
RFID Data Processing with a Data Stream Query Language

Yijian Bai ∗

Department of Computer Science

UCLA

bai@cs.ucla.edu

Fusheng Wang Peiya Liu
Integrated Data Systems Department

Siemens Corporate Research

{ fusheng.wang, peiya.liu}@siemens.com

Carlo Zaniolo Shaorong Liu†

Department of Computer Science

UCLA

{zaniolo, sliu}@cs.ucla.edu

Abstract

RFID technology provides significant advantages over
traditional object-tracking technology and is increasingly
adopted and deployed in real applications. RFID applica-
tions generate large volume of streaming data, which have
to be automatically filtered, processed, and transformed
into semantic data, and integrated into business applica-
tions. Indeed, RFID data are highly temporal, and RFID
observations form complex temporal event patterns which
can be very different for various RFID applications. Thus, it
is desirable to have a general RFID data processing frame-
work with a powerful language, for the end users to ex-
press a variety of queries on RFID data streams, as well
as detecting complex events patterns. While data stream
management systems (DSMSs) are emerging for optimized
stream data processing, they usually lack the language con-
struct support for temporal event detection. In this paper,
we discuss a stream query language to provide comprehen-
sive temporal event detection, through temporal operators
and extension of sliding-window constructs. With the inte-
gration of temporal event detection, a DSMS has the capa-
bility to serve as a powerful system for RFID data process-
ing.

1. Introduction

RFID is an Automatic Identification and Data Capture
(AIDC) technology that uses RF waves to transfer data be-
tween a reader and an object for the purpose of identifying,
categorizing, and tracking the object. RFID is fast, reliable,
and does not require line of sight or contact between readers
and tagged objects. With such advantages, RFID is grad-
ually being adopted and deployed in various applications,
such as supply chain systems, warehouses management, se-
curity, hospitals, highway tolls, etc.

∗Work partially done while visiting Siemens Corporate Research
†Work done while visiting Siemens Corporate Research

An RFID system consists of RFID readers with anten-
nas, host computers, and transponders or RF tags which are
recognized by the readers. An RFID tag is uniquely iden-
tified by a tag ID stored in its memory and can be attached
to almost anything. Such IDs are specified through the EPC
(Electronic Product Code) standard [4]. In addition, RFID
technology can also be used in conjunction with sensors that
measure varieties of physical measurements, such as sen-
sors for temperature, humidity, blood pressure, etc, which
provide extra information for the entity uniquely identified
by the RFID tag.

RFID technology makes it possible to i) collect large
amount of data for tracking and identifying physical ob-
jects along their history [22] and ii) real-time monitor phys-
ical objects and their environment for monitoring applica-
tions [23]. While RFID observations are simple primitive
events (consisting of reader’s EPC code, observed tag ID
and the observation timestamp), RFID observation streams
from multiple readers form complex event patterns—mostly
temporal in nature [22, 23]—to represent business appli-
cation logic. This poses a significant challenge for RFID
data processing for the following requirements of: i) auto-
matically filtering, interpreting and transforming raw RFID
observation data into semantic business logic data; ii) real-
time monitoring and querying physical objects and their en-
vironment; iii) the capability to process high volume RFID
data streams; and iv) minimal effort to integrate RFID data
into existing business applications and convenient interfaces
for end users. The importance of RFID data stream process-
ing is also emphasized by the newly released RFID Appli-
cation Level Event (ALE) standard [1]: a common inter-
face to process raw RFID events, including data filtering,
windows-based aggregation, and reporting.

In this paper, we try to address the problem of effective
processing of RFID data streams. The problem of RFID
event processing is first tackled in [23], where a declarative
rule based language and a standalone event engine was pro-
posed and developed to automatically process RFID events.
Such approach is capable of detecting complex temporal-
pattern-based high level events, however it has several diffi-

culties in terms of the expressive power and generality.

The first shortcoming for a standalone event engine as
proposed in [23] is the limited expressive power. In [23],
a few temporal RFID event constructors are defined and
RFID ECA rules are defined by combining such constructs.
This highly specialized language cannot handle a large class
of general data inquiries, thus requiring other separate sys-
tems and increasing the cost of integration. For example,
if a manager needs to find out the real-time location of
all product-carrying carts labelled by RFID tags in a ware-
house, this will require a query language and system that
can request live data from RFID readers. An event pro-
cessing model such as proposed in [23] is not built for
such inquiries. Second, the event processing model can-
not support EPC-code pattern based grouping and aggre-
gation queries. This is one of the major requirements of
ALE standard. Consider the following example from the
ALE standard specification—we need to aggregate read-
ings on all EPC tags conforming to the following pattern:
20.*.[5000-9999]. Here in the EPC tag pattern20 is the
ID of the company,* matches any product of the company,
and [5000-9999]matches a valid range of serial numbers
between 5000-9000. (Thus we are interested in everything
from this company with serial numbers between 5000 and
9000.) This aggregation is difficult for the event system
in [23] to support. Third, for high volume RFID events,
sliding windows are essential in many applications. How-
ever, windows are not natural constructs in traditional event
processing systems and could require complex condition-
checking. Fourth, there is no established standard for event-
based declarative languages, thus increasing the learning
curve for the end-users (who might otherwise have a good
chance to be familiar with the SQL language, which is
widely used due to the popularity of relational databases).
Last, the event processing engine RCEDA in [23] takes a
simple graph-based processing model and lacks optimiza-
tion techniques for large volume RFID event data process-
ing.

