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Probabilistic modeling and reasoning are central tasks in artificial intelligence and ma-

chine learning. A probabilistic model is a rough description of the world: the model-

builder attempts to capture as much detail about the world’s complexities as she can, and

when no more detail can be given the rest is left as probabilistic uncertainty. Once con-

structed, the goal of a model is to perform automated inference: compute the probability

that some particular fact is true about the world. It is natural for the model-builder to

want a flexible expressive language – the world is a complex thing to describe – and over

time this has led to a trend of increasingly powerful modeling languages. This trend is

taken to its apex by probabilistic programming languages (PPLs), which enable modelers to

specify probabilistic models using the facilities of a full programming language. How-

ever, this expressivity comes at a cost: the computational cost of inference is in direct

tension with the flexibility of the modeling language, and so it becomes increasingly dif-

ficult to design automated inference algorithms that scale to the kinds of systems that

model builders want to create.

This thesis focuses on the central question: how can we design effective probabilistic pro-

gramming languages that profitably trade off expressivity and tractability for inference? The

approach taken here is first to identify and exploit important structure that a probabilistic

ii



program may possess. The kinds of structure considered here are discrete program struc-

ture and symmetry. Programs are heterogeneous objects, so different parts of programs

may exhibit different kinds of structure; in the second part of the thesis I show how to

decompose heterogeneous probabilistic program inference using a notion of program ab-

straction. These contributions enable new applications of probabilistic programs in do-

mains such as text analysis, verification of probabilistic systems, and classical simulation

of quantum algorithms.
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CHAPTER 1

Introduction

The sciences do not try to explain, they
hardly even try to interpret, they mainly
make models.

John von Neumann

Probabilistic modeling is at the core of many scientific disciplines. A probabilistic model
consists of two parts. First, one gives a rough description of the world called a model.
The world is too complex to write down any precise set of rules describing its behavior,
so the philosophy taken by a probabilistic model is to simplify the world by permitting
the modeler to express uncertainty in the form of probabilities: “it is too hard to state for
certain whether or not it will rain tomorrow, so we will settle for a 90% chance of rain.”
What good is a model if it cannot tell you anything? Given a probabilistic model, the goal
is then to perform various forms of probabilistic inference: computing the probability that
the model will exhibit some behavior.

Traditionally the development of a probabilistic model is tightly coupled with its cor-
responding inference algorithm. This poses two key challenges. First is the challenge of ac-
cessibility: there are few people who are capable of both designing an effective model and
inference algorithm, both of which require highly specialized domain knowledge. Sec-
ond is the challenge of modularity: by tightly coupling modeling and inference, it makes the
model inflexible: in this tightly coupled situation, changing the model requires rewriting
the entire delicately designed inference procedure. Taken together, these two challenges
limit the applicability of probabilistic modeling to specific scientific disciplines with the
technical resources to overcome them.

Probabilistic modeling frameworks resolve the problems of accessibility and modularity.
The idea is to give a general-purpose accessible probabilistic modeling language in which
the user specifies a model. Then, given a model, the system will automatically perform
inference in a generic fashion. This strategy separates the two concerns of modeling and
inference: an expert in inference can design a generic inference algorithm, and a domain
expert can provide the model using the easy-to-use modeling language.

However, probabilistic modeling frameworks are no panacea. Probabilistic inference
in many cases is computationally intractable, and hence every probabilistic modeling lan-
guage must make a central tradeoff between expressivity and tractability. More flexible
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models are attractive because they are more accessible to users and allow them to express
properties of the world in a richer vocabulary. This increase in flexibility poses challenges
for designing effective scalable inference.

The most flexible kinds of modeling languages are probabilistic programming languages
(PPLs). The key idea of a PPL is to endow a traditional programming language – like
Python, C, or Haskell – with a notion of uncertainty, such as the ability to flip a coin.
Then, the meaning of the program, also known as its semantics, is defined as a probability
distribution over all possible runs through the program. PPLs are obviously extremely
flexible and general – they allow a modeler to express incredibly nuanced descriptions of
the world – but this flexibility comes at the cost of effective inference algorithms.

Currently, the lack of scalability of inference is one of the primary factors holding
probabilistic programming languages back from wide-spread application, and so scaling
inference will be the central topic of this thesis. In particular, since inference is in general
hard in the worst case, this thesis will argue that finding and exploiting program structure
using program analysis is essential for scaling inference to large probabilistic programs.

1.1 Contributions & Structure of the Thesis

At a high level, the main contribution of this thesis is giving three new strategies for scal-
ing inference by exploiting the structure of probabilistic programs. Chapter 3 describes Dice,
a new probabilistic programming language for discrete probabilistic programs that ex-
ploits program factorization and modularity in order to scale. Then, Chapter 4 describes
a new inference algorithm for exploiting the symmetry of probabilistic programs. Clearly
there is a need for mixing and matching inference algorithms, since programs are com-
plex heterogeneous objects with varying structure, so Chapter 5 gives a general-purpose
approach for decomposing probabilistic programs based on program abstraction in order
to mix and match the appropriate inference strategies.

The remainder of this chapter will go into further detail on the structure and motiva-
tion of each subsequent chapter.

1.1.1 Chapter 2: Foundations

Probabilistic programming is naturally a broad synthesis of topics in artificial intelligence
and programming languages. This chapter aims to invite members of both audiences to
the thesis by providing key background content for both perspectives. In particular, this
chapter introduces (1) key definitions from probability; (2) high-level themes such as the
trade off between conciseness and tractability of a probabilistic model; (3) the syntax and
semantics of the Dice probabilistic programming language; (4) foundations of probabilis-
tic program inference.

2



1.1.2 Chapter 3: Dice: Exploiting Factorization in Discrete Probabilistic Programs

One of the most challenging kinds of probabilistic programs for many existing probabilis-
tic programming systems are discrete programs: programs that contain discrete random
variables. This chapter introduces an inference algorithm for the Dice probabilistic pro-
gramming language that exploits factorization and modularity – two common and impor-
tant properties of probabilistic programs – in order to scale. In order to find this structure,
Dice compiles probabilistic programs according to the following pipeline:

Dice Pro-
gram

Dice
Front-End

Dice Middle-
End

Tractable
Probabilistic
Model

Query
Answer

(1) (2) (3) (4)

Figure 1.1: System diagram for performing a query on a Dice program.

First, programs are input to the system as source code and they are parsed into an
intermediate representation by the Dice front-end. Then, in Step (2) programs are trans-
formed into a core intermediate representation that supports various optimizations, de-
sugaring, and other code-to-code transformations.

In a normal compiler, Step (3) would translate the intermediate representation into
machine runnable code. This is different for Dice: Dice translates the intermediate rep-
resentation into a tractable probabilistic model (TPM) [Choi et al., 2020]. This step may be
expensive – this chapter will show that it is worst-case PSPACE-hard – but once it is
successfully completed inference is efficient in the size of the compiled representation.
Concretely, this means that Step (4) – going from the TPM to the Query Answer – is an
efficient step.

Different kinds of TPMs are capable of recognizing and exploiting different kinds of
program structure. Hence, the exact choice of back-end TPM heavily influences the scal-
ability of inference. This chapter proposes binary decision diagrams (BDDs) as a back-end
TPM, and shows that this choice exploits two kinds of program structure in order to scale
inference to large programs: factorization and modularity. Intuitively, factorization is a
property of the size of the interface between two programs. If two probabilistic programs
communicate using a relatively small interface – for instance, one program calls another
program that only takes a single argument – then inference should be able to exploit this
small interface to solve the two inference problems nearly independently. Modularity,
on the other hand, is a property of function calls: if the same function is called multiple
times, then a modular analysis would analyze that function call once and re-use that anal-
ysis across subsequent calls. Both of these properties are abundant in natural programs,
and BDDs naturally exploit both properties to scale inference to large examples.

This chapter will show that, together, these traits allow Dice’s inference algorithm
to scale to programs that are orders of magnitude larger than existing commonly-used
probabilistic programming languages on examples from text analysis, network verifica-
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Figure 1.2: Pigeonhole problem illustration with 3 pigeons and 3 holes.

tion, and discrete Bayesian networks. This chapter also proves this inference algorithm
correct with respect to a formal language semantics.

1.1.3 Chapter 4: Exploiting Symmetry with Lifted Inference

Dice compiles programs to binary decision diagrams, which implicitly exploits factoriza-
tion and program modularity. However, this is not the only structure that a probabilistic
program may possess that can enable fast probabilistic inference.

Symmetry is an orthogonal property to factorization that binary decision diagrams are
not natively able to exploit that can enable fast inference. Intuitively, symmetry natu-
rally arises when modeling distributions that are invariant under permutations of the
sample space. Symmetries can be abundant in problems with little or no factorization,
and exploiting symmetry can exponentially speed up probabilistic inference. In general,
the class of inference algorithms that inherently exploit symmetry are referred to as lifted
inference [Poole, 2003, Kersting, 2012, Niepert and Van den Broeck, 2014].

This is best illustrated with an example. Figure 1.2 gives an illustration of the classic
pigeonhole problem with 3 pigeons and 3 holes. This situation can be made probabilistic by
assuming that each pigeon has an identical strong preference for hiding in a hole without
any other pigeons, so these configurations are given a high probability: the question then
is what is the probability that two pigeons end up in the same hole?

Since all pigeons and holes are identical, the problem has abundant symmetry: the
probability that the leftmost and rightmost pigeon end up in the leftmost hole is identical
to the probability that they end up in the rightmost hole. Put more formally, the distribu-
tion is invariant to re-labelings of pigeons and holes. While this problem has symmetry,
there is little factorization structure: a Dice program encoding of this problem would fail
to effectively compile a BDD for even a modest number of pigeons and holes. Hence,
there is a need for more kinds of TPMs that can be used as Dice backends that exploit dif-
ferent kinds of structure: in particular, in this case, we desire one that exploits symmetry.

A key challenge in applying lifted inference is identifying the symmetries. Most current
approaches to lifted inference require a relational representation, for instance as a weighted
first-order logic [Getoor and Taskar, 2007]. In other words, they require the problem to be
given in a way that makes extracting the symmetries a matter of inspecting the structure
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Figure 1.3: Diagram describing decomposition by abstraction.

of a first-order sentence. This does not directly apply to non-first order models such as
probabilistic programs or probabilistic graphical models such as factor graphs, so this
chapter aims to expand the domain of lifted inference to encompass more probabilistic models
beyond relational representations. In particular, it (1) gives the first (exact) lifted inference
algorithms for factor graphs, and (2) gives a lifted Markov-Chain Monte Carlo algorithm
that provably scales in the degree of symmetry of the factor graph. Ultimately, this gives
a foundation for new Dice backends that exploit symmetry.

1.1.4 Chapter 5: Decomposing Inference & Probabilistic Program Abstractions

So far the thesis has introduced two new strategies for performing inference in proba-
bilistic programs that both work in very different ways and exploit different program
structure. Moreover, there is a myriad of approaches to probabilistic inference beyond
those introduced here. Hence there is a clear problem of combining different approaches
to probabilistic inference in order to perform inference on heterogeneous programs with different
properties that this chapter addresses.

This chapter gives a method for decomposing probabilistic program inference via pro-
gram abstraction. Program abstractions – and in particular predicate abstractions – have a
rich and successful history in non-probabilistic program analysis. The key idea is to gen-
erate a simplified abstract program from the original concrete program that captures a few
key properties. This abstraction property simplifies the analysis – the new abstract pro-
gram is by design simpler to analyze than the concrete program. If all goes well, the
abstract program will then contain sufficient information to verify the concrete program.

This chapter gives a generalization for non-probabilistic predicate abstraction to prob-
abilistic programs and shows how it decomposes inference. An outline is given in Fig-
ure 1.3. First, the programmer provides three pieces of data: a probabilistic program, a
set of predicates that are Boolean random variables that capture properties about the pro-
gram, and a query. Then, the abstraction engine automatically generates (1) a set of sub-
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programs that are themselves probabilistic programs, and (2) an abstract Dice program
that captures the relationship among predicates. Note that the abstract Dice program is
discrete regardless of whether or not the input program is discrete: this is because the
Dice program is only concerned with predicates.

In order to evaluate the final query, the abstract Dice program is parameterized by
querying the sub-programs. Each (†) arrow in the figure represents a sub-query that
queries a small part of the original program: this is the stage where inference is decom-
posed, since evaluating these (†) queries will ideally only require inspecting smaller por-
tions of the original program. Finally, the final query is answered via a standard Dice
inference query along the (?) arrow, as outlined in Chapter 3.

Formally, as contributions, this chapter (1) introduces a new notion of probabilistic
predicate abstractions and shows how to automatically generate them from a probabilis-
tic program; (2) gives a new soundness relation between abstract and concrete program
called distributional soundness; (3) shows how distributionally sound abstractions decom-
pose probabilistic inference.

1.1.5 Chapter 6: Conclusion

There is no one-size-fits-all solution to probabilistic inference, so this thesis cannot con-
clude with a solution that solves all problems. Each new approach to inference opens up
a few avenues for applying probabilistic programs in new places. Chapter 3 shows how
to apply probabilistic programs effectively in discrete domains that were previously out
of reach, Chapter 4 applies them to domains with symmetry, and Chapter 5 shows how to
mix and match programs with different kinds of structure. But long term, there remains
many deep foundational questions, and this chapter highlights a few of them that will
require sustained work.
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CHAPTER 2

Foundations

Probability is not really about numbers. It
is about the structure of reasoning.

Glenn Shafer

Programming languages and artificial intelligence are two very distinct fields. One
of the goals of this chapter is to bring readers from both audiences into the thesis, in
order to bring to bear techniques from both perspectives to the problem of probabilistic
program inference. This section will begin by laying the foundations of important ideas
in probability. Then, it will introduce the core topics in programming languages, and
conclude with a discussion specific to probabilistic programs.

A brief note on expected background: this thesis assumes a basic familiarity with the
notation and standard concepts from set theory, logic, and computational complexity.1

Each subsequent chapter will contain its own self-contained background section: the goal
of this chapter is to lay broad foundations that stretch across chapters.

2.1 Probabilistic Modeling

We begin with the foundation: probability.

Definition 2.1 (Discrete probability distribution). Let Ω be a (countably infinite) set called
the sample space, and let E be the set of all subsets of Ω called the event space. A discrete
probability distribution on Ω is a map Pr : E → [0, 1] that assigns a probability to each possible
event E ∈ E that satisfies the following axioms:

1. Non-negativity: Pr(E) ≥ 0 for all E ∈ E .
2. Unit measure: Pr(Ω) = 1.
3. Additivity: For any countable sequence of disjoint events of {Ei}, it holds that Pr(

⋃
iEi) =∑

i Pr(Ei).

1Jaynes [2003] has an excellent perspective on probability in the sciences. Pearl [1988] contains a
computer-science and artificial intelligence perspective on probabilistic reasoning. Sipser [1996] gives an
excellent introduction to computational complexity. Gunter [1992] gives an overview of program semantics
and logic.
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State (Ω)

Probability 1/6 1/6 1/6 1/6 1/6 1/6

Table 2.1: The distribution on dice rolls.

A central focus of this thesis is various representations of probability distributions,
and the algorithmic implications of these data structures:

Definition 2.2 (Probabilistic model (informal)). Given a set Ω, a probabilistic model M on
Ω is a representation of a probability distribution Pr : Ω→ [0, 1]. We denote the size of the model
as |M |, for some appropriate definition of size.

This definition is informal because it hinges on what a “representation” is. We will
formalize this notion throughout the thesis, but here we will make things more concrete
by considering one of the simplest probabilistic models: a table. A tabular probabilistic
model simply lists the probability of each element in Ω. For a tabular probabilistic model,
|M | = |Ω|. For instance, we can specify the distribution of a fair 6-sided dice roll using
Table 2.1.

Given a probabilistic model, the next goal is to query it to find out useful information
about the world. For instance, a simple query is: what is the probability that a particular
dice roll is even? Given a tabular representation of a probability distribution, we must use
additivity to compute the probability of any event that is not a singleton:

Pr(a dice roll is even) = Pr( ) + Pr( ) + Pr( ). (2.1)

Besides the probabilities of events, one is often interested in the probabilities of event
A occurring given the presence of some other event B, often referred to as evidence. For
instance, suppose we want to know the probability that dice roll of occurs given that
the dice roll is even. This computation is known as the conditional probability of A given B,
denoted Pr(A | B), and is computed as:

Pr(A | B) ,
Pr(A ∩B)

Pr(B)
. (2.2)

The symbol “,” denotes a definition. In the dice roll example, we would have A =
{ }, B = { , , }, so Pr(A | B) = 1

3
. Note that computing the probability of an event is

a special case of conditional probability when B = Ω.

One of the main goals of this thesis is automating probabilistic inference, so here we
ask the core algorithmic question: how might we go about performing inference? As shown
earlier, computing the probability of an event requires scanning over the entire table and
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1 let cold = flip(1/1000) in
2 let flu = flip(1/10000) in
3 let coughing = if(cold || flu) then flip(1/2)
4 else false in
5 let highTemperature = if flu then flip 3/4 else
6 flip 1/100 in
7 let _ = observe coughing in
8 (cold, flu)

(a) An example probabilistic program for the medical sce-
nario.

TT TF FT FF
0

0.2

0.4

0.6

0.8

P
r

(b) The probability distribu-
tion encoded by the program.

Figure 2.1: An example probabilistic program and its distribution.

collecting the total probability of entries that are contained in the event. The run-time of
this algorithm is O(|M |) – linear in the size of the tabular representation – assuming that
checking membership in an event can be done in constant time. The problem is that tables
are a very inconvenient way to represent probability distributions. Tables are not concise:
sample spaces, as we will see in later sections, can be prohibitively large – sometimes
greater than the number of atoms in the universe – so writing down a table is a hopeless
task.

This tradeoff between how concise a model is and how tractable it is for various infer-
ence queries is one of the central objects of study in this thesis. In the following sections
we will explore other modeling language frameworks that are more concise and expres-
sive than tables, but at the cost of more challenging inference.

2.2 Probabilistic Programming Languages

Consider the following probabilistic scenario where a doctor wishes to model the re-
lationship between symptoms and diseases:

• The average patient has a 1/1000 chance of having the cold; a 1/10000 chance of
having the flu; a 1/100 chance of having a high temperature; and does not cough.

• Common colds and the flu both cause coughing with probability 1/2;

• The flu causes a high temperature with probability 3/4.

Tables are an inadequate means of specifying the above distribution. They require
the doctor to specify the probability of every possible world, which is a very unintuitive
task that would not scale to larger systems with more symptoms and diseases. Much
more intuitive, from the perspective of the doctor, is to specify the relationship between
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symptoms and diseases programmatically: “if the patient has the flu, then half of the time
they have a cough”.

A probabilistic programming language extends a normal programming language with the
ability to represent probability distributions. As we will see, this is a very natural way
to represent a distribution: one can use the rich facilities of a programming language to
describe the nuanced relationship between uncertain events. Concretely, the above sce-
nario can very naturally be modeled as a program in Figure 2.1. This program is written
in the Dice probabilistic programming language, which will be formally introduced and
elaborated on in subsequent sections and in Chapter 3.

First, the program in Figure 2.1a assigns the identifiers cold and flu to the quantities
flip 1/1000 and flip 1/10000 respectively. The syntax flip θ introduces a Boolean ran-
dom variable that is true with probability θ and false with probability 1− θ: this program
defines a probability distribution. In the case of flu and cold, these flips represent the
prior probability that an average member of the population has either of these two dis-
eases. Then, each of the symptoms – coughing and highTemperature – is assigned to dif-
ferent distributions depending on whether or not the patient has particular diseases. Note
that standard programming language constructs, such as assignments and if-statements,
can be naturally applied to random variables, enabling the construction of rich distribu-
tions.

Given this set of relationships between symptoms and diseases, a doctor would like
to know the answer to Bayesian inference query: what is the probability that a patient with a
cough has the flu? This too can be encoded into the probabilistic program by the addition of
an observe construct, which applies Bayesian conditioning to the current program. This is
shown on Line 7, where the evidence is introduced via observe coughing, which implic-
itly rejects all computations that do not satisfy the condition that the patient is coughing.
Finally, the program returns the pair (cold, flu), which are the main quantities of inter-
est: the probability distribution on diseases.

Figure 2.1b shows the output of this program. Note that it is not a particular value
like a typical program: rather, it is a probability distribution that assigns a probability to
every possible value that the program can output. The column “TF” corresponds to the
case when cold is true and flu is false: this is the most likely column with a probability
of about 0.9. Note that this is markedly different from the prior probability: for a random
person, the probability of having a cold is 1/1000, so the presence of a cough increased
the probability of a cold by several orders of magnitude.

The above discussion gives an intuitive overview of what probabilistic programs are
and how they work, but it is informal. The follow section formalizes the relationship
between probabilistic programs and their distributions.
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1 v ::= T | F
2 aexp ::= x | v
3 e ::= aexp | let x = e in e | flip θ
4 | if aexp then e else e | observe aexp

Figure 2.2: A subset of the Dice syntax given in Backus-Naur form.

2.2.1 Syntax and Semantics of Dice

This section formally defines a fragment of the Dice probabilistic programming language.
More language features will be introduced in Chapter 3, but this section develops a core
subset of the language for simplicity.

The most basic element of a programming language is syntax: the formal rules that
describe how programs are presented to the system. Syntax is usually defined using a
compositional grammar that describes how big programs are made out of smaller pro-
grams. The core syntax of Dice is given in Figure 2.2, which presents the grammar using
a recursive description.

The syntax has three important parts: (1) values, denoted v, which are simply either
true (T) or false (F); (2) atomic expressions aexp which are either values or variable identi-
fiers x; or (3) expressions, denoted e, which are the most important language component.
There are two kinds of expressions: probabilistic expressions which create or manipulate
distributions (flip θ and observe aexp) and non-probabilistic expressions that are famil-
iar from normal functional programming languages.

2.2.2 Semantics

Once a syntax is defined, the next step is to give a meaning to each syntactic term: this
is called semantics. Figure 2.3 provides a reference for the semantics for Dice expressions.
The semantic function J·K maps syntactic expressions to unnormalized probability distribu-
tions, which intuitively is a probability distribution that relaxes the unit measure require-
ment:

Definition 2.3 (Unnormalized distribution). Let Ω be a sample space. Then a map Pr : Ω →
[0, 1] is an unnormalized probability distribution on Ω if (1) it satisfies additivity and non-
negativity and (2) Pr(Ω) ≤ 1. The quantity Pr(Ω) is called the normalizing constant and is
usually denoted Z.

The simplest rule is for values. The semantics of values v1, denoted Jv1K, is assigned to
be equal to the Dirac delta distribution δ(v1) that assigns probability 1 to v1 and probability
0 to all other values. The semantics of flip θ produces a probability distribution on the
sample space T, F that maps T to θ and F to 1− θ.
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Jif vg then e1 else e2K (v) ,


Je1K (v) if vg = T

Je2K (v) if vg = F

0 otherwise
Jflip θK (v) ,


θ if v = T

1− θ if v = F

0 otherwise

Jobserve v1K (v) ,

{
1 if v1 = T and v = T,

0 otherwise
Jv1K (v) ,

(
δ(v1)

)
(v)

Jlet x = e1 in e2K (v) ,
∑
v′

Je1K (v′)× Je2[x 7→ v′]K (v)

Figure 2.3: Semantics for Dice expressions. The function δ(v) is a probability distribution
that assigns a probability of 1 to the value v and 0 to all other values.

The most interesting aspect of a probabilistic programming language is that one can
neatly combine and manipulate probability distributions using the rules of a program-
ming language. The main workhorse for this capability is composition rules such as the
let expression, which has the form let x = e1 in e2 and intuitively means “let x take on
the value defined by e1 in e2”. How do we define this when e1 is a probability distribu-
tion?

A simple re-writing of Equation 2.2 shows us that Pr(A∩B) = Pr(A | B)×Pr(B): this
version of the equation is often referred to as the chain rule of probability, since it allows
one to break a joint distribution into a product of conditional probabilities. We can use
the chain rule to give a semantics to let:

Jlet x = e1 in e2K (v) ,
∑
v′

Je1K (v′)× Je2[x 7→ v′]K (v) (2.3)

Breaking this down, the syntax e2[x 7→ v′] is standard programming language syntax that
denotes substituting the variable x with the value v′ in e2; this can be thought of as a
conditional probability on values given x is substituted for v′, which justifies the use of the
chain rule. The following example shows how to apply the semantics of let-expressions
to a simple program:

Example 2.1: Semantics of a let-statement
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Consider the following simple program with a free variable x:

let x = flip 0.1 in flip 0.4 ∨ x (EXLET)

To compute the probability that (EXLET) results in some value v, we must consider
all possible ways in which that value could result, based on all possible values v′ for
x. Concretely, to evaluate Jlet x = flip 0.1 in flip 0.4 ∨ xK (T), the following sum is
computed:

Jflip 0.1K (T)× Jflip 0.4 ∨ x[x 7→ T]K (T) + Jflip 0.1K (F)× Jflip 0.4 ∨ x[x 7→ F]K (T)

= 0.1× 1.0 + 0.9 ∗ 0.4 = 0.46.

A-Normal Form The syntax of Dice requires that programs be written in A-normal form [Flana-
gan et al., 1993]. In well-formed (i.e., closed) programs the conditional guard vg is always
a value, because the language uses A-normal form. Hence, the semantics of if selects
either the then-branch or else-branch’s semantics depending on the value of vg. For com-
pleteness of the semantics, we define the semantics of if to be the always-zero function if
the argument is not a Boolean.

2.2.2.1 Observations & Bayesian Conditioning

Observations complicate the goal of associating a probability distribution with each pro-
gram expression. The semantics of observe in Figure 2.3 follows prior work by assigning
probability 0 to a failed observation [Borgström et al., 2011, Kozen, 1979, Claret et al.,
2013, Huang and Morrisett, 2016, Nori et al., 2014]. Now consider the following example
program:

let x = flip 0.6 in let y = flip 0.3 in let _ = observe x ∨ y in x
(OBSPROG)

Because the observe expression is falsified when both x and y are false, that scenario has
probability 0. Hence according to our semantics JOBSPROGK (T) = 0.6 and JOBSPROGK (F) =
0.12. As a result the meaning of this program is not a valid probability distribution.

The standard approach to handling this issue is to treat the semantics as producing
an unnormalized distribution that is normalized at the end of the program to produce a
valid probability distribution. Here we explore the subtle properties of this unnormalized
distribution, which will serve a crucial purpose later during our compilation strategy.
Let JeKA denote the normalizing constant and JeKD denote the normalized distribution
for an expression. These two quantities can be straightforwardly computed from the
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1 let x = flip1 0.1 in
2 let y = if x then flip2 0.2 else flip3 0.3 in
3 let z = if y then flip4 0.4 else flip5 0.5 in z

Figure 2.4: Example Dice program.

unnormalized semantics in Figure 2.3:

JeKA ,
∑
v

JeK (v), JeKD (v) ,
1

JeKA
JeK (v). (2.4)

For instance, in the above example JOBSPROGKA = 0.12 + 0.6 = 0.72, JOBSPROGKD (T) =
0.6/0.72 ≈ 0.83, and JOBSPROGKD (F) = 0.12/0.72 ≈ 0.17. In the event that JeKA = 0, the
distributional semantics is also defined to be zero.

