The VLDB Journal (2002) / Digital Object Identifier (DOI) 10.1007/s00778-002-0079-4

Efficient schemes for managing multiversionXML documents

Shu-Yao Chien', Vassilis Tsotras?, Carlo Zaniolo'

! Department of Computer Science, University of California, Los Angeles, California 90095, USA; e-mail: {csy,zaniolo} @cs.ucla.edu
2 Computer Science Department, University of California, Riverside, California 92521, USA; e-mail: tsotras@cs.ucr.edu

Edited by Alon Y. Halevy. Received: December 15, 2001 / Accepted: June 1, 2002

Published online: December 19, 2002 — (©) Springer-Verlag 2002

Abstract. Multiversion support for XML documents is
needed in many critical applications, such as software config-
uration control, cooperative authoring, web information ware-
houses, and “e-permanence” of web documents. In this paper,
we introduce efficient and robust techniques for: (i) storing
and retrieving; (ii) viewing and exchanging; and (iii) query-
ing multiversion XML documents. We first discuss the lim-
itations of traditional version control methods, such as RCS
and SCCS, and then propose novel techniques that overcome
their limitations. Initially, we focus on the problem of manag-
ing secondary storage efficiently, and introduce an edit-based
versioning scheme that enhances RCS with an effective clus-
tering policy based on the concept of page-usefulness. The new
scheme drastically improves version retrieval at the expense of
a small (linear) space overhead. However, the edit-based ap-
proach falls short of achieving objectives (ii) and (iii). There-
fore, we introduce and investigate a second scheme, which is
reference-based and preserves the structure of the original doc-
ument. In the reference-based approach, a multiversion docu-
ment can be represented as yet another XML document, which
can be easily exchanged and viewed on the web; furthermore,
simple queries are also expressed and supported well under
this representation. To achieve objective (i), we extend the
page-usefulness clustering technique to the reference-based
scheme. After characterizing the asymptotic behavior of the
new techniques proposed, the paper presents the results of
an experimental study evaluating and comparing their perfor-
mance.

Keywords: XML database — Version management — Histori-
cal queries — Temporal indexing — Temporal clustering

1 Introduction

The problem of managing multiple versions of XML docu-
ments is present in many applications [20] and poses new
research challenges. Traditional application domains that rely
on version management, such as software configuration and
cooperative work, increasingly use XML for representing and

exchanging information as they migrate to a web-based envi-
ronment.

New application domains are also emerging for XML ver-
sioning; an important and pervasive one is the link permanence
of web documents. Any URL becoming invalid causes serious
problems for all documents referring to it. The problem is par-
ticularly serious for search engines that then direct millions of
users to pages that no longer exist. Replacing the old version
with a new one, at the same location, does not cure the problem
completely, since the new version might no longer contain the
keywords used in the search. The ideal solution is a version
management system supporting multiple versions of the same
document, while avoiding duplicate storage of their shared
segments. To assure link permanence, professionally managed
sites and content providers will have to rely on document ver-
sioning. In fact, we might soon see ‘e-permanence’ standards
established for critical web sites of public interest [36].

Specialty warehouses and archives, that monitor and col-
lect content from websites of interest, will also rely on version-
ing to preserve information, track the history of downloaded
documents, and support queries on these documents and their
history [14]. In fact, plans for global warehouses to preserve
the complete history of the web are well under way [37].

Some of the problems occurring in multiversion docu-
ments are similar to those of transaction-time databases where
object histories are maintained [15]. Indeed, many of the tech-
niques presented in this paper are inspired by similar con-
cepts used in temporal databases. However, there are impor-
tant differences, inasmuch as the reconstruction of complete
documents, or large segments thereof, is here required. Thus,
the logical order of the document objects must now be pre-
served, whereas the order of tuples is immaterial in relational
databases.

Several sophisticated schemes have been proposed for
managing changes in semi-structured information [5], and
structured documents [22,38]. Nevertheless, these approaches
focus mainly on modelling version changes for individual ob-
jects without optimizing the efficiency of version retrieval.
Version modelling is also the major concern in previous work
on CAD and OODB version management schemes [2, 12].

Two popular version management schemes have been de-
veloped for software configuration management [13], namely,

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

RCS [16] and SCCS [24]. RCS is edit-based: the most current
document version is stored intact while previous versions are
kept as reverse editing scripts. For any version except the cur-
rent one, extra processing is needed to apply the reverse editing
script and generate the old version. In a symmetric representa-
tion, RCS stores the very first document version and maintains
future versions with a forward edit script.

Rather than appending version differences, SCCS [24]
inserts editing operations in the original document and asso-
ciates a pair of timestamps (or version ids) with each document
segment (object) to specify its lifespan. Versions are retrieved
from an SCCS file via scanning through the file and retrieving
valid segments based on their timestamps.

Both schemes treat a document as a sequence of lines of
text, and ignore the rich structure of documents, thus impairing
their ability of supporting structural queries. Furthermore, they
lack sophistication in their secondary storage management.
Both RCS and SCCS may read document segments which
are no longer valid for the retrieved (target) version, causing
additional processing costs. For example, if we use RCS with
the forward edit script, the total I/O cost to retrieve a version
is proportional to the size of the first version plus the size of
changes from this version till the retrieved one. For SCCS,
the situation can be even worse: the whole version file needs
to be read for any version retrieval. This cost is reduced by
maintaining an index on the valid segments of each version,
but still these segments might be stored sparsely among pages
generated by different versions, and this lack of clustering can
cost many additional page I/Os.

To efficiently support multiversion documents, better clus-
tering techniques are needed. Our first scheme is edit-based,
as such it enhances the original RCS with an effective page
clustering approach (based on the notion of page-usefulness)
that clusters the objects of any version in few data pages. The
result is a drastic reduction (as compared with RCS) in version
retrieval time, while the space used by our technique remains
linear (like RCS) to the number of changes in the document
evolution.

An additional requirement is for the versioned document
to be easily exchanged at the transport level, across applica-
tions and to remote sites. However, the edit scripts used by
our edit-based scheme represent a special object that cannot
be easily accommodated at the transport level without XML
extensions. The ideal solution is to represent the history of
a versioned document as yet another XML document — this
will turn web-browsers, style sheets, query processors, and
the many great XML tools into a ready-made support envi-
ronment for XML versions. To address this requirement we
then propose a reference-based version management scheme
that preserves the logical structure of the evolving document
through the use of object references. By preserving the docu-
ment structure, the scheme facilitates content-based querying.
Furthermore, a modified clustering technique is used to pre-
serve the scheme’s efficiency at the storage level.

Two related works on versioning have recently appeared
in [1,6]. In particular, [1] presents an archiving technique for
scientific XML data. This approach is based on SCCS and clus-
ters historical information by object (that is, all versions of the
same object are physically clustered together). In contrast, our
clustering scheme clusters objects by version. Moreover, [1]
does not maintain the logical order of a given version and uses

key-based id’s for identifying the objects. Such ids are needed
for clustering the new version of an object at the appropriate
place. In contrast, our scheme does not depend on keys and
maintains the logical document order. Chorel [6] presents a
logical model for managing historical semistructured informa-
tion. The Chorel model also clusters the historical information
within each object.

The rest of the paper is organized as follows. Section 2 con-
tains preliminary material and an example to be used through-
out the presentation. Section 3 introduces the edit-based ver-
sioning scheme, while the reference-based approach appears
in Sect. 4. In Sect. 5, we compare the performance of the edit-
based scheme with the basic RCS and SCCS schemes, with
multiversion BT -trees [28], and partially persistent lists [31].
While these two techniques were proposed in the past in a dif-
ferent context, they are relevant to the problem at hand, insofar
as they can be used to implement SCCS, while improving its
performance in version retrieval and new version insertion. In
Sect. 6, we compare the performance of the reference-based
scheme with the edit-based scheme, since this proved to be
the most efficient between the different schemes considered.
Section 7 concludes the paper and discusses open problems
for further research. Details on the multiversion BT -tree and
partially persistent lists appear in the Appendix.

The edit-based scheme was introduced in [7], and the
reference-based approach was proposed in [44]. This paper
adds several improvements and additions, including: (1) com-
plexity analysis for the two schemes; (2) a detailed algorithm
for full version materialization; (3) an improved representa-
tion for the reference-based approach; and (4) the results of
new experiments on the performance of the SCCS scheme and
the comparison of indirect versus direct references.

2 Representing XML documents

Various approaches have been recently proposed for repre-
senting and storing XML documents [32,39-42]. Typically,
an XML document is represented as an ordered tree. To capture
the tree structure a numbering scheme is needed. Alternative
numbering schemes include:

1. Using Dewey’s notation [9] which identifies nodes by their
tree address starting from the root (e.g., element F in Ver-
sion 1 of Fig. 1 has address 3.2); or

2. Using the tree preorder traversal numbers [9] (shown in
Fig. 1) enhanced by the tree level [39-41]; or

3. Special representations such as the durable node numbers
and ranges [40] (non-consecutive durable numbers can
be assigned to nodes during the preorder traversal; then
additional number is added to the node to bracket the node
numbers of its children and children’s children . .. [43].)

For this paper we will use the second approach. Then a docu-
ment element is represented by a triplet: (element-name, pre-
order#, tree-level).

As a motivating example consider the three consecu-
tive versions of a document tree that appear in Fig. 1. Ver-
sion 1 is then represented by the following list of triplets:
(41,0) (B.21), (G31) (D41, (B,52), (F6,2)
(G,7,2),(H,8,1), (1,9,1), (J,10,1), (K,11,1), (L,12,2),
(M,13,2), (N,14,1), (O,15,1), and (P, 16, 1). This list is

s

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

Version 1:
A,

B, 4 H8 19 J10 K11 N4 O,15 P,16

2 c3 D

E5 F6 G7 L12 M13

A1
B2 C3 D4 H10 11 1,12 J13 K14 N6 P17

AN

Q5R6 E7 F8 G2 M,15

Version 2:

Version 3:
//Ay1\
B,2 /D,3 H7 J8 K,9 T,11
E4 F5 G,6 M,10

Fig. 1. Three versions of a document tree

ordered by the element preorder. The tree structure can easily
be reconstructed from this list using the tree-level informa-
tion. Similarly, Version 2 is represented by the list: (A, 1,0),
(B,2,1), (C,3,1), (D,4,1), (@,5,2), (R,6,2), (E,7,2),
(F.8,2).,(G,9,2), (H,10,1), (.11, 1), (1,12,1), (J, 13, 1),
(K,14,1), (M,15,2), (N,16,1) and (P, 17,1). As elements
are added/deleted in the tree their preorder is changed ac-
cordingly. Finally, Version 3 becomes: (4,1,0), (B,2,1),
(D,3,1), (E,4,2), (F,5,2), (G,6,2), (H,7,1), (J,8,1),
(K,9,1), (M, 10,2), (T, 11,1).

3 The edit-based approach

An advantage of using edit scripts is their simplicity: such
scripts are typically created by an XML editor or by a pack-
age that computes the structured DIFF between two succes-
sive document versions [25]. Our first approach in creating
an efficient scheme for multiversion documents is edit-based.
We extend the traditional forward RCS scheme in two ways:
(1) the document objects are separated from the edit script;
and, (ii) a page clustering scheme is introduced. Because of
(1), the script is rather small and easily accessed. Our cluster-
ing scheme (termed usefulness-based copy control (UBCC))
enables better clustering of document objects by version-id,
which drastically improves I/O for version reconstruction. In
the rest of the paper we will use the terms “edit-based scheme”
and “UBCC” interchangeably.

The RCS scheme performs well when the changes from
a version to the next are minimal. For instance, if only 0.1%
of the document is changed between versions, reconstructing
the 100" version requires only 10% retrieval overhead. How-
ever, if 70% of the document changes between versions, then
retrieving the 100" version could cost 70 times the effort of
retrieving the first one! In this second case, storing complete
version snapshots is a much better strategy, costing zero over-
head in retrieving each version and only a limited (43%) stor-
age overhead. Most real-life situations range between these

two cases — with minor revisions and major revisions often
mixed in the history of a document. Thus, an adaptable self-
adjusting method is needed, that for small revisions operates
as RCS, and stores only the delta changes, and in the case
of a major revision, it stores a new version in its entirety.
Furthermore, the method must be applied to individual pages,
since revisions are normally not distributed uniformly through
the document, and different stored pages experience different
change rates.