On the other hand, data stream applications and data
stream management systems (DSMSs) [7, 13, 12, 19, 3]
are under rapid developments and have unique advantages.
Such systems are designed to answer realtime or near-
realtime continuous queries on potentially unbounded data
streams, and the issues such as resource allocation, query-
optimization, QoS are addressed at the system level, al-
lowing application programmers to focus on business logic
programming. Some systems use query language largely
conforming to the well-established SQL syntax and se-
mantics. Furthermore, RFID tag readings can be seen
as continuously-generated relational data streams, which
may be treated as append-only, structured data tuples that
conform to a specified data schema. Using a DSMS we
can apply data transformations/event detection logic on

the tag data, producing another data stream with cleaner
or enhanced data, or leading to actions such as persistent
database updates, alerts, and so on. Indeed, an SQL-based
stream query language provides many potential benefits and
conveniences for RFID data processing.

However, current DSMSs do not support temporal event
processing, which is a major requirement in RFID applica-
tions. Therefore, in this paper, we propose a stream query
language to provide comprehensive temporal event detec-
tion, through temporal operators and extension of sliding-
window constructs. By integrating temporal event detec-
tion, DSMS becomes a powerful system for RFID data pro-
cessing.

In this paper we discuss the following:

• We first analyze RFID data processing tasks, and iden-
tify the types of tasks that are well supported by a SQL-
based stream query language in a DSMS;

• Then we explore the limitation of SQL in supporting
temporal event detection;

• We discuss how we extend an SQL-based stream query
language with temporal event operators. We also ex-
plain how to utilize the SQL:2003 sliding window con-
struct, theFOLLOWINGwindow, to support negative
temporal events;

• We finally demonstrate the power of our language with
RFID application scenarios.

2. RFID Data Processing in a SQL-Based
Stream Query Language

RFID data are generally timestamped tag readings with
unique IDs. Some of the common RFID data processing
tasks are very well-suited for an SQL-based stream query
language such as the Expressive Stream Language (ESL)
[2, 8]). Next, we discuss some of these common tasks.

2.1. RFID Data Inquiry and Transformation

Some of the common tasks involved in RFID data
processing includeduplicate elimination, ad-hoc queries,
context retrievalfor tag IDs, database updatesand data
aggregation. As we will show next, all of these tasks are
very suitable for SQL-based query languages.

Duplicate Elimination Duplication is common in
RFID data, since it can be used to compensate for missed
tag readings. Duplications can be caused by duplicated
tags, duplicated readers, or simply repeated reads on the
same tag. Suppose we have a data streamreadings with
the schema below, and we want to derive another stream
cleaned readings with the same schema from which the
duplicates are eliminated (for simplicity the data types are
omitted in all examples):

2

STREAM readings(reader id, tag id, read time);

To eliminate the duplicates, we can use the following cri-
teria: identical tag readings that appear within a given time-
period threshold (say, 1 second) can be regarded as the same
reading. This can be easily coded in a DSMS as a single-
stream transducer as shown in Example 1. In this example
we use the syntax of the ESL stream query language [2, 8],
and use a sliding window construct of 1 second to handle
the time threshold. (A single-stream transducer in a DSMS
is a continuous query that takes in a tuple, and produces
tuples into another data stream.)

Example 1 Duplicate Filtering with Join

INSERT INTO cleaned readings
SELECT * FROM readings AS r1
WHERE NOT EXISTS
(SELECT * FROM TABLE(readings OVER

(RANGE 1 seconds PRECEDING CURRENT)) AS r2
WHERE r2.reader id = r1.reader id
AND r2.tag id = r1.tag id)

Ad-hoc Queries Ad-hoc queries on the data streams
represent an important category of queries that are essential
for RFID applications that often need to provide current
status information to the end-user. An SQL-based stream
query language in a DSMS system that supports ad-hoc
snapshotqueries provides a well-accepted language syn-
tax to the end-user for such queries. For example, in a
patient-tracking application, the current location of the
patient represented by tag readings from readers at various
locations may need to be queried directly by a physician.
This should be done without having to store such location
data all the time in a persistent database, which will cause
a large storage overhead. The SQL syntax here for such
kind of ad-hoc queries is very similar to regular database
queries, thus examples are omitted.

Context Retrieval While different types of RFID tags have
different capacities, in most cases it is not practical, or
safe, to carry along on the tag all the information necessary
for business interpretation. Therefore, meta-data lookupis
almost always needed. For example, when a person carries
an item out of a gate, a database lookup might be needed
to determine whether this person is authorized for taking
out this item, and such information can not be carried on
the tag for every possible item. Such information has to be
retrieved before the tag readings can be further interpreted
and processed. The look up may be conveniently expressed
in a SQL in a DSMS that supports stream-DB spanning
queries. These context-lookup queries can reside in the
system as continuous queries, where incoming tag readings
are enhanced to include the lookup result, which again
forms a data stream with more complete information that

can be further used by other queries.

Database Update In a RFID based application, one
common scenario is that we may constantly persist in-
formation from some of the tag readings to a persistent
database. For example, we may determine the product
locations travelling in a warehouse and track the movement
history of objects by selectively sending some tag readings
to a database table based on some predefined criteria. Such
updates can be naturally expressed as stream-DB spanning
UPDATE queries in the ESL language. As a simple
example, suppose we have a data streamtag locations
which contains the id and location of incoming readings.
Then a persistent database tableobject movement is used to
track history information for an object, where a new row
is not added to the DB unless the object location changes
from last time reported.

