
UNIVERSITY OF CALIFORNIA

Los Angeles

Language Features and Patterns for Developing
Interactive Software

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Brian Nicholas Chin

2009

c© Copyright by

Brian Nicholas Chin

2009

The dissertation of Brian Nicholas Chin is approved.

Nathaniel Grossman

Rupak Majumdar

Jens Palsberg

Todd Millstein, Committee Chair

University of California, Los Angeles

2009

ii

To my parents, for never saying it couldn’t be done.

iii

TABLE OF CONTENTS

1 Introduction . 1

1.1 Introduction . 1

1.1.1 Inversion of Control . 2

1.1.2 Lack of Modularity . 6

1.1.3 Asymmetric Control . 8

1.2 Statement of the Thesis . 9

1.3 The Structure of this Dissertation . 11

2 Related Work . 12

2.1 Avoidance of Inversion of Control 12

2.2 Interactive Extensibility and Modularity 14

2.3 Language Features for Symmetric Interaction 15

2.4 Static Analysis for Existing Code . 16

3 Responders . 17

3.1 Overview . 17

3.2 Approach . 18

3.2.1 Responding Blocks, Events, and Event Loops 18

3.2.2 Another Example . 23

3.2.3 Responding Methods . 23

3.2.4 Responder Inheritance . 26

3.2.5 Exceptional Situations . 29

iv

3.3 Compilation . 29

3.4 Experience . 31

3.4.1 Drag and Drop . 32

3.4.2 JDOM 1.0 . 40

3.5 Conclusion . 45

4 The Extensible State Machine Pattern 46

4.1 Introduction . 46

4.2 The Extensible State Pattern . 49

4.2.1 Adding and Overriding States 52

4.2.2 Adding Events . 55

4.2.3 Adding “Subroutines” . 60

4.3 Interrupt Points Explored . 66

4.3.1 Returning Values from Interrupt Points 68

4.3.2 A Stack of Interrupted States 68

4.3.3 After-the-fact Interrupt Points 69

4.3.4 Interrupt Points and Information Hiding 69

4.4 Implementation . 70

4.5 Experience . 71

4.5.1 Base State Machine . 72

4.5.2 Extended State Machine . 75

4.5.3 Comparison . 77

4.6 Related Work . 78

v

4.7 Conclusion . 79

5 The Dialogue Pattern . 80

5.1 Overview . 80

5.2 Approach . 82

5.2.1 The Guessing Game Re-Revisited 83

5.2.2 Example: The “Cookie” Protocol 90

5.2.3 Protocol Definition Rules . 97

5.3 Discussion . 97

5.3.1 Subprotocol Implementations 98

5.3.2 Common Protocol Definition Patterns 99

5.4 Auxiliary Tools . 102

5.4.1 The Dialogue Pattern Engine 103

5.4.2 The Protocol Checker/Diagram Generation Tool 105

5.5 Experience . 105

5.5.1 Applicability of Existing Techniques 107

5.5.2 Overview . 109

5.5.3 JSettlers: Protocol Definition 112

5.5.4 JSettlers: Protocol Implementations 112

5.6 Conclusion . 117

6 Conclusion . 119

References . 121

vi

LIST OF FIGURES

3.1 A screenshot of the drag-and-drop application. 32

4.1 The Base State Machine . 49

4.2 Adding the Drag State . 51

4.3 Adding the KeyDown Event . 55

4.4 Interrupting the Drag . 60

4.5 The State Machine for the Simple SAX Handler 73

5.1 The Guessing Game Interaction Diagram. 84

5.2 The “Cookie” protocol diagram. 91

5.3 The exchange subprotocol. 93

5.4 An instantiation of the exchange subprotocol. 94

5.5 The protocol diagram for the approve pattern. 100

5.6 The protocol diagram for the role choice pattern. 101

5.7 Architecture of the Connection Adapters 110

5.8 An Overview of the Server/Client Protocol for JSettlers. 111

vii

LIST OF LISTINGS

1.1 Basic Pseudocode for a Guessing Game 2

1.2 A state design pattern implementation of the guessing game. 4

1.3 An attempt to add new events to the state machine in Listing 1.2. . . . 7

1.4 Example code using the guessing game 8

3.1 An implementation of the guessing game in ResponderJ. 19

3.2 An example execution of the guessing game in ResponderJ. 19

3.3 A GUI panel supporting drag-and-drop. 24

3.4 A responding method. 25

3.5 Overriding responding methods. 27

3.6 Adding new responder events in subresponders. 28

3.7 Translation of the Guess responder event from Listing 3.1. 30

3.8 Translation of the inner eventloop from Listing 3.1. 30

3.9 Main responding block from DragDropPanel 34

3.10 doDrag() method from DragDropPanel. 35

3.11 One handler method in the event-driven implementation of DragDrop-

Panel. 37

3.12 A common interface for state classes. 38

3.13 A class to represent the dragging state. 39

3.14 Some code from the original SAXHandler class. 41

3.15 A responding method from the ResponderJ version of SAXHandler. . 42

3.16 Handling exceptions thrown in the responding block. 43

viii

4.1 The base code for the UI example 50

4.2 The base state machine with factory methods added 53

4.3 The drag-and-drop extension . 54

4.4 InputStateMachine modified for adding events 57

4.5 The concretized InputStateMachine 58

4.6 The DragStateMachine extension modified for adding events 58

4.7 Adding a new event in a state machine extension 59

4.8 Example use of delimited continuations 64

4.9 The Key state machine with inserted interrupt-point 65

4.10 Our extension using the added interrupt-point 67

4.11 Version of Listing 4.8 using the delimited continuation API 71

4.12 The readElement() method . 74

4.13 The endElement() event handler for the ParsingElementState . . 74

4.14 A snippet of startElement() from the original SAXHandler imple-

mentation . 77

5.1 The interfaces for the “Running” and “Handle Guess” states. 85

5.2 An implementation of the “Running” state by the unshaded side. . . . 86

5.3 The interfaces for the “Idle” state. 88

5.4 An use of the close() event method. 88

5.5 An implementation of the start() event method on the GameIdle

state class. 89

5.6 The interfaces for the “Incredulous” subprotocol. 96

5.7 A use of the cookie subprotocol . 96

ix

5.8 A generic implementation of the Incredulous state. 98

5.9 An inner-class implementation of the cookie subprotocol. 99

5.10 Annotations for dialogue pattern state interfaces. 102

5.11 The JSettlers Dispatch Logic. 106

5.12 A Problem with symmetry in the State Design Pattern 108

5.13 Example Implementation of the Adapters Using the Standard State De-

sign Pattern. 114

5.14 An example of a state factory . 116

x

ACKNOWLEDGMENTS

My deepest thanks to Todd Millstein, my advisor, for his patience, help, and support

throughout my graduate career. It was my great fortune that he arrived at UCLA shortly

after I did. Had he not, it would be hard to imagine how things would have changed.

Thanks to everyone from my lab for being extra pairs of eyes and ears when I

needed them.

Last but not least, I’d like to thank my family for their unending confidence in me,

as well as the heaps of advice they provided (solicited or not).

xi

VITA

1981 Born, Orange, CA.

1987 Received first computer: A Macintosh SE

1999 Graduated from Troy High School in Fullerton, CA

2003 B.S. in Electrical Engineering and Computer Science from U.C.

Berkeley

2003-2004 Junior Programmer, Guidance Software, Pasadena, CA

2004-2009 Graduate Student Researcher, Computer Science Department,

UCLA

2007, 2008 Teaching Assistant, Computer Science Department, UCLA

PUBLICATIONS

Brian Chin, Daniel Marino, Shane Markstrum, Todd Millstein. Enforcing and Validat-

ing User-Defined Programming Disciplines. In Proceedings of the 7th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engineering. San

Diego, CA. June, 2007.

Brian Chin, Shane Markstrum, Todd Millstein. Semantic Type Qualifiers. In Proceed-

ings of the ACM SIGPLAN 2005 Conference on Programming Language Design and

xii

Implementation. Chicago, IL. June, 2005.

Brian Chin, Shane Markstrum, Todd Millstein, Jens Palsberg. Inference of User-

Defined Type Qualifiers and Qualifier Rules. In Proceedings of the 15th European

Symposium on Programming. Vienna, Austria. March, 2006.

Brian Chin, Todd Millstein. An Extensible State Machine Pattern for Interactive Ap-

plications. In Proceedings of the 22nd European Conference on Object-Oriented Pro-

gramming. Paphos, Cypress. July, 2008.

Brian Chin, Todd Millstein. Responders: Language Support for Interactive Applica-

tions. In Proceedings of the 20th European Conference on Object-Oriented Program-

ming. Nantes, France. July, 2006.

Claudio Palazzi, Brian Chin, Paul Ray, Giovanni Pau, Mario Gerla, Marco Roccetti.

