
Harvesting Domain Specific Ontologies from Text
Hamid Mousavi

CSD, UCLA
hmousavi@cs.ucla.edu

Deirdre Kerr
CRESST, UCLA

dkerr@cse.ucla.edu

Markus Iseli
CRESST, UCLA

iseli@cse.ucla.edu

Carlo Zaniolo
CSD, UCLA

zaniolo@cs.ucla.edu

Abstract—Ontologies are a vital component of most knowledge-
based applications, including semantic web search, intelligent
information integration, and natural language processing. In
particular, we need effective tools for generating in-depth on-
tologies that achieve comprehensive converge of specific ap-
plication domains of interest, while minimizing the time and
cost of this process. Therefore we cannot rely on the manual
or highly supervised approaches often used in the past, since
they do not scale well. We instead propose a new approach
that automatically generates domain-specific ontologies from a
small corpus of documents using deep NLP-based text-mining.
Starting from an initial small seed of domain concepts, our
OntoHarvester system iteratively extracts ontological relations
connecting existing concepts to other terms in the text, and adds
strongly connected terms to the current ontology. As a result,
OntoHarvester (i) remains focused on the application domain,
(ii) is resistant to noise, and (iii) generates very comprehensive
ontologies from modest-size document corpora. In fact, starting
from a small seed, OntoHarvester produces ontologies that
outperform both manually generated ontologies and ontologies
generated by current techniques, even those that require very
large well-focused data sets.

I. INTRODUCTION

By introducing concepts and their relations, ontologies
provide a critical and necessary information structure that
facilitates the processes of sharing, reusing, and analyzing
domain knowledge in Semantic Web and other knowledge-
based systems [10]. This has given rise to ambitious systems,
such as FreeBase [5], DBPedia [4], YaGo2 [12], and ProBase
[36], that support general ontologies alongside their large-
scale knowledge bases. However, in spite of their size and
breadth, current systems do not provide comprehensive enough
ontologies for most applications requiring domain-specific
knowledge. Indeed, the need for more complete ontologies
has motivated much research work in recent years.

Many existing domain-specific ontology generators use
manual or highly supervised techniques [6][33][26][7][30]
[35]. Although these approaches make it easier to incorporate
knowledge from domain-experts, their high demands on time
and resources impair their practical scalability. To address this
problem, automatic or semi-automatic approaches have been
proposed, using statistical techniques, occasionally combined
with shallow NLP-based methods [20][29][3][28][8]. These
automatic approaches have achieved a fair amount of success,
but have also encountered several limitations. In fact, as stated
in Poon et al. [28], none of the existing techniques have
achieved a higher accuracy than 91%. Moreover to reach
these relatively high levels they require large training data sets

highly focused on the domains of interest. A simple analysis
of these limitations suggests that these issues rise due to the
inability of the mentioned approaches to take full advantage
of the linguistics morphologies in the text. This observation
has inspired the design of our OntoHarvester system, that
uses deep NLP analysis to automatically generate domain-
specific ontologies from unstructured text. In this paper, we
describe this approach, and show that it outperforms previous
approaches in terms of accuracy and coverage.

OntoHarvester starts with an initial ontology (Seed) and
iteratively extends it with new terms carefully mined from the
input text. At each iteration, OntoHarvester only accepts new
terms that are semantically connected to the current concepts.
In this way, OntoHarvester remains focused on the specified
domains and achieves high resistance to noise. On the other
hand, since the semantic connections are mined through a
deep NLP-based technique, the system is able to generate very
comprehensive ontologies from small corpora. This represents
a major improvement over other automatic techniques, which
require large corpora to generate domain-specific ontologies,
as shown in detailed comparisons presented later in the paper.

The main tasks performed in each iteration by OntoHarver-
ster can be summarized as follows:

1) Building TextGraphs: This task is performed by using
our text-mining system SemScape [22][24]. SemScape uses a
pattern-based technique, to capture candidate terms and their
grammatical links in the text, and represents them as weighted
hyper-graphs, called TextGraphs.
2) Extracting Ontological Relations: OntoHarvester uses
graph patterns (Graph Domain or GD Rules) similar to
those of Hearst’s [11] to extract ontological relations (initially
part of and type of relations).
3) Extracting Concepts: The ontological relations are used
to detect candidate terms that are strongly connected to the
current concepts in the ontology. These terms are then added
to the current ontology.
4) Finding New Relation Types: In this step, OntoHarvester
finds new ontological relation types between currently ac-
cepted concepts. These new relation types will help OntoHar-
vester find more related concepts in the next iterations.

More specifically, we present the following contributions:
• We propose OntoHarvester, and explain how it gen-

erates comprehensive domain-specific ontologies from
very noisy corpora. New terms are recognized and in-
corporated into the ontology on the basis of (i) their

Fig. 1. Part of the TextGraph for our motivating example. For simplifying
our discussion, we do not show the confidence of the links in this graph.

frequency and correctness confidence and (ii) the strength
of their connections with existing concepts (An important
difference from most of the existing works that only use
(i)). The connections are generated using Graph-based
patterns (Graph Domain or GD rules). This represents
a significant improvement over existing pattern-based
techniques that rely on tree-based patterns or regular
expressions. The patterns are all available in [23].

• We present a novel technique to automatically suggest
new possible domain-specific ontological relation types
to improve the final Ontology. This is another feature
differentiating OntoHarvester from existing works which
mostly use predefined relation types.