STREAM tag locations(readerid, tid, tagtime, loc);
TABLE object movement(tagid, location, start time)

Then the following continuous query can be defined on
the data stream Tagreadings, which inserts the reading into
the persistent table every time the location changes.

Example 2 Location Tracking
INSERT INTO object movement

SELECT tid, loc, tagtime
FROM tag locations WHERE NOT EXISTS

(SELECT tagid FROM object movement
WHERE tagid = tid AND location = loc);

Data Aggregation Data Aggregation could be needed for
various RFID data processing tasks. For example, we may
need to count the number of products passing through the
door every hour, or monitor the max/min blood pressure of a
patient throughout the day. (The blood pressure itself is not
RFID data, but it can be sensor data that are associated with
the RFID identifications.) Simple built-in aggregation op-
erators are provided by most SQL-based stream query lan-
guages. Furthermore, some languages, such as the ESL lan-
guage, support User Defined Aggregates (UDAs) and User
Defined Functions (UDFs). In particular, ESL also allows
users to express UDAs in native SQL. These constructs en-
able the end-users to perform arbitrarily complex aggrega-
tion tasks in the SQL-based query language.

For example, suppose we like to perform EPC-code
based data inquiry and aggregation. We want to get
the total count of all EPC codes conforming to the pat-
tern 20.*.[5000-9999], where 20 is the ID of the com-
pany,* matches any product of the company, and[5000-
9999] matches a valid range of serial numbers between
5000-9000. We could use a combination of SQL’s built-
in string-matching support and UDFs to perform this ag-
gregation. We use the streamreadings defined above,

3

where tid is a formatted epc number in the form of “com-
pany.productcode.serialnumber”. In the following code,ex-
tract serial is a UDF defined separately, which can be used
to extract the serial number part of the EPC and return it as
an integer.

Example 3 EPC Code Pattern Based Aggregation

SELECT count(tid) FROM readings
WHERE tid LIKE ’20.%.%’
AND extract serial(tid) ≥ 5000
AND extract serial(tid) ≤ 9999

As we can see from the above examples, an SQL-
based stream query language contains constructs and exten-
sion mechanisms that can be naturally used for many pur-
poses in RFID data processing. However, one of the im-
portant aspects of RFID data processing—temporal events
detection—lacks direct support in SQL, as we discuss next.

2.2. Temporal Events Detection in RFID Data

Detecting temporal events is frequently an essential com-
ponent of an RFID application. Consider the following ex-
ample, where RFID readers are used to automatically de-
tect the presence of products, packaging boxes, personnel,
etc, in a warehouse. The containment relationship between
products and packing cases can be arranged to be detected
as follows:

Example 4 Say that reader r1 scans products to be packed,
and reader r2 scans packing cases. If a sequence of read-
ings from reader r1 is followed by a distinct reading from
reader r2 within time t0 (e.g., 5 seconds), then we can con-
clude the products observed by r1 are contained in the case
observed by r2, as illustrated in Figure 1(a).

Furthermore, the products for the next case may start to
be detected before the previous packing case is detected. To
distinguish products that belonging to different cases, we
mandate that products being packed into the same case are
detected immediately following each other—i.e. the gap of
detection time between consecutive products for the same
case is below a certain time threshold t1 seconds (e.g. 1
second). While, products belong to the next case have a gap
of arrival longer than the threshold (Figure 1(b)).

This temporal pattern is difficult to detect efficiently us-
ing SQL. Basically, we are trying to detect a regular ex-
pression ofa

+

b tuples, wherea denotes the products and
b denotes the case.a

+

denotes that the products can occur
one or more times. Furthermore, there are timing constraint
t0 between the lasta tuple and theb tuple, and timing con-
straintt1 between consecutivea tuples.

In SQL, one join is required for expressing constraintt1
between every pair of consecutive tuples. Since we do not

Reader A Reader B

Item Case

(a)

(b)

: observations from reader A : observations from reader B

Items packed into case

Time

Reader A Reader B

Item Case

(a)

(b)

: observations from reader A : observations from reader B

Items packed into case

Time

Figure 1. Use RFID readings to detect con-
tainment

know how many consecutivea tuples there will be, detec-
tion of this pattern cannot be expressed using regular join
operators. Therefore, SQL lacks the constructs to supports
this kind of temporal patterns.

For more examples of different temporal patterns, con-
sider a RFID-enabled clinic laboratory. Suppose a staff
member wears a wrist-band RFID reader, and the equip-
ments are labelled with tags. The staff need to perform a
sequence of operations on patient’s specimen, which is de-
tected as sequences of RFID readings (when the wrist-band
RFID reader is put very close to the corresponding equip-
ment). We like to enforce a certain workflow of actions with
timing constraints as in the next example, and raise an ex-
ception to alert the staff member if the workflow is violated.

Example 5 In a lab test, a sequence of operationsA, B

andC has to be performed in the correct order by a medi-
cal staff, within some given time period (e.g. 1 hour within
the test starts, whenA is operated on), otherwise the test
may fail. Therefore, if any operation occurs in the wrong
order (e.g.C directly followA, or A follow B), or if the re-
quired time interval passes and the sequence of action did
not complete, we raise an exception alert.

Again, trying to detect this temporal pattern using SQL is
difficult. Here we need to perform a 3-way self-join on the
stream of tag readings, and apply multiple timestamp-based
selection conditions. Furthermore, if we allow repeated op-
erations on one equipment, then we will have to support
repeating patterns likeA

+

, which becomes impossible for a
join operation.