High Mobility in a Realistic Wireless Environment: a Mobile IP Handoff Model for

NS-2. In Proceedings of the IEEE 3rd International Conference on Testbeds and Re-

search Infrastructures for the Development of Networks and Communities. Orlando,

FL. May, 2007.

xiii

ABSTRACT OF THE DISSERTATION

Language Features and Patterns for Developing
Interactive Software

by

Brian Nicholas Chin
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2009

Professor Todd Millstein, Chair

A piece of software is considered interactive if it consumes input and produces output

throughout its execution, in contrast to non-interactive software which takes its input at

program initialization and produces its output at program termination. Interactive soft-

ware includes network servers, user interface applications, and computer games, and

makes up the majority of user-facing software. The most common approach to im-

plementing interactive components within modern languages is an event-driven style,

which creates components that respond to events, possibly modifying their internal

state as a result. Despite its popularity, this style has several disadvantages. First, in

converting interactive logic to the event-driven style, it must go through an inversion

of control, which separates the logic into many pieces. Instead of using standard con-

trol structures like while loops, control flow is implicitly defined through manipulating

object fields. Second, the state design pattern, a common implementation of the event-

driven style in object-oriented languages, has no mechanism to allow for extensibility,

a natural desire in the pattern’s object-oriented setting. Third, the event-driven style as-

sumes that another software entity is in control of an interactive component, but many

interactive components exchange control throughout their execution between them-

xiv

selves and their ”controllers”. Many implementations of the event-driven style, such

as the state design pattern, do not easily allow for these exchanges of control, requiring

ad-hoc solutions which defeat many of the advantages of those implementations.

We provide three solutions to these problems: The first, Responders, is a new

language feature which avoids inversion of control by letting interactive logic keep

a separate execution context that is suspended then resumed upon the receipt of an

event. The Extensible State Machine Pattern, the second solution, is a modification

of the normal state design pattern that allows state machines that implement it to be

extended in several natural ways. The third solution is the Dialogue Pattern, a software

pattern which naturally handles exchanges in control without needing any additional

features to language in which it is implemented. We demonstrate how each of these

solutions work, and validate them with our experience using them on existing software

packages.

xv

CHAPTER 1

Introduction

1.1 Introduction

Interactive software is software which is designed to consume input and produce output

throughout its lifetime, in contrast to programs which are passed data at their start and

produce a result at their termination. In today’s computing environment, interactive

software makes up a majority of software used, from word processors and other user

interface software to computer games to web and other network servers.

Despite interactive software being so prevalent, it remains difficult to implement

and maintain in modern languages for a number of reasons. I will demonstrate these

problems in the context of a simple guessing game.

Listing 1.1 shows the pseudocode for the guessing game. Initially, the user must

give input to start the game. At that time, the game chooses a number, then loops,

retrieving a guess from the user each time. For each guess, the game checks it against

the chosen number, and reports if it is higher or lower than the correct number, or if

the guess is indeed the correct number. If the guess was correct, the game ends, and

the user must again start the game to continue.

There are three general problems with implementing interactive logic like this in

modern languages, which I will now describe.

1

while(true) {
if (startGame()) {

int answer = randomInt()
while(true) {

int guess = getGuess();
if (guess == answer) {

System.out.println(”Correct!”);
break;

} else {
// handle other options ...

}
}

}
}

Listing 1.1: Basic Pseudocode for a Guessing Game

1.1.1 Inversion of Control

In the pseudocode above, two functions are called which have peculiar behavior. The

startGame() and getGuess() functions, as written, are expected to block the current

execution until the player has responded. In the context of this short example, this

may be adequate behavior for an interactive program. In most interactive software,

however, there are often many components that must be able to work independently.

It’s simply unreasonable to have the entire program block for only a single interactive

component. If the guessing game had a windowed user interface, for instance, the

various controls and fields must be able to work independent of the game component.

If these controls were not able to do so, they would no longer respond to user input.

One possible solution to this problem is threads. We could implement the above

pseudocode as the implementation of a thread. Threads, however, are undesirable

for several reasons. Threads introduce true concurrency, making them harder to reason

about and more error prone. They also introduce nondeterminism, making them harder

to debug and analyze.

2

To avoid these disadvantages, many developers use a different way of modeling in-

teractive components. Instead of having a component actively requesting (and block-

ing while waiting for) the next input, a component passively waits to be sent an event.

When an event arrives, an event handler for that component is called. This event

handler does whatever operation it needs to respond to the event, possibly changing

the state of the component in the process. This model much more closely matches

a finite-state-machine like interface; the component has a number of possible states it

can be in, each which respond to various inputs differently. This model allows the state

machine to preserve its current state between event calls, while preventing the entity

sending messages to the state machine (which I sometimes call the controller) from

being blocked.

One common method of implementing this state-machine-like behavior in object

oriented languages is the state design pattern. An example of this style for imple-

menting our guessing game is shown in Listing 1.2. In this pattern we maintain a

state-machine object which keeps a reference to one of many possible state objects,

each of which implements a common interface. This state interface consists of a num-

ber of methods that each indicates a different type of event. A message is sent to a

state machine by calling one of these methods on the state object it currently refer-

ences. As execution continues within the state machine, the referenced (or current)

state changes either by action of the state machine, or of the state objects themselves.

Here, the GuessingGame state machine has two state classes: GameStartState and

GameRunningState, each which have to implement the GameState interface. This

interface has methods for both of the message types, startGame() and guess().

The state design pattern provides several advantages. Typically, the standard event-

driven style requires manual dispatch, either over the type of event being sent, or the

state the component is currently in, or possibly both. The state design pattern han-

3

class GuessingGame {
public static interface GameState {

void startGame();
boolean guess(int theGuess);

}

private Random rand = new Random();
private GameState currState = new GameStartState();

public GameState getCurrState() { return currState; }

public class GameStartState implements GameState {
public void startGame() { currState = new GameRunningState(); }

public boolean guess(int i) {
System.err.println(”ERROR: Game hasn’t started yet”);
return false ;

}
}

public class GameRunningState implements GameState {
protected int correctAnswer;

public GameRunningState() { correctAnswer = rand.nextInt(50); }

public void startGame() {
System.err.println(”ERROR: Game is already running”);

}

public boolean guess(int theGuess) {
if (theGuess == correctAnswer) {

System.out.println(”Correct!”);
currState = new GameStartState();
return true ;

} else {
// ... print out the appropriate message ...
return false ;

}
}

}
}

Listing 1.2: A state design pattern implementation of the guessing game.

4

dles both naturally and automatically: State dispatch is handled by natural dynamic

dispatch on the state object type, while event dispatch is handled by which method

is called on the state object. Further, by requiring every state implements the state

interface, it statically enforces every state class to implement every event which the

state machine can receive, ensuring that there are no “forgotten” cases. It also allows

all of the implementations of a state’s events, and its associated data, to be grouped

into one place, instead of spread over several event handling functions as in simpler

approaches.

Despite these advantages, we can see a number of the explicit disadvantages of

writing interactive logic using this style compared to our pseudocode. Most obviously,

we can no longer write code in a direct style, using loops where necessary to describe

our interactive logic. Instead we must invert control for our interactive code. Each

piece of event handling code must start where an event is received, and must end just

before the next event would be received. We’re thus forced to split up our implementa-

tion into a number of separate pieces of code, each potentially runnable by the guessing

game’s event handler. In the process, we have to break apart all of our control struc-

tures, like the while loop for the guesses. In addition, instead of storing the current

state of the interactive logic implicitly by blocking at a particular location in the code,

we must store it explicitly, by changing the current state, as we do in guess() method

of GameRunningState. To read the code, you have to follow the assignments to the

current state, making things notably more confusing. Finally, there is generally more

code to understand than the pseudocode. Although this is a simple example, these

problems are still clear, and would only be worse once the interactive logic got more

complicated.

Ideally, interactive code should be as easy to work with as its non-interactive equiv-

alent, especially while reading, writing, and modifying existing code. Clearly, under

5

an inversion of control, typically implemented interactive code is made much less read-

able and harder to write. Is there a better way to do it?

1.1.2 Lack of Modularity

Modularity, the ability to separate a program into smaller parts, is one of the vital

advantages modern languages provide to programmers. Unlike a single monolithic

piece of code, each part can be a focused piece of implementation which minimizes

how much a programmer must know about the rest of the program. Each of these

parts can be written, tested, and edited separately, as long as their interface does not

change, making it easier to target what code needs to be changed when adding new

logic or fixing existing problems. Two important properties that modularity provides

are code reuse and extensibility. The first of these allows any of the modular parts to be

reused in multiple places throughout a program, preventing duplication of code. The

second allows an extender to replace one part of a modular design with their own, thus

allowing a programmer to change the behavior of existing code.

In non-interactive software, these properties are easily gained through procedures

and class inheritance respectively. Procedures easily factor out complicated imple-

mentation into a separate body of code. The procedure then simply has to be called

multiple times to reuse its body. To call a procedure, all a programmer needs to know

is its intent, what arguments it takes, and what values it returns. Similarly, class inher-

itance easily provides extensibility. When we extend a class, we can override existing

methods and even add new methods without fundamentally affecting any other part of

the class. We only need a tiny amount of new code to do this (proportional to the size

of the change), and our resulting class provides all of the features of the existing class.

Unfortunately, current techniques for implementing interactive code in modern lan-

guages make code reuse and extensibility difficult at best. If we look back at Listing

6

interface HintGameState extends GameState {
public void getHint();

}

HintGuessingGame game = new HintGuessingGame();

// We have to use a cast to call our new event
((HintGameState)game.getCurrState()).getHint();

Listing 1.3: An attempt to add new events to the state machine in Listing 1.2.

1.2, we can see that our interactive code is fragmented into several event handlers. Ev-

erything in the state machine is closely tied together: each state implements the same

state interface, and each state transition explicitly states which class to go to. This

tight coupling makes extracting any piece of logic from it, let alone reusing that logic

in another state machine, very difficult.

