chapter will have SPaR numbers
in the given range.

As another example, consider the query: find the chapter that contains figure
10 in version 5. To answer this query we first identify the DNN of the tenth figure
in version 5 from fig index. Using this SPaR we perform a search in ch index for
version 5. According to the properties of the SPaR numbering scheme, we find
the chapter with the largest SPaR that is less than the figure SPaR.

Parent-Child Expression— For version 10, retrieve all titles directly under chap-
ter elements. Using the ch index we identify the chapter elements alive in version
10. For each chapter, its SPaR range value is used to locate all title elements
under it in version 10 through the title index. Then, the level number of lo-

172 Shu-Yao Chien et al.

cated titles are compared with that of the chapter element to determine their
parent-child relationship.

4 Indexing Schemes

In this section we elaborate on the various data storage organization and indexing
possibilities.

Data Storage Organization. We have already discussed one approach for the
data storage organization, namely, UBCC. Another approach is to cluster the
document element records using a multiversion B+-tree instead. Consider a B+-
tree indexing the element DNNs in the first version of a document. Each element
is stored in this B+-tree as a record that contains the element id, tag, SPaR DNN
(and range) as well as the actual data (text, image, etc) of this element. This B+-
tree facilitates interesting queries on the document’s first version. For example, if
we know the SPaR range of chapter10 we can find all document elements in this
chapter (a range search). Furthermore, the full document can be reconstructed
by simply following the leaf pages of this tree. As the document evolves through
versions, new elements are added, updated or deleted. These changes can update
the above B+-tree using the element DNNs. In order to answer queries over a
multiversion document we need to maintain the multiple versions of this B+-tree.

Various multiversion B+-tree structures have been proposed [17,3,27]; here
we consider the Multiversion B-tree (MVBT) [3] which has optimal asymp-
totic behavior for partial version retrievals and its code is readily available.
The MVBT has the form of a directed graph with multiple roots. Associated
with each root is a consecutive version interval. A root provides access to the
portion of the structure valid for the root’s version interval. While conceptually
the MVBT maintains all versions of a given B+-tree, it does not store snapshots
of these versions, since this would require large space. Instead, portions of the
tree that remain unchanged through versions are shared between many versions.
The MVBT uses space that is proportional to the number of version changes. A
query requesting the elements in range R from version Vi is answered with effort
proportional to r, the number of elements version Vi had in range R.

Below we compare the choice of MVBT against UBCC for the data stor-
age organization. An advantage of the MVBT is that it offers partial version
retrievals, too. The MVBT also uses a notion of page usefulness. However, the
page copies are more elaborate than in UBCC, since the MVBT maintains also
the total order among all elements valid for a given version. As a result, each
new page in the MVBT needs to preallocate some free space for future elements
that may be added in this page. This implies that the space utilization of the
MVBT is higher than UBCC. Moreover, the MVBT copies a page easier than
the UBCC. This becomes important since the document element records are
usually large (since they contain the element’s data as well).

Full-index Implementation. The choice of the access method needed to imple-
ment the full-index is affected by the choice of the storage organization. If the

Efficient Complex Query Support for Multiversion XML Documents 173

MVBT is used as the main storage organization, it serves as the full-index as
well. Since the actual data records are stored at the leaves of this MVBT, it
corresponds to a “primary” index. If the UBCC data organization is chosen,
an additional index is needed so as to provide partial version retrievals. The
leaf pages of this additional index will store element DNNs (and ranges) and
pointers to the actual document element records in the UBCC pages. Hence it
corresponds to a “secondary” index structure; furthermore, it is a dense index
since all the element DNNs that exist in UBCC records appear also at the leaves
of this index. As a result, a MVBT secondary dense index can be used to im-
plement the full-index. Various optimizations on this combination of UBCC and
MVBT can be applied as discussed in subsection 4.1.