By construction, J·KD always yields a probability distribution (or the always-zero func-
tion in the event that the accepting semantics is zero), so we call it the distributional seman-
tics. This is the quantity that we need in order to answer inference queries. What does J·KA
represent? Typically it is not given a meaning but rather simply considered to be an arbi-
trary normalizing constant that is only computed for the entire program. And indeed, the
normalizing constant is irrelevant for the purposes of performing global inference: the
probabilities in the unnormalized semantics can be scaled arbitrarily without changing
J·KD. This “normalize at the end” mode of operation is standard for many PPLs that use
an unnormalized semantics [Fierens et al., 2015, Claret et al., 2013]. Later in Section 3.3.1.2
we will describe the approach Dice takes for handling observations in more detail once
more language features are introduced. Ultimately we will show that this normalizing
constant must be carefully constructed in order to give a compositional semantics to pro-
grams; the utility of this will become clear when we introduce functions.

2.3 Probabilistic Program Inference

Now that each Dice program has a semantics it is time to perform probabilistic inference:
computing the probability that the program outputs a particular value. The semantics
given in the previous section already give a recipe for how to perform inference: each
program is associated with a sum of products over all possible assignments to flips in
the program: performing inference in this way is called path-enumeration inference and
is a common strategy for performing exact inference on probabilistic programs in the
literature [Sankaranarayanan et al., 2013, Albarghouthi et al., 2017, Geldenhuys et al.,
2012, Filieri et al., 2013].

Consider the example Dice program in Figure 3.2. The subscript on each flip is not
part of the syntax but rather used to refer to them uniquely in our discussion. Path-
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enumeration on this program would is given by the following sum of products:

0.1︸︷︷︸
x=T

· 0.2︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.1︸︷︷︸
x=T

· 0.8︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

+ 0.9︸︷︷︸
x=F

· 0.3︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.9︸︷︷︸
x=F

· 0.7︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

(2.5)

How does exhaustive enumeration scale as this program grows in size? For this exam-
ple the program grows by adding one additional layer to the chain of flips that depends
on the previous. With this growing pattern, the number of terms that a path enumeration
must explore grows exponentially in the number of layers, so clearly exhaustive enumeration
does not scale on this simple example.

It will be shown show later (Theorem 3.3) that exact inference in Dice is PSPACE-hard
in the size of the program. Hence, there is an important difference between tabular repre-
sentations of distributions and probabilistic programs: it is possible to write a small prob-
abilistic program for which inference is computationally intractable. Hence, probabilistic
programs are more concise than tables – you can write a small program that encodes a
distribution on a very large sample space – but inference is not in general tractable. This
leads to the fundamental tradeoff in probabilistic modeling languages, which will be a
central topic in this thesis:

The Fundamental Tradeoff Between Tractability and Conciseness: A key design
decision when creating probabilistic modeling languages is the fundamental tradeoff
between tractability of inference and the conciseness of the representation.

This does not mean that inference in Dice is in general hopeless: worst-case perfor-
mance is different from the common case or average case. However, the presence of
worst-case programs does shape the design of inference algorithms in fundamental ways
that will be explored in later chapters. In particular, this implies that there is no universal
solution to fast inference in probabilistic programs: inference must, at its core, take advantage
of the delicate structure that is unique to the programs that users write in practice.

2.4 Conclusion

This chapter introduced a number of important concepts that will be revisited in sub-
sequent chapters. The key important definitions such as a probability distribution and
probabilistic models will be used repeatedly. The tradeoff between tractability and con-
ciseness is the root of the motivation for why probabilistic program inference is a hard
and important problem. The semantics of Dice and basic notions of probabilistic pro-
grams will be especially important in Chapter 3. And finally, the basics of probabilistic
inference will motivate our further explorations in Chapter 4.
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CHAPTER 3

Dice: Exploiting Factorization

One of the most challenging kinds of probabilistic programs for many existing probabilis-
tic programming systems are discrete programs: programs that contain discrete random
variables. This chapter develops a domain-specific probabilistic programming language
called Dice that features a new approach to exact discrete probabilistic program inference.
Dice exploits program structure in order to factorize inference, enabling it to perform exact
inference on probabilistic programs with hundreds of thousands of random variables.

The key technical contribution is a new reduction from discrete probabilistic programs
to weighted model counting (WMC). This reduction separates the structure of the distri-
bution from its parameters, enabling logical reasoning tools to exploit that structure for
probabilistic inference. In sum, this chapter (1) shows how to compositionally reduce
Dice inference to WMC, (2) proves this compilation correct with respect to a denotational
semantics, (3) empirically demonstrates the performance benefits over prior approaches,
and (4) analyzes the types of structure that allow Dice to scale to large probabilistic pro-
grams.

3.1 Introduction

As we have seen in prior chapters, inference for a sufficiently expressive language is an ex-
tremely hard program analysis task. The key to scaling inference is to strategically make
assumptions about the structure of programs and place restrictions on which programs
can be written, while retaining a useful and expressive language.

This chapter scales inference for an important class of probabilistic programs: those
whose probability distributions are discrete. Most PPLs today focus on handling con-
tinuous random variables. In the continuous setting one usually desires approximate
inference techniques, such as forms of sampling [Wingate and Weber, 2013, Kucukelbir
et al., 2015, Jordan et al., 1999, Bingham et al., 2019, Dillon et al., 2017, Carpenter et al.,
2016, Nori et al., 2014, Chaganty et al., 2013]. However, handling continuous variables

0This chapter based in part on Holtzen et al. [2020]. This chapter describes an artifact whose source code
is available at https://github.com/SHoltzen/dice. This work is partially supported by NSF grants #IIS-
1943641, #IIS-1956441, #CCF-1837129, DARPA grant #N66001-17-2-4032, a Sloan Fellowship, gifts by Intel
and Facebook research, and a UCLA Dissertation Year Fellowship. Jon Aytac and Philip Johnson-Freyd
contributed valuable feedback on drafts of the original paper.
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Figure 3.1: System diagram for performing a query on a Dice program.

typically requires making strong assumptions about the structure of the program: many
of these inference techniques have strict differentiability requirements that preclude their
application to programs with discrete random variables. For instance, momentum-based
sampling algorithms like HMC and NUTS [Hoffman and Gelman, 2014] and many varia-
tional approximations [Kucukelbir et al., 2017] are restricted to continuous latent random
variables and almost-everywhere differentiability of the posterior distribution. Yet many
application domains are naturally discrete: for example mixture models, networks and
graphs, ranking and voting, and text. This key deficiency in some of the most popu-
lar PPLs has led to a recent rise in interest in handling discreteness in probabilistic pro-
grams [Obermeyer et al., 2019, Gorinova et al., 2020, Zhou et al., 2020].

Discrete programs are not a new challenge, and there are existing PPLs that support
exact inference for discrete probabilistic programs [Narayanan et al., 2016, Gehr et al.,
2016, Sankaranarayanan et al., 2013, Albarghouthi et al., 2017, Goodman and Stuhlmüller,
2014, Wang et al., 2018, Claret et al., 2013, Pfeffer, 2007a, Bingham et al., 2019, Geldenhuys
et al., 2012]. However, there are compelling example programs from text analysis, net-
work verification, and discrete graphical models on which existing methods fail. The
reason that they fail is that the existing methods do not find and automatically exploit the
necessary factorizations and structure.

Dice’s inference algorithm is inspired by techniques for exact inference on discrete
graphical models, which leverage the graphical structure to factorize the inference com-
putation. For example, a common property is conditional independence: if a variable z is
conditionally independent of x given y, then y acts as a kind of interface between x and z
that allows inference to be split into two separate analyses. This kind of structure abounds
in typical probabilistic programs. For example, a function call is conditionally indepen-
dent of the calling context given the actual argument value. Dice’s inference algorithm
automatically identifies and exploits these independences in order to factorize inference.
This enables Dice to scale to extremely large discrete probabilistic programs: our experi-
ments in Chapter 3.5 show Dice performing exact inference on a real-world probabilistic
program that is 1.9MB large.

An outline of Dice is given in Figure 3.1. At its core, Dice builds on the knowledge
compilation approach to probabilistic inference [Chavira and Darwiche, 2008, 2005, Dar-
wiche, 2009, Fierens et al., 2015, Chavira et al., 2006]. This chapter shows how to compile
Dice programs to weighted Boolean formulas (WBF) and then perform exact inference via
weighted model counting (WMC) on those formulas. Dice programs are parsed (1) and
translated into an intermediate representation (2). Then, they are compiled to a tractable
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representation (3) that supports efficient WMC and hence inference. This tractable repre-
sentation is a binary decision diagram (BDD) that supports efficient weighted model count-
ing, described in more detail later.

Employing knowledge compilation for probabilistic inference in Dice requires gener-
alizing the prior approaches in several ways. First, in order to support logical compilation
of traditional programming constructs such as conditionals, local variables, and arbitrar-
ily nested tuples, novel compilation rules that compositionally associate Dice programs
with weighted Boolean formulas are developed. A key challenge here is supporting arbi-
trary observations. To do this, a Dice program, as well as each Dice function, is compiled
to two BDDs. Intuitively, one BDD represents all possible executions of the program,
ignoring observations, and the other BDD represents all executions that satisfy the pro-
gram’s observations. Performing WMC on these formulas then performs exact Bayesian
inference with arbitrary observations throughout the program. Second, Dice compiles
functions modularly: each function is compiled to a BDD once, and efficient BDD com-
position operations are exploited to reuse this BDD at each call site. This technique pro-
duces the same final BDD that would otherwise be produced, but it allows amortizing the
costly BDD construction phase across all callers, which can provide orders-of-magnitude
speedups.

In sum, this chapter presents the following technical contributions:

• It describes the Dice language and illustrate its utility through three motivating exam-
ples (Chapter 3.2).

• It formalizes Dice’s semantics (Chapter 3.3) and its compilation to weighted Boolean
formulas (Chapter 3.4). It proves that the compilation rules are correct with respect
to the denotational semantics: the probability distribution represented by a compiled
Dice program is equivalent to that of the original program.

• It empirically compares Dice’s performance to that of prior PPLs with exact inference
(Chapter 3.5). It describes new and challenging benchmark probabilistic programs from
cryptography, network analysis, and discrete Bayesian networks, and show that Dice
scales to orders-of-magnitude larger programs than existing probabilistic programming
languages, and is competitive with specialized Bayesian network inference engines on
certain tasks.

• It analyzes some of the benefits of Dice’s compilation strategy in Chapter 3.6. First
it proves that Dice inference is PSPACE-hard. Then it characterizes cases where Dice
scales efficiently, and which types of structure it exploits in the distribution. It illus-
trates where to find that structure in the program code as well as the compiled BDD
form. Finally these results are used to provide a technical comparison with prior exact
inference algorithms.

Dice is available at https://github.com/SHoltzen/dice.
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1 let x = flip1 0.1 in
2 let y = if x then flip2 0.2 else
3 flip3 0.3 in
4 let z = if y then flip4 0.4 else
5 flip5 0.5 in z

(a) Example Dice program.

f1.471

f2.48 f3 .47

f4.4 f5 .5

T1 F 0

(b) Compiled BDD with weighted model
counts.

Figure 3.2: Illustration of compiling a Dice program that exploits factorization.

3.2 An Overview of Dice

This section overviews the Dice language and its inference algorithm. First a simple ex-
ample program is given to show how Dice exploits program structure to perform infer-
ence in a factorized manner. Then an example from network verification is used to show
how Dice exploits the modular structure of functions. Finally a cryptanalysis example
illustrates how inference in Dice is augmented to support Bayesian inference in the pres-
ence of evidence.

3.2.1 Factorizing Inference

We begin with a simple motivating example that highlights the challenge of perform-
ing inference efficiently and how Dice meets this challenge. Consider the example Dice
program in Figure 3.2a, reproduced from Chapter 2. The subscript on each flip is not
part of the syntax but rather used to refer to them uniquely in our discussion.

The goal of probabilistic inference is to produce a program’s output probability distri-
bution, so in Figure 3.2a we desire the probability that z is true and the probability that
z is false. Consider computing the probability that z is true, which we denote Pr(z = T).
The most straightforward way to compute this quantity is via path enumeration: we can
consider all possible assignments to all flips and sum the probability of all assignments
under which z = T. A number of existing PPLs directly implement path enumeration to
perform inference [Sankaranarayanan et al., 2013, Albarghouthi et al., 2017, Geldenhuys
et al., 2012, Filieri et al., 2013]. Concretely this would involve computing the following
sum of products:

0.1︸︷︷︸
x=T

· 0.2︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.1︸︷︷︸
x=T

· 0.8︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

+ 0.9︸︷︷︸
x=F

· 0.3︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.9︸︷︷︸
x=F

· 0.7︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

(3.1)

This thesis focuses on the problem of scaling inference, so we ask: how does exhaus-
tive enumeration scale as this program grows in size? In this case we grow the program
by adding one additional layer to the chain of flips that depends on the previous. With
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this growing pattern, the number of terms that a path enumeration must explore grows
exponentially in the number of layers, so clearly exhaustive enumeration does not scale
on this simple example. Despite its apparent simplicity, many existing inference algo-
rithms cannot scale to large instances of this example; see Figure 3.11d in Chapter 3.5.

However, the sum in Equation 3.1 has redundant computation, and thus can be fac-
torized as:

0.1︸︷︷︸
x=T

·
(

0.2︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.8︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

)
+ 0.9︸︷︷︸

x=F

·
(

0.3︸︷︷︸
y=T

· 0.4︸︷︷︸
z=T

+ 0.7︸︷︷︸
y=F

· 0.5︸︷︷︸
z=T

)
. (3.2)

Such factorizations are abundant in this example, and in many others. Dice exploits these
factorizations to scale, and in Chapter 3.5 we show that Dice scales to orders of magnitude
larger programs than existing methods in part by exploiting these forms of factorization.
Such factorizations are extremely common in probabilistic models, and finding and ex-
ploiting them is an essential strategy for scaling exact inference algorithms, for example
for graphical models [Chavira and Darwiche, 2008, Darwiche, 2009, Koller and Friedman,
2009a, Boutilier et al., 1996, Pearl, 1988].

3.2.2 Factorized inference in Dice

Inference in Dice is designed to find and exploit factorizations like the one shown above.
The key insight is to separate the logical representation of the state space of the program
from the probabilities, which allows Dice to identify factorizations implied by the struc-
ture of the program that are otherwise difficult to detect. This separation is achieved by
compiling each program to a weighted Boolean formula:

Definition 3.1 (Weighted Boolean Formula). Let ϕ be a Boolean formula over variables X , let
L be the set of all literals (assignments to variables) overX , and w : L→ R be a weight function
that associates a real-valued weight with each literal L. The pair (ϕ,w) is a weighted Boolean
formula (WBF).

To compile the program in Figure 3.2a into a WBF, introduce one Boolean variable fi
for each expression flipi θ in the program. The goal is for the resulting boolean formula
over these variables to represent all possible flip valuations that cause z to be true, so one
choice of WBF is ϕex = f1f2f4 ∨ f1f̄2f5 ∨ f̄1f3f4 ∨ f̄1f̄3f5. Separately, the weight function
represents the specific probabilities for each expression flipi θ from the program: the
weight of fi is θ if fi is true and 1− θ otherwise.

Once the program is associated with a WBF, probabilistic inference is performed via a
weighted model count (WMC). Formally, for a formula ϕ over variables X , a sentence ω is
a model of ϕ if it is a conjunction of literals, contains every variable in X , and ω |= ϕ. We
denote the set of all models of ϕ as Mods(ϕ). The weight of a model, denoted w(ω), is the
product of the weights of each literal w(ω) ,

∏
l∈ω w(l). Then, the following defines the

WMC task:
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Definition 3.2 (Weighted Model Count). Let (ϕ,w) be a weighted Boolean formula. The
weighted model count (WMC) of (ϕ,w) is the sum of the weights of each model, WMC(ϕ,w) ,∑

ω∈Mods(ϕ) w(ω).

What has been achieved? So far, not much! The WMC task is known to be #P-hard for
arbitrary Boolean formulas. Indeed, the formula ϕex above is isomorphic to the structure
of Equation 3.1, so the WMC calculation over it will be essentially equivalent. However,
it has been observed in the AI literature that certain representations of Boolean formulas
— such as binary decision diagrams (BDDs) — both exploit the structure of a formula to
minimize its representation and support linear time weighted model counting, and as such
are useful compilation targets [Chavira and Darwiche, 2008, Darwiche and Marquis, 2002,
Bryant, 1986]. Formally, as outlined in Chapter 2, BDDs are a tractable probabilistic model.

The field of compiling Boolean formulas to representations that support tractable weighted
model counting is broadly known as knowledge compilation, and inference via knowledge
compilation is currently the state-of-the-art inference algorithm for certain kinds of discrete
Bayesian networks [Chavira and Darwiche, 2008] and probabilistic logic programs [Fierens
et al., 2015].

Dice utilizes the insights of knowledge compilation to perform factorized inference.
First, the generated formula ϕ in a compiled WBF is represented as a BDD; Figure 3.2b
shows the compiled BDD for the program in Figure 3.2a. A solid edge denotes the case
where the parent variable is true and a dotted edge denotes the case where the parent
variable is false. This BDD is logically equivalent to ϕex but the BDD’s construction pro-
cess exploits the program’s conditional independence to efficiently produce a compact
canonical representation. Specifically, there is a single subtree for f4, which is shared by
both the path coming from f2 and the path coming from f3, and similarly for f5. These
shared sub-trees are induced by conditional independence: fixing y to the value true —
and hence guaranteeing that a path to f4 is taken in the BDD — screens off the effect of x
on z, and hence reduces both the size of the final BDD and the cost of constructing it. The
BDD automatically finds and exploits such factorization opportunities by caching and
reusing repetitious logical sub-functions.

Dice performs inference on the original probabilistic program via WMC once the pro-
gram is compiled to a BDD. Crucially, it does so without exhaustively enumerating all
paths or models. By virtue of the shared sub-functions, the BDD in Figure 3.2b directly
describes how to compute the WMC in the factorized manner. Observe that each node
is annotated with the weighted model count, which is computed in linear time in a sin-
gle bottom-up pass of the BDD. For instance, the WMC at node f2 is given by taking the
weighted sum of the WMC of its children, 0.2 × 0.4 + 0.8 × 0.5. Finally, the sum taken at
the root of the BDD (the node f1) is exactly the factorized sum in Equation 3.2.

3.2.3 Leveraging Functional Abstraction
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S1

S2

S3

S4

(a) Network dia-
gram.

1 fun diamond(s1:Bool):Bool {
2 let route = flip1 0.5 in
3 let s2 = if route then s1 else F

in
4 let s3 = if route then F else s1

in
5 let drop = flip2 0.0001 in
6 s2 ∨ (s3 ∧ ¬drop)
7 }
8 let net1 = diamond(T) in
9 let net2 = diamond(net1) in

10 diamond(net2)

(b) Dice program.

s1

f1

f2

T F

(c) diamond
function.

f 1
1

f 1
2

f 2
1

f 2
2

f 3
1

f 3
2

T F

(d) Final BDD.

Figure 3.3: A sub-network, its description as a probabilistic program, a compiled function,
and the final BDD.

The previous section highlights how Dice exploits factorization that comes from con-
ditional independences in the program. One common source of such independences is
functional abstraction: the behavior of a function call is independent of the calling con-
text, given the actual argument. Dice inference as described above automatically exploits
this structure as part of the BDD construction. In addition, Dice exploits functional ab-
straction in an orthogonal manner by modularly compiling a BDD for each function once
and then reusing this BDD at each call site, thereby amortizing the cost of the BDD con-
struction across all callers.

To illustrate the benefits of functional abstraction, consider an example from recent
work in probabilistic verification of computer networks via probabilistic programs [Gehr
et al., 2018]. Figure 3.3a shows a “diamond” network that contains four servers, labeled
Si. The network’s behavior is naturally probabilistic, to account for dynamics such as
load balancing and congestion. In this case, server S1 forwards an incoming packet to
either S2 or S3, each with probability 50%. In turn, those servers forward packets received
from S1 to S4, except that S3 has a 0.1% chance of dropping such a packet. The diamond
function in Figure 3.3b defines the behavior of this network as a probabilistic program in
Dice. The argument boolean s1 represents the existence of an incoming packet to S1 from
the left, and the function returns a boolean indicating whether a packet was delivered to
S4.

As mentioned above, Dice compiles functions modularly, so Dice first compiles the
diamond function to a BDD, shown in Figure 3.3c. The variable s1 represents the unknown
input to the function, and the fi variables represent the flips in the function body, as in
our previous example. Next Dice will create the BDD for the “main” expression in lines
8–10 of Figure 3.3b. During this process, the BDD for the diamond function is reused at
each call site using standard BDD composition operations like conjunction (Chapter 3.4
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1 fun EncryptChar(key:int, c:char):Bool {
2 let randomChar = ChooseChar() in
3 let ciphertext = (randomChar+key)%26 in
4 let fail = flip 0.0001 in
5 if fail then true else
6 observe ciphertext == c
7 }
8 let k = UniformInt(0, 25) in
9 let _ = EncryptChar(k, ’H’) in

10 · · · // encrypt n total characters
11 in k

Figure 3.4: A frequency analyzer for a noisy Caesar cipher.

describes this in more detail). The final BDD for the program is shown in Figure 3.3d,
where each variable f ji represents the ith flip in the jth call to diamond.

The final BDD automatically identifies and exploits functional abstraction. For exam-
ple, the structure of the BDD makes it clear that the third call to diamond depends only on
the output of the second call to diamond, rather than the particular execution path taken to
produce that output. As a result, even though there are three sub-networks, and therefore
26 possible joint assignments to flips, the BDD only has 8 nodes. More generally, this
BDD will grow linearly in the number of composed diamond calls, though the number
of possible executions grows exponentially. Hence functional abstraction both produces
smaller BDDs, which leads to faster WMC computation, and reduces BDD compilation
time by compiling each function once. Chapter 3.5 shows that these capabilities provide
orders of magnitude speedups in inference.

3.2.4 Bayesian Inference & Observations

Bayesian inference is a general and popular technique for reasoning about the proba-
bility of events in the presence of evidence. Dice, similar to other PPLs, supports Bayesian
reasoning through an observe expression. Specifically, the expression “observe e” repre-
sents evidence (or an observation) that e is true; the expression always evaluates to true,
but it has the side effect that executions on which e is not true are defined to have 0 prob-
ability.

Dice supports first-class observations, including inside of functions. An example is
shown in Figure 3.4, which shows another rich class of discrete probabilistic inference
problems that come from text analysis. For this problem the goal is to decrypt a given piece
of ciphertext by inferring the most likely encryption key. We assume that the plaintext was
encrypted using a Caesar cipher, which simply shifts characters by a fixed but unknown
constant, so the encryption key is an integer between 0 and 25 (e.g., with key 2, “abc”
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becomes “cde”).

The task of decrypting encrypted ciphertext can be cast as a probabilistic inference
task by using frequency analysis Katz et al. [1996]. In the English language each letter has
a certain probability of being used: for instance, the frequency of letter “E” is 12.02%.
In Figure 3.4, the function EncryptChar is a generative model for how each letter in the
ciphertext was created. The function takes as an argument the encryption key as well as a
received ciphertext character c. First a plaintext character randomChar is chosen according
to its empirical distribution (the ChooseChar function is not shown but straightforward).
Then this character is encrypted with the given key and we observe that the ciphertext is
the actual ciphertext character c that we received. To make the inference problem more
challenging and realistic, we assume that there is a chance that the encryptor mistakenly
forgets to encrypt a character, in which case we do not perform the observation. Initially,
the key (k) is assumed to be uniformly random (line 6). After invoking EncryptChar once
for each received ciphertext character (lines 7–8), the posterior distribution on the key is
returned.

The interaction of probabilistic inference with observations is subtle. Observations
have a non-local and “backwards” effect on the probability distribution, which must be
carefully preserved when performing inference. In our example, the observation inside
of EncryptChar affects the posterior distribution of its argument key. These non-local
effects are the bane of sampling-based inference algorithms: observations can impose
complex constraints — such as the need in our example for ChooseChar to draw the right
character — that make it challenging for sampling algorithms to find sufficiently many
valid samples (we highlight this challenge in Chapter 3.5).

The WBF compilation strategy outlined in the previous section is inadequate for cap-
turing the semantics of the EncryptChar function: this function always returns true, so
its compiled BDD would be trivial. Clearly this is incorrect, since the EncryptChar func-
tion has an additional, implicit effect on the program, by making certain encryption keys
more or less likely to be the correct one. To handle observations, the compilation strategy
is augmented to produce a second logical formula, which is called the accepting formula
and denoted γ. The accepting formula represents all possible assignments to flips that
cause all observes in the program to be satisfied. Together the formulas ϕ and γ capture
the meaning of the program: we can compute the posterior distribution on k by comput-
ing weighted model counts of the form WMC(ϕ ∧ γ, w)/WMC(γ, w) for each value of k. Note
that γ serves two roles: it constrains ϕ to only those executions that satisfy the obser-
vations, and its weighted model count computes the normalizing constant for the final
probability distribution.

3.3 The Dice Language

Chapter 2 gave an introduction to a small subset of the complete Dice language; here
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1 τ ::= Bool | τ1 × τ2

2 v ::= T | F | (v, v)
3 aexp ::= x | v
4 e ::= aexp | fst aexp | snd aexp | (aexp, aexp) | let x = e in e | flip θ
5 | if aexp then e else e | observe aexp | f(aexp)
6 func ::= fun f(x:τ): τ { e }
7 p ::= e | func p

Figure 3.5: Syntax for the core Dice language. The metavariable f ranges over function
names, x over variable names, and θ over real numbers in the range [0, 1].

extra language constructs like tuples and functions are introduced.

3.3.1 Semantics

Recall from Chapter 2.2.1 that the semantic bracket J·K associates each Dice expression
with an unnormalized distribution, and further denote the set of all Dice values as V .
Figure 3.6 provides the full semantics for Dice expressions. The semantics of values and
tuple access are straightforward. For example, the semantics of the expression fst (F,T)
is the probability distribution that assigns probability 1 to F and 0 to all other values. The
semantics for conditionals follows from its usual semantics.

3.3.1.1 Functions and Programs

Dice supports non-recursive functions. We generalize the semantics of expressions to
functions in a natural way. Specifically, the semantics of a function f is a conditional
probability distribution, which is a function from each value v to a probability distribu-
tion for f(v). Formally, the semantics of a function JfuncK : V → V → [0, 1] is defined as
follows:

Jfun f(x : τ) : τ ′{e}K (v) , Je[x 7→ v]K (3.3)

To give a semantics for function calls the semantic judgment is extended to include a
function table T , which is a finite map from function names to their conditional probability
distributions. Formally our semantics judgment for expressions now has the form JeKT :
V → [0, 1], and similarly for the semantics of function definitions above, but we leave T
implicit when it is clear from the context. Figure 3.6 provides the semantics of a function
call: the function’s conditional probability distribution is found in T , and the probability
distribution associated with the actual argument v is retrieved.