Looking back to Listing 1.2, we can see why extensibility is so difficult in in-

teractive programs. There are a number of ways we would want to extend this state

machine. We may want to extend existing state classes, using inheritance to change

its behavior, but we cannot. The classes are explicitly constructed as part of the im-

plementations of the events, like how the GameRunningState is constructed in the

startGame() event handler in the GameStartState class. Even if we’re able to ex-

tend the state class, adding new events in a subclass would force us to use the state

machine in a non-type-safe way. We can see an attempt in Listing 1.3, where the

subclass HintGameRunningState adds the event getHint() via the new state inter-

face HintGameState. In order to use this new event, we have to cast the current

state of the state machine to the appropriate interface. If we haven’t also extended

GameStartState with this new event, this case will cause a ClassCastException.

Without any static way of guaranteeing all of the states implement this new interface,

we can no longer rely on the the type safe nature of the state design pattern.

7

GuessingGame gg = new GuessingGame();

while(true) {
gg.startGame();
int guessValue;
do {

guessValue = getUserInput();
} while(gg.guess(guessValue));

}

Listing 1.4: Example code using the guessing game

It’s clear that modularity is highly desired in any programming discipline, but that

it is difficult to obtain in an interactive setting. Is there a language feature or other

mechanism that can give us some combination of code reuse and extensibility for in-

teractive software?

1.1.3 Asymmetric Control

Consider the guessing game once again. There are two entities involved in the guessing

game: The game itself, and the player. The player is responsible, in one sense or

another, for sending events to the game, while the game’s responsibility is to respond

to those events. I call the player the controller of this interaction, since he controls

what events get sent to the game, which in turn controls the behavior of the game

itself.

Listing 1.4 shows an example of client code which would use our guessing game

state machine. This code would be run on the behalf of the human player and be

the primary way the player interacts with the program. In our earlier example, the

guess() event handler is implemented to return true if the guess is correct and false

otherwise. Any guess the player makes will either be right or wrong. If it’s right,

then the player should stop sending guesses, as they’ve already won the game. If the

8

guess is wrong, then the player should try again. The client code shows this behavior;

if guess() returns true, execution will break out of the while loop. This client code

should look familiar: We can see that it itself is also, in some way, interactive logic.

This implementation is partially determined by information retrieved from the game,

implying that for the moment after the client makes a guess, the game itself is in

control of the interaction. To be explicit, the game at that time can send an event

(a “right” or “wrong” event) back to the player, which will change how the player

behaves. This relationship forms another example of a state machine, but with the

roles of controller and the controlled reversed. Since each side of the interaction can

behave as a controller at one time or another during the interaction, this implies a kind

of symmetry exists between these sides. Unfortunately, the way we implement these

interactive components forces one of the two to be in control at all times.

This property results in at least two notable problems. First, because the controllee

sometimes behaves as a controller, the same blocking issues arise that I discussed at the

beginning of this chapter, defeating the purpose of using the state-machine model of

interaction. Second, while sending events from the controller to the controllee is easily

done with simple method calls which are checked by the compiler, events flowing in

the opposite direction have to be manually examined and dispatched on, again remov-

ing one of the important advantages of the state design pattern: type safety. Providing

control symmetry is a natural way to deal with components that repeatedly trade con-

trol between each other throughout an interaction. Is there a way for us to implement

this symmetry between interactive components, either in new or existing languages?

1.2 Statement of the Thesis

This dissertation attempts to address the above questions. My thesis is as follows:

9

Thesis: New languages features, patterns, and programming models can

make interactive software more extensible, reusable, and comprehensible

I’ve developed three approaches to validate my thesis. I briefly describe them here.

ResponderJ (Chapter 3)

ResponderJ is an extension to Java which adds responders: a language feature that

allows programmers to develop interactive components without them needing to invert

control. Responders are objects that allow their internal behaviors to be paused and

resumed as events are sent to the object, saving and restoring their local states in the

process. The internal operation of a responder is written like common Java code,

including control structures like if statements and while loops, with the addition of a

new statement called an eventloop. This construct provides the ability to pause the

responder code, then dispatch and resume once the next event is called. Externally,

responders behave like normal objects and thus do not significantly affect existing Java

semantics. This language provides programmers with the ability to write interactive

logic using standard language control structures while avoiding manual management

of a component’s state. Further, responders allow for several types of inheritance,

providing the desired extensibility.

The Extensible State Design Pattern (Chapter 4)

In contrast to ResponderJ, the extensible state design pattern provides an extension to

the standard state design pattern within vanilla Java 1.5. This pattern provides several

powerful types of extensibility, such as adding new states and events, and allowing

interactive logic to be inserted in the middle of an existing event handler. The amount

of extra work for a developer is minimized, requiring well-defined glue code to provide

10

all of these benefits.

The Dialogue Pattern (Chapter 5)

The dialogue pattern removes the problem of asymmetric control by providing a mech-

anism to let two interactive entities trade off control between them. This way, both have

an equal ability to control the interaction, thus giving the programmer maximum flex-

ibility when defining how their interactive components will communicate. It allows

each logical state to provide its own types of events without affecting other states,

giving programmers more flexibility for defining new events. It also adds an entirely

different form of code reuse called subprotocols. Like subroutines do for noninterac-

tive logic, subprotocols allow for fragments of interactive logic to be defined separate

of any context and reused in other interactive components.

1.3 The Structure of this Dissertation

In the following chapters, I will discuss some of the related work that addresses some

of these same problems (Chapter 2), followed by three chapters, each describing one of

the above three approaches in more detail. I will then conclude with a brief summary,

and a discussion on the future work I would like to accomplish (Chapter 6).

11

CHAPTER 2

Related Work

2.1 Avoidance of Inversion of Control

There are a number of techniques which directly or indirectly aid in avoiding inversion

of control. The coroutine [Knu97] is a very general control structure that allows mul-

tiple functions to interact in order to complete a task. During execution, a function can

explicitly yield control to another function. When control is eventually yielded back

to the first function, it resumes execution from where it left off, with its original call

stack and local variables restored. This approach can allow us to preserve the state of a

computation without having to explicitly return from it, helping us avoid an inversion

of control.

Coroutines in their full generality are difficult to incorporate into modern lan-

guages, as expressing a multiple-function call can be confusing to understand in and

of itself. Further, the most general form is typically unnecessary for solving inversion

of control; We are really interested in preserving the state of only one line of exe-

cution, not each execution involved in the computation. A more common method is

to implement a single method as a coroutine, which can yield a value while pausing,

then be resumed from other normal procedures until the next value is yielded. The

primary examples of this are CLU iterators [Lis93] and other variants (e.g. Sather

iterators [MOS96] and Python generators [Pyt]). These are frequently used to easily

write code which obtains sequences of data, such as counter or iterators through data

12

structures. These iterators are primarily focused at generating values from within a

function. Inversion of control is primarily a problem of control flow, with yielding

values being secondary. Getting CLU iterators to perform the same operations can be

done, but often require complicated manipulation of the iterators which can be hard to

understand.

Inversion of control can be partially mitigated with common language features

like closures and pattern matching, as has been done in the event-based actors library

in Scala [HO06]. Closures can be used to store the current state of a computation,

including some local context. As they are functions, these closures can accept events

as arguments, which can then be dispatched using normal pattern matching behavior.

While this can be a convenient way of passing information from state to state, closures

are not a general solution for storing the current state of a computation. Given that a

closure must enclose a standard function body, you cannot easily have a closure save

an execution in the middle of a control structure, such as a while loop. The closure

would either have to encompass the while loop wholly, or be entirely within a while

loop. Thus we would still have to perform some amount of inversion of control on our

code to let it store the state of an execution at an arbitrary location.

Cooperative multitasking (e.g., [Tar91]) is an alternative to preemptive multitask-

ing whereby a thread explicitly yields control so that another thread can be run, saving

state like in any other context switch. There is a related body of work on the event-

driven approach to I/O (e.g., [Ous96]), in which fine-grained event handlers run coop-

eratively in response to asynchronous I/O events. Further, researchers have explored

language and library support to make this application of event-driven programming

easier and more reliable [AHT02, CK05, FMM07]. Like preemptive multitasking, co-

operative multitasking makes no particular guarantees about the order of execution of

the current running tasks, leaving the choice of which task to run next to a scheduler.

13

This is in fact desirable, as when dealing with I/O, we would not want to resume a

task which would clearly block. This property makes the cooperative multitasking

approach less suitable for solving the problem of inversion of control. Even under in-

version of control, the interactive logic behaves deterministically. Upon the execution

of an event handler, that event handler is run to completion, and then control is re-

turned to the controller. The addition of non-deterministic computation, even without

the standard problems of concurrency, makes it harder to reason about the execution

of our interactive code while making debugging more difficult.

Delimited continuations [Fel88] are a language feature derived from classic con-

tinuations that limit the amount of remaining execution they save and can be called

without losing the current state of execution. A great deal of work has been done in

the functional community detailing properties and implementation issues of delimited

continuations [BDS06, FYF07]. Specifically, delimited continuations can wrap some

execution, whose state can then be saved and later resumed in a modular way. As a

control mechanism, this matches the semantics we desire to avoid inversion of control.

Delimited continuations seem to be considered one of the most complicated control

mechanisms in the literature, with many intricate behaviors depending on how, when,

and where they are used.

2.2 Interactive Extensibility and Modularity

The clearest related work to interactive extensibility is the expression problem [Rey75,

Wad98]. This problem highlights the difficulty of adding both new operations and new

classes to an inheritance hierarchy in a statically typesafe manner. While introduced

in the context of classic object oriented inheritance, the principle also applies to the

problem of adding new states and new events to an existing state machine. Many

solutions have been proposed to this problem [Tor04, OZ05, Gar00, ZO01]. These

14

solutions, like the problem itself, are designed for general inheritance, and deal with

methods and classes as opposed to states and events. As such, there are a few details

of these approaches which can be simplified for the specific context of interactive

software. Furthermore, the insertion of interactive logic into existing interactive logic

is not addressed by these approaches.