We also propose an alternative that combines UBCC with a sparse secondary
index, that indexes the range of element DNNs in each UBCC page. These ranges
correspond to intervals and they may be updated as elements are added/updated
in the page. To answer a range retrieval query, the index should identify the
UBCC pages with range intervals that intersect the query range at the given ver-
sion. Hence, this index must support multiversion interval intersection queries.
The Multiversion R-tree (MVRT) [13,26] is such an index. Like the MVBT, the
MVRT conceptually maintains many versions of an ephemeral R-tree. We note
that this MVRT is a sparse index: it does not store the element DNNs; rather,
the ranges of page DNNs are stored. As a result, using the MVRT to implement
the full-index will result in a much smaller structure.

Tag-index Implementation. A tag-index is used for each list tag, indexing the
DNNs of all document elements using this tag. Since the actual element records
are physically stored using the UBCC or the MVBT, each tag-index is a sec-
ondary dense index. To support partial version retrievals a MVBT or its variants
can be used to implement a tag-index.

4.1 UBCC with Dense Secondary MVBT

Structures. When a new version is created, its updates are first applied on
the document element records. Using these updates, the UBCC strategy may
result into page copying. The alive records from the copied pages as well as the
newly inserted document element records are first ordered by DNN. The ordered
records are then placed in UBCC pages. Each update is also applied to the dense
MVBT index. (A record copy is managed as the logical deletion of the previous
record followed by a newly inserted record pointing to the record’s new position
in UBCC).

A partial version retrieval is accomplished by searching the MVBT using
the given DNN range and version number. For all MVBT records found their
pointers to the UBCC pages are followed to access the actual document element.

An interesting optimization is possible. First, note that in the above scheme,
the version lifespan for a document element is kept in both the UBCC file and in
the MVBT records. Second, when an element is updated as deleted the UBCC
page that contains it is brought into main memory so as to change the record’s

174 Shu-Yao Chien et al.

lifespan. In the proposed optimization the version lifespans are kept in the MVBT
index only. This saves space in the UBCC, and, saves I/O during element updates
since the UBCC pages do not need to be accessed.

Nevertheless, when a UBCC page becomes useless in the optimized scheme,
we need to know which of its records are still alive. This is implemented by a
(main-memory) hashing scheme that stores the UBCC pages that are currently
useful. The scheme is implemented on the page ids. For each useful page, the
hashing scheme stores a record that contains: (UBCC page-id, current page
usefulness, list of alive DNNs). The “current page usefulness” is a counter that
maintains the number of alive records in the page. The “list of alive DNNs” lists
the DNNs of these alive records. This hashing scheme is easily maintainable as
records are updated/inserted.

4.2 UBCC with Sparse Secondary MVRT

A difference from the previous approach is that the MVRT is used as a sparse
index. Hence, the element lifespans are kept in the UBCC records. Moreover, to
facilitate fast updates a hashing scheme that stores the currently alive document
elements is implemented. For each alive element, the hashing scheme stores a
record: (DNN, UBCC page-id), where the page-id corresponds to the UBCC page
that stores this element. Element updates are then processed by first consulting
this hashing scheme.

When a UBCC page becomes full, its DNN range is computed and inserted
in the MVRT. In particular, the MVRT record contains: (DNN range, lifespan,
UBCC page-id). This range is the largest DNN range this page will ever have
since no new records can be added in it. While records are logically deleted from
this page its DNN range may decrease. However, to save update processing, the
MVRT stores the largest DNN range for every page. When a UBCC page be-
comes useless, the MVRT updates the lifespan of this page’s record. This update
process may result in accessing a page which intersects the query DNN range
but contains no alive element for the query version. However, in our experimen-
tal performance the savings in update were very drastic to justify few irrelevant
page accesses at query time.