Finally, we define the semantics of programs JpKT : V → [0, 1]. Intuitively, each func-
tion is given a semantics in the context of the prior functions, and then the semantics of
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Jv1K (v) ,
(
δ(v1)

)
(v) Jfst (v1, v2)K (v) ,

(
δ(v1)

)
(v) Jsnd (v1, v2)K (v) ,

(
δ(v2)

)
(v)

Jif vg then e1 else e2K (v) ,


Je1K (v) if vg = T

Je2K (v) if vg = F

0 otherwise
Jflip θK (v) ,


θ if v = T

1− θ if v = F

0 otherwise

Jobserve v1K (v) ,

{
1 if v1 = T and v = T,

0 otherwise
Jf(v1)K (v) ,

((
T (f)

)
(v1)

)
(v)

Jlet x = e1 in e2K (v) ,
∑
v′

Je1K (v′)× Je2[x 7→ v′]K (v)

Figure 3.6: Full semantics for Dice expressions. The function δ(v) is a probability distri-
bution that assigns a probability of 1 to the value v and 0 to all other values. The implicit
context T maps function names to their semantics.

the program is defined as the semantics of the “main” expression. We formalize this se-
mantics inductively via the following two rules, where • denotes the empty sequence and
η(func) denotes the name of the function func:

J• eKT , JeKT Jfunc pKT , JpKT∪
{
η(func) 7→JfuncKT

}
. (3.4)

3.3.1.2 Semantics of Observation

Now that Dice functions have been introduced we are ready to discuss the subtle compo-
sitional semantics of observations. When reasoning about partial programs, the distribu-
tional semantics alone is not sufficient. For example, consider these two functions:

fun f(x:Bool):Bool { let y = x ∨ flip(0.5) in let z = observe y in y } (3.5)
fun g(x:Bool):Bool { true } (3.6)

Because the observation in f requires y to be true, the two functions have the identical
distributional semantics: they both return true with probability 1, regardless of the argu-
ment x. However, these two functions are not equivalent! Specifically, the observation
in f has the effect of changing the probability distribution of the argument x when the
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function is called. Concretely,

Jlet x = flip 0.1 in let obs = f(x) in xKD (T) = 0.1/0.55

Jlet x = flip 0.1 in let obs = g(x) in xKD (T) = 0.1

The quantity J·KA carries exactly the information needed to distinguish these functions.
Specifically, JeKA represents the probability that e has an accepting execution, which satis-
fies all observations, so we call it the accepting semantics. In the above example, Jg(F)KA = 1
but Jf(F)KA = 0.5: the function call f(F) will succeed only half of the time. This quantity
allows us to precisely compute the effect of the observation on any caller.

In summary, the semantics in Figure 3.6 computes an unnormalized distribution. How-
ever, since the normalizing constant is exactly the accepting probability, the semantics
has the effect of computing two key quantities on each program fragment, both of which
are necessary to characterize its meaning: its normalized probability distribution and its
probability of accepting.

3.4 Probabilistic Inference for Dice

This section formalizes the approach to probablistic inference in Dice via reduction to
weighted model counting (WMC). In this style, a probabilistic model is compiled to a weighted
Boolean formula (WBF) such that WMC queries on the WBF exactly correspond to inference
queries on the original model. This approach has been successfully used to perform ex-
act inference in discrete Bayesian networks as well as probabilistic databases and logic
programs [Chavira and Darwiche, 2008, Fierens et al., 2015, Van den Broeck and Suciu,
2017]. However, to our knowledge it has not been previously applied to a probablis-
tic programming language with traditional programming language constructs, functions,
and first-class observations.

The bulk of this section formalizes a novel algorithm for compiling Dice programs to
WBF. This compilation is introduced in stages: first on the Boolean sub-language, then
with the addition of tuples, and finally with the addition of functions. Along the way a
correctness theorem is stated that formally relates WMC queries over a program’s com-
piled WBF to the semantics from the previous section. Finally I illustrate how to use BDDs
to represent WBFs, which enables the approach to automatically perform factorized in-
ference.

3.4.1 A Primer on Logical Notation

This part of the thesis makes heavy use of logical notation which may be unfamiliar to some
readers. Formally, inference rules are composed of premises, written on top of a bar, and
conclusions written below the bar. If there are multiple premises, they are often separated
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T (T, T, ∅)
(C-TRUE)

F (F, T, ∅)
(C-FALSE)

x (x, T, ∅)
(C-IDENT)

fresh f

flip θ  
(
f , T, (f 7→ θ, T, f 7→ 1− θ)

) (C-FLIP)
aexp (ϕ, T, ∅)

observe aexp (T, ϕ, ∅)
(C-OBS)

aexp (ϕg, T, ∅) eT  (ϕT , γT , wT ) eE  (ϕE, γE, wE)

if aexp then eT else eE  
((

(ϕg ∧ ϕT
)
∨
(
(ϕg ∧ ϕE

)
,
(
(ϕg ∧ γT

)
∨
(
(ϕg ∧ γE

)
, wT ∪ wE

)
(C-ITE)

e1  (ϕ1, γ1, w1) e2  (ϕ2, γ2, w2)

let x = e1 in e2  
(
ϕ2[x 7→ ϕ1], γ1 ∧ γ2[x 7→ ϕ1], w1 ∪ w2

) (C-LET)

Figure 3.7: Compiling Boolean expressions to WBFs.

by a space. For instance, the well-known rule modus ponens which says that “if P implies
Q and P is true, then Q must be true” can be written as the following inference rule:

P ⇒ Q P

Q

(MODUS PONENS)

Another commonly-used notational convention for logic is sequent notation, which
makes use of the turnstyle operator “`”. Equations to the left of the turnstyle are premises
and to the right are conclusions, so modus ponens can again be written using sequent no-
tation:

P ⇒ Q, P ` Q. (3.7)

3.4.2 Compiling Boolean Dice Expressions

The formal compilation judgment for Boolean Dice expressions has the form e (ϕ, γ, w),
where ϕ and γ are logical formulas and w is a weight function (recall Definition 3.1). This
judgment form will be extended later to accommodate other language features. The sym-
bol ϕ is called the unnormalized formula: it represents all possible assignments to variables
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and flips for which e evaluates to true, ignoring observations. The symbol γ is the ac-
cepting formula: it represents all possible assignments to variables and flips that cause all
observations in e to succeed. Before showing the formal rules, here are two examples to
build intuition on the compilation to WBF and how it is used to perform inference.

Example 3.1: Compiling (EXLET)

Recall the following example program:

let x = flip 0.1 in flip 0.4 ∨ x (EXLET)

The above expression compiles to the unnormalized formula ϕ = f1∨f2, where f1 and
f2 are Boolean variables associated with flip 0.1 and flip 0.4 respectively. Since there
are no observations, γ = T for this example. The weight function w assigns weights
to the literals of f1 and f2 that correspond with their probabilities in (EXLET). Then
we have that JEXLETK (T) = WMC(ϕ,w) = 0.46 and JEXLETK (F) = WMC(ϕ,w) = 0.54.

Example 3.2: Compiling (OBSPROG)

Recall the following example program:

let x = flip 0.6 in let y = flip 0.3 in let _ = observe x ∨ y in x
(OBSPROG)

The above program compiles to the unnormalized formula ϕ = f1 and the accept-
ing formula γ = f1 ∨ f2, where f1 corresponds with flip 0.6 and f2 with flip 0.3.
Hence the formula ϕ ∧ γ is true if and only if the program evaluates to T and sat-
isfies all observations, and similarly ϕ ∧ γ is true if and only if the program evalu-
ates to F and satisfies all observations. Then, with the appropriate weight function
w, Bayesian inference on (OBSPROG) is performed via two weighted model counts:
J(OBSPROG)KD (T) = WMC(ϕ∧γ, w)/WMC(γ, w) ≈ 0.83 and J(OBSPROG)KD (F) = WMC(ϕ∧
γ, w)/WMC(γ, w) ≈ 0.17.

The formal compilation rules are shown in Figure 3.7. The above examples show how
closed programs are compiled, but expressions can also have free variables in them. The
rule C-IDENT handles a free variable x simply by introducing a corresponding Boolean
variable x. To illustrate the rule C-FLIP, flip 0.4 (f, T, w) where w maps f to 0.4 and f̄
to 0.6, and f is a fresh Boolean variable. Hence WMC(f ∧ T, w) = 0.4 = Jflip 0.4K (T) and
WMC(f̄ , w) = 0.6 = Jflip 0.4K (F).

The rule C-OBS handles observes. Since an expression’s unnormalized formula ig-
nores observations, the unnormalized formula for observe aexp is simply T. The metavari-
able aexp ranges over values and identifiers and hence compiles to an accepting formula
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of T and an empty weight function (aexp stands for atomic expression). Finally, the un-
normalized formula of aexp becomes the accepting formula of observe aexp, in order to
capture all ways that the observation is satisfied.

The rule C-ITE encodes the usual logical semantics of conditionals. Finally, the C-LET
rule shows how to represent expression sequencing. The logical substitution ϕ1[x 7→ ϕ2]
replaces all occurrences of x in ϕ1 with the formula ϕ2. For the accepting formula, the
expression let x = e1 in e2 only accepts if both expressions accept, so their accepting for-
mulas are simply conjoined. To illustrate the rule, here is the derivation through the rules
for our example (EXLET), assuming the obvious rule for compiling logical disjunction
(which is syntactic sugar for a conditional expression):

fresh f1

flip 0.1 (f1, T, w1)

x (x, T, ∅)
fresh f2

flip 0.4 (f2, T, w2)

flip 0.4 ∨ x (f2 ∨ x, T, w2)

let x = flip 0.1 in flip 0.4 ∨ x (f2 ∨ x[x 7→ f1], T, w1 ∪ w2)

(EXLETCOMPILATION)

This compilation matches Example 3.1 above and shows how logical substitution captures
expression sequencing. The union of two weight functions, denoted w1 ∪ w2, is simply
the union of the two maps w1 and w2; this is well-defined because no two subexpressions
can share flips, so there can be no conflicts.

The statement of correctness for Boolean Dice expressions connects our compilation
rules to the formal semantics from the previous section:

Lemma 3.1 (Boolean Expression Correctness). Let e be a Boolean Dice expression with free
variables x1, . . . , xn and suppose e (ϕ, γ, w). Then for any Boolean values v1, . . . , vn:

• Je[xi 7→ vi]KA = WMC(γ[xi 7→ vi], w)

• for any Boolean value v,

Je[xi 7→ vi]KD (v) =
WMC(((ϕ⇔ v) ∧ γ)[xi 7→ vi], w)

WMC(γ[xi 7→ vi], w)
.

As in the earlier definition of the distributional semantics, in the event that a division
by zero occurs in the above lemma, the result is defined to be zero. This lemma implies
that we can answer inference queries on the original expression via two WMC queries on
the compiled WBF. The following key lemma directly implies the one above:

Lemma 3.2. Let e be a Boolean Dice expression with free variables x1, . . . , xn and suppose e  
(ϕ, γ, w). Then for any Boolean values v1, . . . , vn and Boolean value v,

Je[xi 7→ vi]K (v) = WMC(((ϕ⇔ v) ∧ γ)[xi 7→ vi], w).
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3.4.3 Tuples & Typed Compilation

Now the compilation rules are extended to support arbitrarily nested tuples. The pri-
mary purpose of tuples is to empower Dice functions by enabling multiple arguments
and return values. Intuitively, this involves generalizing the compilation target from a
single Boolean formula ϕ to tuples of Boolean formulas. Formally, this extension requires
generalizing the compilation judgment, which now has the following form:

Γ ` e : τ  (
.
ϕ, γ, w).

First, compilation is now typed: Γ is the usual type environment for free variables and τ
is the type of e. The types are necessary to determine how to properly encode program
variables in the compiled logical formulas. Second, compilation produces a collection of
Boolean formulas, one per occurrence of the type Bool in τ . The new metavariable

.
ϕ is

defined inductively as either a Boolean formula ϕ or a pair of the form (
.
ϕ1,

.
ϕ2).

As a concrete example of compiling a program that contains tuples:

{} ` let x = flip 0.2 in (x, T) : Bool×Bool 
(

(f1, T), T, [f1 7→ 0.2, f̄1 7→ 0.8]
)
.

Here, the resulting compiled formula
.
ϕ is a pair of Boolean formulas (f1, T).

Figure 3.8 shows the new rules for compiling tuples and also presents updated ver-
sions of the rules from Figure 3.7, other than the Boolean-specific rules. The extended
compilation for tuples is structurally very similar to Boolean compilation, but requires
generalizing the Boolean operations in a natural way to accommodate tuples. The new
version of C-IDENT uses the form function Fτ (x), which constructs the logical represen-
tation of a variable x based on its type τ . It is defined inductively as FBool(x) , x and
Fτ1×τ2(x) , (Fτ1(xl), Fτ2(xr)). Note the subscripts xl and xr that lexically distinguish the
left and right elements. This function also allows for defining the compilation for tuple
creation as well as fst and snd in Figure 3.8.

The C-ITE rule shows how to generalize the compilation of conditionals to accommo-
date tuples. The rule requires conjoining a Boolean expression ϕg (the compiled guard)
with a potential tuple of formulas (the compiled then and else branches). To do this, con-
junction must be generalized to broadcasted conjunction, denoted ϕg∧

τ

.
ϕ, by conjoining ϕg

with all the Boolean expressions in the tuple
.
ϕ. Formally, it is defined inductively as:

• ϕa ∧
Bool

ϕb , ϕa ∧ ϕb

• ϕa ∧
τ1×τ2

(
.
ϕb1,

.
ϕb2) ,

(
ϕa∧

τ1

.
ϕb1, ϕa∧

τ2

.
ϕb2
)
.

In addition to broadcasted conjunction, C-ITE also requires point-wise disjunction, denoted
.
ϕ1

.
∨
τ

.
ϕ2. Point-wise disjunction is nearly identically defined inductively as:
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Γ(x) = τ

Γ ` x : τ  (Fτ (x), T, ∅)
(C-IDENT)

Γ(x1) = τ1 Γ(x2) = τ2

Γ ` (x1, x2) : τ1 × τ2  ((Fτ1(x1), Fτ2(x2)), T, ∅)
(C-TUP)

Γ(x) = τ1 × τ2

Γ ` fst x : τ1  (Fτ1(xl), T, ∅)
(C-FST)

Γ(x) = τ1 × τ2

Γ ` snd x : τ2  (Fτ2(xr), T, ∅)
(C-SND)

Γ ` aexp : Bool (ϕg, T, ∅) Γ ` eT : τ  (
.
ϕT , γT , wT ) Γ ` eE : τ  (

.
ϕE, γE, wE)

Γ ` if aexp then eT else eE : τ  
((

(ϕg∧
τ

.
ϕT
) .
∨
τ

(
(ϕg∧

τ

.
ϕE
)
,
(
(ϕg ∧ γT

)
∨
(
(ϕg ∧ γE

)
, wT ∪ wE

)
(C-ITE)

Γ ` e1 : τ1  (
.
ϕ1, γ1, w1) Γ ∪ {x : τ1} ` e2 : τ2  (

.
ϕ2, γ2, w2)

Γ ` let x : τ1 = e1 in e2 : τ2  
( .
ϕ2[x

τ7−→ .
ϕ1], γ1 ∧ γ2[x

τ7−→ .
ϕ1], w1 ∪ w2

) (C-LET)

Figure 3.8: Typed compilation for tuples. These assume, without loss of generality but for
simplicity, that fst, snd, and tuple construction are only ever performed with identifiers
as arguments.

• ϕ1

.
∨

Bool
ϕ2 , ϕ1 ∨ ϕ2 and

• (
.
ϕ11,

.
ϕ12)

.
∨

τ1×τ2
(
.
ϕ21,

.
ϕ22) , (

.
ϕ11

.
∨
τ1

.
ϕ21,

.
ϕ12

.
∨
τ2

.
ϕ22).

Finally, to generalize the compilation of let expressions, the C-LET rule employs a
generalized version of substitution called typed substitution

.
ϕ2[x

τ17−→ .
ϕ1] that substitutes

the compiled version of e1 into the compiled version of e2. Typed substitution inductively
as follows:

ϕ2[x
Bool7−−−→ ϕ1] , ϕ2[x 7→ ϕ1], ϕ2[x

τa×τb7−−−→ (
.
ϕa,

.
ϕb)] , ϕ2[xl

τa7−→ .
ϕa][xr

τb7−→ .
ϕb],

(
.
ϕ1,

.
ϕ2)[x

τ7−→ .
ϕ] , (

.
ϕ1[x

τ7−→ .
ϕ],

.
ϕ2[x

τ7−→ .
ϕ]).

We can state and prove a natural generalization of our key lemma from the previ-
ous subsection, Lemma 3.2. The lemma depends on pointwise iff, denoted

.
ϕ1

τ⇐⇒ .
ϕ2 and

defined inductively as follows: ϕ1
Bool⇐==⇒ ϕ2 , ϕ1 ⇔ ϕ2 and (

.
ϕ1,

.
ϕ2)

τ1×τ2⇐==⇒ (
.
ϕ
′
1,

.
ϕ
′
2) ,(

.
ϕ1

τ1⇐⇒ .
ϕ
′
1

)
∧
(
.
ϕ2

τ2⇐⇒ .
ϕ
′
2

)
. Finally the following key correctness lemma can be stated:

32



Γ ∪ {x1 : τ1},Φ ` e : τ2  (
.
ϕ, γ, w)

Γ,Φ ` fun f(x1 : τ1) : τ2 {e} (
.
ϕ, γ, w)

(C-FUNC)
Γ,Φ ` e : τ  (

.
ϕ, γ, w)

Γ,Φ ` • e : τ  (
.
ϕ, γ, w)

(C-PROG1)

Γ,Φ ` fun f(x1 : τ1) : τ2 {e} (
.
ϕf , γf , wf )

Γ ∪ {f 7→ τ1 → τ2},Φ ∪ {f 7→ (x1,
.
ϕf , γf , wf )} ` p : τ  (

.
ϕ, γ, w)

Γ,Φ ` fun f(x1 : τ1) : τ2 {e} p : τ  (
.
ϕ, γ, w)

(C-PROG2)

Γ(f) = τ1 → τ2 Γ(x1) = τ1

Φ(f) = (xarg,
.
ϕ, γ, w) (

.
ϕ
′
, γ′, w′) = RefreshFlips(xarg,

.
ϕ, γ, w)

Γ,Φ ` f(x1) : τ2  (
.
ϕ
′
[xarg

τ17−→ x1], γ′[xarg
τ17−→ x1], w′)

(C-FUNCCALL)

Figure 3.9: Compiling functions and programs. These assume without loss of generality
but for simplicity that function calls are only ever given identifiers as arguments.

Lemma 3.3 (Typed Correctness Without Functions). Let e be a Dice expression without func-
tion calls, and suppose {xi : τi} ` e : τ  (

.
ϕ, γ, w). Then for any values {vi : τi} and v : τ , we

have that Je[xi 7→ vi]K (v) = WMC
((

(
.
ϕ

τ⇐⇒ v) ∧ γ
)
[xi

τi7−→ vi], w
)

.

3.4.4 Functions & Programs

We conclude the development of Dice compilation by introducing functions and pro-
grams in Figure 3.9. This requires introducing a new piece of context Φ into our judg-
ment, which maps function names to their compiled function bodies. Function names
are mapped to a 4-tuple (xarg,

.
ϕ, γ, w) where xarg is the logical variable for the function’s

formal argument and the other items are respectively the function body’s compiled un-
normalized formula, accepting formula, and weight function.

The judgment Γ,Φ ` func  (
.
ϕ, γ, w) compiles function definitions. As shown in

C-FUNC, the function’s body is simply compiled in an appropriate type environment.
The judgment Γ,Φ ` p : τ  (

.
ϕ, γ, w) compiles programs by compiling each function

in order, followed by the “main” expression. The rules C-PROG1 and C-PROG2 perform
this compilation. After each function is compiled, its compiled WBF is added to Φ and its
name and type are added to Γ, for use in subsequent compilation.

The final judgment form for expressions is Γ,Φ ` e : τ  (
.
ϕ, γ, w), and C-FUNCCALL

shows the rule for compiling function calls. The rule simply looks up the function’s com-
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fresh f1

flip 0.1 
(

f1

T F
, T , w1

) x 
(

x
T F

, T , ∅
) fresh f2

flip 0.4 
(

f2

T F
, T , w2

)
flip 0.4 ∨ x 

(
x

f2

F T
, T , w2

)

let x = flip 0.1 in flip 0.4 ∨ x 

(
f1

f2

F T
, T , w1 ∪ w2

)

Figure 3.10: A BDD derivation tree for (EXLETCOMPILATION), with environments elided
for visual clarity.

piled WBF and substitutes the actual argument for the formal argument. One subtlety
is ensuring that the flips in each call to a function are independent of one another. Our
compilation approach makes it straightforward to do so: simply replace all of the vari-
ables in

.
ϕ and γ, aside from the formal argument xarg, with fresh variables. An auxiliary

function RefreshFlips(xarg,
.
ϕ, γ, w) is used for this purpose. Now it is possible to state

the full correctness theorem for Dice compilation:

Theorem 3.1 (Compilation Correctness). Let p be a Dice program and ∅, ∅ ` p : τ  
(
.
ϕ, γ, w). Then: (1) JpKA = WMC(γ, w), and (2) for any value v : τ , JpKD (v) = WMC((

.
ϕ

τ⇐⇒
v) ∧ γ, w)/WMC(γ, w).

All proofs for this chapter can be found in Appendix A.1. As before, division by zero
is defined to be zero, and the above theorem is proved as a corollary of the following
stronger property:

Theorem 3.2 (Typed Program Correctness). Let p be a Dice program ∅, ∅ ` p : τ  (
.
ϕ, γ, w).

Then for any v : τ , we have that JpK (v) = WMC((
.
ϕ

τ⇐⇒ v) ∧ γ, w).

3.4.5 Binary Decision Diagrams as WBF

Weighted model counting on WBFs is still #P-hard, so the compilation above is not neces-
sarily advantageous. Now it is time to reap the benefits of this translation by representing
WBF with binary decision diagrams (BDDs), a data structure that facilitates efficient in-
ference by exploiting the program structure to minimize the size of the WBF. A BDD is
a popular data structure for representing Boolean formulas, and there is a rich literature
of using BDDs to represent the state space of non-probabilistic programs during model
checking [Clarke et al., 1999, Jhala and Majumdar, 2009].

The compilation rules in the previous subsections were deliberately designed to facil-
itate BDD compilation. Consider the example compilation (EXLETCOMPILATION) from
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Chapter 3.4.2. Each step in this derivation can be translated into a corresponding BDD
operation, as illustrated by the BDD derivation tree in Figure 3.10. The final BDD is com-
piled compositionally, at each step exploiting program structure to produce a minimal,
canonical representation (for the given variable ordering). The operations necessary for
constructing this derivation tree — BDD conjunction, disjunction, and substitution — are
all standard operations that are available in BDD packages such as CUDD [Somenzi].

The cost of Dice inference is dominated by the cost of constructing the corresponding
BDD derivation tree: that step is computationally hard in general, while WMC on the final
BDD is linear time in the size of the BDD. However, BDDs can exploit program structure
in order to allow compilation to scale efficiently on many examples. The remainder of
this chapter is devoted to showing that the BDD can be efficient to construct for useful
programs. In Chapter 3.5 we show this experimentally, and Chapter 3.6 characterizes the
hardness of Dice inference.

3.5 Dice Implementation & Empirical Evaluation

This section describes the implementation and empirical evaluation of Dice. Dice is im-
plemented in OCaml and uses CUDD as its backend for compiling BDDs [Somenzi]. First I
describe extensions to the core Dice syntax that make programming more ergonomic and
enable us to more easily implement some of the benchmark programs. Then I describe
our empirical evaluation of Dice’s performance in comparison with prior PPLs on a suite
of benchmarks. In Chapter 3.6 I give context to these experiments and discuss why Dice
succeeds on many benchmarks where others fail.

3.5.1 Dice Extensions, Ergonomics, and Implementation Details

The actual implementation extends the core Dice syntax from Figure 3.5 in several ways.
The constraint on A-normal form is relaxed here, allowing more arbitrary placement of
expressions. Syntactic sugar for the usual Boolean operators ∧,∨ and ¬ is supported.
Finally, bounded integers and bounded iteration are both supported as well, and are de-
scribed in more detail next.

3.5.1.1 Bounded Integers

Dice supports probability distributions over integers with the discrete keyword: for
instance, the expression discrete(0.1, 0.4, 0.5) defines a discrete distribution over
{0, 1, 2}where 0 has probability 0.1, 1 has probability 0.4, and 2 has probability 0.5. There
are a number of possible strategies for encoding integers into a WBF. The simplest — and
the one we implemented — is a one-hot encoding. Specifically, a distribution over n inte-
gers is represented as tuple of n Boolean variables, each representing one integer value,
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and flips are used to ensure that each variable is true with the specified probability. For
example, here is the encoding of our example distribution above:

discrete(0.1, 0.4. 0.5) 

{ let v0 = flip(0.1) in

let v1 = ¬v0 ∧ flip(0.4/(0.4 + 0.5)) in

let v2 = ¬v0 ∧ ¬v1 in (v0, (v1, v2))

Formally, for a discrete distribution discrete(θ1, θ2, · · · , θn), the encoded value vi is true
only if (1)

∧
k<i ¬vk holds and (2) a coin flipped with probability θi/

∑
j≥i θj is true. Dice

also supports the standard modular arithmetic operations like (+) and (×) on integers.

3.5.1.2 Statically Bounded Iteration

Iteration and loops are challenging program constructs to support in PPLs. Dice, like
many other PPLs, supports bounded iteration: loops that always terminate after a finite
number of iterations [Cusumano-Towner et al., 2018, Gehr et al., 2016, Claret et al., 2013,
Pfeffer, 2007a, Goodman and Stuhlmüller, 2014]. It does so via the syntax iterate(f,
init, k), where f is a function name, init is an initialization expression, and k is an
integer indicating the number of times to call f:

iterate(f, init, k) f(f(· · · f︸ ︷︷ ︸
k times

(init))).

Many useful examples — such as the network reachability example from Chapter 3.2 —
can be expressed as bounded iteration.

3.5.1.3 Variable Ordering

The variable ordering — the order in which variables are branched on in a BDD — is a
critical parameter that determines how compactly a BDD can represent a particular logical
formula [Meinel and Theobald, 1998, Bryant, 1986]. Finding the optimal order — the one
that minimizes the size of the BDD — is NP-hard, so one must typically resort to heuristics
for choosing orderings that work well in practice. Dice orders variables according to the
syntactic order in which they occur in the program, mirroring the topological variable
ordering heuristic from Bayesian networks [Darwiche, 2009]. We anticipate future work
in deriving more sophisticated variable ordering heuristics from static program analyses.

3.5.1.4 Multi-rooted BDDs

Dice typically needs to represent many BDDs at the same time that share structure. The
accepting and unnormalized formulas may share sub-formulas, or tuples may compile to
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formulas that share some substructure. Multi-rooted BDDs naturally exploit this repeated
substructure to compactly represent multiple Boolean formulas in a single data structure.
For instance, the following example program that returns a tuple is compiled into the
multi-rooted BDD shown after:

let x = flip1 0.6 in let y = x ∧ flip2 0.4 in (x, y)

This is compiled to a multi-rooted BDD, with each root shown with initial arrows:

f2

f1

fst

snd

T F

3.5.2 Empirical Performance Evaluation

This section describes the empirical evaluation of an implementation of the Dice compi-
lation rules and BDD-based inference algorithm. Chapter 3.2 highlights some program
structure that BDD compilation exploits, and Chapter 3.6 explores this structure further,
but the question remains: does this structure exist in practice, and can Dice effectively
exploit it? These questions are investigated from three angles:

Q1: Comparison with Existing PPLs How quickly can Dice perform exact inference on
benchmark probabilistic programs from the literature? This is evaluated in Chap-
ter 3.5.2.1.

Q2: Exploiting Functions What are the performance benefits of modular compilation for
functions? This is evaluated in in Chapter 3.5.2.2 by comparing Dice’s performance
with and without inlining function calls.

Q3: Comparison with Bayesian Network Solvers Discrete Bayesian networks are a spe-
cial case of Dice programs and are a good source of challenging and realistic infer-
ence problems. A natural question here is: how does Dice compare against state-
of-the-art Bayesian network solvers that are specialized for this class of programs?
Chapter 3.5.2.3 compares Dice against Ace [Chavira and Darwiche, 2008], a state-of-
the-art discrete Bayesian network solver.