2.3 Language Features for Symmetric Interaction

There are a few projects that incorporate some aspects of symmetric interaction. Chan-

nel contracts [FAH06], part of the Singularity OS project at Microsoft, are a language

feature which allow interactive protocols to be described in code using state logic. In-

stead of modeling the behavior of a single interactive component, its state machine

operates on the state of the interaction. This allows for the interaction to be symmet-

ric. This approach does not provide for any form of modularity or abstraction, making

complicated protocols less manageable.

a more expressive version of protocol definitions is session types [HVK98], a type

system feature that allow channels to be given types dictating how values can be passed

back and forth between the two sides. By creating primitive expressions for sending

and receiving messages, it can ensure that these types define a protocol. These types

are very powerful, but are equivalently very complicated. For the purposes of defining

a state machine model of interaction, a much simpler solution can suffice without a

significant loss of expressiveness.

In both of these cases, these features require the addition of new typing rules to the

language, as well as new language statements and constructs to be able to reason about

passing events. In contrast, the dialogue pattern does not require any modifications to

the host language’s type system nor the language itself to operate, allowing it to be

15

used without changing languages or adding tools.

2.4 Static Analysis for Existing Code

Static analyzers allow code to be written as usual, but add features to the type system

which allow more complicated properties about the code to be established. In con-

trast, my approaches generally suggest new ways of writing interactive code. Even

so, some aspects of static analyzers can be applied to the principles we have discussed

so far. For example, projects like Vault and Fugue [DF01, DF04] extend languages

with additional annotations and type system logic to check that the operations applied

to any single component follow a state protocol. Model checkers like Slam and Blast

[BR02, HJM02] similarly validate via interprocedural analysis that the execution fol-

lows a state protocol for specific projects without requiring code modification. These

tools are very powerful, allowing arbitrary state protocols to be checked in large code

bases with relative ease. Still, these tools assume the asymmetric version of state logic,

and as such the state machines depend on the messages going from the controllers to

the controllees. The problems I enumerated in Chapter 1 still apply, making those

state machines only approximations of what actually goes on. Further, these projects

primarily prevent errors, and generally do not aid in writing new code or extending

existing code.

16

CHAPTER 3

Responders

3.1 Overview

As mentioned in the introduction, the common approaches for interactive software

in modern languages require a developer to perform an inversion of control on their

interactive logic, eliminating the advantages of more natural, straight-line implemen-

tation style. In this chapter, I develop a new language feature which allows developers

to program in this style without changing the state-design-pattern-like interface these

components provide. This feature also provides for code reuse through object-oriented

extensibility, allowing interactive logic to be extended in familiar ways, which are oth-

erwise difficult or error prone to implement.

I call this new language feature responders. Responders are classes containing

a responding block to encapsulate the control logic of an interactive application. A

responding block employs a novel control-flow construct called an eventloop, which

implements the logic of an internal state of the computation. An eventloop dispatches

on a signaled event to handle it appropriately and uses ordinary control-flow constructs

to move to another eventloop if desired, before returning control back to the caller. The

next time the responding block is invoked with an event to handle, execution resumes

from the current eventloop. In this way, the application’s control logic is explicit in the

responding block’s control flow, rather than implicit through updates to shared data.

Further, responding blocks allow ordinary local variables to be used to hold state,

17

allowing state to be locally scoped and making it easier to modularly ensure that state

is properly manipulated.

I have instantiated my notion of responders as a backward-compatible extension to

Java [Arn00, Gos05] that I call ResponderJ. In addition to the benefits described above,

responders also interact naturally with OO inheritance in order to allow the logic of

an interactive application to be extended in subclasses. I have designed a modular

compilation strategy for responders and implemented ResponderJ using the Polyglot

extensible Java compiler framework [NCM03]. Finally, I have evaluated ResponderJ

through two case studies. First, I implemented a GUI containing drag-and-drop func-

tionality in three styles: the event-driven style in Java, the state-based style in Java,

and using responders in ResponderJ. A detailed study of these three implementations

concretely illustrates the benefits of ResponderJ over existing approaches. Second,

I have rewritten JDOM [JDO], a Java library for manipulating XML files from Java

programs, to use ResponderJ. This case study illustrates that existing applications can

naturally benefit from ResponderJ’s features.

The remainder of this chapter describes ResponderJ in detail. In Section 3.2, I

describe the novel language constructs in ResponderJ through a number of examples,

including my solution to the guessing game. Section 3.3 explains my compilation strat-

egy for ResponderJ. In Section 3.4 I present my two case studies, and and Section 3.5

concludes.

3.2 Approach

3.2.1 Responding Blocks, Events, and Event Loops

We explain the basic concepts of responders using a ResponderJ implementation of the

guessing game, which is shown in Listing 3.1. A responder is an ordinary Java class

18

class GuessingGame {
public revent StartGame();
public revent Guess(int num);

responding yields GuessResult { // A
Random rand = new Random();
eventloop { // B

case StartGame() { // C
int correctAnswer = rand.nextInt(50);
eventloop { // D

case Guess(int guess) { // E
if (guess > correctAnswer) {

emit GuessResult.LOWER;
} else if (guess < correctAnswer) {

emit GuessResult.HIGHER;
} else {

emit GuessResult.RIGHT;
break;

}
}

default { // F
emit GuessResult.HAVENOTFINISHED;

}
}

}

default {
emit GuessResult.HAVENOTSTARTED;

}
}

}
}

Listing 3.1: An implementation of the guessing game in ResponderJ.

GuessingGame game = new GuessingGame(); // A → B
game.StartGame(); // C → D, emits {}, correctAnswer = 30
game.Guess(20); // E → D, emits { HIGHER }
game.StartGame(); // F → D, emits { HAVENOTFINISHED }
game.Guess(30); // E → B, emits { RIGHT }

Listing 3.2: An example execution of the guessing game in ResponderJ.

19

that additionally contains a responding block, denoted by the keyword responding. The

responding block encapsulates a responder’s logic for handling external events. When

a responder instance is created via new, the appropriate constructor is run as usual.

The newly constructed object’s responding block is then executed until an eventloop is

reached, at which point control returns to the caller and program execution continues

normally. In Listing 3.1, a new instance of GuessingGame initializes the random-

number generator before passing control back to the caller.

An object’s responding block resumes when a responder event is signaled on the

object. GuessingGame in Listing 3.1 declares two responder events using the revent

keyword, StartGame and Guess. From a client’s perspective, these events are sig-

naled as ordinary method calls. For example, to signal that the player has pressed the

start button, a client of a GuessingGame instance gg simply signals the event as fol-

lows: gg.StartGame();. Signaling the Guess event is analogous, with the guessed

value passed as an argument.

When an event is signaled on a responder, its responding block resumes execution

from the eventloop where it last paused. An eventloop behaves like a while(true)

loop. An eventloop’s body performs a case analysis of the different possible events

declared for the responder. When a responding block resumes at an eventloop, control

is dispatched to the case clause that matches the signaled event, or to the default case

if no other case matches. The appropriate case is then executed normally, with the

responding block again suspending execution and returning control to the caller when

the top of an eventloop is reached. Unlike the cases in a Java switch statement, a case

inside an eventloop implicitly ends that iteration of the loop when its end is reached,

instead of falling through to the next case.

For example, suppose the responding block of an instance of GuessingGame is

paused at the outer eventloop, which represents the state where the game has not yet

20

started. If the StartGame event is signaled, the game chooses a random number and

pauses execution at the inner eventloop, thereby changing to the state where the game

has started. On the other hand, if the Guess event is signaled, then the outer default

case is executed, which emits an error message (the emit statement is discussed below)

and pauses execution at the top of the outer eventloop once again.

As the example shows, eventloops, like ordinary loops, can be nested. An event-

loop also has the same rules for variable scoping as any other Java loop structure.

Finally, eventloops support the standard control constructs for loops, namely break

and continue. For example, the inner eventloop in Listing 3.1 uses break to return to

the outer eventloop when the player has won, thereby allowing a new game to begin.

An emit statement allows a responding block to communicate information back to

clients without ending execution of the responding block, as a return statement would.

For example, as mentioned above, the GuessingGame uses an emit statement to signal

an error when a guess is made before the game is started; execution continues after

the emit statement as usual. Once the responding block pauses execution, all values

emitted since the responding block was last paused are provided in an array as the

call’s result. Using an array allows the responding block to emit any number of values,

including zero, for use by the caller.

For the purposes of static typechecking, each responding block uses a emphyields

clause to declare the type of values it emits; a responder that does not perform any

emits can omit this clause. For example, the GuessingGame is declared to emit val-

ues of type GuessResult, so all responder events implicitly return a value of type

GuessResult[]. I use a single type of emitted values across the entire responder in-

stead of using a different type per event, since the presence of nested eventloops as well

as the use of break and continue make it difficult to statically know to which event a

particular emit statement corresponds.

21

Listing 3.2 recaps the semantics of ResponderJ through a small example execution

trace. The comment after each statement indicates the starting and ending control

locations of the responder as part of executing that statement, as well as the result

array arising from the emit statements.