Temporal pattern detection, as the examples above, is
important for many RFID applications. However, since
SQL is not well-equipped to handle them, we propose to
extend the ESL [2, 8] language, which is a SQL-based
general-purpose stream query language, with temporal pat-
tern operators as discussed next.

3. The ESL-EV Stream Query Language

A SQL-based stream query language provides conve-
nient constructs for handling many essential RFID data pro-
cessing tasks. However, complex temporal patterns in RFID

4

data processing present a major challenge. In this sec-
tion we first add temporal event operators to the ESL lan-
guage to define temporal patterns spanning multiple data
streams. We then discuss using the sliding-window con-
structs for temporal operators. The resulting language was
named ESL-EV (ESL-EVents).

3.1. Temporal Event Operators

We define a temporal event operator as a mapping from
a sequence of data tuples (ordered on timestamps) to a
boolean value oftrue and false. Therefore, a temporal
event operator can be used as part of the predicate in a SQL
query (i.e., in theWHERE clause).

Primitive Events and Composite Events In tradi-
tional event processing systems there could be many types
of primitive events (e.g. events associated with database
transactions—INSERT, DELETE, UPDATE, etc). Here,
we are only concerned with the arrivals of continuous tag
readings under the standard model of append-only relations
for data streams. Therefore, tag reading arrivals are the
only primitive events we consider.

Composite events are temporal patterns formed by other
events (which could be both primitive or other composite
events). In [17] it was proved that a core set of event op-
erators can express temporal patterns on primitive events
with expressive power equivalent to regular expressions on
strings. For example, conjunctions, negations, sequence,
and star sequences (sequence with varying number of re-
peats), which are named as operatorsandsign, !, relative,
and relative+were proved to constitute such a core set of
operator in [17].

The semantics of the conjunction and negation operators
are intuitive. For example, ifA andB are primitive events,
A andsignB is a complex event that indicates bothA andB

has happened. Negation applied onA means thatA did not
happen. The conjunction event operatorandsigncan be nat-
urally implemented in SQL using theAND operator, while
the negation operator can be expressed by theNOT operator
in SQL. Hence we will focus on the discussion of sequence
and star-sequence operators. Moreover, when negation
is applied on sequences the condition-checking could
become very complex. Therefore we also introduce oper-
ators to capture common negation conditions for sequences.

Tuple Pairing Modes As studied in the Snoop project [10],
arbitrarily applying the event operators on primitive events
will result in the generations of large amounts of composite
events, many of which are not useful. We introduceTuple
Pairing Modesconstructs to ESL-EV to limit temporal
pattern generation to common interesting cases of RFID
data processing. Next, we describe our extensions of
temporal operators.

3.1.1 The SEQ Operator

This operator detects specific sequences of tuples from mul-
tiple streams. The basic operatorSEQ(E1, E2) returns
true on two tuples in streamsE1 and E2, if the tuple
from E2 has a timestamp after the tuple fromE1 (the tu-
ples may optionally need to satisfy qualifying conditions
on attributes). This basic two-arguments operator can be
extended to take multiple streams in the parameter list,
SEQ(E1, E2, E3, · · ·), which indicates that a tuple from
streamE1 is followed by a tuple from streamE2, which is
followed by a tuple from streamE3, and so on1.

For an example, suppose that in a factory plant every
product needs to go through a series of four quality check-
ing steps. Each checking step is has an RFID reader that
reads the RFID tag on the product. The four RFID readers
produce data streamsC1, C2, C3 andC4, all with the same
schema(readerid, tagid, tagtime). We monitor the comple-
tion of this sequence by the following continuous query that
utilizes theSEQ event operator:

Example 6 Detecting a Sequence with theSEQ Operator

SELECT C1.tagid, C1.tagtime,
C2.tagtime, C3.tagtime, C4.tagtime

FROM C1, C2, C3, C4
WHERE SEQ(C1, C2, C3, C4)

AND C1.tagid=C2.tagid AND C1.tagid=C3.tagid
AND C1.tagid=C4.tagid

There are two major issues with the above simple ap-
proach. i) It seems that we need the full tuple history on the
streams to match with incoming tuples. We need constructs
such as windows to limit the scope of tuple matching. ii)
For any incoming C4 tuples, there might be many matching
C1, C2 and C3 combinations, which could be a lot more
than what actually makes sense for the application. We
will need to remove those undesired combinations, which
will may requite complex predicate conditions. We like to
avoid generating those wrong combinations to begin with,
therefore we defineTuple Pairing Modes.

Sliding Windows on SEQ: In some applications,
the sequence might need to finish within a certain time
frame. This motivates the application of a sliding time
window on the event operator. A sliding-window is a
common construct used for join operators and aggregate
operators in stream query languages. Here we extend them
to the event operator with the following syntax:

SEQ(E1, E2, E3, · · ·, En)
OVER [time-periodPRECEDING En]

The sliding window is defined relative to a tuple in the
sequence. In the following example the sequence has to

1As in standard SQL, the streams in the argument list of the operator
may in fact be the same data stream with different aliases.

5

finish within 30 minutes of the first tuple in the sequence, to
qualify as a good sequence.