The evaluation compares Dice against state-of-the-art PPLs that employ two different
classes of exact inference algorithms:

37



Algebraic Methods The first class are algebraic inference methods that represent the prob-
ability distribution as a symbolic expression or algebraic decision diagram (ADD) [Gehr
et al., 2016, Claret et al., 2013, Dehnert et al., 2017, Narayanan et al., 2016]. Chap-
ter 3.6.3 discusses this class of inference algorithms more thoroughly. From this class
PSI is compared against [Gehr et al., 2016].1

Enumerative Methods The second class of inference methods work by exhaustively enu-
merating all paths through the probabilistic program, possibly using dynamic pro-
gramming to reduce the search space [Wingate and Weber, 2013, Sankaranarayanan
et al., 2013, Albarghouthi et al., 2017, Goodman and Stuhlmüller, 2014, Chistikov
et al., 2015, Filieri et al., 2013, Geldenhuys et al., 2012]. Both PSI and WEBPPL [Good-
man and Stuhlmüller, 2014] have a mode that supports dynamic-programming ex-
act inference, and both are compared against experimentally.

Comparing the performance of probabilistic program inference is challenging because
performance is closely tied to the intricacies of how the program is structured: semanti-
cally equivalent programs may have vastly differing performance. Throughout our ex-
periments a best-effort attempt was made at representing the programs in a way that was
maximally performant in each language. The tables in this section report the mean value
over at least 5 runs for each experiment. All experiments were single-threaded and per-
formed on the same server with a 2.66GHz CPU and 512GB of RAM. The timings were
recorded using hyperfine,2 a utility that performs statistical timing analysis of Unix shell
commands.

3.5.2.1 Baselines

Table 3.1 summarizes the experimental performance results on well-known baselines
which includes all of the discrete programs that PSI and R2 were evaluated on [Gehr
et al., 2016, Nori et al., 2014, Borgström et al., 2011]. Each row is a different benchmark.
The “Psi”, “DP”, and “Dice” columns give the amount of time (in milliseconds) for re-
spectively (1) Psi’s default inference algorithm [Gehr et al., 2016], (2) Psi’s dynamic pro-
gramming inference algorithm that is specialized for finite discrete programs, and (3) the
total time for Dice to compile a BDD and perform weighted model counting. These exam-
ples are small and thus relatively easy for exact inference, but they serve as an important
sanity check. Generally these examples are too trivial to differentiate the performance of
Dice and Psi.

Two other columns – “# Paths” and “BDD Size” – are included. These give a proxy for
how hard each inference problem is. The “# Paths” column gives how many paths would

1PSI version 2d21f9fe04cf3aac533e08ccc2df18179947baad was used.

2https://github.com/sharkdp/hyperfine
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Table 3.1: Baselines. Comparison of inference algorithms (times are milliseconds). The
total time for Dice is reported under the “Dice” column, and the total size of the final
compiled BDD is reported in the “BDD Size” column.

Benchmark Psi (ms) DP (ms) Dice (ms) # Paths BDD Size

Grass 167 57 14 95 15

Burglar Alarm 98 10 13 250 11

Coin Bias 94 23 13 4 13

Noisy Or 81 152 13 1640 35

Evidence1 48 32 13 9 5

Evidence2 59 28 13 9 6

Murder Mystery 193 75 10 16 6

be explored by a path enumeration algorithm. The “BDD Size” gives the final compiled
BDD generated by Dice, which in conjunction with the “# Paths” column gives a metric
for how much structure Dice is exploiting.

3.5.2.2 Modular Compilation

Now the motivating examples from Chapter 3.2 are returned to in order to see how Dice
compares with existing methods, and against a version of itself where all function calls
are inlined. Figure 3.11 shows how different algorithms scale as the size of the problem
grows (note that all plots are in log-log scale).

Encryption Figure 3.4 introduced the Caesar cipher motivating example, and Figure 3.11a
shows how exact inference on this example scales as the number of characters being en-
crypted increases. Dice is about an order of magnitude faster than the case when function
calls are inlined, and multiple orders of magnitude faster than WebPPL and Psi. In par-
ticular, Psi’s default algebraic inference fails to handle the encryption of even a single
character; we explore why in Chapter 3.6.3.

Approximate inference approaches generally struggle with these kinds of programs,
due to the low probability of finding samples that satisfy the observations. To illustrate
this, we also report the time it took for rejection sampling to draw 10 accepted samples.
WebPPL supports rejection sampling, and Figure 3.11a shows how it scales for this par-
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Figure 3.11: Log-log scaling plots illustrating the benefits of separate compilation of func-
tions. An “x”-mark denotes a runtime error was encountered at that point. The time
reported for Dice inference includes the time required to compile and perform WMC.
The standard deviation for the run-times are negligible.

ticular example program. This figure shows that rejection sampling scales exponentially
in this case, and thus is not a feasible route around the state-space explosion problem.

Network Reachability Next let us examine how separate compilation helps in the net-
work reachability task described in Figure 3.3. Figure 3.11b shows how exact inference
scales in the number of diamond subnetworks. There is a modest benefit over inlining:
compiling the diamond function multiple times is not very expensive since it is so small.
Note that modular function compilation is not strictly beneficial: for this example, the in-
lined version is faster than the modular version after about 102 iterations. Also note that
both versions of Dice are multiple orders of magnitude faster than PSI and WEBPPL due
to the exponential number of paths.

It is expected to see overall linear scaling of Dice for many network topologies due to
conditional independence. To evaluate this, Figure 3.11c shows a version where instead
of diamonds a ladder network of the following structure is used:

. . .

. . .

. . .

. . . .

The goal is to determine the probability of a packet reaching the end of a network that
consists of a chain of ladder subnetworks where each has a similar probabilistic routing
policy to the diamond network. Dice continues to scale well, while this example is chal-
lenging for the other methods, in part since the number of paths is exponential in the
length of the network.
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Figure 3.12: The “Cancer” Bayesian network.

3.5.2.3 Discrete Bayesian Networks

There is currently a lack of challenging discrete probabilistic program benchmarks in the
literature. To more rigorously establish the relative performance of Dice and existing al-
gorithms, here the performance of Dice is evaluated on discrete Bayesian networks that
are translated into equivalent Psi and Dice programs. These benchmarks were selected
from the Bayesian Network Repository, an online repository of well-known Bayesian net-
works.3 These programs are (1) realistic: each has been used to answer scientific research
questions in various domains such as medical diagnosis, weather modeling, and insur-
ance modeling; and (2) challenging: many of these examples have on the order of thou-
sands or tens of thousands of random variables.

First, we will compare the performance of Dice and Psi on this task; then we compare
Dice against a specialized Bayesian network tool. We will show that Dice significantly
outperforms Psi on all of these examples and is competitive with the specialized Bayesian
network solver.

Comparison with Psi Table 3.2 compares Psi against Dice on the task of computing a
single marginal of a leaf node of a Bayesian network, a standard Bayesian network query.
As an example of this task, Figure 3.12 shows the “Cancer” Bayesian network [Korb and
Nicholson, 2010], a simple 5-node network for modeling the probability that a patient has
cancer (the c© node) given a collection of symptoms ( X© and D©) and causes ( P© and S©).
The single-marginal task for this example is to compute the marginal probability of the
leaf node Pr( X©).

Table 3.2 compares the performance of Dice and Psi on the single-marginal inference
task for a variety of Bayesian networks. The size of the network — a proxy for the diffi-
culty of the inference task — is given by the number of parameters (the “# Parameters”
column in the table). Psi fails to complete the inference within the allotted two hours on
any of the medium or larger sized Bayesian networks.

Comparison with a Bayesian Network Solver As a final test of the Dice’s performance,
Table 3.3 compares Dice against Ace, a state-of-the-art Bayesian network solver [Chavira

3https://www.bnlearn.com/bnrepository/
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Table 3.2: Single Marginal Inference. Comparison of inference algorithms (times are mil-
liseconds). A “7” denotes a timeout at 2 hours of running. The total time for Dice is re-
ported under the “Dice” column, and the total size of the final compiled BDD is reported
in the “BDD Size” column.

Benchmark Psi (ms) DP (ms) Dice (ms) # Parameters # Paths BDD Size

Cancer 772 46 13 10 1.1×103 28

Survey 2477 152 13 21 1.3×104 73

Alarm 7 7 25 509 1.0×1036 1.3×103

Insurance 7 7 212 984 1.2×1040 1.0×105

Hepar2 7 7 54 48 2.9×1069 1.3×103

Hailfinder 7 7 618 2656 2.0×1076 6.5×104

Pigs 7 7 72 5618 7.3×10492 35

Water 7 7 2590 1.0× 104 3.2×1054 5.1×104

Munin 7 7 1866 8.1× 105 2.1×101622 1.1×104

Table 3.3: All marginals. A comparison between Dice and Ace on the all-marginal discrete
Bayesian network inference task.

Benchmark Dice (ms) Ace (ms) BDD Size

Alarm 159 422 4.3×105

Hailfinder 1280 522 2.1×105

Insurance 222 492 2.3×105

Hepar2 163 495 5.4×105

Pigs 11243 985 2.6×105

Water 3320 605 6.8×104

Munin 4021194 3500 2.2×107
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and Darwiche, 2008]. The task here is to compute all marginal probabilities, a strictly harder
task than the single-marginal task considered earlier. Note that Psi fails to complete even
a single marginal inference task on any of these examples within 2 hours, so it is omitted
from this table.

Part of what makes the all-marginals inference task challenging is that it requires the
computation of many queries: one for each node in the Bayesian network. One of the ben-
efits of Dice compilation is that a single (potentially expensive) compilation, once com-
pleted, can be efficiently reused to perform many marginal probability queries: this is a
key benefit of compiling to a tractable probabilistic model. This capability is highlighted
in Table 3.3, which shows the cost of compiling the full joint distribution of the exam-
ple discrete Bayesian networks. These compilations take on the order of several seconds;
however, once compiled, computing each marginal probability — or any other query
with a small BDD, such as disjoining together several variables — takes milliseconds. For
comparison, Psi cannot compute a single marginal on any of these examples within two
hours.

Ace, similar to Dice, reduces the Bayesian network probabilistic inference task to weighted
model counting (with a very different encoding scheme). This gives Ace an inherent ad-
vantage over Dice on this task: Ace does not support arbitrary program constructs — such
as conditional branching, procedures, and observe statements — and hence can specialize
directly for Bayesian networks, a limited subclass of Dice programs.

Despite these inherent advantages, Table 3.3 shows that Dice is competitive with Ace
on a number of challenging Bayesian network inference tasks. Ace significantly outper-
forms Dice only on the very largest network, “Munin”. These results suggest that even
though Dice is a general-purpose PPL, it is still a competitive exact inference algorithm
for medium-sized Bayesian networks.

3.6 Discussion & Analysis

The previous section demonstrates empirically that Dice can perform exact inference or-
ders of magnitude faster than existing inference algorithms on a range of benchmarks.
This section provides discussion and analysis that provide context for these results. First
Chapter 3.6.1 asks: how hard is exact inference in Dice? It shows that inference is PSPACE-
hard, which means that it is likely harder than inference on discrete Bayesian networks.
This begs the question: why do the experiments in Chapter 3.5 succeed at all? This ques-
tion is explored in Chapter 3.6.2 by identifying different forms of program structure that
Dice exploits in order to scale. Finally, Chapter 3.6.3 considers algebraic representations
as an alternative compilation target for probabilistic programs and discusses the forms of
structure that they are and are not capable of exploiting.

43



3.6.1 Computational Hardness of Exact Dice Inference

The experiments in Chapter 3.5 raise a natural question: how hard is the exact inference
challenge for Dice programs? The complexity of exact inference has been well-studied
in the context of discrete Bayesian networks. In particular, the decision problem of de-
termining whether or not the probability of an event in a Bayesian network exceeds a
certain threshold is PP-complete [Kwisthout, 2009, Littman et al., 1998]. The canonical
PP-complete problem is MAJSAT, the problem of deciding whether or not the majority of
truth assignments satisfy a logical formula. It is clear that exact Dice is PP-hard: indeed,
some of the experiments in Chapter 3.5 utilize a polynomial-time reduction from discrete
Bayesian networks to Dice programs. However, exact inference for Dice is PSPACE-hard,
and therefore likely harder than discrete Bayesian network inference as PP⊆PSPACE:

Theorem 3.3. Exact inference in Dice is PSPACE-hard.

Proof Sketch. The PSPACE-hardness of Dice inference follows directly from the expres-
siveness of non-recursive Boolean programs. In particular, there is a polynomial-time
reduction from the quantified Boolean formula (QBF) problem, which is PSPACE-complete,
to such a program. This reduction can also be used to reduce QBF to the problem of
determining the probability that a Dice program outputs true. In particular, the con-
struction relies on the expressiveness of nested function calls. Each nested function call
corresponds to either a universal or existential quantifier, and the innermost call can be
such that it evaluates a fully-quantified CNF.

This result depends on the expressiveness of functions, which Bayesian networks lack.

3.6.2 When Is Dice Inference Fast?

Dice inference, in the worst case, is extremely hard. Why, then, do the experiments in
Chapter 3.5 succeed? Put another way: when is it possible to guarantee that the BDD
derivation tree is efficient to construct (i.e., polynomial in the size of the program)? This
section explores two sources of tractability in Dice inference, both of which are struc-
tural properties that a programmer can consciously exploit while designing Dice pro-
grams. The first source of structure is independence, which implies the existence of fac-
torizations. The second is a more subtle property called local structure that implies that,
even in some cases without independence, it can still be efficient to construct the BDD
derivation tree [Boutilier et al., 1996, Chavira and Darwiche, 2005]. These forms of struc-
ture were first introduced in the context of graphical models for capturing conditional
probability tables with various forms of structure, which here are shown to generalize to
Dice programs.
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3.6.2.1 Independence

The independence property implies that two program parts communicate only over a lim-
ited interface. It is the key reason why Dice performs so well in many of the benchmarks
(Chapter 3.5.2.1). Programs naturally have conditional independence, implied by their
control flow, function boundaries, etc. In the motivating example in Figure 3.2b, variable
z does not depend on x given an assignment to y. This is commonly called conditional
independence of x and z given y, and it partially explains why Dice scales to thousands of
conditionally independent layers in Figure 3.11d.

Dice naturally exploits conditional independence. This is formalized by giving bounds
on the cost of composing BDDs that are conditionally independent. In general, the oper-
ation B1 ∧B2 on two BDDs B1 and B2 has time and space complexity O(|B1| × |B2|), and
similarly for B1 ∨ B2 [Meinel and Theobald, 1998]. This implies a worst-case exponential
blowup as BDDs are composed. However, Dice can exploit conditional independence —
among other properties — to avoid this exponential blowup in practice:

Proposition 3.1. Let B1 and B2 be BDDs that share no variables other than some variable z, and
let |B| be the size of the BDD B. Then B1 and B2 are conditionally independent given z, and
computing B1∧B2 and B1∨B2 has time and space complexityO(|B1|+ |B2|) for a variable order
that orders the variables in B1 before z and z before the variables in B2.

Proof Sketch. The proof is by construction. For instance, for conjunction, BDDs for B1 and
B2 are of the form:

B1 =
B′1

z z

T F

B2 =
z

B2 | z B2 | z̄

where B′1 is the BDD for B1 with z separated out and B2 | z is the BDD for B2 with z = T.
The BDD for B1 ∧ B2 can be constructed in linear time by traversing B′1 and rerouting all
high edges coming from z to that end in T to B2 | z, and all low edges from z that end in
T to B2 | z̄.

Proposition 3.1 implies that compositional rules that utilize conjunction and disjunc-
tion to compose Dice programs — like C-LET — can be efficient in the presence of con-
ditional independence. One useful source of conditional independence is function calls.
The motivating example in Figure 3.3 illustrates an example of this form of conditional
independence. Each call to the diamond procedure is independent of all prior calls given
only the immediately previous call. It follows that the size of the BDD for the example
in Figure 3.3d grows as O(|diamond| × c), where c is the number of calls to the diamond
procedure and |diamond| is the size of the compiled BDD for the procedure.
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1 let z = flip1 0.5 in
2 let x = if z then flip2 0.6 else flip3 0.7 in
3 let y = if z then flip4 0.7 else x in (x, y)

(a) Context-specific independence.

f1 f1

l r

f4 f3 f2

T F

(b) Compiled BDD.

1 fun foo(a:Bool, b:Bool, c:Bool):Bool {
2 a ∨ b ∨ c
3 }

(c) Structure without independence.

a
b

c
TF

(d) Compiled BDD.

Figure 3.13: Dice programs and their compiled BDDs illustrating different degrees of
structure.

Dice exploits another, more fine-grained form of independence called context-specific
independence. Historically, context-specific independence has led to significant speedups
in graphical model inference [Boutilier et al., 1996]. The benefits are briefly sketched
here. Two BDDs B1 and B2 are contextually independent given z = v, for some variable z
and value v, if B1[z 7→ v] and B2[z 7→ v] share no variables [Boutilier et al., 1996]. As
for conditional independence, composing contextually independent BDDs can often be
efficient.

An example program that exhibits context-specific independence is shown in Fig-
ure 3.13a. The variables x and y are correlated if z = F or if z is unknown, but they
are independent if z = T. Thus, x is independent of y given z = T. Figure 3.13b shows
how our compilation strategy exploits this independence. Since the program evaluates
to a tuple, it is compiled to a tuple of two BDDs. However, in the Dice implementation
these BDDs share nodes wherever possible, so they can be equivalently viewed as a sin-
gle, multi-rooted BDD. The left and right element of the tuple are represented by the l and
r roots respectively. The program’s context-specific independence implies that there will
be no shared sub-BDD between l and r if f1 is true. See Boutilier et al. [1996] for more
on the performance benefits of exploiting context-specific independence in probabilistic
graphical models.

3.6.2.2 Local Structure

Finally, it is possible for the BDD compilation process to be efficient even in the absence of
independence if the program has structure that is amenable to efficient BDD compilation.
Chavira and Darwiche [2005] showed that exploiting local structure led to significant
speedups in Bayesian network inference, and this performance was one of the primary
motivations for developing Ace. Local structure is a broad category of structural prop-
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Figure 3.14: An ADD representation of the distribution in Equation 3.1.

erties that can make performance more efficient, including determinism, context-specific
independence, and other properties [Boutilier et al., 1996, Gogate and Dechter, 2011, Sang
et al., 2005, Chavira and Darwiche, 2008].

At its core, local structure is a property that makes compiling a BDD more efficient
than naively using a conditional probability table to represent a probability distribution.
Figure 3.13c gives an example Dice function that computes the disjunction of three argu-
ments. Figure 3.13d shows the compiled BDD for this function. It is compact and hence
exploiting the program structure. Note that, if the number of variables disjoined together
were to increase, the size of the BDD — and the cost of compiling it — would increase
only linearly with the number of variables. This stands in stark contrast to an approach
to inference that is agnostic to local structure (such as simple variable elimination), which
would not identify that this or-function is a compact way of representing the distribution.

Dice implicitly exploits local structure during inference. For instance, the Bayesian
network “Hepar2” has many examples of determinism, sparse probability tables, and
context-specific independence; Dice exploits these properties to be competitive with the
performance of Ace on this example and others in Table 3.3.

3.6.3 Algebraic Representations

Previous sections have shown that BDDs naturally capture and exploit factorization and
procedure reuse. While these are common and useful program properties, they are not the
only possible ones, and different compilation targets will naturally exploit others. This
section considers algebraic compilation targets as a foil to the Dice uses in order to highlight
the relative strengths and weaknesses.

In contrast to our WMC approach that explicitly separates the logical representation
from probabilities, algebraic approaches integrate probabilities directly into the compi-
lation target. A common algebraic target are algebraic decision diagrams (ADDs) [Bahar
et al., 1997], which are similar to binary decision diagrams except that they have numeric
values as leaves. This makes them a natural choice for compactly encoding probability
distributions in the probabilistic programming and probabilistic model checking commu-
nities, with different encoding strategies from Dice [Claret et al., 2013, Dehnert et al., 2017,
Kwiatkowska et al., 2011]. As an example, Figure 3.14 shows an ADD for the program
in Figure 3.2a if it returned a tuple of x, y, and z. ADDs encode probabilities of total as-
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signments of variables: in this example, a probability of 0.008 is given to the assignment
x = y = z = T.

ADDs have several similarities with BDDs. First, they support composition opera-
tions and so can offer a compositional compilation target [Claret et al., 2013], albeit very
different from the one described by our compilation rules. Second, they support efficient
inference once the ADD is constructed. Despite these similarities, ADDs have strikingly
different scaling properties from BDDs because they exploit different underlying struc-
ture of the program. The key difference is that BDDs are agnostic to the flip parameters:
they naturally exploit logical program structure such as independence and local structure
in order to scale without needing to know what any probabilities are. As the previous
subsections have argued, BDDs excel at this task. In contrast, ADDs naturally exploit
global repetitious probabilities: repeated probabilities of possible worlds in the entire distri-
bution. This is shown in Figure 3.14, which collapses states with the same probability —
for example, if x = y = F, then the ADD terminates with a node that does not depend on
z’s value: .315 .

Global repetitious probabilities are an orthogonal property to independence. ADDs do
not exploit independence in the same way as Dice. ADDs must explicitly represent the
probability of each total instantiation of the variables of interest, corresponding to each
possible value of the returned tuple. In our example, this means that the ADD cannot
exploit the conditional independence of z and x given y, and instead needs to enumerate
their joint probabilities.

Hence, unlike Dice’s BDD representation, the size of a compiled ADD is sensitive to
the precise parameters chosen for flips in the program. If these parameters are chosen
such that the probability of each total assignment is distinct, and we are interested in a
tuple of all the random variables, then the number of leaves in the ADD will equal the
number of of paths in the probabilistic program. As shown in Table 3.1, this can be pro-
hibitively large for many examples; the BDD size is typically many orders of magnitude
smaller than the number of paths on these real-world programs.

3.7 Conclusion

This chapter presented a new approach to exact inference for discrete probabilistic pro-
grams and implement it in the Dice probabilistic programming language. It (1) showed
how to reduce exact inference for Dice to weighted model counting, (2) proved this trans-
lation correct, (3) demonstrated the performance of this inference strategy over existing
methods, and (4) characterized the efficiency of compiling Dice in key scenarios.

In the future I hope to extend Dice in several ways. First, I believe that the insights
of Dice can be cleanly integrated into many existing probabilistic programming systems,
even those with approximate inference that can handle continuous random variables.
I see this as an exciting avenue for extending the reach of approximate inference algo-
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Intermezzo 1: Rubicon: Model Checking Markov Chains with Dice

Probabilistic model checking is a sub-field of automated verification that seeks to verify
properties of probabilistic processes. An example problem is as follows. Suppose
there are n factories. Each day, the workers at each factory collectively decide whether
or not to strike. Furthermore, since no two factories are identical, the probability to
begin striking and to stop striking are different for each factory. Assuming that each
factory transitions synchronously and in parallel with the others, a standard query
is: “what is the probability that all the factories are simultaneously striking within h
days?”

There are many mature tools for performing probabilistic model checking such
as Storm [Dehnert et al., 2017] and Prism [Kwiatkowska et al., 2011]. At its core
probabilistic model checking has much in common with probabilistic inference, and
consequently probabilistic model checkers implicitly rely on similar algorithms to
probabilistic inference. Concretely, probabilistic model checkers commonly employ
algebraic representations to represent probability distributions symbolically during
verification. Hence it is natural to ask: how well can Dice serve as a probabilistic model
checker?

Holtzen et al. [2021] developed Rubicon to test this hypothesis, and showed that
translating probabilistic model checking problems and queries into Dice programs
and relying on Dice’s inference algorithm is a potentially profitable avenue for speed-
ing up probabilistic model checkers. Importantly, this is because Dice uses a funda-
mentally different approach to inference – BDDs instead of ADDs – and so scales
differently on certain classes of problems.

The following figure shows how Dice can scale on a the example factory problem
in comparison with Storm and Prism as the number of factories increases:
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The above figure compares the performance of Rubicon ( ), Storm’s explicit engine
( ), Storm’s symbolic engine that uses ADDs ( ) and Prism ( ). As the number
of parallel factories grows, the state space of the problem grows exponentially, so
Dice can scale to an order of magnitude more states on this example.
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rithms, which currently struggle with discreteness. Second, I believe that Dice can be
extended to handle more powerful data structures and programming constructs, notably
forms of unbounded loops and recursion. And finally, I hope to further explore the land-
scape of weighted model counting approaches.

3.8 Bibliographic Notes

There is a large literature on probabilistic programming languages and inference algo-
rithms. At a high level, Dice is distinguished from existing PPLs by being the first to use
weighted model counting to perform exact inference for a PPL that includes traditional
programming language constructs, functions, and first-class observations. In this section
we survey the existing literature on probabilistic program inference and provide context
for how each relates to Dice.

Applications Due in part to their flexibility and ease of use, PPLs have been applied in
a variety of scientific disciplines, including computer vision [Ritchie et al., 2016], cancer
screening [Jacobs et al., 2016], biological modeling [Becker et al., 2017], psychology [Van de
Schoot et al., 2017], modeling population dynamics [Hooten et al., 2017, Dhir et al., 2017],
and more.

Path-based inference algorithms The most common class of probabilistic program in-
ference algorithms today are operational, meaning that they work by executing the proba-
bilistic program on concrete values. Common examples include sampling algorithms [Car-
penter et al., 2016, Hur et al., 2015, Pfeffer, 2007b, Chaganty et al., 2013, Wood et al., 2014,
van de Meent et al., 2015, Mansinghka et al., 2013, Goodman et al., 2008, Saad and Mans-
inghka, 2016, Mansinghka et al., 2018] and variational approximations [Bingham et al.,
2019, Dillon et al., 2017, Wingate and Weber, 2013, Kucukelbir et al., 2015, Minka et al.,
2014]. Other approaches use symbolic techniques to perform inference but are similar in
spirit, in the sense that they separately enumerate paths through the program [Sankara-
narayanan et al., 2013, Albarghouthi et al., 2017, Geldenhuys et al., 2012, Filieri et al.,
2013]. These approaches do not factorize the program: they consider entire execution
paths as a whole. Chistikov et al. [2015] proposes performing weighted model integration
— a generalization of weighted model counting to the continuous domain [Belle et al.,
2015, Zeng and Van den Broeck, 2020, Dos Martires et al., 2019] — to perform inference
by integrating along paths through a probabilistic program.

Additionally, sampling and variational algorithms are distinguished from this ap-
proach by being approximate rather than exact inference algorithms. In general, these
techniques can be applied to both discrete and continous distributions, though they often
rely on program continuity or differentiation to be effective [Carpenter et al., 2016, Hoff-
man and Gelman, 2014, Gram-Hansen et al., 2018, Wingate and Weber, 2013, Kucukelbir
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et al., 2015, Minka et al., 2014]. In contrast to all of these approaches, Dice performs fac-
torized, exact inference on non-smooth, non-differentiable, discrete programs.

Algebraic inference algorithms A number of PPL inference algorithms work by trans-
lating the probabilistic program into an algebraic expression that encodes its probabil-
ity distribution, and then using symbolic algebra tools in order to manipulate that ex-
pression and perform probabilistic inference. Examples include Psi [Gehr et al., 2016],
Hakaru [Narayanan et al., 2016], and approaches that employ algebraic decision dia-
grams [Claret et al., 2013, Dehnert et al., 2017]. Algebraic representations exploit fun-
damentally different program structure from this approach based on weighted model
counting; see Chapter 3.6.3 for a discussion.