It should be clear by now how responders solve the problems for interactive pro-

gramming illustrated by the state-based implementation of the guessing game. Un-

like those approaches, which perform state transitions indirectly via modifications to

shared fields like currState, ResponderJ uses simple and local control flow for this

purpose. In Listing 3.1, it is easy to modularly understand the ways in which control

can move from one eventloop to another, making it easier to debug and extend the

interaction logic. Further, ResponderJ allows ordinary local variables to be used to

hold data, unlike the usage of fields required to share data across event handlers in

the other approaches. For example, in Listing 3.1 ordinary scoping rules ensure that

correctAnswer is only accessible in the inner event loop. This makes it impossible

for the variable to be accidentally manipulated in the wrong state, and it allows for

modular inspection to ensure that the variable is manipulated properly.

Responders may have all the same kinds of members as ordinary classes, and these

members are accessible inside of the responding block. For example, the responding

block can manipulate the class’s fields or invoke methods of the class. Similarly, a

responding block can access the visible methods and fields of any objects in scope, for

example passed as an argument to an event. Responding blocks can also instantiate

classes, including other responders. Further, responder classes may be used as types,

just as ordinary classes are. For example, a class (including a responder) can have a

field whose type is a responder or a method that accepts a responder as an argument.

Responders can inherit from non-responder classes as well as from other responders;

this latter capability is discussed in more detail below.

22

3.2.2 Another Example

To motivate some other features of ResponderJ, I illustrate an example from the do-

main of user interfaces in Listing 3.3. The DragDropPanel responder defines a sub-

class of the JPanel class from Java’s Swing package, in order to support simple drag-

and-drop functionality. The responder defines three events, corresponding to click-

ing, releasing, and moving the mouse. The drag-and-drop control logic is natural

expressed via control flow among eventloops. When the mouse is clicked initially,

control moves from the outer eventloop to the first nested one. If the mouse is then

moved a sufficient distance, we break out of that eventloop and move to the subse-

quent one, which represents dragging mode. In dragging mode, moving the mouse

causes a new moveByOffset method (definition not shown) to be invoked, in order to

move the panel as directed by the drag. Dragging mode continues until the mouse is

released, at which time we return to the outer eventloop. This example also illustrates

the usage of Java’s labeled continue construct and labeled statements, which allow

the state machine to transition to the initial state when the mouse is released without

having moved a sufficient distance.

3.2.3 Responding Methods

ResponderJ provides the benefits of procedural abstraction for responding blocks via

the notion of responding method, which is a regular method annotated with the respon-

ding modifier. Like a responding block, responding methods may contain eventloops

and emit statements, and they therefore serve as a form of procedural abstraction for

responding blocks. For example, Listing 3.4 shows how the logic for the dragging

mode in DragDropPanel can be pulled out of the responding block and into a separate

method. I note the use of return, which behaves as usual, in this case ending the method

and returning control to the caller.

23

class DragDropPanel extends JPanel {
public revent MouseDown(Point p);
public revent MouseUp(Point p);
public revent MouseMove(Point p);

responding {
outer: eventloop {

case MouseDown(Point initialPoint) {
eventloop {

case MouseUp(Point dummy) { continue outer; \}
case MouseMove(Point movePoint) {

if (initialPoint.distance(movePoint) > 3)
break;

}

default {
}

}

eventloop { // Dragging
case MouseMove(Point dragPoint) {

this .moveByOffset(initialPoint, dragPoint);
}

case MouseUp(Point dummy) { break; }

default {
}

}
}

// ... handle the other events
}

}
}

Listing 3.3: A GUI panel supporting drag-and-drop.

24

class DragDropPanel extends JPanel {
protected responding void doDrag(Point initialPoint) {

eventloop {
case MouseMove(Point dragPoint) {

this .moveByOffset(initialPoint, dragPoint);
}

case MouseUp(Point dummy) { return; }

default {
}

}
}

responding {
outer: eventloop {

case MouseDown(Point initialPoint) {
eventloop {

// ...
}

doDrag(initialPoint);
}

// ... handle the other events
}

}

Listing 3.4: A responding method.

25

Because a responding method can contain eventloops and emits, it only makes

sense to invoke such a method as part of the execution of an object’s responding block.

I statically enforce this condition through three requirements. First, a responding

method must be declared private or protected, to ensure that it is inaccessible out-

side of its associated class and subclasses. Second, a responding method may only

be invoked from a responding block or from another responding method. Finally, I re-

quire that every call to a responding method have either the (possibly implicit) receiver

this or super. This requirement ensures that the responding method is executed on the

same object whose responding block is currently executing.

3.2.4 Responder Inheritance

As shown with DragDropPanel in Listing 3.3, responders can inherit from non-re-

sponders. As usual, the responder inherits all fields and methods of the superclass and

can override superclass methods. Responders may also inherit from other responders.

In this case, the subclass additionally inherits and has the option to override both the

superclass’s responding block as well as any responding methods. The subclass also

inherits the superclass’s yields type. I disallow narrowing the yields type in the sub-

class, as this would only be safe if the subclass overrode the superclass’s responding

block and all responding methods, to ensure that all emits are of the appropriate type.

The ability to override responding methods allows an existing responder’s behavior

to be easily modified or extended by subresponders. For example, the DragHoldPanel

responder in Listing 3.5 inherits the responding block of DragDropPanel but overrides

the doDrag responding method from Listing 3.4. The overriding doDrag() method

uses two eventloops in sequence to change the behavior of a drag. Under the new

semantics, the user can release the mouse but continue to drag the panel. Drag mode

only ends after a second MouseUp event occurs, which causes the doDrag method to

26

class DragHoldPanel extends DragDropPanel {
protected responding void doDrag(Point initialPoint) {

eventloop {
case MouseMove(Point dragPoint) {

this .moveByOffset(initialPoint, dragPoint);
}

case MouseUp(Point dummy) { break; }

default {
}

}

eventloop {
case MouseMove(Point dragPoint) {

this .moveByOffset(initialPoint, dragPoint);
}

case MouseUp(Point dummy) { return; }

default {
}

}
}

}

Listing 3.5: Overriding responding methods.

27

class DragKeyPanel extends DragDropPanel {
public revent KeyDown(char key);
protected void changeColor(char c) {

// ...
}

protected responding void doDrag(Point initialDragPoint) {
eventloop {

case MouseMove(Point dragPoint) {
this .moveByOffset(initialPoint, dragPoint);

}

case KeyDown(char c) {
this .changeColor(c);

}

case MouseUp(Point dummy) { return; }

default {
}

}
}

}

Listing 3.6: Adding new responder events in subresponders.

return. It would be much more tedious and error prone to make this kind of change

using a state-based implementation of the drag-and-drop panel.

Subresponders also have the ability to add new responder events, which provides

additional flexibility. For example, the DragKeyPanel responder in Listing 3.6 sub-

classes from DragDropPanel and adds a new event representing a key press. Drag-

KeyPanel then overrides the doDrag responding method in order to allow a key press

to change the color of the panel while it is in drag mode. Because of the possibility for

subresponders to add new events, a responding block may be passed events at run time

that were not known when the associated responder was compiled. To ensure that all

events can nonetheless be handled, I require each eventloop to contain a default case.

28

3.2.5 Exceptional Situations

There are two exceptional situations that can arise through the use of responders that

are not easily prevented statically. Therefore, I have chosen instead to detect these

situations dynamically and throw an associated runtime exception. First, it is possible

for a responder object to (possibly indirectly) signal an event on itself while in the

middle of executing its responding block in response to another event. If this situation

ever occurs, a RecursiveResponderException is thrown. Second, it is possible for

a responding block to complete execution, either by an explicit return statement in the

block or simply by reaching the block’s end. If an event is ever signaled on a responder

object whose responding block has completed, a ResponderTerminatedException

is thrown.

3.3 Compilation

ResponderJ is implemented as an extension to the Polyglot extensible Java compiler

framework [NCM03], which translates Java extensions to Java 1.4 source code. Each

responder class is augmented with a field base of type ResponderBase, which orches-

trates the control flow between the responding block (and associated responding meth-

ods) and the rest of the program. To faithfully implement the semantics of eventloops,

ResponderBase runs all responding code in its own Java thread, and ResponderBase

includes methods that yield and resume this thread as appropriate. Although my cur-

rent implementation uses threads, I use standard synchronization primitives to ensure

that only one thread is active at a time, thereby preserving ResponderJ’s purely sequen-

tial semantics and also avoiding concurrency issues like race conditions and deadlocks.

First I describe the compilation of responder events. Each revent declaration in

a responder is translated into both a method of the specified visibility and a simple

29

protected static class GuessEvent extends Event {
public int num;

}

public GuessResult[] Guess(int num) {
GuessEvent e = new GuessEvent();
e.num = num;
return (GuessResult[])base.passInput(e, new GuessResult[0]);

}

Listing 3.7: Translation of the Guess responder event from Listing 3.1.

while(true) {
Event temp = (Event)base.passOutput();
if (temp instanceof GuessEvent) {

int guess = ((GuessEvent)temp).num;
// ... Guess handler body
continue;

}
// ... default handler

}

Listing 3.8: Translation of the inner eventloop from Listing 3.1.

class. This class contains a field for every formal parameter of the declared responder

event. When the responder event’s method is called, the method body creates an in-

stance of the class, fills its fields with the given parameters, and passes this instance

to the ResponderBase instance. For example, Listing 3.7 shows the translation of the

Guess responder event from the guessing game in Listing 3.1. The passInput method

in ResponderBase passes my representation of the signaled event to the responding

thread and resumes its execution from where it last yielded.