3.1 Usefulness-based clustering

For simplicity, assume that the document’s evolution creates
a linear sequence of versions: Vi, Vs, ..., V;, where V} is
the current version. A new version (V1) is established by
applying a number of changes (object insertions, deletions or
updates) to the current version (V;). These changes are stored
in a forward edit script. In our discussion, we use forward
scripts which appeal to the intuition, since they represent the
history of the evolution of the document.

Consider the actual document objects and their organiza-
tion in disk pages. As new objects are added between versions,
their records are stored sequentially in pages. Object deletions
are not physical but logical. Records of deleted objects re-
main in the pages where they were recorded, but are marked
as deleted (this marking is maintained separately by the edit
script). An object update can be represented by a deletion fol-
lowed by the insertion of the updated object. As the document
evolution proceeds, various pages will contain many “deleted”
objects and few, if any, valid objects for the current version.
Such pages, will provide few objects for reconstructing the
current version. As a result, a version retrieval algorithm may
have to access many pages that contribute little to the target
version. Ideally we would like to cluster the objects valid at
a given version in a few, useful pages. Then the version re-
trieval becomes very effective by accessing only the useful
pages for the target version. We define the usefulness of a full
page p, for a given version V/, as the percentage of the page
that corresponds to valid objects for V.

For example, assume that at version V7, a document con-
sists of five objects O1, O3, O3, O4 and O5 whose records are
stored in data page p. Let the size of these objects be 30%, 10%,
20%, 25% and 15% of the page size, respectively. Consider
the following evolving history for this document: at version
Va, O4 is deleted; at version V3, Os is deleted, and at version
V4, object Oy is deleted. Page p is 100% useful for version V.
Its usefulness falls to 90% for version V5, since object O3 is
deleted at V5. Similarly, p’s usefulness is 70% for version V3
and drops to 55% for Vj.

Clearly, as new versions are created, the usefulness of ex-
isting pages for the current version diminish. We would like
to maintain a minimum page usefulness, U,,,;,, over all ver-
sions. Thus, a page is considered useful for all versions for
which its usefulness is above U,,,;,,. When a page’s usefulness
falls below U,,;,,, the page is considered useless for that ver-
sion and the records of all objects that are still valid in this
page are copied ! (i.e., salvaged) to another page (hence the

! This is similar to the time-splits used in temporal databases [11,
18, 26-28].

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

name UBCC). When objects are copied in new disk pages they
preserve their relative document order.

The page usefulness definition needs to be extended for
non-full pages. Since records are stored in pages sequentially,
the last page written by a version may be non-full. By definition
such non-full page is useful for the version that created it. This
is needed since the page can still contain elements valid for
this version.

The value of U,,;, is set between 0 and 1 and represents
the main performance parameter of our scheme. For instance,
if Upyin = 0.6 (ie., 60%), then page p becomes useless at
Version 4; at this point objects O, and O, are copied to a
new page. High U,,;,, implies better clustering and thus faster
version reconstruction (since the answer is clustered in fewer
pages) but additional storage due to more copied records. Nev-
ertheless, as will be shown in Sect. 3.3, the storage introduced

by the above copying is proportional to %,
Schg denotes the total size of document evolution (i.e., the
information stored in RCS), and o is the page size. More-

over, the number of useful pages for version V; is bounded
by —— W‘;(m, where size(V;) denotes the number of

objects in document version V;. Clearly, %(V) represents
the minimum number of pages required to store version V
when all its objects are clustered together. The U

due to the fact that the objects of V; are instead scattered in
several pages. As will be shown from the performance eval-
uation, the page-usefulness clustering delivers the adaptable
self-adjusting method that we were seeking: it combines the
storage behavior of RCS with the retrieval performance of a
complete version-snapshot scheme.

where

min

3.2 The edit script

The edit script is used for: (i) identifying the useful pages per
version; and (ii) maintaining the document’s logical order. We
use the following notation when storing the script of version
Vi1 () the insertion of object X at (preorder) position ¢ at level
J, is represented in the edit-script by ins(@QX, 1, j), where
@X is the location (i.e., page number and offset) where the
record of object X is actually stored; and (ii) del(4) denotes
the deletion of the object that, without this deletion, would
occupy (preorder) position ¢ in V.

To describe the creation of the UBCC script consider the
example in Fig. 1. Version 1 of the document is created by in-
serting sixteen new objects; these objects are stored in pages
pl through p4 while the corresponding script is stored sepa-
rately as a sequence of ins operations (Fig. 2). For simplicity
all objects are of the same size and a data page can hold four
objects. Assume that U,,;,, is set to 70%.

Version 2 is created by the changes: insert (), R as children
of D before F; insert S as a sibling between H and I; delete
L and delete O. Its preorder appears in Fig. 1. The newly
inserted document objects are stored (in relative order) in page
pS (Fig. 2). These insertions are represented in the edit script
E2 as: ins(@Q,5,2), ins(@R,6,2) and ins(@S,11,1). Element
(@ is inserted as the new first child of element D; since D had
preorder position 4 in Version 1, element () will get position 5
in Version 2. Similarly, R gets position 6. Element S takes the
next position after element H. In Version 1, H was in position

8, but with the two previous additions, it moves to position
10 in Version 2; hence S gets position 11. After the insertion
of S, element L would have moved to position 15 in Version
2. Therefore its deletion is represented as del(15) in script
E2. After deleting L, element O moves to position 17 and its
deletion results to del(17). Despite the two deletions, pages p3
and p4 are still useful (75%) for Version 2, as are pages p1, p2
and p5 (which is not full but is the last page created by Version
2).

Version 3 is generated by the changes: delete C, Q, R, S, I,
insert 71" as a sibling between K and N, and delete N, P. The
deletions make pages p3, p4 and p5 useless for Version 3,
since their usefulness falls below U,,;, (to 50%, 25%, and
0%, respectively). Hence, their valid objects for Version 3 —
namely, J, K and M must be copied. The newly inserted ob-
ject T' and the copied objects J, K, M are stored into a new
data page p6 in their relative document order in Version 3.
For each copied object, a pair of entries — one deletion fol-
lowed by one insertion — are added to the edit script. The first
five del operations in script E3 correspond to the deletions of
C,Q, R, S, I (Fig. 2). Then del(8) and ins(@J,8,1) represent
the copying of object J from page p3 to p6; note that @J in
script E3 refers to page p6. Similarly, del(9), ins(@K,9,1) and
del(10), ins(@M,10,2), correspond to copying objects K, M,
respectively. The copying procedure effectively clustered the
objects valid for Version 3 into useful pages p1, p2 and p6.

Version reconstruction. A given version is reconstructed by
first visiting the edit scripts to identify the objects valid for this
version (in their appropriate document order). Then, the data
pages containing the actual objects are retrieved. Edit scripts
are processed in a gap-filling fashion. Consider reconstructing

VERSION 1

tommm e + ins(@A,1,0), ins(@B,2,1),
pl | A, B, C, D | ins(ec,3,1), ins(eD,4,1),
Fommm e + ins (@E,5,2), ins(@F,6,2),
p2 | E, F, G, H | ins(@G,7,2), ins(@H,8,1),
Fmmm - + ins(@I,9,1), ins(@J,10,1),
p3 | I, J, K, L | ins(@K,11,1), ins(eL,12,2),
tommm e + ins (@M, 13,2), ins(@eN,14,1),
p4d | M, N, O, P | ins(@0,15,1), ins(e€P,16,1).
o ————— +
VERSION 2
Data Pages UBCC Script E2
tommm e + ins(@Q,5,2), ins(@R,6,2),
p5 | Q, R, S | ins(@S,11,1), del(15), del(17).
o +
VERSION 3

I + del(3), del(4), del(4),
p6 | J, K, M, T | del(8), del(s8),
I, + del(8), ins(@J,8,1),
del(9), ins(€Kk,9,1),
del(10), ins(eM,10,2),
ins(@T,11,1),
del(12),del(12).

Fig. 2. The edit-based scheme

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

Version 3. The first entry in script E3 is del(3) denoting that
the object in the third position must be deleted; moreover this
entry also denotes a gap, to be filled with objects from previ-
ous versions. To fill this gap, the first three objects of Version 2
are thus requested. The first entry in E2 is ins(@Q,5,2) which
corresponds to inserting an element in the 5th position, i.e.,
this is another gap. Thus the objects needed are retrieved from
the script of the previous version, El. Entries ins(@A,1,0),
ins(@B,2,1) and ins(@C,3,1) of El are returned to Version 2
and recursively to Version 3. Entry ins(@C,3,1) is then nulli-
fied by the del(3) operation in E3. Since @A and @B corre-
spond to page pl, this page is retrieved and the actual objects
A,B are found. The third object of Version 3 is retrieved by
issuing another next-object operation to Version 2 and recur-
sively to Version 1. As aresultins(@D,4,1) from E1 is returned
to Version 3. A subsequent next-object request to Version 2
will return entry ins(@Q,5,2) (the gap in E2 has been filled)
which is then nullified by the del(4) entry in E3. Similarly,
ins(@R,6,2) in E2 is nullified by the next del(4) in E3. The
fourth object of Version 3 will be ins(@E,5,2) from E1 (since
ins(@S,11,1) from E2 creates a new gap). This gap-filling
procedure continues through the script E3 until all objects of
Version 3 are retrieved. The version reconstruction algorithm
is shown in Fig. 3.

The reconstruction algorithm only retrieves pages that are
useful for the version being materialized. For example, object
J in Fig. 2 is retrieved from page p3 for Version 2, but from
page p6 for Version 3. This is because page p3 is not useful
for Version 3, whose live objects were copied to page p6 — via
the deletion and reinsertion of object J in the E3 script. In the
example of Fig. 2, objects of Version 3 are stored in pages pl,
p2, and p6 sorted in their natural order. Thus, to reconstruct
Version 3, we only need to scan these pages sequentially, re-
quiring only one page of main memory as a buffer. However,
this property does not hold in general. For instance, say that
our Version 3 also contains objects Q and R from Version 2.
(The UBCC script in E3 must then be modified by removing
two del(8) entries and increasing the second argument of the
remaining entries by two.) Then, the materialization of Ver-
sion 3, involves taking: (i) B, D, from pl; (ii) E, F, G, H from
p2; (iii) J, K, M, from p6; (iv) Q and R from p5; and (v) re-
turning to p6 to fetch T. Hence, to retrieve the elements of any
version in total order, a sort-merge process is needed among
its useful pages. In general, the objects of a version V,, may be
stored in (useful) pages generated in k previous versions. (Fre-
quently, useful pages for version n are contained in versions
Vo_k,...,V,_1; but the situation where some intermediate
versions are not contributing is also possible — e.g., Version 2
is not contributing to Version 3 in Fig. 2.) For typical situa-
tions, the value of k£ is small (say below 20); then, a buffer of
size k suffices to reconstruct V;, in one pass through its useful
pages. An external sorting algorithm could instead be used if
there were no sufficient memory to hold % pages.

Edit script snapshots. The reconstruction of version V; may
involve reading all edit scripts from E; to F';. While edit scripts
are much smaller than the actual document data, as the num-
ber of versions grows, their overall size will accumulate and
may affect the version retrieval efficiency. To solve this poten-
tial problem, whenever the size of the edit scripts needed for

RECOVER (UBCC_SCRIPT S, INT request) {
count = 0;
while (count < request) {
if (s is out of edit operation)
{
gap = request - counter;
RECOVER (UBCC script of previous
version of S, gap);
Append returned object list.
count = count + gap;
}
else if (target position < the position
of current operation)
{
gap = position of current operation
- target position;
RECOVER (UBCC script of previous
version of S, gap);
Append returned object list.
count = count + gap;
}
else if (current operation is delete)
{
RECOVER (UBCC script of previous
version of S, 1);
Nullify the retrieved object.
}
else if (target position = the position
of current operation) {
Append the object of current operation
to return_object_list.
count++;
}
}
return return_object_list;

}

Fig. 3. Version retrieval algorithm for the edit-based scheme

reconstructing a particular version gets over a threshold (e.g.,
10% of the size of the current version) an edit script snap-
shot is built for this version. This snapshot contains one insert
record for each object in the current version. The edit script E'1
in Fig. 2 is an example of an edit script snapshot. The recon-
struction of a version only requires reading the last snapshots
and the edits after that. As we shall see in the next section, the
length of these two is a small percentage of the length of the
current version. In addition, observe that the snapshot policy
we are using tends to generate infrequent snapshots when the
document grows (and snapshots are least effective), and fre-
quent ones when the document is shrinking and snapshots are
most effective.