Graphical model compilation There exists a large number of PPLs that perform infer-
ence by converting the program into a probabilistic graphical model Pfeffer [2009], Mc-
Callum et al. [2009], Minka et al. [2014], Bornholt et al. [2014]. These compilation strate-
gies are limited by the semantics of graphical models: key program structure — such as
functions, conditional branching, etc. — is usually lost during compilation and so cannot
be exploited during inference. Further, graphical models can express conditional inde-
pendence via the graphical structure, but typical inference algorithms such as variable
elimination cannot exploit more subtle, context-specific forms of independence that this
approach exploits, as shown in Chapter 3.6.2.1 [Darwiche, 2009].

Probabilistic Logic Programs Closest to the approach presented in this chapter are tech-
niques for exact inference in probabilistic logic programs De Raedt et al. [2007], Riguzzi
and Swift [2011], Fierens et al. [2015], Vlasselaer et al. [2015]. Similar to this work, these
techniques reduce probabilistic inference to weighted model counting and employ repre-
sentations that support efficient WMC, such as BDDs Bryant [1986] or sentential decision
diagrams Darwiche [2011]. Unlike that work, Dice supports traditional programming lan-
guage constructs, including functions, and it supports first-class observations rather than
only observations at the very end of the program. We show how to exploit functional
abstraction for modular compilation, and first-class observations require us to explicitly
account for an accepting probability in both the semantics and the compilation strategy.

Programmer-Guided Inference Decomposition Several PPLs provide a sublanguage
that allows the programmer to provide information that can be used to decompose pro-
gram inference into multiple separate parts [Pfeffer et al., 2018, Mansinghka et al., 2018,
Holtzen et al., 2018]. Hence the goal is similar in spirit to this chapter’s goal of auto-
mated program factorization. These approaches are complementary: Dice automatically
finds and exploits program factorizations and local structure, while these approaches can
perform sophisticated decompositions through explicit programmer guidance.
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Static Analysis & Model Checking Forms of symbolic model checking often represent
the reachable state space of a program as a BDD [Jhala and Majumdar, 2009, Biere, 2009].
Dice’s compilation can be thought of as enriching this representation with probabilities:
we track the possible assignments to each flip and the accepting formula in order to
do exact Bayesian inference via WMC. Static analysis techniques have also been gener-
alized to analyze probabilistic programs. For example, probabilistic abstract interpreta-
tion [Cousot and Monerau, 2012] provides a general framework for static analysis of prob-
abilistic programs. However, these techniques seek to acquire lower or upper bounds on
probabilities, while we target exact inference. Probabilistic model checking (PMC) is a
mature generalization of traditional model checking with multiple high-quality imple-
mentations [Dehnert et al., 2017, Kwiatkowska et al., 2011]; see Intermezzo 1 and Holtzen
et al. [2021]. The goal of PMC is typically to verify that a system meets a given probabilis-
tic temporal logic formula. They can also be used to perform probablistic inference, but
they have not used weighted model counting for inference and instead typically rely on
ADDs, which gives them different scaling properties than Dice as we discussed earlier.
Vazquez-Chanlatte and Seshia [2020] recently described an approach to learn Boolean
task specifications on Markov decision processes. This work shares some core technical
machinery with Dice but differs markedly in its goals and encoding strategy.
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CHAPTER 4

Exploiting Symmetry with Lifted Inference

Symmetry is what we see at a glance;
based on the fact that there is no reason for
any difference.

Blaise Pascal

Chapter 3 described how to exploit factorization and modularity in probabilistic pro-
grams, but this is not the only kind of structure that a probabilistic program or probabilis-
tic model can exhibit.

Recall the pigeonhole example described in Chapter 1.1.3. Imagine here that there is
just a single pigeon, but there are 5 holes that it wants to hide in. What is the probability
that the pigeon is in a particular hole? This is easy to answer at a glance: the probability
that it is in any particular hole is 1/5, since each hole is equally likely and there are 5 of
them. But what happens if we try to encode this situation as a Dice program? Here is an
example of how this might be encoded:

1 let isInHole1 = flip 1/5 in
2 let isInHole2 = if !isInHole1 then flip 1/4 else false in
3 let isInHole3 = if !isInHole1 && !isInHole2 then flip 1/3 else false in
4 let isInHole4 = if !isInHole1 && !isInHole2 && !isInHole3 then flip 1/2 else

false in
5 let isInHole5 = !isInHole1 && !isInHole2 && !isInHole3 && !isInHole4 in
6 (isInHole1, isInHole2, isInHole3, isInHole4, isInHole5)

This program returns a distribution on 5 holes, but it has interesting structure. Pro-
grams have execution order: the pigeon must decide, in order, which hole it wants to be in,
which breaks the delicate symmetry on the holes. In this program, each hole is distinct
from the others because of their ordering. Moreover, observe that there is no indepen-
dence between each of the isInHole variables: each depends on all the previous. More

0This chapter is based in large part on the original publication Holtzen et al. [2019], partially supported
by NSF grants #IIS-1657613, #IIS-1633857, #CCF-1837129, DARPA XAI grant #N66001-17-2-4032, NEC Re-
search, a gift from Intel, and a gift from Facebook Research. Many thanks to Tal Friedman, Pasha Khosravi,
Jon Aytac, Philip Johnson-Freyd, Mathias Niepert, and Anton Lykov for helpful discussions and feedback
on drafts on the published version of this work.
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broadly, even if the symmetry is obvious, existing probabilistic program inference algo-
rithms do not

The key to this problem is identifying and exploiting properties of the distribution that
make inference tractable. Lifted inference algorithms identify symmetry as a property that
enables efficient inference and seek to scale with the degree of symmetry of a probability
model [Poole, 2003, Kersting, 2012, Niepert and Van den Broeck, 2014]. Many existing
exact inference algorithms, such as the BDD compilation strategy employed by Dice, are
unaware of and cannot directly exploit symmetry for speeding up inference. To exploit
this structure, we will need an entirely different inference methodology.

Lifted inference identifies orbits of the distribution: sets of points in the probability
space that are guaranteed to have the same probability. This enables inference strategies
that scale in the number of distinct orbits. Highly symmetric distributions have few orbits
relative to the size of their state space, allowing lifted inference algorithms to scale to
large probability distributions with scant independence. Thus, lifted inference algorithms
identify symmetry as a complement to independence in the search for efficient inference
algorithms.

This chapter introduces a new family of exact and approximate lifted inference al-
gorithms. It will also focus on a class of probabilistic models not explored yet in this
thesis: factor graphs [Koller and Friedman, 2009a]. The reason for focusing initially on
factor graphs rather than probabilistic programs is practical.1 One of the main challenge
in designing a lifted inference technique is finding and identifying symmetries. The tech-
niques presented in this chapter will heavily rely on graph isomorphism tools for finding
symmetries: in the future, I hope this can be used as a foundation for new probabilistic
program inference algorithms that exploit symmetry.

4.1 Introduction

A factor graph is a bipartite graph that defines a distribution on random variables by a set
of functions called factors, which intuitively give a weight to assignments to a subset of
variables.2 Formally stated:

Definition 4.1 (Factor graph). Let X be a set called the variable set. We call a vector x =
{0, 1}|X| an assignment. A function f : {0, 1}k → R is called a factor. Then a factor graph
is a bipartite graph defined by the tuple G = (X, F, E), where X are variable nodes, F are factor
nodes associated with factors, and E are edges between variables and factor nodes.

A factor graph is a probabilistic model. It defines a distribution on assignments via

1There are probabilistic programs that compile programs to factor graphs, and so the methods described
in this directly apply to these languages [McCallum et al., 2009, Minka et al., 2014, Bornholt et al., 2014].

2For a good reference on factor graphs and other graphical models, see Koller and Friedman [2009a].

54



x1A

x2A

x3B

x3A

x2Bx1B

Figure 4.1: The pigeon-hole factor graph example with 3 pigeons and 2 holes.

the following:

Pr(x) ,
1

Z

∏
f∈F

f(x). (4.1)

The symbol Z is a normalizing constant. Observe that this definition is not quite right:
a factor fi : {0, 1}k → R is only well-defined on a k-dimensional sub-vector of x. This
is where the edges between variables and factors come in: the edges will tell us which
variables are required data for evaluating a particular factor. Let Vars(f) be the set of
indices of variables that share an edge with factor f . As convention, we say f(x) is the
factor f : {0, 1}k → R applied to a k-dimensional sub-vector of x given by:

f((x1, x2, · · · , xn)) , f((xp1 , xp2 , · · · , xpk)) where pi ∈ Vars(f). (4.2)

Hence, intuitively, the graph structure tells us how the distribution factorizes into a prod-
uct of factors.

This definition can seem complicated at first, so it is best to further develop it with
an example. Figure 4.1 shows how to encode as a factor graph the 3-pigeons in 2-holes
situation similar to the one in Figure 1.2. By convention, factors are denoted with square
boxes and variables are denoted with round nodes. Each of the three pigeons is identified
by a number, and the two holes are identified by the letters A and B: hence the variable
node x1B is 1 if and only if pigeon 1 is in hole B.

There are two kinds of factors in this graph: hole factors (shown in red) that connect
two holes and give a large weight to a state in which no two pigeons are in the same hole,
and pigeon factors (in black) that give a large weight to a state in which no two pigeons are
in more than a single hole simultaneously. For instance, we might define hole factors fh
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as and pigeon factors fp as:

fh(xiA, xiB) =


1 if xiA = xiB = 1

1000 if xiA 6= xiB

10 otherwise.
(4.3)

fp(xiB, xjB) =


−∞ if xiB = xjB = 1

100000 if xiB 6= xjB

1 otherwise.
(4.4)

We create one hole factor for each pair of holes and one pigeon factor for each pair
of pigeons. Each of these factors has special structure: they are symmetric about their argu-
ments, meaning that we can always permute the order in which arguments are presented
to the factor without changing the probability. This is a key property which will be ex-
ploited during lifted inference.

The first question that must be answered is: how can we find the symmetries implied
by factors in a factor graph? A key observation made in the lifted inference literature is
that the symmetries of a probability distribution directly correspond to automorphisms
of the colored graph [Bui et al., 2013, Niepert, 2012]. Any permutation of vertices that
preserves the graph structure leaves the distribution unchanged.3 Two assignments (see
Definition 4.1) that are reachable from one another via a sequence of permutations are in
the same orbit; all assignments in the same orbit thus have the same probability.

Figure 4.2 shows the orbits of the 3-pigeon 2-hole scenario up to inversion of true and
false assignments. Each orbit is boxed. There are few orbits relative to the number of
states, which is the property that lifted inference algorithms exploit.

This chapter presents both exact and approximate inference strategies that scale with
the number of orbits of a probability distribution. The exact inference algorithm is as fol-
lows. First, generate a single canonical representative from each orbit; in Figure 4.2, canon-
ical representatives are shown in bold. Then for each representative, compute the size of
its orbit. If both of these steps are efficient, then this inference computation scales effi-
ciently with the number of orbits. This orbit generation procedure is at the heart of many
existing lifted inference algorithms that construct sufficient statistics of the distribution
from a relational representation [Niepert and Van den Broeck, 2014]. An exact lifted in-
ference algorithm is given in Chapter 4.3 that applies this methodology to arbitrary factor
graphs by using graph isomorphism tools to generate canonical representatives and com-
pute orbit sizes.

Next, Chapter 4.4 describes an approximate inference algorithm called orbit-jump MCMC

3It is assumed here w.l.o.g. but for simplicity that the factors are individually fully symmetric. Asym-
metric factors can either be made symmetric by duplicating variable nodes [Niepert, 2012] or encoded using
colored edges [Bui et al., 2013].
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000 000

100 000
010 000

001 000

000 100

000 010

000 001

100 100 010 010 001 001

110 000 011 000 101 000

000 110 000 011 000 101

100 010 100 001

010 100 001 100

111 000 000 111

110 100 110 010 011 001

100 110 010 110 001 011

110 001 101 010 011 100

001 110 010 101 100 011

Figure 4.2: Orbits of the assignments to variables in the pigeonhole problem. An assign-
ment is written as a binary string x1Ax2Ax3Ax1Bx2Bx3B. Each orbit is boxed, and each
canonical representative is bold. Cases where there are 4 or greater true variable assign-
ments are omitted, as these are symmetric to previously listed cases where the true and
false values are flipped.

that provably mixes quickly in the number of distinct orbits of the distribution. This
algorithm uses as its proposal the uniform orbit distribution: the distribution defined by
choosing an orbit of the distribution uniformly at random, and then choosing an element
within that orbit uniformly at random. We present a novel application of the Burnside
process in order to draw samples from the uniform orbit distribution [Jerrum, 1993], and
show how to implement the Burnside process on factor graphs by using graph isomor-
phism tools. Thus, this orbit-jump MCMC provides an alternative to lifted MCMC that
trades computation time for provably good sample quality.

Note, however, that purely scaling in the number of orbits is not a panacea. The pre-
sented methods are both limited: there are liftable probability models that still have too
many orbits for these methods to be effective. The presented methods only exploit sym-
metry, which is in contrast to existing exact lifted inference algorithms that simultane-
ously exploit symmetry and independence. Therefore, the presented algorithms scale
exponentially for certain well-known liftable distributions, such as the friends and smok-
ers Markov logic network [Niepert and Van den Broeck, 2014]. Thus, this work provides
a foundation for future work on inference for factor graphs that exploits both symmetry
and independence.

4.2 Background

This section gives a brief description of important concepts from group theory and ap-
proximate lifted inference that will be used throughout the chapter.

4.2.1 Group Theory

This section briefly reviews some standard terminology and notation from group theory,
following Artin [1998]. A group G is a pair (S, ·) where S is a set and · : S × S → S is a
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binary associative function such that there is an identity element and every element in S
has an inverse under (·). The order of a group is the number of elements of its underlying
set, and is denoted |G|. A permutation group acting on a set Ω is a set of bijections g : Ω→ Ω
that forms a group under function composition. For G acting on Ω, a function f : Ω→ Ω′

is G-invariant if f(g ·x) = f(x) for any g ∈ G, x ∈ Ω. Two elements x, x′ ∈ Ω are in the same
orbit under G if there exists g ∈ G such that x = g · x′. Orbit membership is an equivalence
relation, written x ∼G x′. The set of all elements in the same orbit is denoted OrbG(x). A
stabilizer of x is an element g ∈ G such that g ·x = x; the set of all stabilizers of x is a group
called the stabilizer subgroup, denoted StabG(x). The subscript in the previous notation is
elided when clear. A cycle (x1 x2 · · · xn) is a permutation x1 7→ x2, x2 7→ x3, · · · , xn 7→ x1.
A permutation can be written as a product of disjoint cycles.

4.2.2 Lifted Probabilistic Inference & Graph Automorphism Groups

Lifted inference relies on the ability to identify the symmetries of probability distribu-
tions. In existing exact lifted inference methods, the symmetries are evident from the re-
lational structure of the probability model [Poole, 2003, De Salvo Braz et al., 2005, Gogate
and Domingos, 2011, Van den Broeck, 2013]. In order to extend the insights of lifted in-
ference to models where the symmetries are less accessible, many lifted approximation
algorithms rely on graph isomorphism tools to identify the symmetries of probability
distributions [Niepert, 2012, Bui et al., 2013, Mckay and Piperno, 2014].

A colored graph is a 3-tuple G = (V,E,C) where (V,E) are the vertices and edges of an
undirected graph and C : V → N assigns a non-negative integer, or color, to each vertex.

Definition 4.2. Let G = (V,E,C) and G′ = (V,E ′, C ′) be colored graphs. Then G and G′ are
color-isomorphic to one another, denoted ∼=, if there exists a bijection φ : V → V such that (1)
(v1, v2) ∈ E ⇔ (φ(v1), φ(v2)) ∈ E ′; and (2) for all v ∈ V , C(v) = C ′(v).

Factor graphs have a natural encoding as a colored graph:

Definition 4.3 (Induced colored graph). Let F = (X, F ) be a factor graph with variables X,
and factors F , where F are symmetric functions on assignments to variables X, written x. Then
the colored graph induced by F is a tuple (V,E,C) where V = X ∪ F , the set of edges E
connects variables and factors in F , and C is a partition such that (1) factor nodes are given the
same color iff they are identical factors, and (2) variables are colored with a single color that is
distinct from the factor colors.

A related notion is the color-automorphism group a colored graph:

Definition 4.4. The color automorphism group of a colored graph G = (V,E,C), denoted
A(G), is the set of all color isomorphisms onto itself.

The group A(G) acts on the vertices of G by permuting them. The color automorphism
group of a colored factor graph is directly related to the symmetries of the underlying
distribution:
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Theorem 4.1 (Bui et al. [2013], Theorem 2). LetF be a factor graph and G be its induced colored
graph. Then, the distribution of F is A(G)-invariant.

4.3 Exact Lifted Inference

This section describes the exact lifted inference procedure. First I will discuss the group-
theoretic properties of orbit generation that enable efficient exact lifted inference. Then,
I describe the algorithm for implementing orbit generation on colored factor graphs. Fi-
nally, I present some case studies demonstrating the performance of the algorithm.

4.3.1 G-Invariance & Tractability

This section describes the group-theoretic underpinnings of the orbit-generation proce-
dure and describes its relationship with previous work on tractability through exchange-
ability. We will capture the behavior of a G-invariant probability distribution on a set of
canonical representatives of each orbit:

Definition 4.5. Let G be a group that acts on a set Ω. Then, there exists a set of canonical
representatives Ω/G ⊆ Ω and surjective canonization function σ : Ω → Ω/G such that for
any x, y ∈ Ω, (1) Orb(x) = Orb(σ(x)); and (2) Orb(x) = Orb(y) if and only if σ(x) = σ(y).

In statistics, σ is often called a sufficient statistic of a partially exchangeable distribution
[Niepert and Van den Broeck, 2014, Diaconis and Freedman, 1980]. The motivating exam-
ple hinted at a general-purpose solution for exact inference that proceeds in two phases.
First, one constructs a representative of each orbit; then, one efficiently computes the size
of that orbit. We can formalize this using group theory:

Theorem 4.2. Let Pr be a G-invariant distribution on Ω, and evidence e : Ω → Bool be a G-
invariant function. Then, the complexity of computing the most probable explanation (MPE) is
poly(|Ω/G|) if the following can be computed in poly(|Ω/G|):

1. Evaluate Pr(x) for x ∈ Ω;
2. (Canonical generation) Generate a set of canonical representatives Ω/G,

Moreover, if |Orb(x)| can be computed in poly(|Ω/G|), then Pr(e) can be computed in poly(|Ω/G|).

Proof. To compute the MPE, choose:

arg max
{x∈Ω/G | e(x)=T}

Pr(x). (4.5)
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The G-invariance of e allows us to evaluate e on only x without considering other ele-
ments of Orb(x). To compute Pr(e), compute∑

{x∈Ω/G | e(x)=T}

|Orb(x)| × Pr(x). (4.6)

Both of these can be accomplished in poly(|Ω/G|).

Niepert and Van den Broeck [2014] identified a connection between bounded-width
exchangeable decompositions and tractable (i.e., domain-lifted) exact probabilistic inference
using the above approach. Exchangeable decompositions are a particular kind of G-
invariance. Let Pr(X1,X2, · · · ,Xn) be a distribution on sets of variables Xi. Let Sn be
a group of all permutations on a set of size n. Then, this distribution has an exchangeable
decomposition along {Xi} if, for any g ∈ Sn:

Pr(X1,X2, · · · ,Xn) = Pr(Xg·1,Xg·2, · · · ,Xg·n)

Niepert and Van den Broeck [2014] showed how to perform exact lifted probabilistic in-
ference on any distribution with a fixed-width exchangeable decomposition by directly
constructing canonical representatives. However, this construction does not generalize
to other kinds of symmetries, and thus cannot be applied to factor graphs which may
have arbitrarily complex symmetric structure. In the next section, we show how to apply
Theorem 4.2 to factor graphs.

4.3.2 Orbit Generation

The previous section shows that inference can be efficient if one can (1) construct rep-
resentatives of each orbit class, (2) compute how large each orbit is. This section gives
an algorithm for performing these two operations for colored factor graphs. First, the
procedure for encoding variable assignments directly into the colored factor graph is
described, providing a way to leverage graph isomorphism tools to compute canonical
representatives and orbit sizes for assignments to variables in factor graphs. This col-
ored assignment encoding is one of the key technical contributions of this chapter, and
forms a foundation for the exact and approximate inference algorithms. Then, I will give
a breadth-first search procedure for generating all canonical representatives of a colored
factor graph.

4.3.2.1 Encoding Assignments

The objective in this section is to leverage graph isomorphism tools to compute the key
quantities necessary for applying the procedure described in Theorem 4.2 to factor graphs.
Let G be the induced colored graph of F . As terminology, an element x ∈ BoolX is an
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Figure 4.3: A colored graph of the 3-pigeon 2-hole problem that encodes the assignment
x = 000 111. True variable nodes are gray and false variable nodes are white.

assignment to variables X. We will use graph isomorphism tools to construct (1) a canon-
ization function for variable assignments, σ : BoolX → BoolX/A(G); and (2) the size of
the orbit of x ∈ BoolX under A(G). To do this, assignments are encoded directly into the
colored factor graph:

Definition 4.6. Let F = (X, F ) be a factor graph, let x ∈ BoolX, and let G = (V,E,C) be the
colored graph induced by F . Then the assignment-encoded colored graph, denoted G(F ,x), is
the colored graph that colors the variable nodes that are true and false in x with distinct colors in
G.

An example is shown in Figure 4.3, which shows an encoding of the assignment
000 111. The assignment 000 111 is isomorphic to the assignment 111 000 under the action
of A(G), specifically flipping holes. Then, assignments that are in the same orbit under
A(G) have isomorphic colored graph encodings:

Theorem 4.3. Let F = (X, F ) be a factor graph, G be its colored graph encoding, and x,x′ ∈
BoolX. Then, x ∼ x′ under the action of A(G) iff G(F ,x) ∼= G(F ,x′).

Proof. Let G1 = (V1, E1, C1) = G(F ,x) and G2 = (V2, E2, C2) = g · G(F ,x). Assume x ∼ x′.
Then there exists an element g ∈ A(G) such that g · x = x′. First we show colors are
preserved. By construction of the colored assignment encoding, for any variable node
v ∈ G1, color(v, C1) = color(g · v, C2). The colors of factor nodes are preserved because
A(G) by definition preserves them. The fact that g ∈ A(G) directly implies that vertex
neighborhoods are preserved. Then G1

∼= G2.

Assume G1
∼= G2; then there exists g ∈ A(G) such that g · G1 = G2. By the construction

of the colored encoding, this g also preserves the colors of the variable vertices, so g · x =
x′.

Canonization The goal now is to use graph isomorphism tools to construct a canoniza-
tion function for variable assignments. In particular, it maps all isomorphic assignments
to exactly one member of their orbit. This will rely on colored graph canonization, a well-
studied problem in graph theory for which there exist many implementations [Mckay
and Piperno, 2014]:
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Definition 4.7. Let G = (V,E,C) be a colored graph. Then a colored graph canonization is a
canonization function σ : V → V/A(G).

A colored graph canonization function applied to Figure 4.3 will select exactly one
color-isomorphic vertex configuration as the canonical one, for example putting all pi-
geons in hole A. Then, the canonization of the assignment-encoded colored graph is a
canonization of variable assignments:

Definition 4.8. Let F = (X, F ) and x = {(x, v)} be a variable assignment, where x ∈ X and
v ∈ Bool. Let σG(F ,x) be a canonization of G(F ,x). Then, let σ′ : BoolX → BoolX be defined
σ′(x) = {(σG(F ,x)(x), v) | (x, v) ∈ x}. Then σ′ is called the induced variable canonization of
BoolX.

Intuitively, an induced variable canonization computes the canonization of the assignment-
encoded colored graph, and then applies that canonization function to variables. Then,

Proposition 4.1. For a factor graph F with colored graph G, the induced variable canonization is
a canonization function BoolX → BoolX/A(G).

4.3.2.2 Computing the Size of an Orbit

Theorem 4.2 requires efficiently computing the size of the orbit of an assignment, a task
that at first glance seems hard. In fact, the orbit size can be computed by reducing the
problem to a graph isomorphism call and an efficient group order computation. This
reduction hinges on the following well-known theorem that relates the size of an orbit to
the size of a stabilizer:

Theorem 4.4 (Orbit-stabilizer [Artin, 1998]). Let G act on Ω. Then for any x ∈ Ω, |G| =
|Stab(x)| × |Orb(x)|.

Proof. This well-known theorem has many proofs, and one is included here due to its
fundamental importance. Let Orb(x) = {x1, x2, · · · , xn}, and let P = {π1, π2, · · · , πn} be
such that πi · x = xi. Then, |P | = |Orb(x)|. We will show that every element of G can
be written in exactly one way as a product of an element in P and an element in Stab(x).
This fact directly implies the theorem.

First, we show that each element can be written as a product of α ∈ P and β ∈ Stab(x).
Let g ∈ G. Then, for some πi ∈ P , we have that πi · x = π · x, so π−1

i · π ∈ Stab(x). So, we
have that:

πi︸︷︷︸
∈P

· (π−1
i · π)︸ ︷︷ ︸
∈Stab(x)

= π. (4.7)
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Figure 4.4: Example breadth-first search tree, read top-down. White nodes encode false
assignments, and black nodes encode true assignments.

Now, we show that this product is unique. Let π ∈ G. Assume there exist α1, α2 ∈ P
and β1, β2 ∈ Stab(x) such that π = α1 · β1 = α2 · β2. Both β1 and β2 stabilize x, so
α1 · β1 = α2 · β2 implies α1 = α2, which implies β1 = β2.

Then, to compute orbit size of assignments x, compute (1) the stabilizer group of an
assignment StabA(G)(x) and (2) the order of A(G) and the assignment stabilizer. Comput-
ing the order of a group is efficient, and high-performance algorithms are implemented
in computational group theory tools such as GAP [GAP, Seress, 2003].

4.3.2.3 Generating All Canonical Representatives

The algorithm for generating canonical representatives is a simple breadth-first search
that relies on assignment canonization. This procedure is a kind of isomorph-free exhaustive
generation, and there exist more sophisticated procedures than the one we present here
[McKay, 1998].

Let x be some variable assignment. Then, an augmentation of x is a copy of x with one
variable that was previously false assigned to true. We denote the set of all augmentations
as A(x). The breadth-first search tree will be defined by a series of augmentations as
follows:

Orbit generation breadth-first search

1. Nodes of the search tree are assignments x.
2. The root of the tree is the all false assignment.
3. Each level L of the search tree has exactly L true assignments to variables.
4. Nodes are expanded until level |X|.
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5. Before expanding a node, check if it is not isomorphic to one that has already been
expanded by computing its canonical form.

6. Then, expand a node x by adding A(x) to the frontier.

An example of this breadth-first search procedure is visualized in Figure 4.4. The
search is performed on a 4-variable factor graph that has one factor on each edge, and all
factors are symmetric. The factors are elided in the figure for visual clarity. Each arrow
represents an augmentation. Crossed out graphs are pruned due to being isomorphic
with a previously expanded node.

Now we bound the number of required graph isomorphism calls for this search pro-
cedure:

Theorem 4.5. For a factor graph F = (X, F ) with |BoolX/A(G)| canonical representatives, the
above breadth-first search requires at most |X|× |BoolX/A(G)| calls to a graph isomorphism tool.

Proof. There are at most |BoolX/A(G)| expansions, and each expansion adds at most |X|
nodes to the frontier. A canonical form must be computed for each node that is added to
the frontier.

Pruning expansions This expansion process can be further optimized by preemptively
reducing the number of nodes that are added to the frontier in Step 6, using the following
lemma:

Lemma 4.1 (Expansion Pruning). Let F be a factor graph, x be a variable assignment, and
x1,x2 be augmentations of x that update variables x and y respectively. Then, x1 ∼ x2 under
A(G) if x and y are in the same variable orbit under A(G(F ,x)).