Special attention is needed when reporting the answer to a partial version
retrieval. In particular, elements in the query range must be reported in DNN
order. One straightforward approach is to find all elements in the query answer
and sort them. A better approach is to utilize the fact that data pages created in
the same version have their elements in relative DNN order (since new elements
and coped elements are first sorted before stored in UBCC pages). Hence the
following sort-merge approach is possible: (1) use the records retrieved from
the MVRT to group the UBCC page references by the Vstart version in their
lifespan, then (2) treat each group of data pages as a sorted list of objects and
merge them using a standard sort-merge algorithm. With enough memory buffer
a single scan of the data pages is sufficient.

Efficient Complex Query Support for Multiversion XML Documents 175

scheme1 scheme2 scheme3
0

5

10

15

20

25

IO

CPU

C
he

ck
−

In
 T

im
e

(#
se

c)

scheme1 scheme2 scheme3
0

50

100

150

200

250

300

350

In
de

x
S
iz

e
(#

M
B

)

(a) Check-In time (b) Index sizes

Fig. 3. Comparing the check-in time and the index sizes

5 Performance

We present results comparing the performance of the three choices for data or-
ganization and full-index implementation. Scheme 1 uses a single dense primary
MVBT, scheme 2 uses UBCC plus a dense secondary MVBT (section 4.1), while
scheme 3 uses UBCC plus a sparse MVRT index (section 4.2). The usefulness in
both UBCC based schemes was set to 0.5.

The schemes were implemented in C++ using GNU compilers. The pro-
grams were run on a Sun Enterprise 250 Server machine with two 300MHz
UltraSPARC-II processors using Solaris 2.8. We used a 20GB Seagate disk. To
compare the performance of the various algorithms we used the estimated run-
ning time. This estimate is commonly obtained by multiplying the number of
I/Os by the average disk page read access time, and then adding the measured
CPU time. The CPU cost was measured by adding the amounts of time spent in
user and system mode as returned by the getrusage system call. We assume all
disk I/Os are random which was counted as 10ms. We used a 16KB page size.
For all the three schemes we used the LRU buffering where the buffer size was
100 pages.

We present results using a representative dataset. The representative dataset
contains 1000 versions. The initial version has 10,000 objects, and an object
occupies on average 200 bytes. Each later version was generated by performing
10% changes to the previous version, where about half of the changes were
deletions and the other half were insertions. Following the 80/20 rule, we assume
that 80% of the changes took place in 20% of the document.

For the scheme that uses UBCC and the dense MVBT index, we implemented
the optimized approach which keeps the element lifespans in the MVBT and
utilizes the alive-page hashing (see section 4.1). This optimization led to a
drastic 35% improvement in version check-in time when compared to the original
approach. (The space improvement was less, around 1%, while the query times
of both approaches were equivalent.)

Figure 3a compares the check-in time per version of the three schemes, while
figure 3b compares the index sizes. The version check-in time measures the total

176 Shu-Yao Chien et al.

0.01% 0.1% 1% 10% 30% 50% 80% 100%

0

25

50

75

100

125

150

175

200

225

250

275

300

scheme1

scheme2

scheme3

Size of query range

Q
ue

ry
 T

im
e

(#
se

c)

Fig. 4. Query performance varying length of DNN range.

time to finish all the updates within a given version. Scheme 3 has the fastest
check-in time and uses the least index size. For the version check-in time, scheme
2 spent less I/O, but more CPU time than scheme 1. The MVBT used in scheme
1 stores the actual document elements in its leaf pages. Its update algorithms
can trigger a copy more often than the UBCC. As a result, scheme 1 uses more
update time and index space than scheme 2. Even though scheme 2 has also
a secondary MVBT, this index is much smaller (since it does not contain the
actual objects) and does not affect the relative performance. Scheme 3 is better
than scheme 2 both in check-in time and in index size, since scheme 3 uses the
sparse index (MVRT) which is much smaller than the dense index (MVBT) used
in scheme 2.