SELECT C4.tagid, C1.tagtime, · · ·
FROM C1, C2, C3, C4
WHERE SEQ(C1, C2, C3, C4)

OVER [30 MINUTES PRECEDING C4]
AND C1.tagid=C2.tagid AND C1.tagid=C3.tagid
AND C1.tagid=C4.tagid

Tuple Pairing Modes: Sliding windows provides a sim-
ple method to both maintain less tuple history (the expired
tuples can be removed) and reduce the generation of un-
wanted combinations (thus only tuples within the window
will produce candidates). However, there are many situa-
tions where advanced rules of tuple pairing are needed to
avoid complex predicate conditions. In the previous ex-
ample, suppose by the application semantics we also know
that, for any incoming C4 tuple we are only interested in
pairing it with the most recent qualifying tuple on each of
the other streams (see the RECENT mode below). This sce-
nario gives us a much better way to optimize tuple history
storage and tuple pairing.

Therefore, we defineTuple Pairing Modesas event op-
erator modifiers, which dictate how the tuple history is kept
on the streams, and how the matching tuples are generated,
to support common application situations. Next we discuss
four Tuple Pairing Modes2.

• UNRESTRICTED: all possible pairing of tuples gen-
erate valid events. This is the default semantics when
no modifier is applied, as in Example 6.

• RECENT: An incoming tuple is only matched with the
most recent qualifying tuple on the other data streams.
This mode allows aggressive purge of tuple history, as
earlier tuples are constantly replaced by later tuples as
the candidate to match with future incoming tuples.

• CHRONICLE: An incoming tuple is matched with the
earliest qualifying tuples on other streams. Further-
more, a tuple can only participate in forming temporal
events once. Therefore once a matching occurs and
an event is generated, the participating tuples can be
removed from the tuple history.

• CONSECUTIVE: This mode is the most useful when
we are interested in temporal pattern formed by tu-
ples on a single data stream. To extend the concept
of consecutivenessto multiple data streams, we define
a timestamp-based union of all tuples from different
streams as thejoint tuple historyof all the streams.
Then under the CONSECUTIVE mode we consider
the joint tuple historyformed by all participating data
streams—A temporal pattern is of interest if and only
if tuples in the pattern areconsecutivetuples on this

2The first three modes are based onEvent Consumption Modesspeci-
fied in Snoop[10].

unioned joint history. Under this mode, a tuple can
only form a pattern with its immediate adjacent tuples
on thejoint tuple history. Therefore, tuple history can
be safely purged each time a sequence is finished or
interrupted.

TheTuple Pairing Modesare used to directly modify the
temporal event operators as in the following example. UN-
RESTRICTED is assumed when the MODE clause is omit-
ted.

SEQ(E1, E2, E3, · · ·, En)
OVER [WINDOW SPEC]
MODE CONSECUTIVE

Next we use an example to illustrate how the above four
modes work. We use a scenario of Example 6. Suppose the
joint tuple historyof the four participating data streams is
the following (the tuples are presented as a sequence, in the
format of [arrival time: stream source]):

[t1:C1, t2:C1, t3:C2, t4:C3, t5:C3, t6:C2, t7:C4 · · ·]

Basically, the above says that aC1 tuple arrives first
at t1, and another C1 tuple arrives at t2, and so on. By
time t7, a C4 tuple arrives and causes the temporal operator
SEQ(C1, C2, C3, C4) to return.

1. Under the UNRESTRICTED mode, the operator will
returntrueon all possible sequences of the correct time
order, they include

(t1:C1, t3:C2, t4:C3, t7:C4)

(t1:C1, t3:C2, t5:C3, t7:C4)

(t2:C1, t3:C2, t4:C3, t7:C4)

(t2:C1, t3:C2, t5:C3, t7:C4)

If we only want to select a subset of these possible
sequences, we will use extra join conditions to remove
unwanted sequences.

2. Under the RECENT mode, the operator will only use
the most recent qualifying tuple of each stream to re-
turn true. For example, relative to the C4:t7 the most
recent qualifying C3 tuple is C3:t5. The one at time
t4 is not used as it is not the most recent qualifying tu-
ple. Then, the most recent qualifying C2 tuple is C2:t3.
The C2:t6 tuple is not a qualifying tuple as it is after
the C3:t5, thus does not form a correct sequence. Fi-
nally we should pick C1:t2 instead of C1:t1. Therefore
we only return one event:

(t2:C1, t3:C2, t5:C3, t7:C4)

3. Under the CHRONICLE mode, the operator uses the
earliest available tuple of each stream. It returnstrue
only on the following:

6

(t1:C1, t3:C2, t4:C3, t7:C4)

After the successful matching, all 4 tuples will not be
used for future operator matching again.

4. Under the CONSECUTIVE mode, the operator looks
for consecutive tuples on thejoint tuple historyof the 4
streams to form the correct sequence. It will not return
true for any sequence in this case.

3.1.2 The Star Sequence

TheSEQ operator above is equivalent to composing a 4-
way join query on the streams and explicitly applying the
timing conditions3. However, as discussed in Example 4 of
Section 2, join operations can not handle repeating tuples.
Thus we add star sequence to the SEQ operator—the ‘*’
symbol can be applied on any of the operator arguments to
indicate that this event can repeat many times. The sliding
window constructs and theTuple Pairing Modescan also be
applied on the star sequences.

Take as exampleSEQ(E∗

1 , E2), it returns true when
a tuple from streamE2 follows some tuples fromE1.
SEQ(A∗, B, C∗, D) says that the operator returnstrue if
some A tuples are followed by exactly one B tuple, and fol-
lowed by some C tuples, and finally followed by one D tu-
ple.