• To provide a more clear insight on the quality of the
generated ontologies, we use an application-focused eval-
uation technique to evaluate our system. To this end,
we implement a “topic identifier” system that mainly
uses an ontology to suggest topics for a given piece of
text. The results indicate that the ontology created by
OntoHarvester can significantly improve the performance
of applications using the ontology. Moreover, extensive
experiments to measure precision and recall on several
application domains also show significant uniform im-
provements over previous approaches.

II. FROM TEXT TO TEXTGRAPHS

Since OntoHarvester uses the SemScape text mining frame-
work [22] [24], we next give a short overview of this frame-
work. The ultimate goal of SemScape is to convert text into a
machine-friendly weighted graph structure, called TextGraph,
which contains grammatical links between terms and words
in the text. With TextGraphs, more effective and efficient
algorithms can be designed to extract knowledge from text
by combining graph-based and statistical methods. To better
understand this process, we use the following motivating
sentence throughout the paper:

Example: “An algebraic equation, such as a linear or nonlinear
equation, is an expression that contains variables and a finite number
of algebraic operations.”

To generate TextGraphs, the following tasks are performed:
Task 1: After preprocessing the text and partitioning it into its
sentences, SemScape parses the sentences with a probabilistic

parser [2] and generates their parse trees (PTs). For each
sentence, the framework considers more than one parse tree
to improve the quality of the final TextGraphs.
Task 2: Using about 135 tree-based patterns (TD rules),
SemScape annotates each node in the PTs with information
referred to as Main-Parts (MPs). MPs carry up hidden infor-
mation from the lower branches of PTs to the upper nodes
during preprocessing time. Thus, MPs reduce and simplify
the required higher-level mining patterns/rules, resulting in
an overall faster text mining process. More specifically, the
MP for noun phrase np in a parse tree contains all possible
single- or multi-word terms (sometimes called candidate terms
in the literature) which np may be representing. E.g., the noun
MPs for “linear and nonlinear equation” are “equation”, “linear
equation”, and “nonlinear equation”.
Task 3: After annotating PTs, SemScape uses around 270 TD
rules to generate grammatical links between words and candi-
date terms. For instance, we generate links such as <equation,
subject of , is>, <algebraic equation, subject of , is>, <linear,
property of , equation>, etc. These links are also assigned a
confidence value, based on SemScape’s confidence on the
correctness of the patterns generating them. By integrating
these links, SemScape generates the TextGraphs such as the
one depicted in Figure 1.
Task 4: SemScape also provides techniques for Anaphora
and Co-reference Resolution to improve the TextGraphs by
replacing pronouns and coreferences with the terms they are
referring to [23] [24]. E.g., the pronoun “that” in the running
example is resolved with “expression”.

Since both sets of mentioned TD rules (in tasks 2 and 3)
are syntactical, not semantic, they are domain-independent. As
a result, they can be used as-is in descriptive documents for
new domains. This claim is verified in Section IV, where we
used 4 different domains to evaluate our system.

A very important feature of this framework is the ability
to adopt an ontology and provide more related candidate
terms with respect to that ontology. To understand why this is
important, notice that for complex noun phrases (NPs) there
might be several possible candidate terms. Not all of these
candidate terms are useful or meaningful. Thus, suggesting
all of them as MPs will lead to a very large set of candidate
terms which lowers the efficiency. To prevent this problem,
if the system is fed with an ontology, say O, SemScape only
generates candidates terms that either i) contain less than three
words, ii) are part of an existing concepts in O, or iii) contain
a concept from O. In many cases this generates all possible
candidate terms; however for many long noun phrases, this
helps reduce the size of the TextGraphs.

As shown in Figure 1, all the candidate terms which are
also a concept in O are tagged with their concepts in the
TextGraphs. For instance, nodes “expression”, “equation”,
“number”, and “variables” are in O and tagged with their
corresponding concepts. Notice that the corresponding concept
of a term may be a synonym or alias (e.g., “variables” is an
alias for “variable”).

III. ONTOLOGY GENERATION

Once the TextGraphs (TGs) are created for the given corpus
(τ), OntoHarvester starts its main discovery loop by iterating
over the following three main steps.

• Extracting Relations: As explained in Section III-A,
OntoHarvester extracts ontological relations between the
existing terms in TGs at the beginning of each iteration.
For instance, from the TextGraph of our running exam-
ple, OntoHarvester is able to generate relations such as
<algebraic equation, type of , expression>, <linear equation,
type of , equation>, <variables, part of , expression>, etc.

• Extracting Concepts: Next, OntoHarvester detects new
concepts and aliases using those extracted relations that
connect a concept in the current ontology (O) to a
non-concept term in TGs (Sections III-B and III-C).
In our running example, considering the above men-
tioned relations and the fact that “equations” is already
a concept, OntoHarvester accepts “linear equation” (and
similarly “nonlinear equation” and “algebraic equation”) as
new concepts.

• Suggesting New Relation Types: Before starting the next
level, OntoHarvester extract new relation types using
semantic links provided in TextGraphs (Section III-D).
OntoHarvester initially starts with three types of onto-
logical relations: type of , part of , and rename. Later at
the end of each iteration, it finds new ontological relation
types by considering frequently observed semantic links
between current concepts in O.

The key idea in above steps is to extend the current ontology
(O) only with terms highly related (connected) to O. In this
way, as opposed to similar systems [34], OntoHarvester is
able to stay focused and generate highly related concepts
(to the specified domain) from a noisy corpus. The domain
is essentially specified by some of its concept in the initial
ontology, O0. We should note that our experiments in Section
IV indicate that O0 does not need to be large at all. Usually
a handful of initial concepts and a small corpus suffice for
OntoHarvester to generate a well-focused ontology.