3.3 Complexity analysis

The overall storage of the edit-based approach consists of two
parts: (i) the space used by the data pages (as managed by the
UBCC); and (ii) the space for storing the edit scripts.

Cost of the UBCC scheme. Data pages store new objects and
objects copied by the UBCC clustering. New objects corre-
spond to either newly inserted objects or updated objects.
Since deleted objects are not removed from storage, deletions
do not affect the size of data. Let S}, denote the total size of
the document evolution (without any usefulness-based copy-
ing — i.e., as in the RCS scheme). The total size of objects
that are copied once is U,in, X Scpg. Objects that are copied

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

twice must be copied from those objects that have already been
copied once. Therefore, the total size for objects copied twice
is (Upnin)? Sehg. Similarly, the storage used by objects that
were copied i times is (Upnin)" X Seng. Collectively, the total
storage used by copied objects is:

oo

Z(Umzn)z X S(:hg =

i=1

Umin
—— x5
1- Umln <9

Therefore, in the UBCC scheme the total storage used for
the original objects plus their copies is 175%, whereas the
storage used by the RCS scheme is Scj,4.

Edit script cost. Clearly, too frequent edit script snapshots
might cause an excessive use of storage while too infre-
quent ones might incur large retrieval overhead. Our improved
scheme consists of taking a new snapshot as soon as:

O0FE >k x size(V)

where, JE is the increment of the edit script since the last
snapshot, size(V') is the current version size, and k, 0 < k < 1
is selected to keep the size of the script a small percentage of
the overall storage. In our experiments, we have kept the value
of k around 0.1.

Lemma. The total size of the edit script with snapshot is pro-
portional to Scpg.

Proof. Let E denote the size of the whole edit script (without
snapshots). Since each version change is represented by an
entry in the edit script, £ is proportional with respect to Scp,g.
Thus, it suffices to show, that the size of the edit script snap-
shots is linear in F, the size of the whole edit script (without
snapshots).

Assume that an edit script snapshot is generated for ver-
sion V,,, while the next edit script snapshot is for version V,,
where m < n. Let 0E,,) denote the size of the edit scripts
from V,, to V,,, and let T, denote the snapshot of V,, taken
when 6 E(,,, .y has just surpassed k x size(V;,). That s, a new
snapshot is taken whenever

6E(’m,n) Z k x Slze(vn)

i.e., as soon as:
size(Vy,) <

Now, let k' denotes the average ratio between the sizes
of the representation of changes and the document objects.
Therefore, the size of the new snapshot T, is:

size(Ty,) = k' x size(Vy,)
and, by the above inequality, we obtain:

/

k
size(T,) < 7 X OB (m.n)

That is, the size of the snapshot 7, is linear in the size
of the edit scripts between versions V,,, and V,,. Summing up
the above inequality for all snapshots generated, we obtain
that the size of all snapshots is proportional to £ by a con-
stant (k' /k). Typical values for &’ and k are, respectively, 0.05
and 0.1; therefore, the snapshots here add a 50% overhead to
edit scripts, which still remains a small percentage of the size
of the UBCC data pages. Furthermore, the cost of searching
the edit script is guaranteed to be a small percentage of that
of reconstructing the version — a property that would be lost
without snapshots. O

4 The reference-based scheme

The edit-based approach discussed in the previous section pro-
vides an efficient scheme for storing multiversion documents
and reconstructing any version of such documents. An advan-
tage of this scheme is its incremental nature whereby each new
version is added to the existing repository, without changing
the information previously stored. However, the edit-based ap-
proach suffers from several limitations. For instance, revisions
where the document is reorganized and various elements are
moved to new positions cannot be easily represented under the
edit-based scheme. In addition, the fact that the information
is split between the actual database and the script compli-
cates the task of supporting queries. Finally, the scheme is
not suitable for external representations where multiversion
documents can be viewed by users through browsers, or need
to be exchanged between sites. In fact, edit scripts create a
special object that cannot be easily viewed as an XML object.
Ideally, we would like the history of a versioned document to
be represented as yet another XML document: this will turn
web-browsers, style sheets, query processors and the many
great XML tools into a ready-made support environment for
XML versions.

The reference-based versioning scheme (RBVM), dis-
cussed next, overcomes the limitations of the edit-based ap-
proach, while retaining its benefits in terms of efficient storage
management.

While edit-based approaches focus on representing
changes, the new scheme concentrates on representing the
document parts that have remained unchanged, i.e., the com-
mon segments between two successive versions. Versions in
the reference-based scheme are represented as a list of objects
of the following two kinds:

® Reference records which denote maximum common seg-
ments shared between the new version and the previous
version, and

e Actual document object records.

The RBV M scheme preserves the structure of the origi-
nal document. Nevertheless, elements of Version V; that have
remained unchanged with respect to Version V;_; are repre-
sented in V; as references to the corresponding elements in
V;—1. The scheme can be illustrated by using the graphical
representation used in the XPath specifications [19], in which
XML documents are modelled as ordered-trees containing var-
ious types of nodes as shown in Fig. 4.

To simplify the discussion we only consider: element, text,
attribute, and reference nodes. Then, a multiversion document
can be represented as an ordered forest of XML-document

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

denotes version node

@ denotes reference node

@ denotes element node A denotes attribute node

E denotes text node

Fig. 4. The RBV M tree model

trees, with references pointing from one version to the pre-
ceding one as shown in Fig. 4.

Example. Three successive versions of a book are shown in
Figs. 5 and 6.

The initial version, Version 1, contains two chapters —
“Introduction to TSQL2”, and “TSQL2 Tutorial", and each
chapter contains one and two sections, respectively. The ini-
tial version is always fully materialized. Version 2 is generated
by modifying Version 1 with the following changes :

o DELETE the “TSQL2 Tutorial” chapter;

o INSERT “A Second Example” chapter after the first chapter.
Since the first chapter of Version 2 is the same as the first
chapter of Version 1, a reference record is used in Version
2 to represent that unchanged element instead of storing the
actual content. The reference record refers to the first element
at the first level of Version 1, which has remain unchanged
between the two versions. We use the node preorder numbers
as their IDREF; thus this node can be referred to as V'1.1.
(However, ‘V'1’ need not to be stored explicitly since we are
now materializing version V2, whose references only point
to the previous versions ‘V'1°.) The second chapter of Version
2 is a new chapter and, thus, is fully materialized and stored
locally. Last, a link is built from Version 1 to Version 2. Note
that deletions do not require any explicit representation; they
are simply not listed in the new version.

Version 3 is generated from Version 2 via the following
changes :

o UPDATE the textual content of the “A Second Example”
chapter;

e Cory the “Concepts” section and insert it after the “Test
Data” section under the “A Second Example” chapter.

As shown in Fig. 6, the “Introduction to TSQL2” chap-
ter remains unchanged, thus, is represented by the reference
(V2.1). Observe that reference records of a version always
refer to its previous version, which in turn might refer to its
previous version. Therefore, reference records are logical and
may be indirect.

The second chapter is changed because its textual content
is updated and a new “Concept” section is copied and inserted

under it. Therefore, this chapter contains four reference nodes,
each referring to corresponding elements in the previous ver-
sion. Note that the last reference record is also indirect because
it refers to a sub-element of an element represented by a refer-
ence record. Finally, the forest of the successive versions can
be a linked together in a list (shown as a link from Version 2
to Version 3).

The references used by RBVM to shared parts with previ-
ous versions is reminiscent of the version sharing supported
in EXODUS [4] and the Overlapping B-trees [3]. In these ap-
proaches a B+-tree is used to represent the physical storage of
a large object and subsequent versions share common paths of
this B+-tree with the previous version. In contrast, the RBVM
scheme applies to any tree structured complex object. Fur-
thermore it does not assume any physical representation of
the versioned object while at the physical level it supports the
notion of usefulness for better version clustering.

Restructuring and duplicating. 1Tt is often the case that two
sections are switched in a new version. In addition, some pas-
sages and footnotes might be repeated at various points in the
document. Our reference-based representation handles these
changes via simple reference records, whereas the edit script-
based version requires the re-insertion of the moved sections
and the repeated objects.

4.1 Version storage and materialization

We will now describe the actual storage of the RBV M scheme
by the same example used for the edit-based scheme. As shown
in Fig. 7, we store two kinds of records: (i) content records,
such as (B, 2, 1) in Version 1 and (Q, 5,2) in Version 2; and
(ii) reference records, such as (5 : 8,7,0) in Version 2 or
(7 : 10,5,0) in Version 3. An entry of the form (¢ : j,n,h)
denotes that elements ¢ through j in the previous version are
copied to the current version, where the old element ¢ now is
moved to position n, for a shift of n—i in the preorder traversal
number. A level change is also possible and is denoted by h:
thus, the element n in the new version has level s + h where s
is the level of element 7 in the old version. Therefore, record
(5:8,7,0), in Version 2, references elements 5 through 8 in
Version 1. When Version 2 is materialized, the four elements
of Version 1 with respective preorder numbers 5, 6, 7, and 8
are now given positions 7, 8, 9, and 10, respectively. Since
h = 0 there is no shift in level from the previous copy.

In fact, all entries in Fig. 7 show a vertical shift of 0; this
is because we are using the same example as in the edit script
which cannot represent the relocation of elements to different
levels. Such restructuring is, however, available in RBV M:
For instance, if we replace (5 : 8,7,0) by (5:8,7,1), thenE,
F, and G are moved down to become children of R, while H is
moved down to become the last sibling of R. (Such document
restructuring can be easily produced by structured editors and
XML documents update languages [32].) Since only refer-
ences from a version to the previous version are allowed in
RV BM scheme, we do not need to include the version num-
ber in our reference records.

Note that, in Fig. 7, we have simplified our example by
making some unrealistic assumptions about the size of the ob-
jects involved. In real-life situations, many more records than

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

Edit operations :

1. DELETE the "TSQL2 Tutorial"
chapter.

2. INSERT the "A Second Example"
chapter.

"Introduction
to

Tree Addr Ref

"A Second

Example"
e Fig. 5. Version 1 and
v . i 2 of a book i
"Scope" "Concepts" g;etext" Test Data \‘IRGTBE;?I’JQ of a book 1
v v
Version 2 Version 3
@ chapter ‘E e chapter
X AN
A [A ﬂ @ | [T
e e e e section ﬁ ‘E ﬂ
A A
. E R i E Edit operations :
uljn-tl-rggufz“..on Q:ﬁ;?g.d title 1. UPDATE the textual content of
the "A Second Example" chapter.
2. COPY the "Concepts" section .
and insert it after the Fig. 6. Version 2 and
y . ::Zegt Datg" ESQC“OT ';‘“Cr’]er the version 3 of a book in
Test Data econd Example" chapter. RBVM
———————————————————————————— VERSION l--=-=-—-m—m—mm—m
pl (A,1,0), (B,2,1), (C,3,1), (D,4,1),
p2 (,5,2), (F,6,2),(G,7,2), (H,8,1),
p3 (r,9,1), (J,10,1), (¥,11,1), (L,12,2),
p4 (M,13,2), (w,14,1), (0,15,1), (P,16,1).
——————————————————————————— VERSION 2--=-=-—-m—m—mm—m -
p5 (1:4,1,0), (9,5,2), (R,6,2), (5:8,7,0),
p6 (s,11,1),(9:11,12,0), (13:14,15,0), (1l6:16,17,0).
——————————————————————————— VERSION 3-----—-—-—-———————
p7 (1:2,1,0), (4:4,3,0), (7:10,5,0),(13:15,8,0), Fig. 7. The RBV' M scheme for the versions in
p8 (T,11,1). Fig. 1

four fitin one page, different records are of different size, (e.g.,
reference records are typically much shorter than the content
records) and a variable number of records fit in one page. The
simplified example, however, captures the representation and
reconstruction issues involved.

Version materialization. Consider now (7 : 10,5, 0) in Ver-
sion 3: this denotes that starting at position 5 in Version 3 we
copy elements 7 through 10 from Version 2 with zero shift in

level. As we follow the references and we look for elements 7
through 10 in Version 2, we find that we must follow the refer-
ences and fetch the actual elements from Version 1. In general,
to materialize Version J, we need to use a recursive procedure
that starts at Version J and then moves to the previous versions
following the references.