In our semantics, we only generate event on the longest
possible star sequences. For example, inSEQ(E∗

1 , E2) if
there are threeE1 tuples followed byE2, then we will only
generate event for (E1, E1, E1, E2). We will not generate
event for the combinations where there are less than three
E1 tuples, although they still match the pattern. The special
case is the last event in the sequence, we return event in an
online fashion for each tuple arrival and do not wait for the
longestsequence (as there might be no valid indicator to tell
us to stop matching). E.g., inSEQ(E∗

1 , E∗

2), if there are
threeE2 tuples coming in after theE1 tuples, we generate
one event for eachE2 tuple.

As an example for the star sequence, the contain-
ment relationship in Example 4 can be represented as
SEQ(R1∗, R2). Here R1 is a data stream generated by
product tag readings, and R2 is a data stream generated by
case tag readings. The CHRONICLETuple Pairing Mode
is appropriate here, since a group of products matchingR1∗

will be packed into only one case matchingR2 and will not
be packed again. Therefore, in ESL-EV, we detect this con-
tainment relationship with the following continuous query,

3In fact, the tuple sequences that satisfySEQ(C1, C2, C3, C4) can
be precisely found this way—For each incoming C4 tuple, we join it with
all the tuples that have arrived so far in the other 3 streams,apply the
join conditions and the timing conditions, and those tuplesthat satisfy all
conditions render the operator to betrueand thus are returned as the query
result. Therefore,SEQ(C1, C2, C3, C4) could be seen as a simplified
syntax for the join operation in this case.

which will returns the case tagid together with the number
of items packed into the case and the timing information.

Example 7 The SEQ Operator with Star Sequence for
Containment

SELECT FIRST(R1*).tagtime, COUNT(R1*),
R2.tagid, R2.tagtime

FROM R1, R2
WHERE SEQ(R1*, R2) MODE CHRONICLE

AND R2.tagtime - LAST(R1*).tagtime ≤ 5 SECONDS
AND R1.tagtime - R1.previous.tagtime ≤ 1 SECONDS

There are some special properties about the star se-
quence:

1. A few special aggregate functions are defined for the
star sequences. The FIRST and LAST functions used
in Example 7 are aggregate functions that return the
first tuple and the last tuple, respectively, in the (re-
peated) star sequence. The COUNT function returns
the number of tuples in the star sequence.

2. We use thepreviousoperator to indicate the tuple pre-
ceding the current tuple in the star sequence. In Exam-
ple 7 we used this syntax to define inter-arrival timing
constraints on the star sequence of products.

3. If we only return aggregated information for the star
sequence, as in Example 7, only one tuple is returned
each time the SEQ operator is evaluated totrue. How-
ever, if we need to know the identities of individual
tuples in the star sequence. (I.e. We like to retrieve the
RFID tag readings of all the products that are packed
into one particular case.) This situation requires more
than one tuple to be returned for each positive evalua-
tion of SEQ.

For Example 7, suppose now we like to return each
individual R1 reading that participates in the star se-
quence event. Then, if K tuples are included in the star
sequence R1*, we will have K returned tuples, as in
the following query4.

SELECT R1.tagid, R1.tagtime,
R2.tagid, R2.tagtime

FROM R1, R2
WHERE SEQ(R1*, R2) MODE CHRONICLE
AND R2.tagtime - LAST(R1*).tagtime ≤ 5 SECONDS
AND R1.tagtime - R1.previous.tagtime ≤ 1 SECONDS

3.1.3 The EXCEPTION SEQ Operator

Many applications require that we detect exceptions on se-
quences. Any violation of the prescribed sequence or the

4Such multiple-return is allowed when there is only one star sequence
in the argument. It is not allowed when there are multiple star sequences,
as there will be too many combinations.

7

timing constraints on the sequence will raise an alert. For
instance, in Example 5 of Section 2, a medical staff needs
to perform a lab test, which consists of a fixed sequence of
operations on multiple instruments, and the test has to finish
within 1 hour once started.

Suppose tag readings indicating the operationsA, B and
C come in as three different data streams. Now consider
the joint tuple historyformed by the union of the three data
streams. Normal operations will lead to tuple history as the
following:

(A, B, C, A, B, C, A, B, C, · · ·)
The correct sequence corresponds toSEQ(A, B, C) un-

der the CONSECUTIVE mode with a sliding window of 1
hour. To alert the person when something goes wrong, we
try to detect all possible violations of this sequence. The
exception conditions are i) if next incoming tuple does not
match the correct event for the sequence (e.g., we haveA

but the next incoming tuple isC), and ii) if a sequence does
not start from the correct initial event (e.g., the first event
in our sequence isB), or iii) if a sequence is started but not
finished when the sliding window expires.

To specify these exception conditions, we introduce the
EXCEPTION SEQ operator, which is a generalization
of SEQ, as discussed below. The semantics of this is based
on the concept ofSequence Completion Levels.

Sequence Completion Level. Suppose we have the
following sequence that we try to detect exceptions for:

SEQ(E1, E2, E3, · · ·, En)

We define a partial sequenceof this sequence as a
run of tuples (E1, E2, E3, · · ·, Ek) for some0 < k < n.