To evaluate the performance of various queries, we measured the total execu-
tion time of 10 randomly generated queries with fixed-length DNN ranges. The
performance is shown in figure 4. When the query DNN range is large, scheme
3 is the best. The reason is that a large query DNN range is like a full version
retrieval, where all the UBCC pages that are useful at the query version need
to be examined. In this case, scheme 3 is the most efficient since it spends the
least time in finding these UBCC pages (as it uses a smaller sparse index). For
small query DNN ranges, however, the other schemes are faster. The reason is
that scheme 3 may check some UBCC pages which do not contain any qualifying
object, while this is not the case for schemes 1 and 2. Scheme 1 is the best for
small DNN ranges since it directly finds the qualifying objects. Scheme 2 has a
little worse query time than scheme 1, since the actual objects and the references
to these objects are maintained in two different structures and thus they have
different clustering.

Overall, when considering both the check-in time, space as well as query time,
the UBCC plus sparse MVRT (scheme 3) showed the most robust performance.

6 Conclusions and Future Work

As many applications make use of multiversion XML documents, the problem
of managing repositories of such documents and supporting efficient queries on
such repositories poses interesting challenges for database researchers. Foremost

Efficient Complex Query Support for Multiversion XML Documents 177

among these, is the efficient execution of complex queries, such as the path ex-
pression queries which are now part of the XML query languages being proposed
as standards [29,30]. In this paper, we investigated the problem of supporting
these complex queries on multiversion documents. To solve this problem, we
proposed solutions based on three main ideas:

– a durable numbering scheme for the document elements to capture their
position and parent/child relations in a version-independent fashion,

– a version storage and clustering scheme based on the notion of page useful-
ness, and

– various multidimensional indexing schemes such multiversion B-trees and
R-trees.

We first showed that, using this approach, complex path expression queries
can be reduced to partial version retrieval queries; then, we evaluated alternative
indexing and clustering schemes for the efficient execution of partial version
retrieval queries. In addition to full version reconstruction, the proposed solution
supports efficiently complex queries on version content, and queries involving the
structure of the XML document (e.g., path expression queries).

Note that this paper assumes that there are no tag repetitions in the docu-
ment tree paths. In that case, path queries involve join operations [16,1]. We are
currently investigating efficient ways to address multiversion path queries under
tag repetitions. Other interesting problems, such as the generalization of XML
query languages to determine document evolution and the optimization of such
queries, will also be the topic of future investigations.

Acknowledgments

The authors would like to thank Bongki Moon for many useful discussions.

References

1. S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava and Y. Wu,
“Structural Joins: A Primitive for Efficient XML Query Pattern Matching”, Proc.
of ICDE, 2002.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom and J. L. Wiener, “The Lorel Query
Language for Semistructured Data”, Journal on Digital Libraries 1(1), pp. 68-88,
Apr 1997.

3. B. Becker, S. Gschwind, T. Ohler, B. Seeger and P. Widmayer, “An Asymptotically
Optimal Multiversion B-Tree”, VLDB Journal 5(4), pp. 264-275, 1996.

4. G. Cobena, S. Abiteboul and A. Marian, “XyDiff Tools Detecting changes in XML
Documents”, http://www-rocq.inria.fr/∼cobena

5. S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi and L. Tanca, “XML-
GL: A Graphical Language for Querying and Restructuring XML”, Proc. of WWW
Conf., pp. 93-109, 1999.

6. D. Chamberlin, J. Robie, D. Florescu, “Quilt: An XML Query Language for Het-
erogeneous Data Sources”, Proc. of WebDB, 2000.

178 Shu-Yao Chien et al.

7. S. Chawathe, A. Rajaraman, H. Garcia-Molina and J. Widom, “Change Detection
in Hierarchically Structured Information”, Proc. of SIGMOD, 1996.

8. S.-Y. Chien, V.J. Tsotras and C. Zaniolo, “Version Management of XML Docu-
ments”, WebDB Workshop, 2000.

9. S.-Y. Chien, V.J. Tsotras and C. Zaniolo, “Efficient Management of Multiversion
Documents by Object Referencing”, Proc. of VLDB, 2001.