In Fig. 8, we describe the function produce used to ma-
terialize any given Version K from element Start till ele-
ment End (where the elements are denoted by their preorder

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

produce (K, Start, End, dx, dy)

{ if Version K contains an entry (I:J, N, L) with I<Start<=J

then

{Result:= produce(K-1,Start,min(J,End), N-I, L);

Start:= J+1;} /*
else Result:= empty;

straddling */

for each entry E in Version K where Start<= pos(E) <=End

{if E=(I:J, N, L)

then Result:= Result||produce(K-1, I, min(J,End), N-I, L)
/* since this is a reference element */

else Result:= Result]| |E;

/* since E is an actual element */

}
return shiftxy(Result, dx, dy)

}

numbers). Thus, to materialize a complete version of N ele-
ments, we simply issue a call produce(K, 1,N, 0,0). The two
zero arguments denote that there is no shift in the position
and level of the retrieved elements since we want to retrieve
the tree ‘as-is’. (However, in general, by setting these argu-
ments to the proper values it is possible to place the results
returned by produce in a particular position of the tree being
constructed.) The call produce(K, 1,N, 0, 0) expands all the
reference records into actual elements, returning a represen-
tation just like that of Version 1. From this representation, a
standard XML document is easily produced by eliminating
the preorder numbers and replacing level numbers by nested
XML tags. The function produce uses the following auxiliary
procedures: (i) A||B denotes the result of appending B to A; and
(ii) shiftxy(Result, dx, dy) changes each entry (a, b, c) in
Result to (a,b + dx, c + dy).

Example. To materialize Version 3, we call
produce(3,1,N,0,0). The first entry is (1:2,1,0). Nei-
ther this (nor any other entry) satisfies the first condition.
Hence we go directly to the second one where we call
produce(2,1,2,0,0) (since there is no shift of position or
level for the first elements from Version 2 to Version 3). Now,
produce(2,1,2,0,0) finds (1 : 4,1,0) in Version 2, thus
a call produce(1,1,2,0,0) is generated on Version 1. This
call on Version 1 returns the first two elements A and B to
Version 2, which then returns them to the original call on
Version 3. Now Version 3 is ready to materialize its next entry:
(4 :4,3,0) by produce(2,4,4,—1,0). This call starts from
the first entry in Version 2; we are in the straddling situation
whereby the call produce(1,4,4,0,0) is issued on Version
1. The results are then returned to Version 2, which then
returns them to Version 1. The materialization of this version
then resumes by materializing its third entry, and so on.
Therefore, versions are reconstructed in depth-first (from
the last version to the previous ones) in a left-to-right fashion.
Assume that Version K uses elements from previous versions
up to K — H. Then, H will be called the depth of the history
of Version K. In materializing Version K using the recursive
procedure of Fig. 8, at most one page from each of the previous
H versions is needed at any time. If the main memory buffer
holds at least H pages, then each page containing data for
Version K is accessed only once during the materialization of

Fig. 8. Version materialization for the RBVM
scheme

Version K. Hence this algorithm assures optimal secondary
store retrieval performance for a buffer of size H. Usefulness-
based techniques discussed in Sect. 4.4 can be used to limit
the size of H. Furthermore a similar approach can be used to
answer a variety of queries, which are discussed in the next
section.

Condensed and regular representations. In the example of
Fig. 7, we have assumed that reference records describe max-
imal unchanged segments between versions. We will refer to
this representation as a condensed RBV M scheme. A more
conservative representation requires the reference records to
refer to single elements of the previous version (includ-
ing all their subelements). This is called a regular RBV M
scheme. For instance, the examples in Fig. 5 and 6 use a regu-
lar RBV M representation. While condensed representations
might have a better performance at the storage level, regular
RBV M representations preserve the logical structure of the
document — as discussed in Sect. 4.3. The query and version
materialization algorithms apply identically to condensed and
regular representations.

4.2 Queries on versioned documents

There has been much interest in query languages for XML and
semistructured documents [33]. Our focus here is to evaluate
the effectiveness of our RBV M model to support the basic
queries that arise naturally for versioned XML documents.
These include queries on document history and evolution
— in addition to the usual content-based queries on version
instances, and a combination of the two, as summarized by
the following taxonomy:

o Temporal selection. This basically retrieves either a partic-
ular version of the whole document in its entirety (snapshot
query), or successive versions of the same — e.g., retrieve
Versions 9 to 17. The algorithm in Fig. 8 can efficiently
support this query.

o Document evolution & historical queries. These queries
focus on the changes between successive versions of the
document. They include queries such as, “What’s new in

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

Version 5 of this document?” The computation of struc-
tured diff discussed in [5] is another example.

e Structural projection. Assume that the user requests cer-
tain elements, such as the table of contents and the second
chapter from our book. Normally, users want to see all the
subelements of a given item — e.g., for Chapter 1, the user
would like to see the sections, subsections, and paragraphs.
We can use a notation similar to the one we have used for
the RBV M to represent structural projection queries. For
example, if the second chapter of the book starts at position
533, level 5, and contains 100 elements we can represent
it as follows: (533 : 632,1,—5). This returns a docu-
ment that only includes the second chapter, as denoted by
a position 1 and a resulting level of 0 which is the root
level. When several elements are to be retrieved we can
use the position and level parameters to arrange them into
lists, forests or trees. Structural projection is a key ingredi-
ent in many queries involving temporal selection (“Show
Chapter 1 for Versions 15 to 32.”), history queries (‘“Show
the history of changes for this document’s abstract”), and
content-based queries.

e Content-based selection This retrieves all versions that
qualify the predicates in the WHERE clause of the query.
Content-based selection often occurs in queries that also
include structural selection, temporal selection, and even
document history.

Structural projection. We assume that a Projection List, PL(K)
is given, consisting of a sequence of non-overlapping ref-
erence entries from Version K, where entries have the form
of reference records (I : J,N,L). Thus, in addition to ex-
tracting some entries, these entries can also be shifted to a
new position and level (e.g., as needed to generate a new
XML document). In relational query processing, it is often
useful to allow the introduction of constant columns [34].
We can do the same here and allow PL(X) to contain content
triplets, (Element, Position,Level), along with the refer-
ence triplets. Then, it is clear that our RBV M scheme can
simply be viewed as a sequence of successive structural pro-
jection operations. Because of this similarity, we can then use
the recursive procedure of Fig. 8 for implementing structured
projections.

The simplest case is when we only need to compute a
structural projection on a given Version K. Then, the algorithm
basically reduces to:

sproject (K)
{for each (I:J, N, L) in PL(K)
out (K) := out (K) ||
produce(K, I, J, N-I, L)}

(For simplicity, we have assumed that PL(X) only contains
reference entries: the generalization to the case where there
are also constant entries is trivial.)

The more general case is when we want to materialize
certain segments of the document for all the versions between
K and M, with K < M.

The parts of the document we want to materialize could
again be the TOC and Chapter 2. However, elements are in-
serted and deleted between versions, and may change the pre-

order number of the elements. Thus, a separate projection list
PL(X),...,PL(M) is needed for each version.

Even so, much of the work done in materializing PL(I)
can normally be used to materialize PL(I 4 1). Thus, rather
than repeating the materialization for each version, we would
like to amortize the cost by, say, materializing PL(K) first and
then, store the result of this operation and use it in materializ-
ing PL(K + 1); then, after storing the result of PL(K 4 1) we
proceed by materializing PL(X + 2), and so on. This bottom-
up materialization approach is far from optimal for two main
reasons. The first is that the whole result for a version must be
materialized, before it can be used for the next version. The
second, and more serious problem, illustrated by the example
below, is that PL(I) often does not contain all elements re-
quested in PL(I + 1). Then, as a result, the pages that have
been read once for PL(I) may need to be read from the sec-
ondary storage again for those elements which do not appear
in PL(I) but are requested in PL(I + 1).

Example. Assume that we have a structural projection query
requesting the second section and the third section of Chapter
A, and elements of Chapter E. In addition, say that version
11 is obtained from version 10 by deleting the first section
of Chapter A. Then PL(10) contains Sects. 1 and 2 from
Chapter A, but not Sect. 3, which then becomes Sect. 2 for
PL(11). Thus, if these three sections fall in the same page,
we end up reading it once for PL(10) and again for PL(11),
since the pages of chapter E replaced the old pages in the
buffer. To avoid this problem, we have to infer that Sect. 3 of
chapter A is needed by later versions and fetch and preserve
it when constructing PL(10).

To avoid these problems and achieve optimality with re-
spect to secondary store retrieval, we propose a top-down
algorithm to evaluate projection list requests. For a projec-
tion list PL the evaluation starts from the newest version, say
Version (K + 1). When evaluating PL(K + 1), the RBV M-
represented Version (K + 1) is checked to locate target el-
ements. If target elements are stored in Version (K + 1)
they are simply returned. However, if the target elements are
represented as a reference record, (S, E, dx,dy), a request
materialize(K, S, E, dx, dy) is invoked to ask for the target
elements from the previous version, Version K. The request
materialize(K,S,E, dx,dy) is processed by first subdivid-
ing PL(K) in three sublists L1, L2 and L3, where L1 contains
the entries of PL(K) that precede .S, L2 the entries that are con-
tained in S : E, and L3 the entries that follow E. This opera-
tion might require splitting entries in PL(K); e.g., an entry (I :
J,z,y) where I < S and E < J will be split in the three en-
tries (I : S,xz,y), (S : E,z,y),and (E, J, z,y). The purpose
of splitting PL(K) into three segments, L1, L2 and L3, based on
S and F'is to make L1 and L2 materialized as a side effect of
evaluating materialize(X, S, E, dx, dy). That is, those Ver-
sion K data pages read for materialize(X, S,E, dx, dy) are
also used to materialize L1 and L2 at the same time. There-
fore, when materialize(K, S, E,dx,dy) is done those data
pages read from Version K will never be needed for the rest of
the evaluation, and we avoid multiple read of those pages. The
same side effect is recursively applied to all earlier versions.
That is, when materialize(K, S, E, dx, dy) is done, the pro-

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

jection list for all earlier versions have been processed to a
certain point where no previously read data page is needed
for any later version. Thus, the problem of multiple read of
the same page is solved. Now we can define materialize as
shown in Fig. 9.

In Fig. 9 we have use two auxiliary procedures: split
to subdivide PL(K) in three disjoint sublists, and extract to
extract from Temp the segments defined by L2. L3 contains
the elements of PL(K) which will be processed by later calls.

Finally, the procedure producel of Fig. 9 can be con-
structed from the procedure produce in Fig. 8 by taking
the calls “produce(kK-1,I,min(J,End),N-I,L)"
in its body and replace them with
“materialize(K-1,I,min(J,End),N-I,L)".

Thus materialize calls on producel (on the same Version
K), and producel calls on materialize on the previous
Version K — 1.

Therefore, the general computation for structured projec-
tion, for copies between Version M and Version N (M < N)
is from top down as follows:

{for (K:=N; K>= M; K:=K-1)

sproject (K) }

Because of our depth-first left-to-right processing, most of
the actual work will be performed by the call on the last ver-
sion: sproject(N). In fact, this call will complete the process-
ing when the projection lists of the various versions are iden-
tical. However, the calls to the previous versions are needed to
finish up the processing when the projection lists are different.

Evolution history retrieval. Generating evolution history
upon users’ request is an important feature of version man-
agement systems. A typical query could be: Retrieve the dif-
ferences between Version M and its previous Version. Typical
algorithms [23] for computing differences between two struc-
tured documents all share a two-phase strategy: the matching
elements in the two versions are first found, and then, the
edit script is constructed from that. The first phase is compu-
tationally expensive, while the second phase only requires a
bottom-up, breadth-first search on the two versions. With the
RBV M scheme, the first phase is no longer necessary, since
that information is already embedded in the references (each
reference denotes a matching segment).

The RBV M representation of version J fully describes
the difference between this version and the previous one. Thus,
from a scan of version J we can easily compute:

1. The new elements inserted. For example, the last entry in
Version 3 of in Fig. 7 is (T,11,1) denoting that element T
was inserted in preorder position 11 at tree level 1;

2. The elements copied. For instance, (13:15, 8, 0) in Version
3 of Fig. 7 denotes that elements, 13, 14, and 15 have now
been copied. The same elements can be copied more than
once, and copied elements can be rearranged in a different
order. For instance, if we want to reverse the order of those
three copied elements we only need to write (15:15, 8, 0),
(14:14, 9, 0), (13:13, 10, 0);

3. The elements deleted simply corresponds to the holes in
the list of the elements copied. For instance, in Version 3
of Fig. 7, we find that elements 1, 2, and 4 of version 2 are

copied, but element 3 has not been copied. Thus element
3 of version 2 was deleted.