Then, we define theSequence Completion Level of the
full sequenceSEQ(E1, E2, E3, ···, En) as equal ton. And,
if currently there is a partial sequence(E1, E2, E3, · · ·, Ek)
for some0 < k < n, and it is no longer possible to extend
the partial sequence to(E1, E2, E3, · · ·, Ek+1), then we say
that the Sequence Completion Level of (E1, E2, E3, ···, Ek)
is k, and an exception event occurs at levelk+1. (Note that
sequences that do not start with the correct first event has
Sequence Completion Level 0.)

Note that the following scenarios can make a partial se-
quence unable to extend.

1. An existing partial sequence can not longer correctly
extend due to an wrong incoming tuple.

For example, suppose we wantSEQ(A, B, C) under
the RECENT mode, and currently we have(A, B). An
arrival of B will make it impossible for the partial se-
quence(A, B) to extend (as the secondB will replace
the first one to match with futureC tuples). Therefore
an exception event occurs.

2. If an incoming tuple is not the correct event to start
a new sequence and can not be matched with existing
events to form a correct partial sequence, then we raise
an exception on the incoming tuple (i.e., failure to ex-
tend a sequence with Sequence Completion Level 0).

For example, suppose the desire sequence is
SEQ(A, B, C) under CONSECUTIVE mode. If we
currently have an(A, B, C) and the next tuple isC,
the incoming tuple can not start a new sequence, an
exception event occurs.

3. The expiration of a sliding window on some tuple in
a partial sequence will trigger an exception, as we can
no longer extend the partial sequence and still satisfy
the timing constraint.

Therefore, we define theEXCEPTION SEQ

operator as the following: The operator
EXCEPTION SEQ(E1, E2, E3, · · ·, En) returns
true whenever we have a sequence with Sequence Comple-
tion Level less thann.

The query below can now be used to solve Example 5,
where an exception will be raised whenever the operation
sequence of the medical staff violates the correct procedure,
or the sequence does not finish within the desired time (1
hour).

SELECT A1.tagid, A2.tagid, A3.tagid
FROM A1, A2, A3
WHERE EXCEPTION SEQ(A1, A2, A3)

OVER [1 HOURS FOLLOWING A1];

Alternatively, we may explicitly use Sequence Com-
pletion Level in the predicate, by defining an operator
CLEV EL SEQ, which returns the Sequence Completion
Level of a tuple sequence. Therefore, the following query
using theCLEV EL SEQ operator is equivalent to the last
query.

SELECT A1.tagid, A2.tagid, A3.tagid
FROM A1, A2, A3
WHERE (CLEVEL SEQ(A1, A2, A3)

OVER [1 HOURS FOLLOWING A1]) < 3;

While it is common for stream query language to support
PRECEDING windows, it is not common to supportFOL-
LOWING windows, as they are usually specified between
two streams and are symmetric. (E.g.,A1 PRECEDING A2
is the same asA2 FOLLOWING A1.)

Here we use theFOLLOWING window construct to al-
low the sliding window to start from any of the participat-
ing events when the number of arguments in the operator
is larger than 2. E.g., we may need to say that the sliding
window should start from the second event in the sequence,
which can not be specified using an equivalentPRECED-
ING construct.

8

EXCEPTION SEQ(A1, A2, A3)
OVER [1 HOURS FOLLOWING A2]);

In a DSMS theEXCEPTION SEQ operator may re-
quire Active Expirationsemantics, where window expira-
tion has to be detected without any new tuple arrivals (read-
ers are referred to [8] for more details about this). Similarto
theSEQ operator,EXCEPTION SEQ can also allow
repeating star sequences does. Detailed discussion of thisis
omitted here.

3.2. Extending Sliding Windows

Some sliding window constructs, which are not com-
monly supported in a stream query language, are needed
for RFID applications.

Consider the situation where RFID readers at the door
detect products and personnel passing through. Say that
only authorized personnel may carry products out of the
door, then we need to generate an alert when unauthorized
people take out any product, which can be done as follows:
If a product is detected at the door and there is no authorized
personnel detected within timeτ (e.g. 1 minute) before or
after the item exit, raise an alert of a potential theft (e.g.,
suppose the products could be on carts, which could pushed
or pulled by a person).

Suppose we have the following schema of data stream,
where both personnel and products are detected by the same
RFID reader, but with different ’tagtype’ values.

tag readings(tagid, tagtype, tagtime);

Under this scenario, the sliding window has to be defined
bothbeforeandafter the occurrence of a product exit, as in
the continuous query in Example 8.

Example 8 Sliding Window Across Sub-query Boundary

SELECT person.tagid
FROM tag readings AS person
WHERE person.tagtype = ’person’ AND NOT EXISTS

(SELECT * FROM tag readings AS item
OVER [1 MINUTES

PRECEDING AND FOLLOWING person]
WHERE item.tagtype = ’item’)

Here we need to specify a sliding windows across the
boundary of a correlated sub-statement. I.e., theitem tu-
ples inside the sub-statement are need to be inside sliding
windows defined on apersontuple, which is outside the
sub-statement. To the best of our knowledge, specifying
a sliding window with synchronization across a sub-query
boundary is not supported in current SQL-based stream
query languages. It represents an extension that is needed

for RFID applications. Also, in this example theFOLLOW-
ING window construct is again needed.
Summary In summary, we developed the following exten-
sions to better facilitate the detection of temporal eventsin
RFID data processing:
• TheSEQ operator for detecting sequence of tuples;
• Star sequences inSEQ for repeating events;
• TheEXCEPTION SEQ operator for detecting ex-

ception conditions onconsecutivesequences and slid-
ing windows, and

• Applying sliding window constructs on the temporal
pattern operators and introducingTuple Pairing Modes
as event operator modifiers.