In theory, OntoHarvester stops its iterations once no new
concept is found. However, iterations at the end of the tail
normally produce very few new concepts. Thus, in practice, we
stop the iterations either i) when a certain number of iterations
are performed or ii) when the number of newly generated
concepts are less than a predefined threshold (minc).

A. Extracting Ontological Relations

To generate ontological relations between terms in the
TextGraph of each sentence in τ , we use graph domain
(GD) patterns/rules described next. Using a syntax similar
to SPARQL [1], GD rules are used to specify and detect
patterns in TextGraphs which indicate particular fragments
of knowledge. In our case, we are interested in using GD
rules in order to find taxonomic relations, namely type of
(IS A) and part of (HAS A). For instance, consider the re-
lation <algebraic equation, type of , expression> in our running

Fig. 2. Pattern Graph for Rule 1.

example. To extract such a link from our motivating example,
the following GD rule is used:
——————————- Rule 1. ——————————-

SELECT (?1 “type of” ?3)
WHERE {

?1 “subj of” ?2.
?3 “obj of” ?2.
NOT(“not” “prop of” ?2).
NOT(“no” “prop of” ?1).
NOT(“no” “prop of” ?3).
FILTER (regex(?2, “ˆisˆ|ˆareˆ|ˆwasˆ|ˆwereˆ|ˆbe*”, “i”)) }

————————————————————————–
As shown in Figure 2, Rule 1 specifies a pattern in which

two nodes (labeled ?1 and ?3) are connected through a third
node (?2) that represents any tense of the verb “to be”. The
NOT parts filter out the negative sentences; This is usually a
challenging task in most current systems. Rule 1 catches the
following four results from the TextGraph in Figure 1:

• <equation, type of, expression>,
• <algebraic equation, type of, expression>,
• <equation, type of, that>, and
• <algebraic equation, type of, that>.
For the last two relations, OntoHarvester uses SemScape’s

Anaphora Resolution component to resolve the pronoun “that”
and replace it with its resolved term (for this case “expression”).
If no resolution is found, the last two relations will be rejected,
since the term “that” is in our black list of concepts, alongside
all other pronouns. For the above case, pronoun resolution
results in re-generation of some of the exiting relations.
However, Rule 2 shows how pronoun resolution can also
generate new relations which most existing works are not able
to capture.
——————————– Rule 2. ——————————–

SELECT (?1 “part of” ?3)
WHERE {

?3 “subj of” ?2.
?1 “obj of” ?2.
NOT(“not” “prop of” ?2).
NOT(“no” “prop of” ?1).
NOT(“no” “prop of” ?3).
FILTER (regex(?2, “ˆinclude*|ˆcontain*|ˆconsist*|...”, “i”)) }

————————————————————————–
This rule has a very similar structure to Rule 1, but here

it defines a pattern for subjects and objects connected with a
verb indicating inclusion (e.g. include, contain, and consist).
For our example this rule generates relations such as:

• <variables, part of, that>
• <finite number of algebraic operations, part of, that>

Now, by resolving “that” to “expression”, OntoHarvester
generates new relations such as:

• <variables, part of, expression>
• <finite number of algebraic operations, part of, expression>

In OntoHarvester, we have generated 48 GD rules for
taxonomic relation extraction [23], and our experiments in
Section IV show that these powerful rules can be used (with
no changes) in different domains. Out of these 48 rules, 30
are for type of relations and the rest are for part of.
Combining the Relations: Each of the extracted relations
from the GD rules introduced earlier are assigned with a
correctness confidence. The confidence value of a relation
generated from pattern p is set to the minimum confidence
among the edges in the matching graph for patten p. After
applying the GD rules over all TextGraphs, we combine the
generated ontological relations from different TextGraphs. The
combination process of relations confidence is very similar to
that for TD rules; Since we need to keep the confidence values
below 1, OntoHarvester uses the formula C=C1+(1-C1)×C2

to combine the confidence of two relations having C1 and C2

as their respective confidence values. It is easy to see that
1 ≥ C ≥ C1 and 1 ≥ C ≥ C2.

That is, each time we encounter new evidence for an
existing relation, we increase its confidence in proportion
to the new relation’s confidence. Moreover, for each unique
relation, we store its frequency, which measures the number
of times this relation is extracted from different sentences.

Relations between concepts in O whose confidence and
frequency exceed confidence threshold (Conf) and frequency
threshold (Freq) are added into ontology O. Therefore, we
will not include relations with high confidence but low fre-
quency, inasmuch as insufficient evidence exists for them.
Symmetrically, relations with high frequency and low con-
fidence will also not be accepted.

B. Extracting Concepts

As mentioned previously, nodes in TextGraphs can be
concepts, non-concept (or candidate) terms, and other words
in the text such as verbs, articles, etc. Thus we need to
ascertain which of the current candidate terms are actually new
concepts. Most previous works rely on statistical or frequency-
based techniques to accept candidate terms as concepts, and
require large corpora to perform satisfactory. OntoHarvester
instead exploits the ontological relations generated in the
previous section to detect new concepts. The main intuition
in OntoHarvester is that if a candidate term is a concept
in the domain of τ , it should be connected to some other
concepts of the domain through one or more relations. Thus,
OntoHarvester accepts a term as a new concept if it has a
“strong connection” to other existing concepts in O. Here,
by a strong connection, we mean that the relations from the
new term to existing concepts have frequency and confidence
values that are respectively greater than Freq and Conf .