In summary, RBV M provides a good basis for supporting
an assortment of different types of basic queries on versioned
XML documents. However, the rich framework of XML al-
lows the user to express more complex types of queries that
we have not addressed here. Issues of particular interest are:

o Content-based selection. In many queries, this is also com-
bined with structural projections. Selection is easily per-
formed on versions (or their structural projections) pro-
duced by the algorithms previously discussed. Further op-
timization is also possible by pushing selection onto the
referenced elements of the previous version.

o Structural queries including the filter queries and the path
expression queries found in XQuery [33].

e [ndexing. Various index structures can be used to expedite
the execution of queries discussed in this section. In par-
ticular, a sparse index can be used to search for an element,
given a version number and the preorder number of the el-
ement in that version. Such an index can be implemented
as a standard BT -tree, and can expedite the execution of
various queries.

The problem of supporting complex queries on XML doc-
uments presents interesting research challenges even when
support for multiple versions is not required. While we be-
lieve that techniques similar to those used for structural pro-
jection can be useful in addressing these problems, the main
issues remain unsolved and pose an interesting topic for future
research.

4.3 Transport level: RBVM in XML

The reference-based scheme allows a very natural XML-based
representation of XML documents at the external level, i.e., at
the level where documents are viewed through browsers or ex-
changed between web sites (transport level). This is because
the RBV M scheme preserves the structure of the original
document, and in fact the whole document history can be nat-
urally viewed as yet another XML document. In fact, we will
next show how to derive a DTD for the version repository (i.e.,
the document history) from the DTD of the original document.
Thus, all the RBV M repository can be represented in XML
and seamlessly viewed, retrieved, transported, or restructured
by applications which understand the DTD.

Since RBV M itself has an ordered-tree structure, it can be
naturally described by DTD. The DTD ofa RDV M repository
can be derived from the original DTD of documents simply
by the following step :

e Three new DTD elements are defined to represent: (i) the
repository, (ii) the versions; and (iii) the reference records;

e For each element defined in the original DTD (except the
root) its content model is modified to include a reference
record element as an alternate;

e An ID attribute is added to each element (that does not
have one already).

Figure 10 shows a DTD, simplified from the SIGMOD
Record page and its version DTD. The version DTD starts with
the definitions of the root element Repository whose content

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

materialize(K, S, E, dx, dy)
{split (PL(K), S, E, L1, L2,
for each (I:J, N, L) in PL(K)

L3);

out (K) := out (K) | |producel (K,I,J, N-I,L))

Temp:= producel (K, S, E, dx,

dy) ;

out (K) := out (K) | |extract (L2, Temp);

PL(K):= L3;
return (Temp) }

Fig. 9. The structural projection algorithm

<!-- ORIGINAL DTD -->

G.1 <!ELEMENT OrdinaryIssuePage
(volume_info, sectionList) >

G.2 <!ELEMENT volume_info (#PCDATA)>
G.3 <!ELEMENT sectionList(sectionListTuple) *>
G.4 <!ELEMENT sectionListTuple(sectionName,articles)>

<!-- VERSION DTD -->
N.l1 <!ELEMENT Repository (Version)+> N.2 <!ELEMENT Version

(OrdinaryIssuePage) >

<!ATTLIST Version v_number CDATA #REQUIRED>

N.3 <!ELEMENT RefRecordPair>

<!ATTLIST RefRecordPair v_number CDATA>

<!ATTLIST RefRecordPair start_element IDREF>

<!ATTLIST RefRecordPair end_element IDREF>

<!ELEMENT OrdinaryIssuePage
(volume_info, sectionList) >

<!ATTLIST volumn_info id ID>

<!ELEMENT sectionList
((sectionListTuple) * | RefRecordPair) >

<!ATTLIST sectionList id ID>

<!ELEMENT sectionListTuple
((sectionName, articles)

<!ATTLIST sectionListTuplle id ID>

is a list of version elements. Then the version element is de-
fined at point N.2, which contains one occurrence of the root
element of the original DTD, Ordinaryl ssuePage, which is
defined at G.1. The version type also has an attribute to keep its
version number. The reference record is defined at point N.3,
which is an empty element with three attributes that represent:
(i) the referenced version number; (ii) the id of the starting el-
ement; and (iii) the id of the end element of the segment to be
copied from the specified version. The definition of the root
element of the original DTD, (i.e., Ordinaryl ssue Page) re-
mains unchanged; however, the content model of every other
element is extended to include the Ref RecordPair element
as an alternate, which stores the information S : E where
S and E are the respective start and end of the segment
being copied from the previous version. For example, the
sectionList element defined at G.3 of the original DTD is
changed to include a Ref RecordPair element as an alter-
nate content. Based on the above procedure, the version DTD
can be automatically derived from the original DTD and be
used by any application which understands the content of the
repository.

Recently, a schema definition language, called XML
Schema [21], was proposed to support richer semantics for
XML documents. The previous procedure to derive a version
DTD from the DTD of the original document can be easily

| RefRecordPair)>

<!ELEMENT volume_info ((#PCDATA)|RefRecordPair)>

Fig. 10. A sample DTD and its version DTD

extended to derive the version XML Schema from the XML
Schema of the original document [8].

4.4 Revised usefulness-based management

As versions progress, old pages contain fewer and fewer ele-
ments that are still valid for the current version, and materi-
alizing such a version requires accessing an increasing num-
ber of pages. To solve this problem, we want to introduce a
usefulness-based management scheme similar to that used for
the edit script method. Here, however, if we salvage the valid
elements in a page, we have also to salvage all the pages con-
taining references pointing to the old pages (otherwise our
materialization algorithms will still retrieve the old pages). In
a nutshell, we need a more sophisticated and global storage
management policy, described next.

Let us start by introducing the notion of usefulness of
the support set of a data page p filled with entries (reference
records and actual objects) of a Version k. Let Sk (p) denote
the logical segment of Version k described by p; obviously,
Sk (p) can be materialized by taking the actual data entries in
p and recursively expanding its references into the logical seg-
ments they represent. The pages p, p1, p2, - - -, pn, that must be
accessed to materialize p will be called the support set for p.
Then we have the following definition.

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

(16:16,17,0) .

Fig. 11. The RBV M scheme with usefulness-

R VERSION 1----
pl: (A,1,0), (B,2,1), (C,3,1), (D,4,1),
p2: (E,5,2), (F,6,2),(G,7,2), (H,8,1),

p3: (1,9,1), (J,10,1), (X,11,1), (L,12,2),
p4: (M,13,2), (N,14,1), (0,15,1), (P,16,1).
e T VERSION 2----
pS: (1:4,1,0), (Q,5,2), (R,6,2), (5:8,7,0),
p6: (S,11,1),(9:11,12,0), (13:14, 15,0),
e e VERSION 3----
p7: (A,1,0), (B,2,1), (D,3,1), (E, 4,2),
p8: (F,5,2), (G,6,2),(H,7,1), (J,8,1),

p9: (K,9,1), (M,10,2), (T,11,1).

INSERT (V)
{ for (each element E in V)

based management

{ Insert E in the accepting page until page is full;

if (accepting page is USEFUL)

{ Write current accepting page;

Generate a new accepting page;}

else if

(accepting page is USELESS)

Materialize the segment it contains;

}

Definition: The usefulness of p’s support set, denoted by
US(p), is defined as the ratio of the size of S(p) over the
total size of pages p, p1,p2,- -+, Pn:

size(S(p))
ox(n+1)

where o is the size of a secondary storage page. O

Example. For Version 1 in Fig. 7 we have US(pl) =
US(p2) = US(p3) = US(p4). For Version 2 in the same
figure, we have that p5’s segment consists of 10 elements:
S(p5) = [A,B,C,D,Q,R,E,F,G,H]. The support set of p5 is
pl, p2, pb; thus, US(p5) = (10xb)/(12xb) = 10/12. S(p6)
consists of 7 elements, while its support set is p3, p4, p6; thus,
US(p6) = 7/12.

For Version 3, we find that S(p7) =
[A,B,D,E,F,G,H, J, K, M]; to materialize this segment, we need
to access all the previous pages: pl,p2, p3, p4, p5, p6, p7;
thus UP(p7) = 10/28. Page p8 contains only one entry;
this page is not filled completely since it is the last page of
the last version. By convention, if p is the last page of the
current version and this page is not completely filled yet, we
set US(p) = 1; thus US(p8) = 1 in our example.

To guarantee low I/O cost, we define again a minimum
required usefulness U,,;,, but with a revised page-usefulness
definition. A page p will be called use ful as long as U S(p) >
Upin- The next question is what to do with pages whose
usefulness is below U,,;,. For example, assume that we set
Unmin = 50%. Then we see that every page in Version 1 and
2 of our example is above the threshold. However, page p7
of Version 3 does not satisfy the requirement. Thus, we will
not store the current content of page p7 shown in Fig. 7: In-
stead, the page is expanded to its actual content, by storing
S(p7) = [A,B,D,E,F,G,H,J K,V starting with the current
page p7, and continuing with the two pages that follow. The
rest of Version 3, i.e., (T, 11, 1), is stored after that.

Fig. 12. Adding a new version in the RBV M
scheme

With this usefulness revision, the RBV M scheme of
Fig. 7isactually stored asinFig. 11.Now U S(p7) = US(p8).
We also set U'S(p9) = 1 since this page is not filled yet. Even-
tually, page p9 will be filled with entries from a new Version
4; at this point, the usefulness of US(p9) is recomputed and
if below the threshold the page will be expanded to its actual
content. As illustrated by this example, the usefulness policy
for RBV M often copies segments of larger granularity than
the edit-based usefulness policy. The complete version inser-
tion algorithm can thus be summarized as follows:

Two further refinements are used in the version insertion
algorithm to minimize unnecessary copying. To materialize
page p, we have to access pages p1, ..., Dn; but if p; is also
accessed to materialize the page preceding p it can be excluded
from the count of p. Furthermore, the materialization of the
segment corresponding to p might write two or more pages.
Then we can stop the materialization as soon as the first page
boundary is reached, and return to step 2; the second page
might in fact still be useful, and similar considerations hold
for the pages that follow. Let us use the example in Fig. 11
where the usefulness of page p7 is below U,,;, so its logical
segment must be copied. Instead of materializing the whole
S(p7), the first four elements are first copied and stored into p7.
Then, the remaining logical segments (8:10,6,0),(13:15,8,0),
and (T,11,1) are stored in the next new page, p8. If page p8 is
useful, then there is no need to copy the rest of the elements.
In this case, page p8 is still useless, so the copying continues
till all data pages are useful or the end of Version 3 is met.

4.4.1 Complexity of the RBV M scheme

o Version retrieval I/0 cost. The cost for reconstructing any
given version can be computed as the number of pages
that have to be read into main memory. We next show that
the reconstruction of a version V of size size(V) needs

1 size(V) .
T X —5 — bages, where o denotes the size of a page.

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

Let us assume that the reference-based representation of Ver-
sion V is stored in pages p1, p2, Ps3, « - -» P, and let Sy, Sa, Ss,
-+, Sy, be the respective logical segments for these pages.
Since by construction all these pages are useful, the cost of

materializing a segment, S;, is bound by %(S) The I/O
cost of materializing the complete version is the sum of the
I/O cost of materializing segments S1, Sz, S3, - - -, S, which
is bound by:

1/Upin X (size(S1) + size(S2) + - - - + size(Sy))
where

size(S1) + size(S) + - - - + size(Syp) = size(V)
Therefore, the version retrieval cost of Version V' is bound
by: size(V)/Upin.-

e Storage cost. In fact, the reference-based scheme consists of
three kinds of objects: actual objects, copied objects and refer-
ence records. Actual objects include new objects and updated
objects. Since deleted objects are not removed from storage,
they do not affect the size of the database. The new object part
is bound by Scp,4. With a similar argument as for UBCC, the
total number of copied objects is bound by:
Sehg X T

Finally, the number of reference records is the same as the
number of changes. Therefore, the total size of reference
records is Scpy X K, where K denotes the average ratio be-
tween the size of the reference records and the document ob-
jects. Combining these three parts, the storage of the reference-
based scheme is Scpy X (K + 1_[}mm). That is, the RBV M
storage cost is linear with the total size of changes by a con-
stant determined by the required minimum usefulness Uy,
and the ratio K. The linear cost of the RBV M scheme is
also confirmed by the experimental performance evaluation
discussed in the next section.