Each eventloop is implemented as a simple while loop, as shown in Listing 3.8.

The first statement of the loop body calls the ResponderBase instance’s passOutput

method, which yields the responding thread to the caller until an event is passed in via

passInput, when the thread resumes. The rest of the loop body contains a sequence

30

of if statements, one for each case clause of the original eventloop, in order to perform

the event dispatch. statements, one for each case clause of the event loop, dispatch on

the type of the data object and runs code from there.

Responding methods are translated into ordinary methods of the responding class.

The static typechecks described in Section 3.2 are sufficient to guarantee that these

methods are only called from within the responding thread. Each emit statement

is translated into a method call on the class’s ResponderBase instance. For exam-

ple, the statement emit GuessResult.RIGHT is translated as base.emitOutput(

GuessResult.RIGHT). The emitOutput method appends the given argument to an

internal array of output values. When the responding thread next yields at the top of

an eventloop, control returns to the calling thread and that array is passed as the result.

Finally, each responder class includes a method startResponder(), which initial-

izes the responding thread. My translation strategy ensures that this method is invoked

on an instance of a responder class immediately after the instance is constructed. The

run method of the thread begins executing the (translation of the) responding block.

3.4 Experience

In order to demonstrate the practical applicability of ResponderJ, I performed two case

studies. First, I expanded the drag-and-drop GUI example shown in Section 3.2 into

a complete application that interfaces with Java’s Swing library. I implemented three

versions of the application: Using responders in ResponderJ, using the event-driven

style in Java, and using the state design pattern in Java. The event-driven style is

the more traditional way of implementing interactive logic in non-object-oriented lan-

guages, where the currState variable stores an enumerated value that is manually

dispatched against in event handlers to decide which handler implementation to exe-

31

Figure 3.1: A screenshot of the drag-and-drop application.

cute. This case study concretely illustrates the benefits of ResponderJ over the other

two approaches. Second, I rewrote portions of JDOM [JDO], which is implemented in

Java, to use ResponderJ. JDOM is a library that makes it easy to access and manipu-

late XML files from Java programs. JDOM parses XML files via the SAX API [SAX],

which signals events as an XML file is parsed (e.g., when a tag is read), allowing the

client to respond appropriately. I rewrote in ResponderJ the portion of JDOM that re-

sponds to SAX events in order to create Java classes that represent the parsed XML

data. This case study illustrates how responders can be naturally integrated into an

existing application.

3.4.1 Drag and Drop

Figure 3.1 shows a screenshot of the drag-and-drop application I built. The program

provides a window with a button. When the button is pressed, a new circle appears on

the panel above. The user can use the mouse to drag shapes around the screen.

32

3.4.1.1 ResponderJ Implementation

As in the example from Section 3.2, I created a DragDropPanel class that inherits from

Swing’s JPanel class. Swing has an event-driven structure; a JPanel must implement

methods to handle the various kinds of events. For example, the processMouse-

MotionEvent is called when the user moves the mouse. To interface between Swing’s

events and the responder events of DragDropPanel, I simply implemented the Swing

event handlers to invoke the corresponding revent methods. Since the revents are never

meant to be accessed externally, I made them protected.

Listing 3.9 shows the implementation of the responding block in DragDropPanel.

There are two main enhancements to the logic, as compared to the version described

in Section 3.2. First, this version has to manage multiple draggable entities. There-

fore, when the user clicks initially, the code determines which shape (if any) has been

clicked and stores it in the local variable currentShape. If no shape was clicked, we

do nothing and end this iteration of the outer eventloop. Otherwise, we continue to the

first inner eventloop, employing currentShape as needed.

Second, I added a responder event Paint that takes a Graphics object, and this

event is invoked from the panel’s paintComponent method. The repaint method

inherited from JPanel causes Swing to schedule a painting event to be executed at

some point in the future; at that point, the paintComponent will be invoked to handle

the event. We call repaint in the code in Listing 3.9 whenever the screen needs to

be redrawn because of some change. The repaint method only schedules an event

for later execution, rather than actually signaling the event, so there is no danger of

incurring a RecursiveResponderException. As shown in the figure, we handle the

Paint event differently depending on the current state. If no shape has been clicked

(the outer eventloop, all shapes are drawn as normal. If a shape has been selected (the

inner eventloop), then it is drawn specially.

33

responding {
outer: eventloop {

case Paint(Graphics g) {
this .paintAll(g);

}

case MouseDown(Point initial) {
// We eventually expect a mouseUp, so we do a nested eventloop
Shape currentShape = null;
currentShape = getShapeAt(initial);
if (currentShape == null)

continue;

this .repaint();

// While the mouse is down and a shape is selected
eventloop {

case MouseUp(Point p2) {
// Drag is over
this .repaint();
continue outer;

}

case Paint(Graphics g) {
this .paintExcept(g, currentShape);
currentShape.drawSelected(g);

}

case MouseMove(Point p2) {
if (Math.abs(initial.getX() − p2.getX()) > 3 ||

Math.abs(initial.getY() − p2.getY()) > 3)
break;

}
}

this .doDrag(initial, currentShape);
}

}
}

Listing 3.9: Main responding block from DragDropPanel

34

protected responding void doDrag(Point start, Shape currShape) {
int offsetx = (int)(currShape.getX() − start.getX());
int offsety = (int)(currShape.getY() − start.getY());
this .requestFocus();
eventloop {

case Paint(Graphics g) {
this .paintExcept(g, currShape);
currShape.drawSelected(g);

}

case MouseMove(Point p) {
currShape.setCenter((int)(p.getX() + offsetx),

(int)(p.getY() + offsety));
this .repaint();

}

case MouseUp(Point p) {
// We’re done!
this .repaint();
return;

}

default {
}

}
}

Listing 3.10: doDrag() method from DragDropPanel.

35

As I described in Section 3.2, I use the doDrag method to encapsulate the logic of

drag-and-drop. This method is shown in Listing 3.10. The logic is analogous to what

I described in Section 3.2, except for the addition of the painting event. The Paint

handler is identical to the Paint handler from the inner loop in Listing 3.9. We could

abstract this code into a separate method that is called from both places, passing along

any local variables needed for the method body. However, there is no direct way to

share handlers among eventloops.

Finally, I created a version of DragKeyPanel, as was shown in Listing 3.6, to incor-

porate a KeyDown event allowing a shape’s color to change during a drag. DragKeyPanel

inherits the responding block of DragDropPanel but overrides the doDrag method to

handle the KeyDown event, as shown in the figure. Unfortunately, ResponderJ cur-

rently has no mechanism for inheriting portions of an overridden eventloop, so much

of the code in the original doDrag method’s code had to be duplicated in the overriding

version. Conceptually, however, the change was quite straightforward to implement,

requiring only a single additional case in the method’s eventloop.

3.4.1.2 Event-Driven Implementation

In the event-driven approach, DragDropPanel has an integer field currState to rep-

resent the current state. Each event has an associated handler method in the class,

which switches on the current state to decide what action to perform. For example, the

Paint method in the class is shown in Listing 3.11.

The biggest problem of this approach as compared with the ResponderJ implemen-

tation is the need to store all data as fields of the class. DragDropPanel has four fields

used for this purpose, including the currShape field used in Listing 3.11. The four

fields are used for different purposes and in different states in the control flow, but it

is difficult to understand the intuition behind each field and whether it is being used

36

protected void Paint(Graphics g) {
switch(currState) {

case NORMAL_STATE:
paintExcept(g, null);
break;

case MOUSEDOWN_STATE:
case DRAG_STATE:

paintExcept(g, currShape);
currShape.draw(g, 2);
break;

}
}

Listing 3.11: One handler method in the event-driven implementation of DragDrop-
Panel.

properly across all handlers. A second problem with the event-driven approach is that

there is no single place to execute code that should be run upon reaching a particular

state. Instead, this code must be duplicated in each event handler that can cause a

transition to that state.

The event-driven approach does have some advantages. First, it is easy to share

event-handling code across states. An example is shown in Listing 3.11, which han-

dles the paint event identically for the mouse-down and drag states, without any code

duplication. The cost of this event-centric approach is that the control flow of the ap-

plication, from state to state, is difficult to understand. Second, it is straightforward

to add a new event like KeyDown in a subclass — the subclass simply needs to add

a KeyDown method and can inherit all the other event-handling methods. However,

adding a new state in a subclass, for example to change the way a drag works as shown

in Listing 3.5, would necessitate overriding every event-handling method to include a

case for the new state, as well as modifying existing logic to transition appropriately

to the new state.

37

interface DragDropState {
void paint(Graphics g);
void mouseDown(Point p);
void mouseUp(Point p);
void mouseMove(Point p);
void keyDown(char key);

}

Listing 3.12: A common interface for state classes.

3.4.1.3 State-Pattern Implementation

In this version, I define an interface DragDropState that has a method for each

kind of event. Then each state is represented by an inner class of DragDropPanel

that meets this interface, as demonstrated by the example state class in Listing 3.13.

DragDropPanel has a field currState of type DragDropState; changing states in-

volves creating an instance of the appropriate state class, passing the necessary argu-

ments to the constructor, and storing the result in currState.

This version has some of the advantages of ResponderJ’s version over the event-

driven implementation. The logic is grouped by state, making it easier to understand

and extend the behavior of each state. Further, each state class has its own fields, mak-

ing it somewhat easier to ensure their proper usage. Finally, any code to be executed

upon entering a state can written once and placed in the corresponding state class’s

constructor.