• Extending sliding window constructs to include win-
dows synchronized across sub-query boundary, and the
FOLLOWINGwindow construct.

These language extensions make it possible to conve-
niently handle temporal pattern detection in a SQL-based
syntax. The many example scenarios used throughout this
paper illustrate the power of this language to support RFID
applications.

4. Related Work

RFID data processing has been topics of recent research.
In [18] warehousing RFID data was discussed, [15] dis-
cusses system architecture and general issues in process-
ing RFID data. In [22], temporal modeling of RFID data
was studied, and in [23] a declarative rule-based system was
proposed to detect high-level RFID events. In recent work
by Wu et al. [25], a stream-based RFID event processing
system is discussed which supports a dataflow paradigm
with native sequence operators. None of these works dis-
cuss RFID data processing in the context of a SQL-based
stream query language, which enables us to perform vari-
eties of RFID data processing tasks within a single DSMS
system. There are also many research projects and commer-
cial products that focus on building RFID middle-ware to
collect data from readers and possibly detect simple events
(such as duplicate readings). They generally can not detect
complex temporal events in the RFID data.

Data stream querying and DSMS has been the focus of
many research in recent years. Many systems have been
designed to query streaming data using an SQL-based lan-
guage. For example the STREAM system [20], the Tele-
graph system [14] and the Gigascope system [12]. Other
systems which choose varieties of user interfaces[5, 11].
However, these systems do not deal with temporal events.

ECA rule systems and active databases systems have
been studied for many years. The readers are referred to
existing books and reviews such as [24, 21]. The existing
ECA-rule systems are usually optimized for transactional
data and application[9, 16], and can not support RFID data
processing tasks efficiently.

9

5. Conclusions

A DSMS with a SQL-based query language can support
a variety of critical data processing tasks for RFID applica-
tions. However, complex temporal events detection, which
is critical for RFID applications, can not be well supported
by current DSMS. In this paper, we show that by extending
a SQL-based stream query language with temporal oper-
ators and related constructs, a DSMS can support general
RFID data processing for a large variety of RFID applica-
tions.

References

[1] The ALE standard. http://www.epcglobalinc.org.

[2] The ESL language manual.
http://wis.cs.ucla.edu/stream-mill/doc/esl-
manual.pdf.

[3] Streambase home. http://www.streambase.com/.

[4] EPC Tag Data Standards Version 1.1. Technical re-
port, EPCGlobal Inc, April 2004.

[5] D. Abadi and et al. Aurora: A new model and archi-
tecture for data stream management. 12(2):120–139,
2003.

[6] B. Babcock and et al. Models and issues in data stream
systems. 2002.

[7] Yijian Bai, Hetal Thakkar, Chang Luo, Haixun Wang,
and Carlo Zaniolo. A data stream language and system
designed for power and extensibility. InCIKM, 2006.

[8] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-
K. Kim. Composite Events for Active Databases: Se-
mantics, Contexts and Detection. InVLDB, pages
606–617, 1994.

[9] S. Chakravarthy and D. Mishra. Snoop: an expres-
sive event specification language for active databases.
Data Knowl. Eng., 14(1):1–26, 1994.

[10] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Nia-
garaCQ: A scalable continuous query system for in-
ternet databases. pages 379–390, May 2000.

[11] C. Cranor and et al. Gigascope: High performance
network monitoring with an sql interface. page 623.
ACM Press, 2002.

[12] D. Abadi et al. Aurora: A new model and archi-
tecture for data stream management.VLDB Journal,
12(2):120–139, 2003.

[13] Sirish Chandrasekaran et al. Telegraphcq: Continuous
dataflow processing for an uncertain world. InCIDR,
2003.

[14] M. J. Franklin and etc S. R. Jeffery. Design Consider-
ations for High Fan-In Systems: The HiFi Approach.
In CIDR, pages 290–304, 2005.

[15] S. Gatziu and et al. Detecting Composite Events
in Active Databases Using Petri Nets. InWork-
shop on Research Issues in Data Engineering: Active
Database Systems, 1994.

[16] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Com-
posite Event Specification in Active Databases: Model
& Implementation. InVLDB, 1992.

[17] Hector Gonzalez, Jiawei Han, Xiaolei Li, and Diego
Klabjan. Warehousing and Analyzing Massive RFID
Data Sets. InICDE, 2006.

[18] Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Data
models and query language for data streams. InVLDB,
pages 492–503, 2004.

[19] R. Motwani and et al. Query processing, approxi-
mation, and resource management in a data stream
management system. InFirst CIDR 2003 Conference,
Asilomar, CA, 2003.

[20] Norman W. Paton and Oscar Díaz. Active
database systems.ACM Comput. Surv., 31(1):63–103,
1999.

[21] F. Wang and P. Liu. Temporal Management of RFID
Data. InVLDB, 2005.

[22] Fusheng Wang, Shaorong Liu, Peiya Liu, and Yijian
Bai. Bridging physical and virtual worlds: Complex
event processing for rfid data streams. InEDBT, 2006.

[23] Jennifer Widom and Stefano Ceri.Active Database
Systems: Triggers and Rules For Advanced Database
Processing.Morgan Kaufmann, 1996.

[24] E. Wu, Y. Diao, and S. Rizvi. High-PerformanceCom-
plex Event Processing over Streams. InSIGMOD,
2006.

10