With this intuition, all ontological relations connecting any
concept in O to a candidate term, say CTi, are retained
and their confidence and frequency are combined exactly
as described in the previous section. Now, CTi’s with high
frequency and confidence are accepted as new concepts, pro-
viding that they do not contain: 1) a word from the black
list (e.g. same, an, etc.), 2) an attributive adjective (e.g. short,

similar, etc.), 3) a comparatives or superlative adjective, 4)
a verb, an adverb, or a pronoun, and 5) a numeric or a
symbol. After these adjustments, we accept those candidate
terms whose confidence and frequency are larger than our pre-
specified thresholds, and add them to O.

C. Extracting New Aliases

A single concept may have several “names”. Research
shows that people use different names for the same concept
more than 80% of the time [9]. Abbreviations, variations of the
term (e.g. plural form), acronyms, aliases, etc. may be used to
address the concepts. To find these different names for same
concepts, OntoHarvester uses heuristics explained next.

We first directly use either TD or GD rules to find aliases
explicitly mentioned in the text. (e.g. “a node may be called
a vertex.”). This technique considers aliases as a new type of
ontological relations as in Section III-A. Currently we have
generated 29 TD rules and seven GD rules for finding such
relations respectively in annotated parse trees and TextGraphs.
If two concepts are “strongly” connected through type of in
both directions, they will be considered aliases of each other.
(e.g. <edge, type of, side> and <side, type of, edge> means
that “side” and “edge” are aliases.) We also use synonym
information from WordNet and Wikipedia Redirect pages
to detect aliases between concepts in the current ontology.
Finally, adjustments similar to those discussed in the previous
subsection will be applied to pick the final aliases. We group
all the aliases of the same concept and (randomly) consider
one of them as the head of the group. In the next iteration, at
the concept annotation time, we use the head of each group
for tagging any of the aliases in that group.

D. Extracting New Relation Types

SemScape is also able to generate general semantic links
between the terms in the TGs [21][24]. The most prominent
example of such semantic links is the <subject, verb, object>
link, in which the verb in a sentence is connecting its subjects
to its objects. Using these links, OntoHarvester detects new
ontological relation types between exiting concepts. These
new relation types will be used in the next iteration of the
OntoHarvester to find more related concepts.

Let RT be the set of current ontological relation types.
RT initially contains type of , part of , and rename relation
types. The average number of relations in O for these relation
types is called avgRT . Also, let fsl be the number of time
the semantic link sl is generated between concepts in the
current ontology O. Thus, for each sl, if fsl is greater than
avgc×avgRT , OntoHarvester adds sl to the the current relation
types (RT). Where, avgc is a constant factor for tuning the
number of newly found relation types. Our experiments show
that if avgc > 1, OntoHarvester will find at most three new
relation types (which are “of ”, “be”, and “and”). It is also
important to mention that the newly found relation types
may not always resemble any specific ontological relation.
Nevertheless, they are very useful for connecting concepts

TABLE I
ONTOHARVESTER (OH) VS. CRCTOL ON PGT DATA SET. (Prob=.98)

Freq Total Precision Recall F-Score
Concepts-OH 4 1307 92.9% 41.0% 56.9%
Concepts-OH 5 1069 93.0% 35.5% 51.4%
Concepts-OH 6 925 93.1% 23.0% 36.9%
Concepts-CRCTOL N/A N/A 92.8% 4.1% 7.8%
Relations-OH 4 2587 83.8% 25.0% 38.5%

of the same domain. That is, they will help significantly in
discovering new concepts for the specified domain.

IV. EXPERIMENTAL RESULTS

We evaluate OntoHarverster’s performance using manual
and automatic techniques in this section. All experiments are
performed on a single machine with 16 cores of 2.27GHz and
16GB of main memory running an Ubuntu12. On average,
our system spends 3.07 seconds for parsing each sentence on
a single CPU (5.2 sentences per second). The data sets1, used
in our evaluations, are as follows:

• SFF: The first data set is actually Chapter 5 of the
book entitled “Naval Shiphandler’s Guide”. This data
set, referred to as SFF (for Ship Fire Fighting), contains
around 2,200 paragraphs and 5,000 sentences.

• PGT: The second data set is the PGT data set that was
also used in [14]. It contains the reports on “Patterns of
Global Terrorism” for years 1991-20022 for a total of
about 3,000 paragraphs and 8,000 sentences.

• MATH: The third data set is much larger than the
other two and contains 24,184 long abstracts (≈172K
sentences) of mathematics related pages in Wikipedia. To
generate this data set, referred to as MATH, we collected
pages in Wikipedia for which one of their ancestor
categories belongs to the “mathematics” category.

• ANIM: Similarly, a forth data set, called ANIM is cre-
ated. This data set contains 11966 long abstracts (≈71K
sentences) for pages having ancestor category “animal”.

The last two data sets present challenging test cases since
they are very noisy. For instance a careful analyses of the
MATH data set shows that less than 45% of those pages
describe concepts directly related to mathematics. In fact,
several pages in this data set actually belong to related topics,
such as physics, computer science, astronomy, book titles,
universities, people names, etc. We should add that the GD
patterns for relations extraction are created only once and
independently from these data sets. For each data set, we also
generated one or two initial ontologies (seeds) as follows:

• OAnim: It contains: Animal, Mammal, Fish, Bird, and Insect.
• Osff short: It contains: AFFF (Aqueous Film Forming Foam),

Extinguisher, Fire(s),Firefighting, Firemain, Hose, Nozzle,
Party, Smoke, Ventilation, and Water.