10. S.-Y. Chien, V.J. Tsotras, C. Zaniolo, and D. Zhang, “Storing and Querying Mul-
tiversion XML Documents using Durable Node Numbers”, Proc. of WISE, 2001.

11. A. Deutsch, M. Fernandez, D. Florescu, A. Levy and D. Suciu, “A Query Language
for XML” , Proc. of WWW Conf., pp. 77-91, 1999.

12. R. H. Katz and E. Change, “Managing Change in Computer-Aided Design
Databases”, Proc. of VLDB, 1987.

13. A. Kumar, V. J. Tsotras and C. Faloutsos, “Designing Access Methods for bitem-
poral Databases”, IEEE TKDE 10(1), pp. 1-20, 1998.

14. M. Fernandez and D. Suciu, “Optimizing Regular Path Expressions Using Graph
Schemas”, Proc. of ICDE, 1998.

15. J. McHugh and J. Widom, “Query optimization for XML”, Proc. of VLDB, 1999.
16. Q. Li and B. Moon, “Indexing and Querying XML Data for Regular Path Expres-
sions”, Proc. of VLDB, 2001.

17. D. Lomet and B. Salzberg, “Access Methods for Multiversion Data”, Proc. of
SIGMOD, pp. 315-324, 1989.

18. A. Marian, S. Abiteboul, G. Cobena and L. Mignet, “Change-Centric Management
of Versions in An XML Warehouse”, Proc. of VLDB, 2001.

19. G. Ozsoyoglu and R. Snodgrass, “Temporal and Real-Time Databases: A Survey”,
IEEE TKDE 7(4), pp. 513-532, 1995.

20. M. J. Rochkind, “The Source Code Control System”, IEEE Tran. on Software
Engineering SE-1(4), pp. 364-370, Dec 1975.

21. B. Salzberg and V. J. Tsotras, “Comparison of Access Methods for Time-Evolving
Data”, ACM Computing Surveys 31(2), pp. 158-221, 1999.

22. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. J. DeWitt and J. F.
Naughton, “Relational Databases for Querying XML Documents: Limitations and
Opportunities” Proc. of VLDB, pp. 302-314, 1999.

23. W. F. Tichy, “RCS–A System for Version Control”, Software–Practice&Experience
15(7), pp. 637-654, July 1985.

24. F. Tian, D. J. DeWitt, J. Chen and C. Zhang, “The Design and Performance
Evaluation of Various XML Storage Strategies”, http://www.cs.wisc.edu/niagara/
Publications.html

25. V.J. Tsotras and N. Kangelaris, “The Snapshot Index: An I/O-Optimal Access
Method for Timeslice Queries”, Information Systems 20(3), pp. 237-260, 1995.

26. Y. Tao and D. Papadias, “MV3R-Tree: A Spatio-Temporal Access Method for
Timestamp and Interval Queries”, Proc. of VLDB, pp. 431-440, 2001.

27. P. Varman and R. Verma, “An Efficient Multiversion Access Structure”, IEEE
TKDE 9(3), pp. 391-409, 1997.

28. webdav, WWW Distributed Authoring and Versioning, last modified: Jul 31, 2001.
http://www.ietf.org/ html.charters/webdav-charter.html

29. World Wide Web Consortium, “XML Path Language (XPath)”, version 1.0, Nov
16, 1999. http:// www.w3.org/TR/xpath.html

30. World Wide Web Consortium, “XQuery 1.0: An XML Query Language”, W3C
Working Draft Jun 7, 2001 (work in progress). http://www.w3.org/TR/xquery/

	1 Introduction
	2 Background
	2.1 Usefulness-Based Clustering
	2.2 Path-Expression Queries

	3 The SPaR Versioning Scheme
	3.1 The Numbering Scheme
	3.2 The Version Model
	3.3 Complex Queries

	4 Indexing Schemes
	4.1 UBCC with Dense Secondary MVBT
	4.2 UBCC with Sparse Secondary MVRT

	5 Performance
	6 Conclusions and Future Work
	References