To address the duplication of the event-handling code for Paint across multiple

states, I employed inheritance. I created an abstract state class SelectedShapeState

that implements the Paint method appropriately. The states that should employ that

behavior for Paint simply subclass from SelectedShapeState, as shown in Listing

3.13. However, this technique does not work in general, for example if overlapping

sets of states need to share code for different event handlers, because of Java’s lack of

38

private class DragState extends SelectedShapeState implements
DragDropState {

private int offsetx, offsety;

public DragState(Shape currShape, Point initialPoint) {
super(currShape);
this .offsetx = (int)(currShape.getX() − initialPoint.getX());
this .offsety = (int)(currShape.getY() − initialPoint.getY());

}

public void mouseMove(Point p) {
currShape.setCenter((int)(p.getX() + offsetx),

(int)(p.getY() + offsety));
repaint();

}

public void mouseUp(Point p) {
repaint();
currState = new NormalState();

}

// ... Other event handlers
}

Listing 3.13: A class to represent the dragging state.

39

multiple inheritance. Therefore, some code duplication is still required in some cases.

The most apparent disadvantage of the state pattern is its verbosity. Several classes

must be defined, each with its own constructor and fields. Having multiple state classes

can also cause problems for code evolution. For example, if a state needs to be aug-

mented to use a new field, that field will likely need to be initialized through an extra

argument to the state class’s constructor, thereby requiring changes to all code that

constructs instances of the class. By using ordinary local variables, ResponderJ avoids

this problem. Further, while the behavior of a single state is easier to understand than

in the event-driven approach, the control flow now jumps among several different state

classes, which causes its own problems for code comprehension.

Finally, augmenting the drag-and-drop panel to support a new event like KeyDown

requires all state classes to be overridden to add a new method and to meet an aug-

mented interface that includes the new method. This approach necessitates type casts

when manipulating the inherited currState field, since it is typed with the old inter-

face. Using inheritance to add a new state is easier, requiring the addition of a new

state class, but it also requires existing state classes to be overridden to appropriately

use the new state.

3.4.2 JDOM 1.0

JDOM 1.0 is a Java class library that uses the SAX API to construct its own implemen-

tation of DOM [DOM], which is an object model for XML data. At the core of JDOM

is the SAXHandler class, which implements several of the standard SAX interfaces.

An instance of SAXHandler is given to the SAX parser, which in turn passes events

to that object while parsing an XML file. The SAXHandler is supposed to respond to

these events by constructing the corresponding DOM tree.

The original version of SAXHandler utilized 17 fields to store local state. Most of

40

protected void pushElement(Element element) {
if (atRoot) {

document.setRootElement(element);
atRoot = false ;

}
else {

factory.addContent(currentElement, element);
}
currentElement = element;

}

public void processingInstruction(String target, String data)
throws SAXException

{
if (suppress) return;

flushCharacters();

if (atRoot) {
factory.addContent(document,

factory.processingInstruction(target, data));
} else {

factory.addContent(getCurrentElement(),
factory.processingInstruction(target, data));

}
}

Listing 3.14: Some code from the original SAXHandler class.

these fields were booleans that kept track of whether or not the handler was currently

in a particular mode. Others were data members that stored information needed to

implement the class’s functionality. The remaining few fields were integers used to

keep track of the nesting depth in the structure of the XML document as it is parsed.

Altogether it was difficult to determine the exact purpose of each of the variables and

to make sure each was used properly.

Listing 3.14 shows a representative subset of the original SAXHandler code. The

field atRoot is used to keep track of whether or not the parser is currently in a subele-

41

protected responding Element buildElement(String initname,
Attributes initatts) {

Element element = factory.element(initname);

// ... Process Attributes

eventloop {
case onStartElement(String name, Attributes atts) {

element.addElement(buildElement(name, atts));
}

case onEndElement() {
return element;

}

case onProcessingInstruction(String target, String data) {
factory.addContent(element,

factory.processingInstruction(target, data));
}

// ... Handling other supported events

default {
}

}
}

Listing 3.15: A responding method from the ResponderJ version of SAXHandler.

ment or at the document level. This field is then explicitly checked (and set) throughout

the code. In a similar vein, the processingInstruction method starts with a check

of the member variable suppress: nothing is done if we are currently in suppress

mode. This dependency on multiple fields that serve as flags for various conditions

pervades the class’s code, making the logical control flow extremely difficult to fol-

low.

In contrast, the ResponderJ implementation relies on ordinary control flow among

eventloops to implicitly keep track of the various modes of computation, with lo-

42

private revent onProcessingInstruction(String target, String data);
public void processingInstruction(String target, String data)

throws SAXException
{

handleOutput(this.onProcessingInstruction(target, data));
}

Listing 3.16: Handling exceptions thrown in the responding block.

cal variables storing the data needed in each mode. A representative responding

method from the ResponderJ version of SAXHandler is shown in Listing 3.15. The

buildElement method handles the logic for creating the DOM representation of an

XML element, which is roughly the data between a given start- and end-tag pair of the

same name. The method first creates the element instance, storing its associated tag

name along with any associated XML attributes, before waiting at an eventloop. The

logic of the eventloop makes use of the fact that SAX’s start-tag and end-tag events are

always properly nested. If a new start-tag is seen, we recursively use buildElement

to parse the nested element. Since the call stack is saved when an eventloop yields

to a caller, all of the pending enclosing elements are still available the next time the

responder resumes. If an end-tag is seen, then we know that construction of the ele-

ment has completed. Other types of events, like onProcessingInstruction, cause

the new element to be augmented with new content as appropriate.

As in the drag-and-drop case study, I used the SAXHandler’s event-handling meth-

ods to forward SAX events to the responding block by invoking the corresponding

responder events. The original event-handling methods were declared to throw SAX-

Exception, which is thrown if an error occurs during XML parsing. To handle such

exceptions, I wrapped the entire body of the responding block in a try/catch statement,

which catches a SAXException, creates an object that wraps the thrown exception

and meets the yields type of the responding block, and emits this new object. The

event-handling methods must then unwrap any such objects and re-throw the excep-

43

tion. I encapsulate this behavior in a handleOutput method that is called from the

event-handling methods, as shown in Listing 3.16.

Of the 17 original fields in SAXHandler, I was able to do away with 10 of them in

the ResponderJ version. The code that was originally scattered across several meth-

ods, with boolean flags to determine the control flow, is now gathered into five well-

structured responding methods in addition to the responding block. The responding

block handles building the root document in the DOM tree, while each of the other

five methods handles the building of an individual kind of XML construct (e.g., an

element).

This refactoring of the code made it much easier to understand its behavior, leading

to further simplifications of the logic. In the original class, the startEntity method

was possibly the most complex, explicitly keeping track of the XML document’s nest-

ing depth by counting the number of onStartEntity and onEndEntity calls. The

boolean logic in the method was rather confusing, reading and setting no fewer than

four boolean fields. The ResponderJ version of this code aided understanding greatly,

allowing us to find a much simpler way to express the logic. I created a method

ignoreEntities that calls itself recursively on every onStartEntity event and re-

turns at every onEndEntity event, similar to the style shown for buildElement’s

logic in Listing 3.15. This method avoids the need to count explicitly and encapsulates

the simpler logic in a separate method. My refactoring also led us to discover sev-

eral redundancies in the usage of boolean fields, whereby a field’s value is tested even

though its value is already known from an earlier test. These kinds of redundancies, as

well as similar kinds of errors, are easy to make in the programming style required of

the Java version of the code.

Finally, the need to explicitly forward calls from the SAX-level event-handling

methods to the appropriate responder events, while verbose, provided an unexpected

44

benefit in the ResponderJ version of SAXHandler. One of the original event-handling

methods executed a particular statement before doing a switch on the current state.

While the logic of the switch was moved to the responding block’s eventloops, that

first statement could remain in the event-handling method. In essence, the event-

handling method now severs as a natural repository for any state-independent code

to be executed when an event occurs. Without this method, such code would have to

be duplicated in each eventloop’s case for that event.

3.5 Conclusion

I have introduced the responder, a new language construct supporting interactive ap-

plications. Responders allow the control logic of an application to be expressed nat-

urally and modularly and allow state to be locally managed. In contrast, existing ap-

proaches to interactive programming fragment the control logic across multiple han-

dlers or classes, making it difficult to understand the overall control flow and to ensure

proper state management. I instantiated the notion of responders in ResponderJ, an

extension to Java, and described its design and implementation. I have employed my

ResponderJ compiler in two case studies, which illustrate that responders can provide

practical benefits for application domains ranging from GUIs to XML parsers.

45

CHAPTER 4

The Extensible State Machine Pattern

4.1 Introduction

As I discussed in Chapter 1, extending state logic to provide code reuse has a number

of possible benefits, but is difficult in most languages. While the state design pat-

tern simplifies the creation of a new state machine, even simple ways in which one

might want to extend an existing state machine in a subclass are difficult to implement

without code duplication and/or unsafe features like type casts. This pattern further

exacerbates these difficulties by fragmenting the application logic across several in-

terdependent classes. As a result, the traditional benefits of object-oriented software

reuse mechanisms are not readily applicable to interactive applications.

In Chapter 3, we saw a language, namely ResponderJ, which provided a number

of types of extensibility for state-machine-like behavior, including the addition of new

events, as well as the ability to insert new state logic via overriding responder methods.