• Osff long: It contains 150 concepts and 20 aliases. The
index of the “Naval Shiphandler’s Guide” book is used
to create this ontology.

1Datasets and results are available at http://semscape.cs.ucla.edu
2Downloaded from the FSA: http://www.fas.org/irp/threat/terror.htm

TABLE II
THE IMPACT OF THE SEED SIZE FOR SFF.

Seed Total No. Precision
Concepts Osff small 1131 90.0%
Concepts Osff large 1238 90.9%
Aliases Osff small 187 91.5%
Aliases Osff large 216 94.9%
Relations Osff small 2515 76.1%
Relations Osff large 2770 76.4%

• Opgt: It contains: Attack(s), Bombing(s), Hostage(s), Inci-
dent(s), Target(s), Terrorism, Terrorist(s), Terrorist group, and
Threat(s).

• OMath: It contains 877 concepts and 186 aliases which are
manually extracted from Common Core State Standards
for Mathematics as part of other projects3.

A. OntoHarvester vs. CRCTOL

We first compare OntoHarvester’s performance with CRC-
TOL [14]–one of the few works which uses a deep NLP-
based approach to generate high-quality domain-specific on-
tologies. CRCTOL provides a natural test bed for compar-
ison experiments, since it obtains the most accurate results
among previous approaches and has both precision and recall
computed on a publicly available data set (PGT). In order to
compare OntoHarvester’s performance with CRCTOL, we ran
OntoHarvester for 10 iterations starting by Opgt.

To measure the precision of our results, we manually graded
10% of the generated concepts and relations. As for recall,
we found 200 concepts and 100 relations related to the global
terrorism domain from the PGT documents for the year 1991.
Then, we checked these concepts and relations against the
ones OntoHarvester has generated to compute the coverage4.
Table I depicts the comparative results for the extracted
concepts of these two approaches. The recall and F-Score of
OntoHarvester is significantly higher than those for CRCTOL,
while the precision is slightly improved. This improvement is
mainly due to the fact that, as opposed to CRCTOL and many
similar techniques, OntoHarvester uses ontological relations to
find more related concepts to the domain, and gradually extend
the ontology. In this way, many wrong or unrelated concepts,
which are frequently mentioned in the text, are eliminated
since they are not semantically connected to the current
Ontology. On the other hand, CRCTOL learns the concepts
in a single phase and independently from the relations. Thus
to avoid wrong concept and improve its accuracy, CRCTOL
needs to increase the frequency threshold which consequently
reduces the number of generated results. We expect similar
improvement for the extracted relations, but unfortunately no
result is reported for relations by CRCTOL.

B. The Impact of Seed’s Size

To study the impact of seed’s size, we ran OntoHarvester
on SFF using the large and small seeds (Osff large and
Osff small) considering the same thresholds mentioned earlier.

3For more information visit: http://www.cse.ucla.edu/.
4Similar annotation is done for CRCTOL, but our efforts to contact the

authors failed.

TABLE III
THE PRECISION/RECALL RESULTS OF RUNNING ONTOHARVESTER ON

DATA SETS FROM DIFFERENT DOMAINS.
Data Set Total Precision Recall F-Score
Concepts-SFF-SmallSeed 1,131 90.0% - -
Concepts-SFF-LargeSeed 1,238 90.9% - -
Concepts-PGT 1,307 92.9% 41.0% 56.9%
Concepts-MATH 19,476 83.6% 51.7% 63.8%
Concepts-ANIM 6,595 82.3% - -
Relations-SFF-SmallSeed 2,515 76.1% - -
Relations-SFF-LargeSeed 2,770 76.4% - -
Relations-PGT 2,587 83.8% 25.0% 38.5%
Relations-MATH 26,814 87.4% - -
Relations-ANIM 2,987 81.2% - -

As shown in Table II, although the smaller seed contains only
10 concepts, rather than 150, starting from this much smaller
seed, we were able to generate 91.3% of concepts one can
generate by starting from the larger seed. Similar results hold
for extracted links and aliases. Moreover, the accuracy of the
results was not significantly affected. This simply verifies that
users do not need to spend a lot of time creating the seed: A
few domain-specific concepts and a small corpus are sufficient
for OntoHarvester to provide high-quality ontologies.

C. OntoHarvester on Various Domains

We ran OntoHarvester for our four data sets and the
precision and recall results are included in Table III. For
all experiments, we ran 10 iterations and set the confidence
threshold (Conf) to .98. As for the frequency threshold, we
used Freq=4 for SFF and PGT, Freq=5 for ANIM, and
Freq=6 for MATH to be proportional to the size of data sets.

Table III provides the precision of results obtained for vari-
ous test sets. These results were derived by grading randomly
selected samples with the help of four human graders. The
samples’ size was always 500 items or more. As shown in
Precision column, OntoHarvester provides high-quality results
for all four different domains. The provided accuracy for both
concepts and relations in these cases is quite steady showing
that OntoHarvester is general and domain-independent.