5 Performance of the edit-based scheme

We first evaluate the edit-scheme (UBCC) against alternative
schemes proposed in the literature, including:
e The SCCS scheme that has recently been used to archive
scientific data [1];
e The “snapshot” approach that simply keeps a copy of each
document version;
e The RCS scheme;
o The Multiversion B*-tree [28];
e The Partially-persistent list method [31].

The Multiversion BT-tree (MVBT) and the Partially-
persistent list (PPL) methods are discussed in the appendix.
Both schemes are based on the idea of extending the basic
data structure (namely the BT -tree and the list) by making
them partially persistent’. The BT -trees and lists preserve the
document preorder for each version of the document. Both
schemes use a form of page usefulness that is similar to the
edit-based UBCC (i.e., the usefulness of a page is based on
the number of valid records it contains). Thus, each page is
assigned a (preorder) range and is considered useful for as
long as it contains a minimum number of valid objects from

% A data structure is persistent if it maintains its past; it is partially
persistent if only its latest version can be updated [10]

800 ‘ —
Snapshot —+— o
700 + MVBT, 50% Useful ---x--- 0 i
PPL, 50% Useful ---*--- o
Edit-based, 50% Useful = o
= SCCSw/ Index ——-=— .~
@ 600 |- o |
o RCS -, L
= o I P
] ‘ - ———
Q 500 @ 4
2 400 5 i
/3] o
< L
S 300 - S i
] o
> i
200§ i
(T e RS R R R P R R R R LR T
100
Il Il Il Il Il

Version number

9000
8000 | Snapshot —+— ,
MVBT, 50% Useful ---x---
PPL, 50% Useful ---%---
7000 Edit-based, 50% Useful & B
SCCS w/ Index —-m=--
—~ RCS ---o---
$ 6000 o
=) X
g X’X‘
= 5000 |- X E
0 X
Lo) ,X“X'X e *
o 4000 - o x 1
g o x X
& 3000 | B
{5k
2000 DDDDBDEDD o
g-o-88
- om0 ©)|
1000 y . cn om u-cn-Cu o - - O SO Cm
o om-Cw-Cm-CR-CR
0 Il Il Il Il

20 40 60 80 100
Total number of versions

Fig. 13. Version retrieval and storage cost comparison

this range. The SCCS scheme is implemented by storing suc-
cessive versions of a given object sequentially. Note that this
may incur high update cost when inserting a new version; this
problem can be solved, at the cost of some additional storage,
by not filling newly created pages completely. In addition, for
the SCCS scheme we facilitate a sparse index which for each
version identifies all pages with objects valid in this version.

We use a document evolution with the following character-
istics: (i) the size of each version is approximately 100 pages;
(ii) each version changes about 20% from the previous version
(half of the changes are insertions and the other half are dele-
tions); (iii) changes are uniformly and randomly distributed
among data pages; and (iv) the document evolution had a total
of 100 versions. The page size is set to 4,096 bytes.

Figure 13 shows the version retrieval cost (the number of
page 1/O’s needed to reconstruct a version) and the storage
cost (number of pages). In this figure, the minimum useful-
ness parameter for UBCC, MVBT and PPL was 50%, i.e.,
Upin = 0.5. The snapshot scheme clearly has the minimal
version retrieval cost, since each version is already stored in
its entirety on disk. The RCS method needs to read the file
until the target version. Therefore, retrieving later versions
gets more expensive. The version retrieval cost of the SCCS
scheme is also high since when a page is accessed it may pro-
vide very few valid objects for the requested version (at worst,
a single object). The use of the index in SCCS improves the

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

350

Edit-based ——

300 PPL —x— i

250 -

200 -

150

50 B

Version Retrieval Cost (% of answer size)

0 Il Il Il Il
0 20 40 60 80 100

Usefulness Requirement (%)

900

800 -

700

500 -

400

300 -

200

Storage Cost (% of RCS storage)

0 20 40 60 80 100
Usefulness Requirement(%)

Fig. 14. Version retrieval and storage cost vs usefulness

method’s retrieval cost when compared to RCS. The schemes
that use page usefulness (UBCC,MVBT,PPL) have version re-
trieval cost that is proportional to the size of the reconstructed
version (for all three schemes the retrieval cost appears approx-
imately parallel to the horizontal axis since in this experiment,
the average version size remains the same, about 100 pages).
The overhead against the snapshot scheme is because useful
pages may include some non-valid objects for the retrieved
version. Among the three approaches, the edit-based (UBCC)
scheme uses less I/O since the answer is clustered in fewer
pages. Pages in the MVBT and PPL approaches may contain
empty space since they can only store objects in their range.
The MVBT is slightly better than the PPL because PPL uses
some page capacity for the S A arrays.

While the snapshot scheme provided the minimal retrieval
cost, its storage cost is too expensive (at worst it is quadratic).
RCS and SCCS have minimal storage cost since conceptually
both store only the version change information. The space of
SCCS is slightly smaller because RCS explicitly stores delete
records. The space of all the page-usefulness schemes grows
linearly with the number of changes (which increases with
the number of versions). In particular, the partially persistent
schemes (PPL, MVBT) use more space than UBCC where be-
sides deletions, insertions resulting in a page split, also cause
the copying of the old elements into a new page. By contrast, in
the UBCC scheme, copies of old elements can only be the re-
sults of deletions that lower the usefulness of the page below

the threshold. Moreover, the MVBT and PPL schemes “re-
serve” some empty space in a new page for future insertions.
This space may remain unused, resulting in higher storage
cost.

The effect of usefulness. To study the effect of the usefulness
parameter for UBCC, MVBT and PPL, we run the same ex-
periment as above, but for different U,,,;,,. The experimental
results are illustrated in Fig. 14. The performance of the PPL
and MVBT schemes is depicted until U,,,;,, = 50% since this is
the highest usefulness they can achieve. In contrast, the UBCC
scheme can be used with any U,,,;,, < 100%. The version re-
trieval cost is depicted as the percentage of the answer size.
For example, retrieval cost of 140% means that the scheme
accessed 40% more pages than the size of the reconstructed
version. Clearly, as the usefulness increases, a given version
is stored in smaller number of pages (since a page can hold
more valid records) and the retrieval cost decreases. Another
interesting observation has to do with the behavior at very
small U,,,;,,. Note that the UBCC scheme fills up a new page
with records without reserving space for future insertions in
this page. As a result, the usefulness of a UBCC page can only
decrease due to record deletions. A small U,,;, implies that
a page will be considered useful even if it has very few valid
records. For UBCC this means that many pages may have low
usefulness because of deletions. Since these pages are still use-
ful, they are not copied. The answer will be clustered in many
UBCC pages, thus increasing the retrieval cost. In contrast,
fewer pages in the PPL and MVBT schemes will reach small
usefulness since new insertions in the reserved space will in-
crease usefulness. As expected, when the usefulness increases,
the space of all methods increases, too. Figure 14 depicts the
storage cost as a percentage over the (minimal) RCS storage.
Higher U,,,;,, imply that the copying threshold will be reached
faster and thus more copies are made.

Limited resources. Setting the usefulness parameter serves as
an optimization tool for each of the three schemes. For exam-
ple, consider the case of limited system resources (storage).
That is, a version management system wants to improve its
version retrieval performance, but it has only 200% extra free
space. According to Fig. 14, for that space requirement, the
MVBT scheme can guarantee 35% usefulness, PPL 45% use-
fulness, while the UBCC 75% usefulness. Choosing higher
usefulness (UBCC) is definitely preferable since the retrieval
time will be better.

Increasing and decreasing document sizes. Our next experi-
ments examine the cases when a document follows an increas-
ing or decreasing size evolution. We first examine an evolu-
tion where the document increases by 5% at each version. At
each version there are 10% insertions and 5% deletions. Min-
imum usefulness is again set to 50%. The results are shown in
Fig. 15. All page-usefulness schemes have very close version
retrieval performance that is proportional to the version size.
The edit-based storage cost is very close to the minimal stor-
age of RCS and SCCS, because the small deletion percentage
rarely causes UBCC to copy useless pages. The MVBT and

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

1400

Snapshot —+—
1200 - MVBT, 50% Useful ---x--- o9
PPL, 50% Useful ---%--- o
- Edit-based, 50% Useful & o o
g 1000 SCCSwindex — =~ P
@
o
O 800
©
>
2
@ 600
o
=
k=]
5 400
>
200
O Il Il Il Il Il
20 40 60 80 100
Version number
12000
Snapshot —+—
MVBT, 50% Useful ---x---
10000 |- PPL. 50% Useful ------ 1
Edit-based, 50% Useful &
SCCS w/ Index —-m=--
P - X
‘@ 8000 & =7
Q %7
j=2} X
< %
2 X
8 6000 X’XX 4
[} X
(=] X
©)(/X
é ol ex X *
& 4000 -
e x X
* *
XX
2000 wor i
2]
- age‘l?aﬂ",ﬂe.i',uc.‘?;;aaauao
0 1 L |

20 40 60 80 100
Total number of versions

Fig. 15. Version retrieval and storage cost with increasing document
size

PPL both use more space than UBCC because insertions trig-
ger more copies. Observe that while the storage required by
the snapshot scheme grows quadratic with the version number,
the other schemes still use linear storage.

Figure 16 depicts the performance for a document that de-
creases in size as it evolves. Here the document size decreases
by 5% per version, as the result of 5% insertions and 10%
deletions. The version retrieval cost of all page-usefulness
schemes decreases as the version size decreases. Similarly,
SCCS retrieval cost eventually decreases since later versions
have fewer elements and thus less pages are accessed by the
SCCS index. However, the RCS scheme retrieval grows lin-
early with the number of changes. Regarding storage cost, the
UBCC is again the closest to the minimal storage of RCS and
SCCS.

From the above results, we conclude that page usefulness
provides version retrieval cost that is proportional to the size of
the target version at the expense of some extra (linear) space.
Setting the minimum usefulness enables performance tuning.
Furthermore, the edit-based (UBCC) scheme is more robust
than the partially-persistent methods (MVBT, PPL) since it
consumes less space and has better retrieval performance.

300

Snapshot —+—
MVBT, 50% Useful ---x---
250 - PPL, 50% Useful ---%--- b
s Edit-based, 50% Useful -8
w SCCS w/ Index ——m—- e
[e) RCS --0- _o-
4]
o
[8)
K]
2
2
ol
o
c
=]
2
Q
>
Version number
3000
Snapshot —+—
MVBT, 50% Useful ---x--- -
2500 - PPL, 50% Useful - [t
Edit-based, 50% Useful & x/
SCCS w/ Index —-m=- <
= RCS ---o--- e
2 2000 |- e R
g 7
e X
8 1500 1 o g
$ -
g e
s} -
& 1000 |
,/X/
500 |- -
| e @ @ B
R SR BE S S e B
0 L L L L L L L L L
2 4 6 8 10 12 14 16 18 20

Total number of versions

Fig. 16. Version retrieval and storage cost with decreasing document
size

6 Performance of reference-based scheme

We now proceed with an evaluation of the reference-based
scheme. Since we determined that the edit-based scheme is
the most efficient among those discussed in the last section,
we will now compare the reference-based approach against it.

Figure 17 shows the comparison of the two methods using
the original document evolution dataset. We depict also RCS
and snapshot to serve as the baseline cases. The page useful-
ness definition of the reference-based scheme considers the
collective usefulness of the whole segment each page contains.
When the usefulness of a segment falls below the threshold,
several pages are normally involved; this leads to better clus-
tering. On the other hand, pages within a segment can compen-
sate each other on their usefulness; hence some segment pages
may have fewer valid objects. This larger granularity causes its
retrieval cost to fluctuate around the smoother line of the edit-
based scheme. Some valleys in the reference-based curve ap-
proach the performance of the snapshot case. Its peaks exceed
the 150 page level of the edit-based scheme but remain well
below the theoretical worst case of 200 pages (U,in = 0.5%).
Nevertheless, on average, the reference-based and edit-based
schemes have similar retrieval performance. The storage cost
of the two methods is basically identical.