Proof. Let G1 = G(F ,x1) and G2 = G(F ,x2). Assume x and y are in the same orbit under
A(G(F ,x)); then there exists g ∈ A(G(F ,x)) such that g · x = y. There is only one vertex
color that differs between G1 and G2: x and y. Then, g · G1 = G2, so Theorem 4.3 then shows
x1 ∼ x2.

Using this lemma we can update Step 6 to only include a single element of each vari-
able orbit of X under A(G(F ,x)).

4.3.3 Exact Lifted Inference Algorithm

This section will combine the theory of the previous two sections to perform exact lifted
inference on factor graphs. Algorithm 1 performs exact lifted inference via a breadth-first
search over canonical assignments. Variable r holds a set of canonical representatives,
q holds the frontier, p accumulates the unnormalized probability of the evidence, and Z
accumulates the normalizing constant. A graph isomorphism tool is used to compute σ
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Figure 4.5: Evaluation of Algorithm 1. A red circle indicates that Ace ran out of memory
at that time.

on Line 5. Each time the algorithm finds a new representative, it computes the size of
the orbit using the orbit stabilizer theorem on Line 9; GAP is used to compute the order of
these permutation groups. Lemma 4.1 is used on Line 13 to avoid adding augmentations
to the frontier that are known a-priori to be isomorphic to prior ones. This algorithm can
be easily modified to produce the MPE by simply returning the canonical representative
from r with the highest probability.

Experimental Evaluation To validate the proposed method Algorithm 1 was imple-
mented using the Sage math library, which wraps GAP and a graph isomorphism tool [The
Sage Developers, 2018].4 The lifted inference procedure is compared against Ace, an ex-
act inference tool for discrete Bayesian networks that is unaware of the symmetry of the
model [Chavira and Darwiche, 2005]. Figure 4.5 shows experimental results for perform-
ing exact lifted inference on two families of factor graphs. The first is a class of pairwise
factor graphs that have an identical symmetric potential between all nodes, with one fac-
tor (in red) designated as an evidence factor:

Figure 4.5b evaluates exact lifted inference on the pigeonhole problem from Chapter 5.1
with two holes and increasing number of pigeons. In both experiments, the number of
orbits grows linearly, even though there is little independence. Thus, Ace scales expo-
nentially, since the treewidth grows quickly, while the lifted method appear to scale sub-
exponentially. This is the first example of performing exact inference on this family of
models.

4The source code for the exact and approximate inference algorithms can be found at https://github.
com/SHoltzen/orbitgen.

65

https://github.com/SHoltzen/orbitgen
https://github.com/SHoltzen/orbitgen


Algorithm 1: ExactLiftedInference(F , e)

Data: A factor graph F = (X, F ) with color encoding G; A(G)-invariant evidence e
Result: The probability of evidence Pr(e)

1 r ← empty set, p← 0, Z ← 0;
2 q ← queue containing the all-false assignment;
3 while q is not empty do
4 x← q.pop();
5 Canon← σ(G(F ,x)) ; // Invoke graph iso. tool
6 if Canon ∈ r then
7 continue;
8 end
9 Insert Canon into r;

10 |Orb(x)| ← |A(G)|/|StabA(G)(x)| ; // Invoke GAP

11 if e(x) = T then
12 p← p+ |Orb(x)| × F (x);
13 end
14 Z ← Z + |Orb(x)| × F (x);
15 for o from each variable orbit of StabA(G)(x) do
16 if o is a false variable then
17 x′ ← x with o true;
18 Append x′ to q;
19 end
20 end
21 end
22 return p/Z

4.4 Orbit-Jump Markov-Chain Monte Carlo

This section introduces orbit-jump MCMC, an MCMC algorithm that mixes quickly when
the distribution has few orbits, at the cost of requiring multiple graph isomorphism calls
for each transition. The algorithm is summarized in Algorithm 2. Orbit-jump MCMC is
an alternative to Lifted MCMC [Niepert, 2012, 2013] that generates provably high-quality
samples at the expense of more costly transitions. Lifted MCMC exploits symmetric struc-
ture to quickly transition within orbits. Lifted MCMC is efficient to implement: it requires
only a single call to a graph isomorphism tool. However, lifted MCMC relies on Gibbs
sampling to jump between orbits, and therefore has no guarantees about its mixing time
for distributions with few orbits. Orbit-jump MCMC is a Metropolis-Hastings MCMC
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Figure 4.6: Illustration of the Burnside process on a colored graph with two nodes and
two colors.

algorithm that uses the following distribution as its proposal:5

Definition 4.9. Let G act on Ω. Then for x ∈ Ω, the uniform orbit distribution is:

PrΩ/G(x) ,
1

|Ω/G| × |Orb(x)|
(4.8)

This is the probability of uniformly choosing an orbit o ∈ Ω/G, and then sampling uniformly from
σ−1(o).

The orbit-jump MCMC chain for a G-invariant distribution Pr is defined as follows,
initialized to x ∈ Ω:

A step in orbit-jump MCMC

1. Sample x′ ∼ PrΩ/G ;

2. Accept x′ with probability min
(

1, Pr(x′)×|Orb(x′)|
Pr(x)×|Orb(x)|

)
This Markov chain has Pr as its stationary distribution. Orbit-jump MCMC has a high

probability of proposing transitions between orbits, which is an alternative to the within-
orbit exploration of lifted MCMC.6

Next we will describe how to sample from PrΩ/G using an MCMC method known as
the Burnside process. Then, we will discuss the mixing time of this proposal, and prove
that it mixes in the number of orbits of the distribution.

4.4.1 Sampling From the Uniform Orbit Distribution

Jerrum [1993] gave an MCMC technique known as the Burnside process for drawing sam-
ples from PrΩ/G . The Burnside process is a Markov Chain Monte Carlo method defined

5For a good introduction Metropolis-Hastings in the context of probabilistic models, see Murphy [2012,
Chapter 24].

6This proposal is independent of the previous state, a scheme that is sometimes called Metropolized inde-
pendent sampling (MIS) [Liu, 1996]. Importance sampling is an alternative to MIS. We use MIS rather than
importance sampling in order to make the connection with lifted MCMC more explicit.
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as follows, beginning from some x ∈ Ω:

A step in the Burnside process

1. Sample g ∼ Stab(x) uniformly;
2. Sample x ∼ Fix(g) uniformly, where Fix(g) = {x ∈ Ω | g · x = x}. Elements of

Fix(g) are called fixers.

Theorem 4.6 (Jerrum [1993]). The stationary distribution of the Burnside process is equal to
PrΩ/G .

This process can be visualized as a random walk on a bipartite graph. One set of nodes
are elements of Ω, and the other set are elements of G. There is an edge between x ∈ Ω
and g ∈ G iff g · x = x.

An example of this bipartite graph is shown in Figure 4.6. The set Ω is the set of 2-node
colored graphs, and the group G = S2 permutes the vertices of the graph. The identity
element (A)(B) stabilizes all elements of Ω, and so has an edge to every element in x;
(A B) only stabilizes graphs whose vertices have the same color.

Jerrum [1993] proved that the Burnside process mixes rapidly for several important
groups, but it does not always mix quickly [Goldberg and Jerrum, 2002]. In such cases, it
is important to draw sufficient samples from the Burnside process in order to guarantee
that the orbit-jump proposal is unbiased. Next we will describe how to implement the
Burnside process on factor graphs using the machinery from Chapter 4.3.2.1.

4.4.1.1 Burnside Process on Factor Graphs

For G acting on a set of variables X, the Burnside process requires the ability to (1) draw
samples uniformly from the stabilizer subgroup of an assignment to variables, and (2)
sample a random fixer for any group element in G. Here we describe how to perform these
two computations for a colored factor graph F = (X, F ).7 This procedure is summarized
in lines 3–7 in Algorithm 2.

4.4.1.2 Stabilizer Sampling

Chapter 4.3.2.1 showed how to compute the stabilizer group of x ∈ BoolX using graph
isomorphism tools. Sampling uniformly from the stabilizer group relies on the product
replacement algorithm, which is an efficient procedure for uniformly sampling group ele-
ments [Pak, 2000]. This step occurs on Line 4 of Algorithm 2.

7This process is conceptually similar to the procedure for randomly sampling orbits in the Pólya-theory
setting described by Goldberg [2001], but this is the first time that this procedure is applied directly to factor
graphs

68



Algorithm 2: A step of Orbit-jump MCMC

Data: A factor graph F = (X, F ), a point x ∈ BoolX, number of Burnside process
steps k

1 x′ ← x;
2 for i ∈ {1, 2, · · · , k} do
3 GStab ← A(G(F ,x′)) ; // Invoke graph iso. tool
4 Sample s ∼ GStab using product replacement;
5 for Each variable cycle c of s do
6 v ∼ Bernoulli(1/2);
7 Assign all variables c in x′ to v;
8 end
9 end

10 Accept x′ with probability min
(

1, F (x′)×|Orb(x′)|
F (x)×|Orb(x)|

)

4.4.1.3 Fixer Sampling

Let g ∈ G be a permutation that acts on the vertices of a colored factor graph. Then
we uniformly sample an assignment-encoded colored factor graph that is fixed by g in
the following way. First, decompose g into a product of disjoint cycles. Then, for each
cycle that contains variable nodes, choose a truth assignment uniformly randomly, and
then color the vertices in that cycle with that color. This colored graph is fixed by g and
is uniformly random by the independence of coloring each cycle and the fact that all
colorings fixed by g can be obtained in this manner. This step occurs on lines 5 – 8 in
Algorithm 2.

4.4.2 Mixing Time of Orbit-Jump MCMC

The total variation distance between two discrete probability measures µ and ν on Ω, de-
noted dTV (µ, ν), is:

dTV (µ, ν) =
1

2

∑
x∈Ω

|µ(x)− ν(x)|. (4.9)

The mixing time of a Markov chain is the minimum number of iterations that the chain
must be run starting in any state until the total variation distance between the chain and
its stationary distribution is less than some parameter ε > 0. The mixing time of orbit-
jump MCMC can be bounded in terms of the number of orbits, which is a property not
enjoyed by lifted MCMC:

Theorem 4.7. Let Pr be a G-invariant distribution on Ω and let P be the transition matrix of
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Figure 4.7: Total variation distance between Markov chains and their stationary dis-
tributions for a pigeonhole problem with 5 pigeons and 2 holes. “Lifted” is lifted
MCMC [Niepert, 2012] and “UB” is the upper bound predicted by Theorem 4.7.

orbit-jump MCMC. Then, for any x ∈ Ω, dTV (P tx,Pr) ≤
(
|Ω/G|−1
|Ω/G|

)t
. It follows that for any

ε > 0, dTV (P tx,Pr) ≤ ε if t ≥ log(ε−1)× |Ω/G|.

Proof. See Appendix A.2.

Note that the bound on this mixing time does not take into account the cost of drawing
samples from PrΩ/G , which involves multiple graph isomorphism calls.

4.4.2.1 Pigeonhole case study

In order to empirically evaluate its performance, the orbit-jump MCMC procedure on
factor graphs was implemented using Sage. The mixing time of lifted MCMC [Niepert,
2012, 2013] and orbit-jump MCMC are compared in Figure 4.7, which computes the to-
tal variation distance of these two MCMC methods from their stationary distribution as a
function of the number of iterations on two versions of the pigeonhole problem.8 The first
version in Figure 4.7a is the motivating example with hard constraints from Chapter 5.1.
The second version in Figure 4.7b shows a “quantum” pigeonhole problem, where the con-
straint in Equation 4.4 is relaxed so that pigeons are allowed to be placed into multiple
holes (i.e., the case when xiB = xjB = 1 is given a finite negative weight.).

Lifted MCMC fails to converge in Figure 4.7a because it cannot transition due to the
hard constraint from Equation 4.4; this illustrates that lifted MCMC can fail even for dis-
tributions with few orbits. In addition to comparing against lifted MCMC, we also com-
pare the theoretical upper bound from Theorem 4.7 against the two mixing times. This

8In these experiments, for each step of orbit-jump MCMC, we use 7 steps of the Burnside process.
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upper bound only depends on the number of orbits, and does not depend on the param-
eterization of the distribution.9 Orbit-jump MCMC converges to the true distribution in
both cases faster than lifted MCMC, and the upper bound ensures that orbit-jump MCMC
cannot get stuck in low-probability orbits. Note however that lifted MCMC transitions
are less expensive to compute than orbit-jump MCMC transitions. We hope to explore
this practical tradeoff between sample quality and the cost of drawing a sample in future
work.

4.5 Conclusion

This chapter provided the first exact and approximate lifted inference algorithms for fac-
tor graphs that provably scale in the number of orbits. However, the presented methods
are limited: there are tractable highly symmetric distributions that still have too many
orbits for these methods to be effective. Existing lifted inference algorithms utilize inde-
pendence to extract highly symmetric sub-problems, which is an avenue for integrating
independence into this current approach. A further limitation of the approach is that
it exploits only symmetries on variables; additional forms of symmetries, such as block
symmetries, are beyond the scope of the presented algorithms [Madan et al., 2018].

4.6 Bibliographic Notes

Lifted inference Existing exact lifted inference algorithms apply to relational models
[Getoor and Taskar, 2007]. The tractability of exact lifted inference was studied by Niepert
and Van den Broeck [2014], but their approach cannot be directly applied to factor graphs.
Approximate lifted inference can be applied to factor graphs, but existing approaches do
not provably mix quickly in the number of orbits [Niepert, 2012, 2013, Bui et al., 2013,
Van den Broeck and Niepert, 2015, Madan et al., 2018, Kersting et al., 2009, Gogate et al.,
2012].

Symmetry in constraint satisfaction and logic Some techniques for satisfiability and
constraint satisfaction also exploit symmetry. The goal in that context is to quickly select
one of many symmetric candidate solutions, so a key difference is that in the current set-
ting one must exhaustively explore the search space. Sabharwal [2005] augments a SAT-
solver with symmetry-aware branching capabilities. Symmetry has also been exploited
in integer-linear programming [Margot, 2010, Ostrowski et al., 2007, Margot, 2003].

9For this example, there are 78 orbits.
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CHAPTER 5

Composing Inference Algorithms

Abstraction is all relative; one person’s
abstraction is another person’s bread and
butter.

Charles Pinter

Thus far this thesis has introduced two new strategies for performing inference in
probabilistic programs that both work in very different ways and exploit different pro-
gram structure. Chapter 3 showed how to exploit factorization in order to scale inference,
but it did so at the cost of supporting other kinds of program features like continuous
random variables and unbounded loops. Chapter 4 showed how to exploit symmetry,
but at the expense of exploiting factorization. There are many more inference algorithms
that make different tradeoffs between tractability and expressivity, so this motivates the
following key problem: how can we mix and match inference algorithms depending on the kind
of structure exhibited by a heterogeneous probabilistic program?

This chapter gives a method for decomposing probabilistic program inference via pro-
gram abstraction. Program abstractions – and in particular predicate abstractions – have a
rich and successful history in non-probabilistic program analysis [Ball et al., 2001, Cousot
and Cousot, 1977]. The key idea is to generate a simplified abstract program from the orig-
inal concrete program that captures a few key properties. This abstraction property sim-
plifies the analysis – the new abstract program is by design simpler to analyze than the
concrete program. Ideally the abstract program will then contain sufficient information
to verify various properties of the concrete program.

This chapter gives a generalization for non-probabilistic predicate abstraction to prob-
abilistic programs and shows how it decomposes inference. An outline is given in Fig-
ure 5.1. First, the programmer provides three pieces of data: a probabilistic program, a
set of predicates that are Boolean random variables that capture properties about the pro-
gram, and a query. Then, the abstraction engine automatically generates (1) a set of sub-

0This chapter is based in part on Holtzen et al. [2018] and Holtzen et al. [2017]. The work that went into
this chapter was partially supported by NSF grants #CCF-1527923, #IIS-1657613, #IIS-1633857 and DARPA
XAI grant #N66001-17-2-4032, and a National Physical Sciences Consortium fellowship. Tal Friedman and
Jon Aytac gave helpful feedback on early drafts of the original published works.
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Figure 5.1: Diagram describing decomposition by abstraction.

programs that are themselves probabilistic programs, and (2) an abstract Dice program
that captures the relationship among predicates.

In order to evaluate the final query, the abstract Dice program is parameterized by
querying the sub-programs. Each (†) arrow in the figure represents a sub-query that
queries a small part of the original program: this is the stage where inference is decom-
posed, since evaluating these (†) queries will ideally only require inspecting smaller por-
tions of the original program. Finally, the final query is answered via a standard Dice
inference query along the (?) arrow, as outlined in Chapter 3.

Formally, as an outline, (1) Chapter 5.1 introduces a new notion of probabilistic pred-
icate abstractions and shows how to automatically generate them from a probabilistic
program; (2) Chapter 5.2 gives background; (3) Chapter 5.3 gives a new soundness rela-
tion between abstract and concrete program called distributional soundness; (4) Chapter 5.4
shows how to construct distributionally sound abstractions; and (5) Chapter 5.5 shows
empirically how distributionally sound abstractions decompose probabilistic in order to
speed up inference.

5.1 Motivating Example

Probabilistic programs can exhibit complex structure. In particular, they admit complex
operations such as control-flow logic and numerical manipulation, which entangle ran-
dom variables in ways that are difficult to reason about. Consider Figure 5.2a, which
shows a simple probabilistic program that combines two random variables via multipli-
cation. We wish to compute the query Pr(z = 0) on this program. Initially, this seems
to be difficult since the variables x and y are entangled via multiplication. In a typical
probabilistic programming system such as Stan, Psi, or Anglican, this query would be
evaluated by sampling or integration beginning on Line 1 of the program Carpenter et al.
[2016], Gehr et al. [2016], Wood et al. [2014]. This would require jointly integrating over
the random variables x and y (or approximating the integral by sampling).
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1 x←discrete_dist();
2 y ←continuous_dist();
3 z ← x * floor(y);

(a) A concrete probabilistic program. Probabilistic sub-program discrete_dist returns a discrete
random variable. Sub-program continuous_dist returns a continuous random variable. floor
rounds down to the nearest integer.

x

y z

(b) A factor graph which captures the conditional independences in Figure 5.2a. Factors encap-
sulate the two sub-programs and represent dependencies between the three random variables x,
y, and z.

1 {x = 0} ←flip(θx=0);
2 {0 ≤ y < 1} ←flip(θ0≤y<1);
3 {z = 0} ← {x = 0} ∨ {0 ≤ y < 1};

(c) A probabilistic program which captures the distribution only on the predicates {x = 0}, {0 ≤
y < 1}, and {z = 0}. A flip(θ) expression is true with probability θ.

Figure 5.2: Abstracting a probabilistic program as a factor graph and a probabilistic pred-
icate abstraction.

One option for potentially simplifying inference on this program is to generate a factor
graph abstraction on which to perform inference, which is the approach taken by com-
pilation techniques such as Factorie, Infer.Net and Figaro [McCallum et al., 2009, Minka
et al., 2014, Pfeffer, 2009]. Figure 5.2b shows such a factor graph abstraction. The param-
eters of this factor graph are chosen so that it is a distributionally sound abstraction: it is
possible to instantiate the factors in such a way that the graphical model exactly captures
the probabilistic program’s intended distribution. However, a key disadvantage is that
the graph-based abstraction may be overly coarse, disregarding key structural aspects of
the program.

For this example, the abstraction is overly coarse, and thus during inference it yields
no useful decompositions. From the perspective of the graph, all three random variables
are inextricably linked via an opaque factor. Thus, computing Pr(z = 0) on the factor
graph abstraction would require jointly integrating x and y. Nonetheless, observe that
this factor is actually highly structured: in the program, z is linked to x and y via a deter-
ministic multiplication. We wish to exploit this structure.

This chapter proposes to instead utilize a simpler probabilistic program as the abstrac-
tion, rather than a graph. Specifically, this probabilistic program will only model the dis-
tribution on a collection of Boolean predicates – statements about the original program
which are true or false. Since it only models Boolean predicates, it will be a discrete prob-
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abilistic program and hence we can use Dice to perform inference. The parameters of this
probabilistic program will be chosen so that it is distributionally sound with respect to the
original program. In this chapter, we show how to automatically produce a distribution-
ally sound abstraction for a given program relative to a given set of predicates. While a
distributionally sound abstraction always exists, whether that abstraction is informative
depends on the choice of predicates. This approach assumes that the predicates are pro-
vided a priori; automated techniques for selecting predicates are left as future work and
discussed in more detail in Chapter 5.4.1.

Let us consider an example of the flexibility of probabilistic programs as a language
for abstraction: capturing a nuanced decomposition which relies on properties of mul-
tiplication. Observe that the program in Figure 5.2a has the following property: after
executing Line 3, z = 0 if and only if x = 0 or 0 ≤ y < 1. The present notion of abstraction
is capable of representing this relationship, and this approach can automatically produce
such an abstraction.

Given the three predicates above, the goal is to automatically generate the abstract
probabilistic program in Figure 5.2c, which only models the distribution on the three
predicates; such abstractions are a specific kind of probabilistic predicate abstraction [Holtzen
et al., 2017]. This step is part of the “Abstraction” box in Figure 5.1. Denote the Boolean
variable that corresponds with a predicate as {·}. In order for this abstraction to be distri-
butionally sound, it requires the correct parameterization. In this case, we must compute
two sub-queries on the original probabilistic program:

θx=0 = Pr(discrete_dist() = 0)

θ0≤y<1 = Pr(0 ≤ continuous_dist() < 1)

With these parameters, Figure 5.2c is distributionally sound; computing Pr({z = 0}) on
this abstract program will yield the same result as computing Pr(z = 0) on the original
program. Therefore, in the process of parameterizing this abstraction, the concrete pro-
gram has been decomposed: at no point were we required to jointly integrate x and y.
Further, each of the two sub-queries can be answered using the inference method that is
most suitable for it, which may be different for discrete and continuous distributions. This
motivating example raises the following questions, which the remainder of the chapter
will be devoted to answering:

Formalization What is a distributionally sound probabilistic program abstraction? (Chap-
ter 5.3)

Existence For a fixed choice of predicates, can a distributionally sound abstraction al-
ways be generated? What is an algorithm for doing so? (Chapter 5.4)

Usefulness What are the benefits of constructing and querying a distributionally sound
abstraction over querying the original program? (Chapter 5.5)
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5.2 Background

The goal of this section is to provide a concise background in semantics of probabilistic
programming languages and program abstractions. The formalism used here for describ-
ing probabilistic programs is subtly different than that laid out in the prior Dice chapters,
since here we consider a broader class of programs. First this section gives a brief re-
view and expansion of the language of probability theory. Then, this language is used
to give the semantics of probabilistic programming languages. Finally, it introduces the
necessary background from program analysis: predicate abstractions and weakest pre-
conditions.

5.2.1 Probability Theory

This chapter will require some standard notions from probability theory such as a mea-
surable space, probability space, and measurable function. Probability spaces are denoted
(Ω,Σ, µ), where Ω is a sample space, Σ is a σ-algebra on Ω, (Ω,Σ) is a measurable space,
and µ is a probability measure. Of particular importance in this chapter is the notion of a
push-forward probability measure:

Definition 5.1 (Push-forward). Let (Ω,Σ, µ) be a probability space and (Ω′,Σ′) be a measurable
space. Let f : Ω → Ω′ be a measurable function. Then, the push-forward of µ through f is a
probability measure ν on (Ω′,Σ′) such that for any e ∈ Σ′, ν(e) = µ(f−1(e)). As notation, we
sometimes treat f as a mapping between probability spaces.

Some standard notation and concepts from probability theory are necessary during
this chapter’s formalization of probabilistic programs. First, we define a measurable
space:

Definition 5.2 (Measurable space). Let Ω be a set, called the sample space. In the context of
programs Ω is sometimes called a domain. A σ-algebra Σ on Ω is a collection of subsets of Ω that
is (i) closed under countable unions; (ii) closed under complementation; (iii) contains Ω. We call
the pair (Ω,Σ) a measurable space.

We will rely on the notion of a probability space: a measurable space with a probability
measure.

Definition 5.3 (Probability space). Let (Ω,Σ) be a measurable space and µ : Σ → R be a
function such that (i) µ is countably additive; (ii) µ(Ω) = 1. The tuple (Ω,Σ, µ) is called a
probability space, and µ is called a probability measure.

Measurable spaces afford a particular class of functions called measurable functions.
Intuitively, such functions represent a random variable.
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Definition 5.4 (Measurable function). Let (Ω,Σ) and (Ω′,Σ′) be two measurable spaces. Then
a function f : Ω→ Ω′ is called a measurable function if for any E ∈ Σ′, we have that f−1(E) =
{x ∈ Ω | f(x) ∈ E} ∈ Σ.

Measurable functions define a transformation between probability spaces known as a
push-forward:

Definition 5.5 (Push-forward). Let (Ω,Σ, µ) be a probability space and (Ω′,Σ′) be a measurable
space, and f : Ω → Ω′ be a measurable function. Then, the push-forward of µ through f is a
probability measure ν on (Ω′,Σ′) such that for any e ∈ Σ′, ν(e) = µ(f−1(e)). As notation, we
sometimes treat f as a mapping between probability spaces.

5.2.2 Semantics of Probabilistic Programs

The probabilistic programs that this chapter studies are defined in two parts: the first
part assigns an initial probability distribution to variables, and the second produces a
new probability measure that results from the manipulation of these variables through
the composition of measurable functions.1

Definition 5.6 (Semantics of probabilistic programs). A probabilistic program p has two se-
mantic components:
1. An initial probability space (Ω,Σ, µ). The sample space Ω is the set of joint states of the vari-

ables in the program.
2. A measurable function JpK : Ω → Ω′. It is implied that there exists some σ-algebra Σ′ on Ω′

such that (Ω′,Σ′) form a measurable space.
We say the probability measure induced by p is the probability measure which results from pushing
µ through JpK.

This style of semantics does not reason about arbitrary unbounded loops or higher-
order functions, as these cannot in general be represented as measurable functions [Au-
mann, 1961]. However, measurable functions typically form a core component of the
underlying semantics of higher-order and loopy programming languages, allowing the
abstraction technique described in this chapter to be applied to measurable sub-programs
within such languages [Kozen, 1979]. Further, many existing useful probabilistic pro-
gramming languages do not have loops.

5.2.3 Predicate Abstraction

Predicate abstraction is a common and effective form of program analysis [Graf and Saïdi,
1997, Ball et al., 2001]. At a high level, the goal is to generate an abstract program that is

1This two-part style of semantics is used by the popular probabilistic programming language Stan [Car-
penter et al., 2016].
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easier to analyze than the original program, while maintaining a meaningful relationship
– known as soundness – with the original program. The traditional soundness property
for predicate abstraction is over-approximation, the property that the abstraction contains
the original program’s behavior as a subset of its own. This is useful for proving safety
properties: for instance, if the abstraction never divides an integer by zero, then neither
does the original program.

The way a predicate abstraction accomplishes this feat is by generating an abstract
program that only manipulates a selection of Boolean predicates. A predicate is a property
of the domain of the concrete program. For example, a predicate on the concrete variable
x may be {x < 4}. A collection of predicates forms a predicate domain:

Definition 5.7 (Predicate domain). Let Ω be a domain, and let Ψ = {ψ1, ψ2, · · · , ψn} be a
collection of predicates on Ω. Then the predicate domain DA over Ψ is the set of all 2n truth
assignments to the predicates in Ψ.

As notation, let c be a concrete state. We write [c] to denote the abstract state corre-
sponding with the predicates that hold for c, and [a]−1 = {c | [c] = a} for its inverse.
When necessary, we use the subscript [·]Ψ to denote abstract states with respect to a par-
ticular set of predicates Ψ.