It is interesting to note the effect of noise in data sets on
the precision of the generated concepts. MATH and ANIM
that have more than 55% unrelated content are the ones
with the lower precision. On the other end, PGT has the
largest precision, since not only it is very well-focused but
it also mentions repeatedly the same concepts and relations in
different scenarios. The latter differentiates PGT from SFF
data set. Our experiments also indicate that the quality of
the created relations depends mostly on the complexity of the
sentences in the text. For instance, since the sentences in SFF
are more complex than sentences in the other three sets (SFF
is written by a professional author as opposed to the others),
extracted relations for SFF are of slightly lower accuracy.

We also evaluated the recall of the MATH experiment in a
similar way to that for PGT. This time, we randomly graded
5% of Wikipedia titles (1219 titles) in the MATH data set and
found 545 mathematic concepts among them. Then, we used
these 545 concepts as a benchmark to compute the coverage
of the results generated by OntoHarvester. As reported in

Fig. 3. The precision/recall comparison for the concepts generated for MATH.
(Freq= 6, ..., 15, Conf=.99)

Table III, 51.7% of the benchmark’s concepts are extracted
by OntoHarvester as well. Noting that more than 39% of the
benchmark concepts are mentioned only once in the entire
data set, 9.5% of them have only one sentence as their
abstracts, and several abstracts include formulas, symbols, or
very formalized definitions, the estimated recall is actually
quite satisfactory—statistical techniques are much less likely
to find such low frequent concepts.

To study the effect of the frequency threshold (Freq) on the
performance of OntoHarvester, we provided the precision and
recall for the MATH experiments with frequency thresholds
varying from 6 to 15. The results of this experiment are
shown in Figure 3. Although, we can reach higher precision
by increasing Freq, the recall drops quickly to less than its
half. This is mainly due to the fact that many of the correctly
extracted concepts are actually of very low frequency, and they
are thus eliminated once Freq is raised.

Finally, in Table IV, we provide the most frequent domain
specific relation types suggested by OntoHarvester for each
data sets. We excluded the generic relation types such as
prepositions (of, in, for, to, with, etc.), conjunctions (and and
or), and common verbs (be and have) from this table.

D. Application-Based Evaluation

Although previous experiments provide a good insight on
the quality of the generated results, they are still subjective to
the graders opinion. A more objective approach for evaluating
ontologies is to use them in an application and evaluate
the results of the applications. To this end, we apply the
ontology generated by OntoHarvester to the problem of “Topic
Identification” (TID) [31]. The goal in this problem is to
identify the main topic(s) for a given text. Thus, we use
the following algorithm, called TID, which is based on the
technique proposed by Janik et al. [13]:

1) Constructing Initial Semantic Graph: For the given text

TABLE IV
DOMAIN SPECIFIC RELATION TYPES FOR EACH DATASET.

Dataset Domain-Specific Relation types (ordered by frequency)
SFF explains, consistOf, include, beInvestigationOf, beInstalledIn,

beProvidedBy, contain, beProvidedFor, provide, beLikelyIn
PGT kill, beClaimedFor, arrest, beProvidedTo, relatedTo,

beConductedBy, conduct, engagedIn, claim, sentencedTo
MATH explains, beCalled, include, beUsed By, use, beUsedIn,

beGivenBy, beDescribedBy, beRepresentedBy, knownAs
ANIM include, explains, like, consistOf, contain, beFoundIn,

referTo, liveIn, beCalled, beCauseBy, beSpeciesOf

τ , we create all the semantic links in τ as explained in Section
III-D. Using these semantic links, we then construct a semantic
graph called G.
2) Pruning the Graph by Ontology: Based on the given
nodes in an ontology, say O, we only keep nodes in G that
are also in O. Each node, say n, is also assigned a weight
(wn) which is initiated by the degree (the number of connected
links) of n in G. Later we use these weights to suggest final
topics.
3) Populating the Graph by Taxonomy: We add taxonomical
links to the remaining nodes (concepts) in G. This way more
general terms and topics are added to the graph. Assume
taxonomical link l=<n, type of , m> is used to extend the
concept n in G. Thus, we add link l and node m (if it is
not already there) to G and increment wm by cd ×wn, where
cd < 1 is a constant decaying factor. For instance, if node
“Persian Cat” is in the list, and O indicates “Persian Cat” is
type of “Cat”, we will add “Cat” to G as well. However, the
weight of “Cat” is incremented only by a portion of the weight
of “Persian Cat”. This is because we do not want to give too
much credit to more general topics so the final selected topics
are specific enough for given text. Of course, if the text (τ) is
mentioning other types of cats (e.g. Ragdoll, Munchkin, etc.)
then the node “Cat” will receive more credit (weight) and its
chance to be selected as the main topic increases. This step
will be repeated for any newly added nodes to G.
4) Suggesting Final Topics: Based on the nodes weights, we
rank and report the final topics. (E.g. the node with highest
weight is reported as the first-rank topic, etc.)

We employ the above algorithm to suggest topics for a
benchmark data set (explained next) using our ontology and
a baseline ontology. In this way, we can compare the two
ontologies, by evaluating the results generated by the above
algorithm for the benchmark data set using each ontology.

Baseline Taxonomy: To generate the baseline ontology, we
start by 684 animal names provided by Kozareva et al. [15].
We refer to this list as the initial animals list. Next, we retrieve
all the hypernyms located on the paths connecting these titles
to the animal node in WordNet. This Ontology/Taxonomy
(called WNTax) contains respectively 2,687 and 5,624 concepts
and [type of] links. We should add that, one can not simply
start with the animal node in WordNet and find all its descen-
dants/hyponyms to create a domain specific taxonomy. This is
due to the fact that many terms have several meanings and each
may have different hyponyms. Exhaustively following such
hyponyms starting from a general term (e.g animal) would
result in a very general taxonomy.