Figures 18 and 19 show the performance results for an in-
creasing and a decreasing document evolution. Again the two

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

300 - : . . .
£ Snapshot —+—
Ref-Based, 50% Useful ---x---
o~ 250 Edit-Based, 50% Useful -—-x--- i
J F RCS =
o)
@
- a |
8 200 ;
©
>
2
1] L ey X A
n:: 150 A o */;75‘"*'9;;*;* x,x',j*{)(v\‘*;/*,;ﬁ,\r\ ;%/,j*&::j)g%(L
S 7 ¥ VAN = A VA
&2 / Y/ N/
4 / Y %
100 §-
50 L 1 |))
20 40 60 80 100
Version number
3000 : i : .
Snapshot —+—
2500 Ref-Based, 50% Useful ---x--- i
Edit-Based, 50% Useful ------
RCS a
K|
g 3 x&é
o 2000 o |
g -
g o
2 1500 *sé"/x |
@] X)(X
S v
o P o8
£ 1000 X e |
o e s
H goa®
R .
B a = °
500 ¥ aee |
0 I |))
40 60 80 100

Total number of versions

Fig. 17. Version retrieval and storage cost with 50% usefulness

schemes perform quite similarly. The reference-based scheme
requires slightly more storage in the increasing document evo-
Iution experiment (Fig. 18) since when a segment is materi-
alized, it corresponds to a larger document portion.

6.1 Indirect versus direct reference records

The reference records used in RBVM are indirect in the sense
that they always refer to the previous version, whether the
referred elements are actually stored there or in an earlier
version. As previously discussed, when materializing a refer-
ence record, the sequence of previous versions are recursively
visited to locate the actual elements. The referencing cost is
controlled by the fact that we apply the usefulness-base copy
technique whenever the cost of materializing a page gets over
a certain threshold.

An alternative scheme which can reduce the referencing
cost is using direct reference records. Instead of always refer-
ring to the previous version, direct reference records directly
refer to the version where the actual elements are located.
For example, in Fig. 6 the reference record (v2.1) is an indi-
rect record where the actual element are physically store in
Version 1. Using a direct reference record, the record will be
represented as (v1.1) which directly points to the actual ele-
ment in Version 1. Therefore, when materializing Version 3,
its first chapter is directly retrieved from Version 1 without

1400 T T T T T
Snapshot —+—
1200 | Ref-Based, 50% Useful ---x-— o9
Edit-Based, 50% Useful ---*--- =
w RCS = =
9 1000 '
@
o
O 800
©
>
Q
© 600
14
<
o
2400
(]
>
200
O 1 1 1 1 1
20 40 60 80 100
Version number
2000 T T T T

Snapshot —+—
Ref-Based, 50% Useful --—x--—-
Edit-Based, 50% Useful ---x--- >
RCS =

1500 T
X %
%\ X/X’x'*'x
D ,x/ e
g x> * o
= X% a8
st o
7] . e
< 1000 o =8 .
(@] e X)
[x> e ¥ a8
=) Jox o8
o A o
] N o
= o) o
%] ot o8
500 o . .
0 1 1 1 1 !
20 40 60 80 100

Total number of versions

Fig. 18. Version retrieval and storage cost with increasing document
size

passing Version 2. However, there are also major drawbacks
with the direct referencing scheme.

The first problem is that the fragmentation of the document
requires more reference records for the direct scheme than the
indirect one. For example, assume that the original version
consists of eleven elements:

(En, Es, Es, E4, E5, Eg, E7, Eg, Ey, Eq1g, Ev1)

and the second version is derived by deleting F4 and Fg. Then,
the RBVM representation with indirect reference records is

(Vh (17 3))a (Vla (57 7))7 (Vlv (9, 11))

and its RBVM representation with direct reference scheme is
the same. Let the third version be generated from Version 2
by deleting element E» and Eg. Then the indirect-referencing
RBVM of Version 3 is

(V2,(1,1)),(V2,(4,4)),(V2,6,9)
while its direct-referencing RBVM representation is
(V1,(1,1)),(V1,(5,5)),(V1,7,7),(V1,9,11)

Typically, therefore, more records are created by the direct
referencing scheme. To better understand this effect, we have
performed three sets of experiments, to determine the total

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

300 T T T T T T T T T

Snapshot —+—
250 Ref-Based, 50% Useful ---x--- |
Edit-Based, 50% Useful ---x---

RCS -8

200

150

100

Version Retrieval Cost (1/0's)

al
o

0
2 4 6 8 10 12 14 16 18 20
Version number
1200 T T T T T T T T T
Snapshot —+—
1000 F Ref-Based, 50% Useful --—x---

Edit-Based, 50% Useful ---x---
RCS

=

©
o
o

Storage Cost (pages)
I I
o o
o o

200

Total number of versions

Fig. 19. Version retrieval and storage cost with decreasing document
size

90000 T T T T T T T T T

80000 |

Direct Pointer Scheme ——
70000 Indirect Pointer Scheme ---x---

60000 |
50000 |
40000

30000 |

Number of pointers

20000

10000 -

O e

e X X e K XK
0 e ¢ ¢ E XXX 1 1 1
10 20 30 40 50 60 70 8 90 100

Total number of versions

XXX

Fig. 20. Reference count growth with 10% insertions and 10% dele-
tions

number of reference records generated by the indirect refer-
encing scheme and the direct referencing scheme. Figures 20,
21, and 22 show the results of these experiments. Figure 20
shows the result of an evolution, where each new version con-
tains 10% insertions and 10% deletions randomly distributed
at various points of the document. As shown, the total num-
ber of reference records generated by the direct referencing
scheme is significantly larger than in the indirect referencing

700000 F T T T T T T T T T

600000
Direct Pointer Scheme —+—

Indirect Pointer Scheme ---x---
500000

400000 [~

300000 [

Number of pointers

200000

100000

XXX XX

P 3 S Y HeF K K KK XX

0 v 4
10 20 30 40 50 60 70 80 90 100
Total number of versions

Fig. 21. Reference count growth with 10% insertions and 5% dele-
tions

4500 T T T T T T

4000

3500 Direct Pointer Scheme ——
Indirect Pointer Scheme ---<---

3000

2500

2000

Number of pointers

1500

1000

500

2 4 6 8 10 12 14 16 18 20
Total number of versions

Fig. 22. Reference count growth with 5% insertions and 10% dele-
tions

scheme. Similar results are obtained for an evolution with in-
creasing document size as shown in Fig. 21 and an evolution
with decreasing document size as shown in Fig. 22. There-
fore, the indirect reference scheme takes less storage than the
direct reference one while the I/O cost of its materialization is
controlled by page usefulness.

7 Conclusion

Versioning schemes for XML documents can play an impor-
tant role in the management of web-based information, and
can unify traditional applications of version management with
new ones. However, traditional techniques, such as RCS and
SCCS, are not up to the task; hence, there is a need for new
and improved techniques that achieve better performance at
the physical level and better integration with XML at the log-
ical level.

For the physical level, we proposed a temporal clustering
technique based on the notion of page-usefulness to trade off
storage efficiency with retrieval efficiency and optimize the
overall performance. By combining this technique with an
edit-based representation, we have proposed the edit-based
scheme that improves on RCS by reducing the average version

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

retrieval cost, at the cost of a small (linear) storage overhead.
Furthermore, our scheme separates the edit scripts from the
document objects to assure faster retrieval.

Then, we introduced the reference-based scheme which
preserves the basic structure of the document, by identifying
the objects shared with the previous version. At the logical
level, this scheme has better properties than the edit-based
scheme; in fact, by using preorder node numbers, a multiver-
sion XML document can be represented as a standard XML
document whose schema or DTD can be constructed automati-
cally from those of the original (single version) document. This
representation is very suitable for encoding the whole docu-
ment history as yet another XML document that can be viewed
on a browser, or exchanged between different sites (transport
level). The representation is also conducive to expressing and
processing efficiently content and evolution queries on multi-
version documents. Furthermore, we have extended the page-
usefulness clustering technique to this representation as well.

A thorough experimental study was presented where the
edit-based schemes was compared against the original RCS
and SCCS schemes, the snapshot scheme (that simply stores
each version in its entirety), the Multiversion Bt-tree, and
the Partially-Persistent List method. We showed that the edit-
based scheme performed the best among these; so we then
compared the reference-based scheme against the edit-based
one and showed that it has the same average performance, with
somewhat larger variations between versions.

A main conclusion that follows from this work is that the
management of multiversion XML documents presents many
research opportunities, and requires new techniques that are
often closer to temporal databases than traditional versioning
schemes (although the need to preserve the document order
and support its complex internal structure makes the prob-
lem quite different from that of traditional transaction-time
databases). In particular, while the techniques presented here
have addressed successfully many issues, they have left many
unresolved. For instance at the storage level, there is the impor-
tant issue of the role that compression can play in improving
the storage efficiency of the archive [1]. Another important
topic left for future research is that of efficient support for
complex queries, including those containing structural joins
(i.e., path expressions). These complex queries provide a re-
search challenge even when multiple versions are not present
[33,39,40]. For multiversion documents this challenge is com-
pounded by the fact that structural queries must be supported
in combination with queries on the evolution of documents.

The temporal aspects of these queries also pose interesting
problems in terms of language constructs that need to be sup-
ported for expressing them. For instance, it is far from clear
that languages such as XQuery [33] can express queries sim-
ilar to those expressible in languages such as TSQL2 [35] on
transaction-time databases.

Acknowledgements. The authors would like to thank the referees
for many suggested improvements, and Stott Parker for bringing the
issue of indirect versus direct references into focus. This research
was partially supported by NSF grants IIS 0070135, IIS-9907477,
EIA-9983445, and the Department of Defense.

A Appendix: the partially persistent approaches

An alternative way to maintain a multiversion document is to
utilize a data structure that preserves the document’s order (for
example a BT -tree or an ordered list). Document versioning is
then reduced to making this data structure partially persistent

[10]. We examine two approaches: (i) using a multiversion
BT -tree; and (ii) using a partially-persistent list.

A.1 Utilizing a multiversion BT -tree

Consider a B*-tree whose leaves contain records with keys 1,
2, 3,.. ., where record [stores the object in the {*® position in
the document preorder. Since each object insertion/deletion
affects the preorder number of all the objects after it, up-
dating this B"-tree becomes very inefficient. For example,
adding/deleting one object in the beginning of the document
would update all positions after this object. This problem can
be resolved if the object positions are encoded in a way not
altered by document changes. One simplistic and straightfor-
ward solution is to encode object positions by an ordered se-
quence of large non-consecutive integers. Then a future inser-
tion between positions = and y can be indexed by a number
that lies between x and y. For example, let the first object in
version V) be associated with integer 100, the second object
with 200, etc. If in version V5 an object is added between the
first two objects, it can be associated with integer 150 and so
on.

The choice of numbers as well as the scheme to associate
new numbers for future insertions depends on the document
evolution. While at worst this scheme can run out of possi-
ble integers (if the number of changes assigned between two
positions are more than the difference between the two inte-
gers associated with them), we do not expect this to happen in
practice especially if large integers are chosen. The advantage
of this simple scheme is that the associated integers maintain
the logical order of the document while at the same time they
can be efficiently indexed by a BT -tree.

There have been various approaches to making a B -tree
partially persistent [26,28,29]. In our experiments we used
the MVBT [28] since its code was readily available to us.
The MVBT is a directed acyclic graph that “embeds" many
BT -trees. It has a number of root nodes, where each root
provides access to subsequent versions of the ephemeral B+-
tree’s evolution. Like all temporal access methods, it appends
data records with lifetime intervals of the form (insertion-
version, deletion-version). Records are clustered together in
pages based on their indexing attribute values (key space) and
their lifetime interval (version space). Index records are ap-
pended with lifetime intervals as well.

With the exception of root pages, a page is “useful” as
long as it has at least d valid records (d is less than b, the
page capacity). Inserting or deleting an object at version V;
is performed by first searching the MVBT for the target leaf
page where this change is to be applied. This search is similar
as in an ephemeral BT -tree, but it also takes into account the
lifetime intervals of index records (so that the page that is
valid for V; is reached). A change is called non-structural if it
is handled within an existing page. A structural change creates
at least one new page.