When the collection of predicates Ψ is insufficient to capture the behavior of the con-
crete program, the abstraction must behave non-deterministically in order to remain an
over-approximation. All of these definitions are best illustrated with an example:

Example 5.1: A simple predicate abstraction

Consider the concrete program C = x ← x + 1;, which simply increments a vari-
able x. We consider the predicate domain Ψ = {x < 0}. The goal is to generate an
abstract program A that represents how the predicate {x < 0} changes as a result
of this assignment to x. Specifically, if x is negative before incrementing, it could
remain negative or become non-negative: in this case, we conservatively allow the
predicate to take either value. However, if x is non-negative, it is guaranteed to re-
main non-negative after incrementing. We can write this update using the syntax
of a programming language, denoting a non-deterministic Boolean choice with the *
symbol:

{x<0}← {x<0} ∧ *;

Note that all logical connectives can be naturally extended to a 3-valued over the
values (T, F, *) where * represents nondeterminism. For instance, conjunction is nat-
urally extended by defining T ∧ * , *, F ∧ * , F, and so on.

An over-approximate predicate abstraction can be automatically generated for a program
relative to a given set of predicates [Ball et al., 2001]. The process of constructing a pred-
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icate abstraction relies on the ability to compute a weakest precondition, a tool which will
be utilized in later technical sections and can be computed automatically for loop-free
programs [Dijkstra, 1976]:

Definition 5.8 (Weakest precondition). Let p be a program and φ be a predicate. Then the
weakest precondition of p with respect to φ, denoted WP(p, φ), is the most general predicate
ψ such that ψ holding before executing p implies that φ holds after executing p.

5.3 Distributional Soundness

Traditional over-approximate predicate abstractions are insufficient as abstractions for
probabilistic programs since they are not distributionally sound: they do not preserve the
distributions of the given predicates in the original program. In particular, the use of
non-determinism is not compatible with distributional soundness; for example, the ab-
straction shown in Example 5.1 does not preserve Pr(x < 0) from the original program.
This section formally defines what it means for a predicate abstractionA that manipulates
variables from a predicate domain DA to be distributionally sound for a given concrete
probabilistic program C.

First we require a way of connecting the concrete and abstract initial probability spaces.
There is a straightforward mapping of probability measures on the concrete domain to
probability measures on the abstract domain, simply by evaluating the concrete measure
for each abstract state’s equivalence class.

Definition 5.9 (Probabilistic abstraction function). Let (Ω,Σ, µ) be a probability space and
(DA,ΣDA) be a measurable space where the sample space is a predicate domainDA over predicates
Ψ. Then, a probabilistic abstraction function α : (Ω,Σ, µ) → (DA,ΣDA , ν), is defined as the
push-forward of µ through [·].

Now utilizing this definition we give the formal notion of distributional soundness:

Definition 5.10 (Distributional soundness). Let JCK : Ω → Ω′ and JAK : DA → DA′ be
measurable functions, where DA and DA′ are predicate domains on Ω and Ω′ respectively. Then
JAK is a distributionally sound abstraction of JCK if the following diagram commutes for any
initial concrete probability space (Ω,Σ, µ):

(Ω,Σ, µ) (Ω′,Σ′, µ′)

(DA,ΣDA , ν) (DA′ ,ΣDA′ , ν
′)

JCK

α α′

JAK
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Distributional soundness requires that the probability of a predicate being true in the
abstraction is equal to the probability of the corresponding predicate being true in the
concrete program. This in turn implies that inference on the abstraction is sound for
queries that can be defined in terms of the predicates in DA′ . Specifically, we describe a
class of events for which we can perform inference using exclusively the abstraction:

Definition 5.11 (Corresponding events). Let (Ω,Σ, µ) be a probability space, (DA,ΣDA) be a
measurable space over predicate domain DA, and [·] be an abstraction function. Then for any ab-
stract event eDA ∈ ΣDA , there exists a corresponding concrete event eΩ =

⋃
{[a]−1 | a ∈ eDA}.

We call the pair (eDA , eΩ) an event pair.

Formally, the abstraction can be used to reason about the concrete program by utilizing
event pairs:

Proposition 5.1 (Distributional soundness implies soundness for inference). Let JAK :
DA → DA′ be a distributionally sound abstraction of JCK : Ω → Ω. Then for any initial prob-
ability space (Ω,Σ, µ), and any event pair (eDA′ , eΩ′), it is the case that Prν′(eDA′ ) = Prµ′(eΩ′),
where µ′ is the push-forward of µ through JCK and ν ′ is the push-forward of µ through JAK ◦ [·].

Graph-based abstractions often serve as a semantic tool, by asserting independences
that are assumed to hold in the distribution of interest. For probabilistic program abstrac-
tions, distributional soundness guarantees that the abstraction is able to exactly capture
the concrete program’s distribution over some key predicates:

Proposition 5.2 (Independence Assumptions). Let C be a concrete probabilistic program and
let JAK be a distributionally sound abstraction of JCK. Then any conditional independence that
holds between abstract events eDA ∈ ΣDA in A also holds between the corresponding concrete
events eΩ ∈ ΣΩ in C.

Distributionally sound abstractions are a powerful technique for reasoning about prob-
abilistic programs: they allow one to reason about a simplified program that only manip-
ulates a collection of predicates. The obvious question is: can we always construct such
a distributionally sound abstraction for an arbitrary choice of predicates? The following
section answers this question affirmatively.

5.4 Constructing Sound Abstractions

The goal of this section is to provide a technique to automatically generate a distribution-
ally sound abstraction for a given concrete program and set of predicates. In particular, it
describes how to implement the “Abstraction” box in Figure 5.1. As input the algorithm
takes a concrete program C and a set of predicates Ψ of interest. Then, it constructs a dis-
tributionally sound abstraction A, which consists of two parts: (1) a measurable function
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JAK, and (2) an initial abstract probability space such that the diagram in Definition 5.10
commutes.

Given a user-provided C and Ψ it is not always possible to generate a distributionally
sound abstraction from DA to DA, because the predicates in Ψ might not be sufficiently
expressive to capture all the required concrete behavior in order to maintain the original
distribution. This is resolved by automatically identifying predicates called completions
(denoted Φ), which are added to Ψ, yielding a new set of predicates Ψ∪Φ. Then, we gen-
erate a distributionally sound abstraction A with measurable function JAK : DΨ∪Φ → DΨ

and initial abstract probability space (DΨ∪Φ,ΣΨ∪Φ, ν). In the process of constructing the
initial probability space, we automatically identify sub-queries on the original probabilis-
tic program, which are used to provide the values of the parameters and which are the
source of decomposition.

First we give a criterion on abstractions that is sufficient to ensure distributional sound-
ness. Crucially, the criterion is solely a relationship between concrete and abstract states,
so it avoids directly reasoning about distributions.

Definition 5.12 (Tight abstraction). Let JCK : Ω → Ω′ and, JAK : DA → DA′ be measurable
functions, where DA and DA′ are predicate domains. Then we say JAK is a tight abstraction of
JCK if for any c ∈ Ω, we have that: [

JCK (c)
]

Ψ′
= JAK

(
[c]Ψ
)
. (5.1)

Theorem 5.1 (Tightness implies soundness). Let JCK : Ω → Ω′ and JAK : Ψ → Ψ′ be
measurable functions. Then, if JAK is a tight abstraction of JCK, then JAK is a distributionally
sound abstraction of JCK.

Proof of Theorem 5.1. Let µ : Σ → [0, 1] be an initial probability measure. The proof will
follow by deriving a probability measure on the abstract domain ν ′ : ΣDA → [0, 1] by
following both paths in the commutative diagram from Definition 5.10, and showing that
the result is the same for both paths.

Following the concrete path, we compute µ′ : Σ′ → [0, 1], which is the push-forward
µ′(c′) = µ(JCK−1 (c′)). Then, abstracting this measure, we have that

ν ′ = α′(µ′) = a′ 7→ µ′([a′]−1)

= a′ 7→ µ(JCK−1 ([a′]−1)). (5.2)

Note that [a′]−1 is an element of the σ-algebra and therefore the inverse JCK−1 ([a′]−1) is
well defined.

Next, following the abstract path, we first compute ν : ΣDA → [0, 1], which is ν =
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α(µ) = a 7→ µ([a]−1). Then, we compute ν ′ using the push-forward of JAK:

ν ′ = a′ 7→ ν((JAK)−1(a′)) = a′ 7→ α(µ)((JAK)−1(a′))

= a′ 7→ µ([(JAK)−1(a′)]−1). (5.3)

To prove these ν ′measures equivalent, it suffices to show that JCK−1 ([a′]−1) = [(JAK)−1(a′)]−1.
This follows from Definition 5.12 by taking the inverse of both sides.

With the guarantee that tight abstractions are sound, we now seek to generate a tight
abstraction. Unfortunately, it is not always possible to generate a tight abstraction for
an arbitrary choice of predicates. The following example demonstrates this, and also
shows how we can find additional predicates called completions which, when added to
the domain of the abstraction, allow us to generate tight abstractions.

Example 5.2: Completing an abstract domain

Consider the program JCK (x) = x + 1. A tight abstraction for the predicate domain
over the predicate {x is even} is:

JAK = {({x is even},¬{x is even}), (¬{x is even}, {x is even})}

Note here that we are describing the function JAK as a set of pairs, where the first
element denotes the domain and the second element denotes its corresponding out-
put. On the other hand, no tight abstraction exists for the predicate domain over the
predicate Ψ = {x < 0}: it is not possible to choose an element of DA for JAK ({x < 0})
that satisfies condition (1) in Definition 5.12. However, we observe that if we add the
predicate {x < −1} to the domain (but not to the range) of JAK, then we can build a
tight abstraction of JCK:

JAK = {({x < −1} ∧ {x < 0}, {x < 0}),
(¬{x < −1} ∧ {x < 0},¬{x < 0}),
(¬{x < 0},¬{x < 0})}

We call {x < −1} a completion predicate.

Completing the domain. Example 5.2 showed that adding completion predicates Φ
to Ψ enables the creation of a tight abstraction from DΨ∪Φ to DA. In general we say that Φ
completes Ψ with respect to Ψ′ and JCK if there exists a tight abstraction JAK : DΨ∪Φ → DA′ .
We call Ψ∪Φ the completed set of predicates and DΨ∪Φ the completed predicate domain.
Algorithm 3 automatically completes a set of predicates Ψ with respect to Ψ′ and JCK and
generates a corresponding tight abstraction and initial probability space.2 The algorithm

2We describe Algorithm 3 as directly producing a measurable function, but the implementation adapts
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Algorithm 3: Domain completion
Data: Probability space (Ω,Σ, µ), measurable function JCK, input predicates Ψ and

output predicates Ψ′

Result: A tight abstraction and a distributionally sound probability space
1 JAK← [] ; // New tight abstract function
2 ν ← [] ; // New probability measure

3 Φ←
{
WP(JCK , a′) | a′ ∈ DΨ′

}
;

4 for a ∈ DΨ∪Φ do
5 c′ ← JCK (c) for any c ∈ [a]−1;
6 Append (a, [c′]Ψ′) to JAK;
7 Append (a,Prµ(a)) to ν;
8 end
9 return (JAK , (DΨ∪Φ,ΣDΨ∪Φ

, ν));

relies on the standard notion of the weakest precondition (see Definition 5.8). We formally
state the correctness of Algorithm 3:

Theorem 5.2 (Domain completion). Let JCK : Ω→ Ω′ be a measurable function and Ψ and Ψ′

be sets of predicates, and let (Ω,Σ, µ) be an initial concrete probability space. Then Algorithm 3
produces: (1) a tight abstraction JAK : DΨ∪Φ → DΨ′ of JCK over a completed predicate domain
DΨ∪Φ; (2) an initial probability space (DΨ∪Φ,ΣDΨ∪Φ

, ν), where ν is the push-forward of µ through
[·]Ψ∪Φ.

Proof of Theorem 5.2. We must show that (1) the generated measurable function JAK is a
tight abstraction of JCK, and (2) that the resulting probability space (ΩΨ∪Φ,ΣΨ∪Φ, ν) is cor-
rectly pushed forward through [·]Ψ∪Φ. The second point clearly is true, since the loop
iterates over each element of DΨ∪Φ and updates ν accordingly, so we focus on the first
point.

It is clear that JAK is a well-defined function, since each element of the domain is
assigned to some element of the co-domain in the loop. Then, we must show that the
resulting function is tight, i.e. that for any c ∈ Ω, it is the case that [JCK (c)]Ψ′ = JAK ([c]Ψ∪Φ).

For each a ∈ DΨ∪Φ, there is some aφ ∈ DΦ such that a implies aφ. For any concrete state
c such that [c]Ψ∪Φ implies aφ, by the definition of the weakest precondition, [JCK (c)]Ψ′ = a′

for some a′ ∈ DA′ . Then, we let JAK ([c]Ψ∪Φ) = a′, so by definition JAK is a tight measurable
function.

standard predicate abstraction techniques [Ball et al., 2001, Holtzen et al., 2017] to generate an abstract
probabilistic program.
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Discussion We provide some discussion of Algorithm 3. Then, we describe optimiza-
tions that can improve the performance of the algorithm in practice. Algorithm 3 proceeds
as follows. First, on Line 3 the set of predicates Φ is generated using the weakest precon-
dition. By construction, there exists a tight measurable function from DΦ to DΨ′ . This
fact relies on the definition of the weakest precondition. Formally, for each φ ∈ DΦ, there
exists some a′ ∈ DΨ′ such that for any c ∈ [φ]−1, [JCK (c)]Ψ′ = a′.

Now, we must construct a tight measurable function on the domain DΨ∪Φ and com-
pute the appropriate sub-queries, both of which are done in the loop beginning on Line
4. For each a ∈ DΦ∪Ψ, there is some φ ∈ DΦ such that a implies φ, which guarantees that
we can give a deterministic function JAK for a following the arguments in the previous
paragraph.

Example 5.3: Running Algorithm 3.

Consider the program p = x←x+1 and the predicate Ψ = {x < 0}. We wish to
evaluate Algorithm 3 with input probability space (DΨ,Σ, µ) with initial and final
predicate domains over Ψ, i.e. DΨ = {{x < 0},¬{x < 0}}, as in Example 5.2. Then,
Φ = {x < −1}, andDΨ∪Φ = {{x < 0}∧{x < −1},¬{x < 0}∧{x < −1}, . . . }. Consider
the case a = {x < 0} ∧ {x < −1}. The algorithm will select a c ∈ [a]−1; for example
−2. Then, JAK (a) will be assigned to [−2 + 1]Ψ′ = [−1]Ψ′ = {x < 0}.

As described, this algorithm produces 2n completion predicates, where n is the size
of Ψ′. However, in practice various logical optimizations are used to reduce the number
of completion predicates and sub-queries, such as exploiting logical implication between
predicates, pruning unsatisfiable configurations of predicates, and exploiting indepen-
dence between non-overlapping predicates [Ball et al., 2001, Holtzen et al., 2017].

5.4.1 Selecting Predicates

Thus far we have assumed the collection of predicates from which the abstraction is built
is provided a priori. In general, the problem of finding a useful set of predicates – i.e.,
one that fruitfully decomposes the program – is hard. Nonetheless, even simple heuris-
tics may work well for many programs. For example, one approach is to include each
Boolean expression in the program as a predicate; this has the useful property of captur-
ing the behavior of if and observe statements, constructs that many existing probabilistic
programming systems struggle with due to their non-differentiability [Carpenter et al.,
2016].

More generally, much of the insight from decades of research on constructing non-
deterministic predicate abstractions can be applied here, and generalizing these tech-
niques to the setting of probabilistic predicate abstractions is a direction for future re-
search. For instance, a common technique for predicate generation is counterexample-
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and error is the `1-norm between the true value and the approximated value. See Chapter 5.5.2.

Figure 5.3: Experimental results.

guided refinement, which iteratively generates new predicates on demand, until the ab-
straction is rich enough to either prove or disprove a query of interest [Clarke et al., 2003].

5.5 Decomposition via Abstraction

The theory and algorithm presented in the previous sections can be used to simplify in-
ference via a process called decomposition via abstraction. The process is as follows. First,
we are given a program C over which we wish to perform some inference query Pr(q | e).
Then we choose, or are provided with, a set of predicates Ψ, which must include the
necessary predicates for describing q and e. Next, we utilize Algorithm 3, which (1) gen-
erates a tight abstract probabilistic program A, and (2) parameterizes the abstraction by
performing sub-queries to the original probabilistic program. To answer queries, we per-
form inference on the abstraction A. This is sound due to Proposition 5.1.

Figure 5.3a shows the computational benefits of decomposition via abstraction on
exact and approximate inference tasks, which are elaborated on in the following sub-
sections.
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5.5.1 Exact Inference

This section asks the question: does decomposition improve the performance of exact in-
ference? Many existing techniques for exact probabilistic program inference utilize path-
based decompositions [Gehr et al., 2016, Chistikov et al., 2015, Albarghouthi et al., 2017,
Sankaranarayanan et al., 2013]. Specifically, they operate by integrating the probability
mass along each path of a probabilistic program. This section shows how the decompo-
sition technique serves to complement path-based decompositions in the following way.
For each probabilistic program, we used Psi [Gehr et al., 2016] to compute an inference
query on (1) the concrete program, and (2) the abstract program and the sub-queries. 3 The
total time for each query task is reported in Figure 5.3a. There are three experiments that
each highlight an important property of probabilistic programs that may be exploited via
abstraction. In each case, it is shown experimentally that the total time spent parameter-
izing and performing inference on the abstraction is less than the time spent performing
inference on the original concrete program. Interestingly, we will see that different kinds
of abstractions enable existing inference algorithms to exploit different kinds of structure,
including factorization and symmetry.

Multiplication This experiment uses a complete version of the example described in
Chapter 5.1 and illustrates how abstraction via decomposition can automatically perform
context-sensitive decomposition. Specifically, computing the sub-queries during the abstrac-
tion procedure can implicitly decompose a complex probability distribution, even when
a factor-graph representation is fully connected. Given the appropriate predicates, Algo-
rithm 3 automatically constructs an abstraction and exploits these independence proper-
ties when performing sub-queries.

Markov Chain Decomposition via abstraction can exploit conditional independences
that are typically unexploited by existing probabilistic programming inference algorithms.
One particular example is a Markov chain, a model which has exponentially many paths
yet retains linear-time exact inference Koller and Friedman [2009b]:

n1 n2 · · · nk

In order to compute Pr(n1 | nk), path-based inference techniques must integrate O(2k)
paths, which quickly becomes infeasible as the Markov chain grows. However, there
is a natural choice of predicates for decomposing such programs: simply including the
guard of each if-statement. By applying an optimized Algorithm 3 recursively on each
if-statement in turn, we recover a linear-time inference algorithm for Markov-Chain-
like probabilistic programs, and more generally a join-tree-like inference algorithm for

3Psi build 5334524fe was used for these experiments.
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Bayesian-network-like programs. For demonstration, consider performing inference on
the following Boolean-valued Markov chain, although strategy generalizes to more com-
plex networks:

1 n1 ←flip(θn1);
2 n2 ←if n1 then flip(θn2|n1

) else flip(θn2|n1
)

3 · · ·
4 nk ←if nk−1 then flip(θnk|nk−1

) else flip(θnk|nk−1
);

First we generate an abstraction using the predicates {n1} and {nk}. The algorithm gen-
erates (1) an abstract program which describes the relationship between these two pred-
icates, and (2) sub-queries necessary for computing the parameters in (1). The generated
abstract program is:

1 {n1} ←flip(θn1);
2 {nk} ←if {n1} then flip(θnk|n1

) else flip(θnk|n1
);

Next we must evaluate the sub-queries. The parameter θn1 is from the original program;
it is the prior on the first variable in the chain. The parameters θnk|n1 and θnk|n1 are com-
pletion predicates, which must both be evaluated on the concrete program. To evaluate
these sub-queries, we can utilize abstraction recursively, this time using the predicates
{n1}, {nk}, and {nk−1}. The intermediate abstract program is:

1 {n1} ←flip(θn1);
2 {nk−1} ←if {n1} then flip(θnk−1|n1

) else flip(θnk−1|n1
);

3 {nk} ←if {nk−1} then flip(θnk|nk−1
) else flip(θnk|nk−1

);

The sub-query on Line 3 implicitly exploits the conditional independence between n1 and
nk−1 given nk. In this case, θnk|nk−1,n1 = θnk|nk−1,n1 , so Line 3 performs only one of these
equivalent queries. This is an optimization that Algorithm 1 would not do automatically,
as it would naively consider all possible joint assignments to predicates on Line 3, and
would thus evaluate both of these equivalent sub-queries. In practice, identifying du-
plicate sub-queries will be an important optimization. In this case probabilistic program
slicing would discover this equivalence [Hur et al., 2014]. The process of querying the
concrete program recursively utilizing abstraction may be repeated inductively for each
sub-program. Ultimately, n sub-programs will be generated, each with 2 paths, for a total
of 2n sub-queries.

Note that this is quite similar to the way that Dice exploits factorization. However,
Dice does not require the user to select predicates.

Shuffle Recall from Chapter 4 that many intractable models can be rendered tractable
by exploiting the underlying symmetry of random variables. This example illustrates
the potential connections between probabilistic program abstraction and lifted inference.
Consider the following probabilistic program, which shuffles a small deck of cards:
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1 deck←[1,2,3,4,5,6];
2 for idx in [0..5) {
3 j←uniformInt(idx, 6);
4 swap(deck[j], deck[i]);
5 }

We wish to compute Pr(deck[0] = 1), i.e. the probability that the top card of the deck is
still 1 after shuffling. There is a key symmetry that reduces the state space of this problem:
it is not necessary to model the distribution on all the cards. For answering this query,
it is sufficient to treat the cards as either “1” or “not 1”, since all cards that are not 1 are
exchangeable. Specifically, we can create an abstract program by changing the first line of
the original program:

1 deck←[{1},¬{1},¬{1},¬{1},¬{1},¬{1}];

Before this abstraction, there were 6! arrangements of cards; after this abstraction, there
are only 6, drastically reducing the cost of inference.

Note that while this abstract program is distributionally sound, it is not a predicate
abstraction and thus not generated by Algorithm 3. Specifically, this abstraction is con-
structed by surgically abstracting portions of the concrete program, rather than by build-
ing an abstraction from the ground up with predicates. Automating such abstractions is
an interesting direction for future work.

5.5.2 Approximate Inference

Many existing probabilistic programming systems rely on approximate inference meth-
ods such as Markov-Chain Monte Carlo or variational approximations to perform infer-
ence [Carpenter et al., 2016, Wood et al., 2014, Goodman et al., 2008, Tran et al., 2017].
These techniques typically make assumptions about the underlying program structure in
order to perform well: for example, Hamiltonian Monte-Carlo will assume that the under-
lying distribution is continuous, and variational inference assumes that the distribution
can be well-captured by the proposal family. In general, we may utilize decomposition
via abstraction to apply approximate inference methods to evaluate the sub-queries for
which they are best suited.

Consider the following probabilistic program. We wish to infer the probability that x
is less than a constant k given three noisy observations about x (as notation, N (µ, σ) is a
normal distribution with mean µ and variance σ):

1 x←N(µ, σ);
2 y1 ←if(x<k){N(µy,σy)} else {N(µ′y,σ

′
y)};

3 y2 ←if(x<k){N(µy,σy)} else {N(µ′y,σ
′
y)};

4 y3 ←if(x<k){N(µy,σy)} else {N(µ′y,σ
′
y)};
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5 observe(y1<c ∧ y2<c ∧ y3 ≥c);
6 return x<k;

Approximate inference techniques such as Markov-Chain Monte-Carlo (MCMC) or
direct sampling struggle with this example: the distribution is multi-modal, non-differentiable,
and the a-priori probability of the observations being satisfied is low. This is evidenced by
the blue circle performance line in Figure 5.3b, which shows the performance of MCMC
on the un-abstracted model using WebPPL [Goodman and Stuhlmüller, 2014] with a fixed
number of samples.

The red performance line in Figure 5.3b shows the convergence of an abstracted model
generated by Algorithm 3 with respect to the predicates {x < k}, {yi < c}. This abstrac-
tion allows us to perform a hybrid inference procedure. Each sub-query (i.e., computing
Pr(x < k)) is differentiable and uni-modal, and can be easily evaluated using MCMC; in
this experiment, we evaluated each sub-query using a portion of a fixed total budget of
samples. Because the abstraction itself is a discrete Dice program, the final query on the
abstract program may be performed using enumeration, which can handle discontinu-
ities and low-probability evidence.

5.6 Related Work

Graph compilation. There exists a family of inference tools that compile probabilistic
programs to structured probabilistic models [Pfeffer, 2009, McCallum et al., 2009, Minka
et al., 2014]. Often, these tools are too coarse; the techniques presented here can exploit
more decompositions than a graph captures by exploiting nuanced program structure.

Program analysis. Some approximate inference tools integrate static information from
the program: for instance, Chaganty et al. [2013] and Nori et al. [2014] utilize symbolic
execution or weakest precondition computations to draw samples more efficiently from
a probabilistic program. However, they do not exploit statistical decompositions such
as conditional independence, and they perform their analyses over the entire program,
rather than performing sub-queries. Probabilistic abstract interpretation has been studied
in prior work, but in all cases the soundness relationship is weaker than distributional
soundness [Cousot and Monerau, 2012, Monniaux, 2000, 2001].

5.7 Conclusion

This chapter addresses the question: what is a useful abstraction for a probabilistic pro-
gram? It showed that such a useful abstraction must be distributionally sound, and de-
scribed the theory and practice for constructing such abstractions. Then, it empirically
validated this approach on approximate and exact inference tasks.
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CHAPTER 6

Conclusion

This chapter will conclude the thesis with discussion of the contributions, future work
and open problems, and finally end with a broad future outlook.

6.1 Contributions & Outlook

There is no one-size-fits-all solution to probabilistic program inference. Each new ap-
proach to inference reveals avenues for applying probabilistic programs in new places or
designing languages with richer and more expressive features. Long term, there remains
many deep foundational questions, and this chapter highlights a few of them that will
require sustained work.

6.1.1 Challenges and Opportunities in Probabilistic Programming Language Design

Chapter 3 showed how to apply probabilistic programs effectively in discrete domains
that were previously out of reach. It showed that, by using a strategy of compiling pro-
grams to tractable representations, it is possible to scale to large language models, verify
properties of large computer networks, compete with state-of-the-art Bayesian network
solvers, and compete with probabilistic model checkers [Holtzen et al., 2021]. However,
Dice is in its infancy: there are many substantive improvements that are necessary to
make it a standard tool in a programmer’s toolbox. I divide these improvements and fu-
ture work goals into 3 broad categories: usability, expressivity, and applications. I see these
goals as challenges for all current probabilistic programming languages, but I highlight
specific aspects of them as they relate to Dice.

6.1.1.1 Usability

Currently writing probabilistic programs – in any probabilistic programming languages
– is a very delicate task, and I would argue is still quite difficult for the average user. The
exact way in which the program is written can have drastic impacts on performance of
inference, and the inference algorithm itself can often be inscrutable from the perspective
of the user. Hence, there is a need for usable probabilistic program inference: probabilis-
tic programming systems that assist the user in designing programs for which inference
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scales.

A very similar usability challenge exists in traditional software design, and I advocate
that we should draw inspiration from techniques from this area. In particular, the areas of
compiler design and software debugging are two compelling areas that have many insights
for probabilistic programming language designers [Aho et al., 1986].