OntoHarvester Taxonomy: Using the animal ontology gen-
erated by OntoHarvester earlier, and considering only type of
links, we create a taxonomy referred to as OHTax.

Benchmark Data Set: We create a simple benchmark by
collecting the abstract of 440 animal names in the initial
animals list from Wikipedia. Unfortunately, the other items in
this list do not have any abstract in Wikipedia. We also assign

TABLE V
RESULTS OF TOPIC IDENTIFICATION USING FOR TAXONOMIES.

Taxonomy Topic Rank-1 Avg.
Name Source Topic # (%) Rank
OHTax Title 133 (30.2%) 2.77
OHTax Direct Cats. 78 (17.7%) 4.47
OHTax Indrct. Cats. 128 (29.1%) 6.68
WNTax Title 56 (12.7%) 5.36
WNTax Direct Cats. 35 (7.9%) 6.09
WNTax Indrct. Cats. 97 (22.0%) 6.88

three sets of possible topics to each abstract in the benchmark.
i) Title: the animals name, ii) Direct Cats.: the direct categories
provided for the Title by Wikipedia, and iii) Indirect Cats.:
the indirect or secondary categories that are the ancestor of
the largest number of direct categories for the abstracts. These
possible topics are compared with the suggested topics by TID
to evaluate the quality of taxonomies.

We feed WNTax and OHTax to the TID algorithm to suggest
topics for abstracts in the benchmark. That is for each abstract,
we run TID using the two taxonomies and get the ordered
list of suggested topics. The result of this experiments are
provided in Table V. As shown in the third column of the
table (in bold font), when OHTax is used, TID is able to find
the exact title for 30.2% of the abstracts in the benchmark with
its first ranked suggested topics. This is more than twice the
same value for WNTax. Similar results hold for the other two
topic sources (Direct Cats. and Indirect Cats.). In all cases,
OHTax significantly outperforms WNTax, due to having more
concepts related to the domain of animals.

Considering the top-20 topics suggested by TID, we com-
pute the number of correctly identified topics from each topic
source. Then for each abstract, we determine the position
(rank) of the correct topic in ordered list. The average ranks is
shown in the fourth column of Table V. Again, TID’s results
for OHTax are of higher quality than those for WNTax. More
specifically, the average rank of the correctly reported topics
using OHTax for the Title case is 2.77, which is about half of
the same value for WNTax.

The above experiment mainly indicates that although Word-
Net (and similarly other general ontologies) may be of high
quality, they are not comprehensive enough for domain-
specific applications such as the one mentioned in this sub-
section. OntoHarvester, on the other hand, is able to use
very small seed ontology (or existing ontologies) and a small
set of application-specific textual documents to learn more
comprehensive ontologies for the purpose of the application.
This makes OntoHarvester a very powerful and practical tool
for learning domain-specific ontologies.

V. RELATED WORK

In the last two decades, many highly supervised approaches
have been proposed to generate ontologies [6][33][20][7]. Due
to the need for human validation, most of these approaches are
too expensive to scale up. Thus, many works employ statistical
techniques or machine learning techniques to automatically
extract ontologies [19][26][29][32][17][27]. However, these

approaches typically suffer from issues such as requiring very
large training sets, needing to be re-trained for new domains,
highly rely on structured or semi-structured data sets, and not
being able to learn from small text corpora.

To address these issues, more NLP-based techniques have
been proposed in recent years. Lin and Pantel [18] automati-
cally find (binary) relation structure between terms and use
them to generate ontology. Many similar works have tried
to extract similar relations through shallow NLP approaches
and use various techniques to refine them and create the final
Ontology [3][28][15][25][16]. One of the few works show-
ing that using deeper NLP-based techniques, such as parse
tree mining, can provide more accurate results is CRCTOL
proposed by Jiang and Tan in [14]. In CRCTOL, parse trees
are used to find candidate terms (from NPs for instance),
and other statistical techniques are employed to extract the
concepts from the candidate terms. Unlike OntoHarvester,
most of these works either (i) use very limited and shallow
NLP-based techniques, (ii) use a limited and fixed number of
patterns (mostly borrowed from Hearst [11]) to mine the text
or parse trees, or (iii) separate the concept extraction phase
from relation extraction. Thus, they do not gain much over
the pure statistical techniques.

VI. CONCLUSION

We introduced OntoHarvester, an unsupervised domain-
specific ontology generator from free text using TextGraphs—
rich structures describing grammatical relations between terms
in the text. By utilizing patterns in such graphs, our system
recognizes ontological relations between the existing concepts
and candidate terms, and populates the initial ontology in
an iterative fashion. This enables us to derive high-quality
ontologies using a modest corpus and a small seed. In fact,
the ontologies so produced outperform (in terms of precision
and recall) those produced by previous techniques, including
high-quality NLP-based systems such as CRCTOL. Even more
significant is the fact that using the ontologies produced by
OntoHarvester, the performance of the intended application
will improve significantly as demonstrated by the topic-
identification application discussed in the paper.

VII. ACKNOWLEDGMENTS

We would like to sincerely thank Alan Koenig, R. Augustus
Rick, Adam Quaal, and Sanghyun Cho for their invaluable
help on grading the results of our system.

REFERENCES

[1] Sparql query language for rdf. http://www.w3.org/TR/rdf-sparql-query/,
2008.