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

Version List L(1i) 14 SA (d)
-id array ga(c)
2 [k -
i1l i1} SA(p)
; !
12 izl >[i2]4 SA(£)
i4 E E ﬂ ! ig4— i5
. 154,
i5 E E ﬂ n ’:I SA(P') SA(e)
i6 [cpl{pl£p{e] i7 Hish
i "artificial" i8
17 v i
8
Fig. 23. A partially persistent list
(a) (b) example

For an object insertion, if the target leaf page is not full a
new record is inserted in that page and the insertion is com-
pleted. Since the deletion-version of the inserted object is yet
unknown, its record’s lifetime interval is initialized as (V;,
now) where now is a variable representing the ever increas-
ing current version number. If the target leaf page already has
b records a page overflow is detected. For an object deletion,
the data record for the deleted object is identified in the target
leaf page. If the number of valid records in this page is greater
than d then the record’s deletion-version is updated from now
to V; and the deletion is completed. However, if the deletion
causes the leaf page to have less than d valid objects a weak
version underflow is detected [28].

Page overflow and weak version underflow are struc-
tural changes and need special handling. More specifically, a
version-split is performed on the target leaf-page. This is sim-
ilar to the time-split of [26,27]. The version-split on a page
p at version V, is performed by copying to a new page r the
records valid in page p at V;. Page p is considered non-useful
after version V.

The resulting new page has to be incorporated in the struc-
ture. Briefly, there are three cases for handling the new page
r. First, if the number of records in r is between d + e and
b — e (where e is a predetermined constant), page r is directly
inserted in the MVBT. Constant e works as a buffer that guar-
antees that a structural change to the new page r can happen
only after at least e new changes. The page insertion is carried
out by accessing the parent page of page p, marking the index
record pointing to page p as deleted at version V;, and then
inserting a new index record pointing to the new page r. Even
though these changes occur in an index page, they are similar
to insertion and deletion of data records in a leaf-page and
are handled identically. Thus a change can propagate upwards
until a root is reached. The second case is when the result-
ing page r has more records than the specified range; this is
called a strong version overflow and is handled by splitting r
into two pages using a key-split. A key-split simply divides
the records of r using their key attribute value (this is similar
to the traditional page split in a B-tree). The third case is if
page r has less records than the specified range. This is called
a strong version underflow and is handled by merging r with

another “sibling” page. The detailed discussion of the page
split algorithm can be found in [28].

The space used by the above splitting/merging policies is
still linear in the total number of changes S in the docu-
ment’s evolution. If version V; of the B -tree had \S; objects,
then the MVBT reconstructs it with O(log(Scrg/b) + S;i/b)
I/O’s.

A.2 Utilizing a partially persistent list

Various notions of partially persistent lists have appeared in
the temporal database literature. Our discussion follows the
approach outlined in [31] on how to make an ordered list
partially persistent. In [30] a scheme to support non-ordered
partially persistent lists is presented. [29] presents the C-list,
which is a list structure made up of a collection of pages that
contain versions of data records clustered by oid. However,
a C-list solves a different query: “given an oid and a version
interval, find all versions of this oid during this interval."

Let L be an ephemeral list of elements. We assume that
there is a pointer to the top element of the list and that each
element has a next pointer to its right sibling in the list. We are
interested in maintaining the relative positions of the elements
in the list starting from the top of the list. Inserting or delet-
ing an element from L corresponds to finding the position of
this element in L and performing the update. Let L(7) be the
sequence of elements the list had at version V;.

Our aim is to reconstruct L(i) by accessing only pages
that were “useful” during version V;. This can be achieved if
we maintain the list of useful pages. Assume that the very first
version of L is stored sequentially into pages. As deletions
arrive, some of these pages will become non-useful and thus
have to be copied. However, this copying needs to maintain
the list logical order, i.e., the relative positions of the list ele-
ments. Moreover, since insertions can happen anywhere in the
list, some space is needed inside each page for future inser-
tions. Both problems are solved if we use the splitting/merging
policies of the MVBT [28].

Since list reconstruction starts from the top element in the
list, the first page of L must be identified for any given version.
This is easily achieved by an array A, which keeps pointers to

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

the first pages that list L ever had, indexed by the version id. If
the first page in the list changes at version V; (for example this
page became non-useful), this array is updated by a record of
the form: < V;, pointer >, where pointer points to the new
first page. After the first list page at a given version is found,
the second page must be found and so on. This is performed
by keeping a similar array SA(p) for each list page p. Ar-
ray SA(p) keeps records of the form < version, pointer >
whenever the next page of p changed. However, if the next
page in front of page p changes very frequently, array SA(p)
can become very large. This affects the list reconstruction,
since at worst a logarithmic search would be needed for each
S A array in the list. To solve this problem, we allow an S A
array to have up to C entries (C'is a constant greater than 1). If
the next page after a page p changes more than C' times while
p is a useful page, then p becomes “artificially” useless (even
if it still has enough valid records). A new page p’ is created
that copies all valid records of p, but accompanied with an
empty SA(p’) array. Page p’ replaces p in the list of useful
pages. An example appears in Fig. 23.

In practice, array SA(p) can be implemented as part of
page p. This limits the number of data records that a page can
hold, but it allows for fast reconstruction since the next page
can be found without further I/O’s. It can be shown that this
technique still maintains linear space. Moreover, version V; is
reconstructed with O(log(Scng/b) + S;/b) VO’s.

References

1. P. Buneman, S. Khanna, K. Tajima, W.C. Tan (2002) Archiving
scientific data. SIGMOD 1-12
2. D. Beech, B. Mahbod (1988) Generalized version control in an
object-oriented database. IEEE 4th International Conference on
Data Engineering, Feb
3. F.W. Burton, J.G. Kollias, D.G. Matsakis, V.G. Kollias (1990)
Implementation of overlapping B-trees for time and space ef-
ficient representation of collections of similar files. Comp J
33(3):279-280
4. M.J. Carey, D.J. DeWitt, J.E. Richardson, E.J. Shekita (1986)
Object and file management in the EXODUS extensible
database system. In: Proc. VLDB Conference, pp 91-100
5. S.Chawathe, H. Garcia-Molina (1998) Representing and query-
ing changes in semistructured data. Proc. International Confer-
ence on Data Engineering, pp 4-13.
6. S. Chawathe, S. Abiteboul, J. Widom (1999) Managing histor-
ical semistructured data. TAPOS 5(3):143-162
7. S.-Y. Chien, V.J. Tsotras, C. Zaniolo (2000) Version manage-
ment of XML documents. WebDB 2000 Workshop, Dallas, Tex.,
USA
8. S.-Y. Chien, V.J. Tsotras, C. Zaniolo (2001) Efficient manage-
ment of multiversion documents by object referencing. UCLA
Tech. Rep. No 010024, June
9. D.E. Knuth (1998) The art of computer programming, vol.
1: fundamental algorithms. Addison-Wesley, Reading, Mass.,
USA
10. J.R. Driscoll, N. Sarnak, D. Sleator, R.E. Tarjan (1989) Making
data structures persistent.] Comput Syst Sci 38:86-124
11. M.C.Easton (1986) Key-sequence data sets on inedible storage.
IBM J Res Dev 30(3):230-241
12. R.H. Katz, E. Change (1987) Managing change in computer-
aided design databases. Proc. VLDB Conf., Brighton, UK, Sep
13. D. B. Leblang (1994) The CM challenge: configuration man-
agement that works. In: W.F. Tichy (ed) Configuration manage-
ment. Wiley, New York, pp 1-38

14. A.Marian, S. Abiteboul, G. Cobena, L. Mignet (2001) Change-
centric management of versions in an XML warehouse In: Proc.
27th VLDB, Rome, Italy, Sept

15. G. Ozsoyoglu, R.T. Snodgrass (1995) Temporal and real-time
databases: a survey. IEEE Trans Knowl Data Eng 7(4):513-532

16. W.F. Tichy (1985) RCS — A system for version control. Software
Pract Exp 15(7):637-654

17. V.J. Tsotras, N. Kangelaris (1995) The snapshot index, an I/O-
optimal access method for timeslice queries. Inf Syst 20(3):237—
260

18. P.J. Varman, R.M. Verma (1997) An efficient multiversion ac-
cess structure. IEEE Trans Knowl Data Eng 9(3):391-409

19. World Wide Web Consortium (1999) XML Path Language
(XPath) Version 1.0. Nov. 16. See http: //www. w3. org/ TR/
xpath.html

20. WWW Distributed Authoring and Versioning (webdav) (2002)
See: http://www. ietf. org/ html. charters/ webdav-charter. html

21. XML Schema (2002) World Wide Web Consortium. See:
http://www. w3. org/ XML/ Schema

22. S.J. Yoo, P.B. Berra, Y.K. Lee, K. Yoon (1996) Version man-
agement in structured document retrieval system. Proc. 8th Int.
Conf. Software Engineering and Knowledge Engineering, pp
537-544

23. K. Zhang (1995) Algorithms for the constrained editing dis-
tance between ordered labeled trees and related problems. Pat-
tern Recognition 28(3):463-474

24. M.J. Rochkind (1975) The source code control system. IEEE
Trans Software Eng SE-1:364-370

25. G. Cobena, S. Abiteboul, A. Marian (2002) XyDiff
Tools detecting changes in XML documents. http://www-
rocq.inria.fr/~cobena

26. D. Lomet, B. Salzberg (1989) Access methods for multiversion
data. Proc. SIGMOD. pp 315-324

27. VJ. Tsotras, N. Kangelaris (1995) The Snapshot Index: an
I/0-Optimal access method for timeslice queries. Inf Syst
20(3):237-260

28. B. Becker, S. Gschwind, T. Ohler, B. Seeger and P. Widmayer
(1996) An asymptotically optimal multiversion B-tree. VLDB
J5(4):264-275

29. P. Varman, R. Verma (1997) An efficient multiversion access
structure. IEEE TKDE 9(3):391-409

30. G. Kollios, V.J. Tsotras (2002) Hashing methods for temporal
data. IEEE TKDE (to appear)

31. A.Kumar, V.J. Tsotras, C. Faloutsos (1998) Access methods for
bi-temporal databases. IEEE Trans Knowl Data Eng 10(1):1-20

32. I Tatarinov, Z.G. Ives, et. al (2001) Updating XML. In: Proc.
ACM SIGMOD Int. Conf. on Management of Data, pp 413424

33. XQuery 1.0 (2002) An XML query language
http://www.w3.org/TR/xquery/

34. J.D. Ullman (1988) Principles of database and knowledge-base
systems, vol. 1. Computer Science, New York

35. C.Zaniolo, S. Ceri, C. Faloutsos, R. Snodgrass, R. Zicari (1997)
Advanced database systems. Morgan Kaufmann, San Francisco

36. National Archives of Australia’s Policy Statement Archiv-
ing Web Resources (2002) A policy for keeping records
of web-based activity in the commonwealth government.
http://www.naa.gov.au/recordkeeping

37. B. Kahle, J. Alexa, et al (2002) The Internet archive
— the wayback machine — surf the Web as it was.
http://www.archive.org/index.html

38. M.A. Noronha, L.G. Golendziner, C.S.D. Santos (1998) Ex-
tending a structured document model with version control. Proc.
Int. Database Engineering & Applications Symposium, pp 234—
243

39. D. Srivastava, S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M.
Patel, Y. Wu (2002) Structural joins: a primitive for efficient
XML query pattern matching.. In: Proc. 18th International Con-
ference on Data Engineering (ICDE 2002), pp 141-152, IEEE
Computer, New York

40.

41.

42.

S.-Y. Chien et al.: Efficient schemes for managing MultiversionXML documents

Q. Li, B. Moon (2001) Indexing and querying XML data for
regular path expressions. In: Proc. VLDB 2001, Roma, Italy,
September, pp 361-370

J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. J. DeWitt,
J. F. Naughton (1999) Relational databases for querying XML
documents: limitations and opportunities. In: Proc. VLDB, pp
302-314

D. Florescu, D. Kossmann (1999) Storing and querying XML
data using an RDBMS. Data Eng Bull 22(3)

43.

44.

S.-Y. Chien, V.J. Tsotras, C. Zaniolo, D. Zhang (2002) Efficient
complex query support for multiversion XML documents. In:
Proc. 8th Int. Conference on Extending Database Technology
(EDBT 2002), Prague, Czech Republic, pp 161-178

S.-Y. Chien, V.J. Tsotras, C. Zaniolo (2001) Efficient manage-
ment of multiversion documents by object referencing. In: Proc.
VLDB’01, Roma, Italy, Sept