Probabilistic programming languages are in need dire need of compiler optimizations:
techniques for helping users write fast programs without needing deep knowledge of the
internal workings of the inference algorithm. For instance, Dice’s inference algorithm is
currently quite naive and eager in how it builds large BDDs: it will happily compile both
branches of an if-statement even if the guard makes one of those branches impossible.
A smart optimization here is branch elimination: if you can prove that a branch of an if-
statement is never exercised, then that BDD should never be compiled. This flavor of
probabilistic program optimization – and many others – will be critical for designing scalable
turn-key inference that does not depend on exactly how the user writes the program.

Aside from the scalability issue, probabilistic programs also suffer from a correctness
issue: currently there is almost no language support for programmers to track down and
isolate errors in probabilistic programs. Ideas like probabilistic program debugging will be
critical long-term for designing usable systems that work in practice [Nandi et al., 2017].

6.1.1.2 Expressivity

One of the key arguments of this thesis is that expressivity is tightly coupled with scalabil-
ity: having a language with many features is not particularly compelling if inference for
all but the most simple programs is hopelessly intractable. I advocate for an approach to
language design that is in harmony with scalability of inference: when adding a feature,
be cognizant of how it impacts the underlying inference algorithm, and ideally character-
ize how it affects inference using complexity-theoretic arguments.

Claim 1

Probabilistic modeling languages should be designed in concert with their inference
algorithms.

What does this mean in the context of Dice? It asks the question: how many language
features can we add while still remaining compatible with Dice’s BDD compilation strategy?
How far can we push BDDs? For instance, handling continuous random variables is an
extremely important concept for representing distributions, but they seem incompatible
with BDDs. However, consider the special case of a beta-prior on a Bernoulli variable: it
is well-known that this is a special case of Bayesian conjugacy, and there exist closed-form
solutions for the posterior of such instances. Can Dice exploit this to handle some limited
forms of continuity while maintaining its BDD backend?
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Moreover, as we observed in Chapter 4, there are plenty of discrete distributions that
Dice cannot handle, but for which there exist efficient specialized inference strategies. These
are opportunities: how can we extend Dice to handle these kinds of distributions? For
instance, there are many specialized inference algorithms for handling distributions on
permutations, but Dice would struggle with these kinds of distributions since there is little
independence [Huang et al., 2009]. Can Dice be extended with these ideas to handle these
new kinds of distributions?

6.1.1.3 Applications

There is a nearly infinite space of probabilistic programming language designs that trade
off all possible combinations of language features and inference algorithm possibilities.
How can we choose a particular point in this vast design space? I advocate that language
design be driven by applications:

Claim 2

Applications should drive the development of probabilistic modeling language en-
hancements and features.

Dice was initially motivated by applications in language modeling, network verifica-
tion, and probabilistic graphical models. After it was initially developed, Dice found new
application in probabilistic model checking [Holtzen et al., 2021]. Each of these applica-
tions motivated specific features and design decisions in Dice: for instance none of these
problems required continuous random variables or unbounded loops.

On the horizon, I see future applications of Dice in surprising areas like classical sim-
ulation of quantum algorithms [Huang et al., 2021], and in less surprising but still chal-
lenging areas such as linguistics and bioinformatics. To reach this goal, we will need to
add new features to Dice – for instance, forms of loops or the ability to represent complex
amplitudes instead of probabilities. Each of these features should be carefully considered
in the context of the kinds of inference algorithms that they would allow us to employ.

6.1.2 Symmetry and Lifted Inference

Chapter 4 gave a new foundation for exploiting symmetry in probabilistic graphical mod-
els, but there is still much work to do before this foundation can be directly applied inside
of probabilistic program inference algorithms like Dice. I see two key challenges in bridg-
ing this gap: (1) designing a tractable back-end that exploits symmetry and (2) integrating
this back-end with Dice, a property called compositionality.
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6.1.2.1 New Tractable Back-ends

One of the key insights behind knowledge compilation – the philosophy that drives Dice
inference – is the relationship between fast inference and tractable representations: the key
idea that, if inference is fast, we can often capture this fast computation as a compact
circuit that has certain properties [Darwiche and Marquis, 2002]. This motivates the fol-
lowing claim:

Claim 3

If it is possible to perform fast inference, then we should be able to identify a tractable
probabilistic model that isolates the computation.

Given the foundation laid in Chapter 4, a future goal driven by the above claim is identi-
fying a tractable representation that captures the symmetry exploited by lifted inference. Van den
Broeck [2013] studied this very question in the context of first-order sentences, but the
challenge remains open for other representations like propositional factor graph and
probabilistic programs.

Symmetry is just the beginning. There are countless other situations in which tractable
probabilistic reasoning is possible: for instance, determinantal point processes (DPPs) are
a well-known TPM that has been studied in the context of subset selection for machine
learning [Kulesza and Taskar, 2012]. Zhang et al. [2020] and Zhang et al. [2021] study the
problem of constructing a probabilistic circuit that captures the computation of a DPP: one
day this foundation may well yield a backend TPM that exploits the structure implied by
a DPP.

6.1.2.2 Compositionality of TPMs

Probabilistic programs are compositional by design: big programs are made up of smaller
programs. This compositionality must be reflected in the inference algorithm if there is
to be any hope of scaling to large probabilistic programs. Hence, there is a dire need of
compositional inference algorithms that allow inference results for smaller sub-programs to
be combined to give inference results about the entire program. For instance, in Dice,
each sub-program is associated with a BDD, which is itself a compositional object that
can be combined with other BDDs to give an inference result for the whole program.

As more TPMs are developed, the question of composing them with other TPMs be-
comes increasingly pressing. This field is in its infancy and there are many important
questions about when it is possible to combine two different kinds of TPMs that have yet
to be properly posed. However, I will argue that probabilistic programming languages
provide the most compelling motivation for this study: compositionality is the essence of
programming, so compositionality of TPMs will be the essence of probabilistic program
inference.
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6.1.3 Abstraction and Distributional Soundness

The previous section posed several challenges in designing compositional tractable prob-
abilistic models motivated by the goal of combining inference results for sub-programs.
One avenue for this process of program decomposition was given in Chapter 5: breaking
the program up structurally into sub-components given by the program’s behavior on a
set of predicates.

There are a number of important avenues for extending this work so that it becomes
an integral part of a probabilistic programming work-flow. The primary challenge is
automating the abstraction process. Currently the method in Chapter 5 requires the user
to provide a set of predicates, but this is quite unwieldy: methods from verification like
counter-example guided abstraction refinement [Clarke et al., 2000, McIver et al., 2005] could
give avenues for automating predicate abstraction construction.

6.2 Discussion

The idea of a probabilistic program is widely regarded to have originated in Kozen [1979].
In this context, the goal was to verify and give a formal semantics to randomized algo-
rithms. However, since then, the scope of objectives for probabilistic programs has vastly
widened to include not only verifying randomized algorithms, but also data analysis and
modeling probabilistic agents and systems. I would like to conclude this thesis with a
call to action that touches on broader ideas. In particular I would like to close with some
high-level calls to the artificial intelligence and programming languages communities,
bringing some attention to the shared insights that will be necessary from each field in
order to achieve progress. To the PL community:

• Probabilistic program semantics are important, but they are not the only problem.
There are many interesting classes of languages that do not have particularly inter-
esting semantics but have very interesting inference algorithms.

• Think beyond sampling for probabilistic program inference: compositional exact
inference has a very “PL” flavor and there are many opportunities still for applying
programming language ideas in this direction.

• Formalization of probabilistic program inference is in its infancy: there is much
work to do here still.

To the AI community:

• Think about compositionality: how can we combine different kinds of modeling
families in natural ways? Different kinds of inference algorithms?
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• Think about formalization and verification: how can we prove inference algorithms
correct? Programs should have semantics.

Ultimately I argue that ideas from both of these communities are necessary for design-
ing strategies for scaling inference by exploiting program structure.

95



APPENDIX A

Proofs

Three steps to a proof: (1) Start in the
right place; (2) End in the right place; (3)
Don’t skip any steps.

Anonymous

A.1 Chapter 3

A.1.1 Important Lemmas

Lemma A.1 (Independent Conjunction). Let α and β be Boolean sentences which share no
variables; we call such sentences independent. Then, for any weight function w, WMC(α∧β, w) =
WMC(α,w)× WMC(β, w).

Proof. The proof relies on the fact that, if two sentences α and β share no variables,
then any model ω of α ∧ β can be split into two components, ωα and ωβ , such that
ω = ωα ∧ ωβ , ωα ⇒ α, and ωβ ⇒ β, and ωα and ωβ share no variables. Then: WMC(α ∧
β, w) =

∑
ω∈Mods(α∧β)

∏
l∈ω w(l) =

[∑
ωα∈Mods(α)

∏
a∈ωα w(a)

]
×
[∑

ωβ∈Mods(β)

∏
b∈ωβ w(b)

]
=

WMC(α,w)× WMC(β, w).

Proposition A.1 (Inclusion-Exclusion). For any two formulas ϕ1 and ϕ2 and weight function
w, WMC(ϕ1 ∨ ϕ2, w) = WMC(ϕ1, w) + WMC(ϕ2, w)− WMC(ϕ1 ∧ ϕ2, w). Note the important mutual
exclusion case when ϕ1 ∧ ϕ2 = F.

A.1.2 Correctness of Expression Compilation

Lemma A.2 (Value Correctness). For any values v and v′ of type τ , JvK (v′) = WMC(v
τ⇐⇒ v′, ∅).

Proof. By induction on τ :

• τ = Bool. Then case analysis:
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– JTK (T) = 1 = WMC(T⇔ T, ∅)
– JTK (F) = 0 = WMC(T⇔ F, ∅)
– JFK (F) = 1 = WMC(F⇔ F, ∅)
– JFK (T) = 0 = WMC(F⇔ T, ∅)

• Inductive step: τ = τ1 × τ2. Then,

J(v1, v2)K ((v′1, v
′
2)) = Jv1K (v′1)× Jv2K (v′2)

= WMC(v1
τ1⇐⇒ v′1, ∅)× WMC(v2

τ1⇐⇒ v′2, ∅) Induction Hyp.

= WMC(v1
τ1⇐⇒ v′1 ∧ v2

τ1⇐⇒ v′2, ∅) Independent Conj.

= WMC((v1, v2)
τ1×τ2⇐==⇒ (v′1, v

′
2), ∅).

Lemma A.3 (Typed Substitution). For any values v, vx : τ , it holds that (v
τ⇐⇒ vx) = (Fτ (x)

τ⇐⇒

v)[x
τ7−→ vx].

Proof. By induction on τ :

• τ = Bool. Then, (v ⇔ vx) = (v ⇔ x)[x 7→ vx] = (v ⇔ FBool(x))[x 7→ vx].

• τ = τ1 × τ2. Then, let v = (vl, vr) and vx = (vlx, v
r
x). Then,

(vl, vr)
τ1×τ2⇐==⇒ (vlx, v

r
x) = (vl

τ1⇐⇒ vlx) ∧ (vr
τ2⇐⇒ vrx)

= (vl
τ1⇐⇒ Fτ1(xl))[xl

τ17−→ vlx] ∧ (vr
τ2⇐⇒ Fτ2(xr))[xr

τ17−→ vrx] Ind. Hyp.

= (vl
τ1⇐⇒ Fτ1(xl) ∧ (vr

τ2⇐⇒ Fτ2(xr)))[xl
τ17−→ vlx][xr

τ17−→ vrx]

= ((vl, vr)
τ1×τ2⇐==⇒ Fτ1×τ2(x))[x

τ1×τ27−−−→ (vlx, v
r
x)].

Lemma A.4 (Typed Correctness Without Procedures). Let e be a Dice expression without
procedure calls. Let {xi : τi} ` e : τ  (

.
ϕ, γ, w). Then for any values {vi : τi} and v : τ , we have

that Je[xi 7→ vi]K (v) = WMC
((

(v
τ⇐⇒ ϕ) ∧ γ

)
[xi

τi7−→ vi], w
)

.

Proof. The proof is by structural induction on the syntax of Boolean Dice programs. First,
we prove that the theorem holds for the non-inductive terms:

• e = T and e = F follow directly from Lemma A.2.
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• e = flip θ. Then, Γ ` flip θ : Bool  (f , T, w) for a fresh f . Then, WMC(f ∧ T, w) = θ =
Jflip θK (T) and WMC(f, w) = 1− θ = Jflip θK (F).

• e = x. Then, Γ ` x : τ  (
.
ϕ, T, ∅), and let vx : τ be the value substituted for x.

r
x[x

τ7−→ vx]
z

(v) = JvxK (v)

= WMC((vx
τ⇐⇒ v) ∧ T, ∅) Lemma A.2

= WMC
(

((Fτ (x)
τ⇐⇒ v) ∧ T)[x

τ7−→ vx], ∅
)

Lemma A.3

• e = fst x. Assume Γ(x) = τ1 × τ2. Then, Γ ` fst x : τ1  (Fτ1(xl), T, ∅). Let vx =
(vlx, v

r
x) : τ1 × τ2 be the value substituted for x. Then,

r
fst x[x

τ×τ ′7−−→ vx]
z

(v) =
q
vlx

y
(v)

= WMC((vlx
τ⇐⇒ v) ∧ T, ∅) Lemma A.2

= WMC
((

(Fτ (xl)
τ⇐⇒ v) ∧ T

)
[x

τ×τ ′7−−→ vx], ∅
)

Lemma A.3

An analogous argument holds for snd x.

• e = (x1, x2). Then, Γ ` (x1, x2) : τ1 × τ2  ((Fτ1(x1), Fτ2(x2)), T, ∅). Let v1 : τ1 and v2 : τ2

be the value substituted for x1 and x2 respectively, and let v = (vl, vr). Then,
r

(x1, x2)[x1
τ17−→ v1, x2

τ27−→ v2]
z

((vl, vr))

= J(v1, v2)K (vl, vr)

= WMC
(

(v1
τ1⇐⇒ vl) ∧ (v2

τ2⇐⇒ vr) ∧ T, ∅
)

Lemma A.2

= WMC
((
Fτ1(x1)

τ1⇐⇒ vl
)
∧
(
Fτ2(x2)

τ2⇐⇒ vr
)
∧ T[x1

τ17−→ v1, x2
τ27−→ v2], ∅

)
Lemma A.3

Now for the inductive terms:

• e = let e1 in e2. Assume Γ ` e1 : τ1  (
.
ϕ1, γ1, w1) and Γ ∪ {x : τ1} ` e2 : τ2  

(
.
ϕ2, γ2, w2). For notational simplicity, assume that the substitution [xi

τi7−→ vi] has been
applied to

.
ϕ1, γ1,

.
ϕ2, γ2, and that all weighted model counts are performed with the
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weight w1 ∪ w2. Then,

J(let x = e1 in e2)[xi 7→ vi]K (T)

=
∑
v

Je1[xi 7→ vi]K (v)× Je2[xi 7→ vi, x 7→ v]K (T)

=
∑
vx∈τ1

WMC
(
(
.
ϕ1

τ1⇐⇒ vx) ∧ γ1

)
× WMC

(
((

.
ϕ2

τ2⇐⇒ v) ∧ γ2)[x
τ17−→ vx]

)
Ind. Hyp.

=
∑
vx∈τ1

WMC
(

(
.
ϕ1

τ1⇐⇒ vx) ∧ γ1 ∧
(
(
.
ϕ2

τ2⇐⇒ v) ∧ γ2

)
[x

τ17−→ vx]
)

Indep. Conj.

= WMC
( ∨
vx∈τ1

(
.
ϕ1

τ1⇐⇒ vx) ∧ γ1 ∧
(
(
.
ϕ2

τ2⇐⇒ v) ∧ γ2

)
[x

τ17−→ vx]
)

Mut. Excl.

= WMC
(

((
.
ϕ2

τ2⇐⇒ v2) ∧ γ1 ∧ γ2)[x
τ17−→ .

ϕ1]
)

• e = observe g. Assume Γ ` g : Bool  (ϕ, T, w). This case relies on interpreting the
semantics of Jobserve g[xi 7→ vi]K (v) as Jg[xi 7→ vi]K (T)× JTK (v). Then,

Jobserve g[xi 7→ vi]K (v) = Jg[xi 7→ vi]K (T)× JTK (v)

= WMC(ϕ ∧ T, w)× WMC(v ∧ T). Ind. Hyp.
= WMC(ϕ ∧ v, w). Indep. Conj.

• e = if g then eT else eE . Assume Γ ` g : Bool (ϕg, T, wg), Γ ` eT : τ  (
.
ϕT , γT , wT ),

Γ ` eE : τ  (
.
ϕE, γE, wE). Again assume for notational simplicity that all weighted

model counts are performed with the weight function wg ∪w2 ∪wg and that the substi-
tutions [xi

τi7−→ vi] have been performed on the compiled formulas. Then,

Jif g then eT else eEK (v)

= JgK (T)× JeT K (v) + JgK (F)× JeEK (v)

= WMC(ϕg ∧ T)× WMC((
.
ϕT

τ⇐⇒ v) ∧ γT ) + WMC(ϕg ∧ T)× WMC((
.
ϕE

τ⇐⇒ v) ∧ γE) Ind. Hyp.

= WMC(ϕg ∧ (
.
ϕT

τ⇐⇒ v) ∧ γT ) + WMC(ϕg ∧ (
.
ϕE

τ⇐⇒ v) ∧ γE) Indep. Conj.

= WMC((ϕg ∧ (
.
ϕT

τ⇐⇒ v) ∧ γT ) ∨ (ϕg ∧ (
.
ϕE

τ⇐⇒ v) ∧ γE)) Mut. Excl.

= WMC
((

(ϕg∧
τ

.
ϕT )

.
∨
τ
(ϕg∧

τ

.
ϕE)

)
τ⇐⇒ v ∧

(
(ϕg ∧ γT ) ∨ (ϕg ∧ γE)

))
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A.1.3 Theorem 3.2

First we extend Lemma 3.3 to show that Boolean function call compilation is correct. First
we need some preliminaries. The semantics and compilation of an expression can only be
compared if the function context they are compiled in is compatible:

Definition A.1 (Table Compatibility). Let Φ be a compiled function table, T be a function table,
and Γ be a type environment. Then we say T and Φ are compatible if for any function identifier
x, where Γ(x) = τ1 → τ2 and Φ(x) = (x,

.
ϕ, γ, w), it holds for any argument value vx : τ1 and

value v : τ2, T (x)(vx)(v) = WMC
(
((

.
ϕ

τ2⇐⇒ v) ∧ γ)[x
τ17−→ vx], w

)
.

Then, we can extend Lemma 3.3 to assume compatible tables:

Theorem A.1 (Boolean Correctness with Procedure Calls). Let e be a Dice expression with
function calls, T and Φ be compatible tables, let {xi : τi},Φ ` e : τ  (ϕ, γ, w). Then, for any
values {vi : τi} and v : τ , we have that Je[xi 7→ vi]K (v) = WMC

((
(ϕ

τ⇐⇒ v) ∧ γ
)
[xi

τi7−→ vi]
)

.

Proof. The proof is identical to the proof of Lemma 3.3 except for the addition of the
function call syntax, which we prove here.

Assume e = x1(x2) and assume Φ(x1) = (xarg,
.
ϕ, γ, w). Assume (

.
ϕ
′
, γ′, w) = RefreshFlips(

.
ϕ, γ, w)

Then, x1(x2) (
.
ϕ[xarg 7→ x2], γ[xarg 7→ x2], w). Then the result follows directly from table

compatibility:

Jx(vx)K (T) = T (x)(vx)(T)

= WMC
(
((

.
ϕ

τ2⇐⇒ v) ∧ γ)[x
τ17−→ vx], w

)
Table Compatibility

= WMC
(
((

.
ϕ
′ τ2⇐⇒ v) ∧ γ′)[x τ17−→ vx], w

)
Defn. of RefreshFlips

Now we are ready for the main theorem:

Theorem A.2 (Typed Program Correctness). Let p be a Dice program Γ ` p : τ  (
.
ϕ, γ, w).

Then for any v : τ , we have that JpK (v) = WMC((
.
ϕ

τ⇐⇒ v) ∧ γ, w).

Proof. • Base case: p = e. Assume Γ,Φ • e : τ  (
.
ϕ, γ, w). Then, J•eK (v) = JeK (v) =

WMC((
.
ϕ

τ⇐⇒ v) ∧ γ, w), by Theorem A.1.

• Inductive step: The program is of the form p1 = fun x1(x2) {e} p2.

Assume that Γ,Φ ` fun x1(x2) {e} : τ1 → τ2  (
.
ϕf , γf , wf ). Let T ′ = T ∪ {x1 7→ JfuncK}

and Φ′ = Φ ∪
{
x1 7→ (x2,

.
ϕf , γf , wf )

}
. Then, Theorem A.1 guarantees that T ′ and Φ′ are
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compatible tables. Let Γ ∪ {x1 7→ τ1 → τ2},Φ′ ` p2 : τ  (
.
ϕ, γ, w). Then,

Jfun x1(x2) {e} p2K
T (v) = Jp2K

T ′ (v)

=WMC
(( .
ϕ

τ⇐⇒ v
)
∧ γ, w

)
By Ind. Hyp.

Finally we prove Theorem 3.1, restated here for convenience:

Theorem A.3 (Compilation Correctness). Let p be a Dice program and ∅, ∅ ` p : τ  
(
.
ϕ, γ, w). Then:

• JpKA = WMC(γ, w)

• for any value v : τ , JpKD (v) = WMC((
.
ϕ

τ⇐⇒ v) ∧ γ, w)/WMC(γ, w).

Proof. Let {}, {} ` p : τ  (
.
ϕ, γ, w). Then,

JpKA =
∑
v

WMC((
.
ϕ

τ⇐⇒ v) ∧ γ, w) Theorem 3.2

= WMC

(∨
v

((
.
ϕ

τ⇐⇒ v) ∧ γ), w

)
Mut. Excl.

= WMC(γ, w).

Then, JpKD (v) = JpK (v)/
∑

v′ JpK (v′) = WMC((
.
ϕ

τ⇐⇒ v)∧γ, w)/WMC(γ, w) by Theorem 3.2 and
the above argument.

A.2 Chapter 4

Theorem 4.7. The proof will proceed as follows. First, we will split up Pr into two dis-
tributions: a between-orbit distribution, which describes the probability of transitioning
between two orbits, and a within-orbit distribution, which is uniform. We will bound the
total variation distance for these two quantities, and combine these results to get a bound
on the total variation distance on the original distribution using the following lemma:

Lemma A.5. Let µ(x, y) and ν(x, y) be two distributions on X × Y . Let µx(x) =
∑

y µ(x, y),
defined similarly for ν. If for all (x, y) ∈ X × Y it holds that Prµ(y | x) = Prν(y | x), then
dTV (µ, ν) = dTV (µx, νx).

101



Proof.

dTV (µ, ν) =
1

2

∑
x,y

|Prµ(x, y)− Prν(x, y)|

=
1

2

∑
x,y

|Prµ(y | x)Prµx(x)− Prν(y | x)Prνx(x)| Chain rule

=
1

2

∑
x,y

Prµ(y | x)× |Prµx(x)− Prνx(x)| Since 0 ≤ Prµ(y | x) = Prν(y | x) ≤ 1

=
1

2

∑
x

(
|Prµx(x)− Prνx(x)| ×

∑
y

Prµ(y | x)︸ ︷︷ ︸
=1

)

=dTV (µx, νx).

Now we begin the main proof. Let Pr(x) be a G-invariant distribution on a set Ω, and
let P t

x(y) be the probability of transitioning from a state x to a state y after t steps under the
orbit-jump proposal. We can write Pr(x) as a product of a between-orbit (PrB) and within-
orbit (PrW ) distribution, where PrB is a distribution on Ω/G and PrW is a distribution on
Ω:

Pr(x) = Pr(x)× |Orb(x)|︸ ︷︷ ︸
PrB(σ(x))

× 1

|Orb(x)|︸ ︷︷ ︸
PrW (x|σ(x))

(A.1)

I.e., for some o ∈ Ω/G, for some x ∈ σ−1(o), PrB(o) = Pr(x) × |Orb(x)|. Similarly, the
distribution P t

x can be divided into a between-orbit and within-orbit component. We
define a new Markov chain B between orbits that has the following transition rule from
some initial state σ(x) ∈ Ω/G:

1. Sample x′ ∼ PrΩ/G

2. Accept σ(x′) with probability Pr(x′)×|Orb(x′)|
Pr(x)×|Orb(x)| .

Then, for some y ∈ Ω and ŷ = σ(y),

P t
x(y) = Bt

σ(x)(ŷ)× PrW (y | ŷ), (A.2)

where we used the important fact that the orbit-jump proposal that defines P t
x is uniform

within orbits. Now we can rewrite the total variation distance that we wish to upper-
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bound:

dTV
(
P t
x(y),Pr(y)

)
= dTV

(
Bt
σ(x)(ŷ)× PrW (y | ŷ),PrB(ŷ)× PrW (y | ŷ)

)
(A.3)

Now using Lemma A.5 we can simplify the bound on the total variation distance to
be the total variation distance of the between-orbit distributions:

dTV (P t
x(y),Pr(y)) = dTV (Bt

σ(x)(ŷ),PrB(ŷ)). (A.4)

Now, our goal is to upper-bound dTV (Bt
σ(x),PrB). To do this we will use a standard

coupling argument. A coupling is a way to run two copies of a Markov chain P at the same
time with the following properties:

1. Both copies in isolation evolve according to P ;
2. If both copies are in the same state, they remain in the same state.

Two coupled chains can be used to acquire upper-bounds on the total variation dis-
tance of a Markov chain by upper-bounding the probability that a Markov chain starting
from two initial distributions – one in its stationary distribution and the other in an arbi-
trary location – will coalesce into the same state:

Lemma A.6 ([Levin and Peres, 2017] Theorem 5.4). Let P be a transition matrix on state-space
Ω with stationary distribution π. Let {(Xt, Yt)} be coupled chains that evolve according to P of
length t, starting from an initial state x ∈ Ω and y ∼ π. Then,

dTV (P t
x, π) ≤ Pr(Xt 6= Yt). (A.5)

Now we define the coupled chains {(Xt, Yt)}. Let X0 ∈ Ω/G be an arbitrarily chosen
initial element, and let Y0 ∼ PrB be an element chosen according to PrB. At each time step
t, choose a state o ∈ Ω/G uniformly at random. Then, both chains attempt to transition
to o, using the standard metropolis correction criteria to decide whether or not to accept
o. In order to guarantee coalescence, if both chains are in the same state, then we define
them to accept or reject a new state together. Intuitively, these two chains simulate the
Markov chain B starting from different initial states, where they both share a common
source of randomness. Then by Lemma A.6,

dTV (Bt
X0
,PrB) ≤ Pr(Xt 6= Yt). (A.6)

This probability can be upper bounded as follows. There exists a (possibly non-
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unique) maximum probability state M ∈ Ω/G:

M = σ
(

arg max
x

Pr(x)× |Orb(x)|
)
.

If both Markov chains uniformly choose M to transition to, then by the Metropolis rule
they will both accept and thus coalesce. Since the proposal is uniform, Pr(Xt 6= Yt) is
upper-bounded by the probability of not transitioning to M after t steps, so:

Pr(Xt 6= Yt) ≤
(
|Ω/G| − 1

|Ω/G|

)t
, (A.7)

which gives the first bound in the theorem. This quantity can be upper bounded by a
parameter ε > 0 representing the chosen error tolerance. Solving for t:

t ≥ log(ε)×
[
log

(
|Ω/G| − 1

|Ω/G|

)]−1

Using the identity:

log

(
x− 1

x

)
= −

(
1

x
+

1

2x2
+ · · ·

)
,

we then have that:

t ≥ log(ε−1)× |Ω/G| ≥ log(ε−1)×
(

1

|Ω/G|
+

1

2|Ω/G|2
+ · · ·

)−1

, (A.8)

which gives the second bound and concludes the proof.
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