[2] The stanford parser: A statistical parser.
http://nlp.stanford.edu/software/lex-parser.shtml, 2013.

[3] M. Banko, M. J. Cafarella, S. Soderl, M. Broadhead, and O. Etzioni.
Open information extraction from the web. In IJCAI, 2007.

[4] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann. Dbpedia - a crystallization point for the web of data.
J. Web Sem., 7(3):154–165, 2009.

[5] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for structuring human
knowledge. In SIGMOD Conference, pages 1247–1250, 2008.

[6] D. Bourigault. Surface grammatical analysis for the extraction of
terminological noun phrases. In COLING, pages 977–981, 1992.

[7] P. Drouin. Term extraction using non-technical corpora as a point of
leverage. TERMINOLOGY, 9:99–116, 2003.

[8] E. Drymonas, K. Zervanou, and E. G. M. Petrakis. Unsupervised
ontology acquisition from plain texts: The ontogain system. In NLDB,
pages 277–287, 2010.

[9] G. Furnas, T. Landauer, L. Gomez, and S. Dumais. The vocabulary
problem in human-system communication. Commun. ACM, 30(11):964–
971, Nov. 1987.

[10] T. R. Gruber. A Translation Approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, 6:199–220, 1993.

[11] M. A. Hearst. Automatic acquisition of hyponyms from large text
corpora. In COLING, pages 539–545, 1992.

[12] J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo,
and G. Weikum. Yago2: exploring and querying world knowledge in
time, space, context, and many languages. In WWW, 2011.

[13] M. Janik and K. Kochut. Training-less Ontology-based Text Categoriza-
tion. In Workshop on ESAIR, Mar. 2008.

[14] X. Jiang and A.-H. Tan. Crctol: A semantic-based domain ontology
learning system. JASIST, 61(1):150–168, 2010.

[15] Z. Kozareva and E. H. Hovy. A semi-supervised method to learn and
construct taxonomies using the web. In EMNLP, 2010.

[16] J. Krishnamurthy and T. M. Mitchell. Which noun phrases denote which
concepts? In Proceedings of ACL: HLT, pages 570–580, PA, USA, 2011.

[17] C.-S. Lee, Y.-F. Kao, Y.-H. Kuo, and M.-H. Wang. Automated ontology
construction for unstructured text documents. Data Knowl. Eng.,
60(3):547–566, Mar. 2007.

[18] D. Lin and P. Pantel. Dirt @sbt@discovery of inference rules from text.
In KDD, pages 323–328, 2001.

[19] S. Loh, L. K. Wives, and J. P. M. de Oliveira. Concept-based knowledge
discovery in texts extracted from the web. SIGKDD Explor. Newsl.,
2(1):29–39, June 2000.

[20] A. Maedche and S. Staab. Semi-automatic engineering of ontologies
from text. In SEKE, Chicago, IL, 2000.

[21] H. Mousavi, S. Gao, and C. Zaniolo. Ibminer: A text mining tool for
constructing and populating infobox databases and knowledge bases.
PVLDB, 6(12):1330–1333, 2013.

[22] H. Mousavi, D. Kerr, and M. Iseli. A new framework for textual
information mining over parse trees. In ICSC, pages 185–188, 2011.

[23] H. Mousavi, D. Kerr, M. Iseli, and C. Zaniolo. Ontoharvester: An
unsupervised ontology generator from free text. In CSD TR #130003,
UCLA, 2013.

[24] H. Mousavi, D. Kerr, M. Iseli, and C. Zaniolo. Mining semantic
structures from syntactic structures in free text documents. In CSD
TR #140005, UCLA, 2014.

[25] R. Navigli, P. Velardi, and S. Faralli. A graph-based algorithm for
inducing lexical taxonomies from scratch. In IJCAI, 2011.

[26] P. Pantel and D. Lin. A statistical corpus-based term extractor. In
Canadian Conference on AI, pages 36–46, 2001.

[27] A. G. Parameswaran, H. Garcia-Molina, and A. Rajaraman. Towards
the web of concepts: Extracting concepts from large datasets. PVLDB,
3(1):566–577, 2010.

[28] H. Poon and P. Domingos. Unsupervised ontology induction from text.
In ACL, pages 296–305, 2010.

[29] T. Quan, S. Hui, A. Fong, and T. Cao. Automatic generation of ontology
for scholarly semantic web. ISWC, pages 726–740, 2004.

[30] R. Snow. Semantic taxonomy induction from heterogenous evidence. In
In Proceedings of COLING/ACL 2006, pages 801–808, 2006.

[31] V. Stoyanov and C. Cardie. Topic identification for fine-grained opinion
analysis. In COLING, pages 817–824, Stroudsburg, PA, USA, 2008.

[32] Q. T. Tho, S. C. Hui, A. C. M. Fong, and T. H. Cao. Automatic fuzzy
ontology generation for semantic web. IEEE Trans. on Knowl. and Data
Eng., 18(6):842–856, June 2006.

[33] A. Voutilainen. Nptool, a detector of english noun phrases. CoRR,
cmp-lg/9502010, 1995.

[34] W. Wong, W. Liu, and M. Bennamoun. Ontology learning from text: A
look back and into the future. ACM Comput. Surv., 44(4):20, 2012.

[35] F. Wu and D. S. Weld. Automatically refining the wikipedia infobox
ontology. In WWW, pages 635–644, 2008.

[36] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: a probabilistic
taxonomy for text understanding. SIGMOD, pages 481–492, 2012.