Still, these clever features come at the cost of a number of additions to the language

which interact with, and thus complicate, many other properties of the host language:

Java. Our goal for this chapter is to obtain the extensibility of ResponderJ without

these additions. Given that our focus is extensibility, we will not be trying to emulate

ResponderJ’s method of solving inversion of control. Still, there should be some way

to solve both of these problems: A way of programming within existing languages that

allows for extensibility in a language-supported, type-safe way.

46

In this chapter, I present just such a technique: An extension of the state design

pattern that I call the extensible state design pattern (Section 4.2). This pattern pro-

vides a number of ways that existing state logic can be extended, including those in

ResponderJ. To do this, I impose new rules on how state machines and state classes

should be structured in addition to the requirements of the basic state pattern. Obeying

the rules allows subclasses to modularly and safely extend the original state logic in a

variety of desirable ways. This pattern is implemented within vanilla Java 1.5, how-

ever, the pattern is not Java-specific and could be implemented in other OO languages.

The pattern relies on the generics found in both Java and C#; an implementation in

C++ is possible using templates but would have weaker type-correctness guarantees.

Using my pattern, subclasses of a state machine can easily add new states to the

machine and override existing states to have new behaviors (Section 4.2.1), as well as

add new kinds of events that the extended state machine can accept (Section 4.2.2).

These tasks are similar to those in the expression problem identified originally by

Reynolds [Rey75] and named by Wadler [Wad98]. Torgersen [Tor04] provides sev-

eral solutions to the expression problem in Java, which make heavy use of generics.

My solution borrows ideas from his “data-centered” solution but is specialized for the

domain of the state design pattern, which allows for a simpler solution without loss of

functionality. For example, since states are not a recursive datatype, I do not require

the sophistication of F-bounded polymorphism [CCH89].

The state pattern additionally has several extensibility requirements that have no

analogue in the expression problem. For example, we would like to allow a subclass to

easily “interrupt” the existing state logic, insert some additional logic, and later resume

the original state logic. This natural idiom can be seen as the interactive equivalent of

a subroutine call. It can also be used to express a form of hierarchical state machines,

whereby a state of the superclass is implemented in the subclass as its own state ma-

47

chine. Further, traditional control flow logic such as subroutines and loops are difficult

to express modularly even within a single state machine, due to the need to pass con-

trol back to the environment. For instance, if a state machine must wait for an event

in the middle of a loop, that loop must be unrolled and split between multiple classes,

obfuscating the original intent and introducing new possibilities for error.

I observe that delimited continuations [Fel88], a well-studied language feature

from the functional programming community, naturally supports modular expression

of traditional control flow in the presence of interaction. I have implemented a form

of delimited continuations as a small Java library with a simple API (Section 4.4), and

have incorporated the usage of this API as constraints in the extensible state design

pattern. I illustrate how this API and the associated constraints overcome all of the

difficulties described above and provide several other benefits (Sections 4.2.3 and 4.3).

To validate my design pattern, I have used it to refactor a widely used application

written by others (Section 4.5). This application, JDOM [JDO], is an XML parser that

creates a DOM tree by using a SAX model parser. JDOM was originally implemented

as a monolithic class that used several fields to encode properties of its current state.

I refactored its implementation to employ my design pattern, which greatly simplified

the logic and made it significantly more readable. Further, I demonstrate the extensi-

bility benefits of my pattern by structuring the refactored code as two state machines:

a class that supports basic XML parsing and a subclass that supports more advanced

features of XML and has the same functionality as the original JDOM implementation.

Finally, I briefly mention some additional related work (Section 4.6) and conclude this

chapter (Section 4.7).

48

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Figure 4.1: The Base State Machine

4.2 The Extensible State Pattern

In this section I build up my extensible state machine pattern in stages, beginning with

the standard state design pattern [GHJ95]. As a running example I consider a state

machine for a simple user interface, along with several desired extensions to this state

machine. This example is conceptually similar to the drag-and-drop example that we

used in Chapter 3. We divide up that example into a number of stages. Each stage

builds off of the last one, refining the design pattern each time to obey new constraints

necessary to enable a particular kind of extensibility. My example sometimes sacrifices

realism for simplicity, but it represents the kinds of tasks which are needed in UIs in

general.

In our first user interface, there is a window containing a single button. The state

machine logic should simply cause a function triggerButton to be invoked whenever

the button is clicked. The InputState interface at the top of Listing 4.1 shows the

three events that can occur based on a user’s actions. Clicking a button actually consists

of two events, a mouse down followed by a mouse up, both of which need to occur

inside the bounds of the button. The diagram for this state machine is depicted in

Figure 4.1.

The rest of the code in Listing 4.1 uses the standard state design pattern to im-

plement the desired functionality. The InputStateMachine class maintains a field

currState representing the current state of the machine. There is one state class per

49

interface InputState {
void MouseUp(Point at);
void MouseDown(Point at);
void MouseMotion(Point from, Point to);

}

class InputStateMachine {
// standard currState members
private InputState currState = new MouseUpState();
public InputState getCurrState() {

return currState;
}
protected void setCurrState(InputState newState) {
currState = newState;

}

// state class definitions
protected class MouseUpState implements InputState {

public void MouseDown(Point at) {
if (buttonShape.contains(at)) {
setCurrState(new MouseDownState());

}
}

public void MouseUp(Point at) {}
public void MouseMotion(...) {}

}

protected class MouseDownState implements InputState {
public void MouseUp(Point at) {

if (buttonShape.contains(at)) {
setCurrState(new MouseUpState());
triggerButton();

}
}

public void MouseDown(Point at) {}
public void MouseMotion(...) {}

}

// forwarding methods and other members...
}

Listing 4.1: The base code for the UI example

50

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Drag
MouseMotionMouseUp

MouseMotion

Figure 4.2: Adding the Drag State

state in our machine. The MouseUpState represents the situation when the mouse is

currently up, and similarly for MouseDownState. I define these classes as inner classes

to allow them access to the state machine’s members. Forwarding methods (not shown)

pass signaled events to currState, which does the main work of the state machine.

In the rest of this section, I illustrate how to sequentially extend our example in

three stages:

1. I will add basic drag-and-drop capabilities, allowing the user to click-drag the

button in order to move it around. Releasing the mouse after a drag will not

trigger the button.

2. I will add an event to handle keyboard presses, which can change the button’s

color. The user may modify the button’s color while dragging it.

3. I will add a feature to hit a designated button during a drag, which will bring up

a dialog box with information about the dragged object. When the dialog box is

dismissed, the drag will continue.

51

4.2.1 Adding and Overriding States

As the diagram in Figure 4.2 shows, implementing drag-and-drop functionality re-

quires the creation of a new state, to represent the situation when we are in the middle

of a drag. The state machine should move to this state upon a MouseMotion event

when the mouse is down on the button, and subsequent MouseMotion events should

be used to move the dragged button.

The state design pattern makes adding new states straightforward: a subclass Drag-

StateMachine of InputStateMachine can simply contain a new inner class Drag-

State to represent the DragState. DragStateMachine can similarly contain a sub-

class DragMouseDownState of MouseDownState, which overrides the implementation

of MouseMotion to move to the dragging state as appropriate.

Unfortunately, these changes alone will not affect the state machine logic, since the

state machine is still creating instances of MouseDownState rather than DragMouse-

DownState. We can of course solve this problem by code duplication, for example by

creating a subclass DragMouseUpState of MouseUpState, which reimplements the

MouseDown method to instantiate DragMouseDownState. However, this approach is

tedious, error prone, and non-modular. This problem leads to the first new constraint

for my design pattern:

Constraint: There must exist a consistent way of creating states that will

allow future extensions to override the implementation of a state class.

To satisfy the constraint, I introduce factory methods [GHJ95] in the base state

machine, as shown in Listing 4.2. The state machine logic must never directly instan-

tiate state classes, but instead always go through the factory methods. For example,

the MouseUpState’s MouseDown method now invokes makeMouseDownState to create

the new state.

52

class InputStateMachine {
// standard currState members
private InputState currState = makeMouseUpState();
// ...

// factory methods
protected InputState makeMouseUpState() {

return new MouseUpState();
}

protected InputState makeMouseDownState() {
return new MouseDownState();

}

// state class definitions
protected class MouseUpState implements InputState {

public void MouseDown(Point at) {
if (buttonShape.contains(at)) {
setCurrState(makeMouseDownState());

}
}
public void MouseUp(Point at) {}
public void MouseMotion(Point from, Point to) {}

}

// ...
}

Listing 4.2: The base state machine with factory methods added

53

class DragStateMachine extends InputStateMachine {
// overridden factory methods
protected InputState makeMouseDownState() {

return new DragMouseDownState();
}

// new factory methods
protected InputState makeDragState() {

return new DragState();
}

// subclassed state classes
protected class DragMouseDownState extends MouseDownState {

public void MouseMotion(Point from, Point to) {
setCurrState(makeDragState());

}
}

// new state classes
protected class DragState implements InputState {

public void MouseUp(Point at) {
setCurrState(makeMouseUpState());

}

public void MouseMotion(Point from, Point to) {
buttonShape.move(from, to);

}

public void MouseDown(Point at) {}
}

}

Listing 4.3: The drag-and-drop extension

54

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Drag

MouseMotion
MouseUp

KeyDownMouseMotion

Figure 4.3: Adding the KeyDown Event

Given this extension to the state design pattern, implementing drag-and-drop func-

tionality is straightforward, as shown in Listing 4.3. I define a new class DragState

as well as a subclass DragMouseDownState of MouseDownState. To incorporate

DragMouseDownState into the state machine logic, I simply override the correspond-

ing factory method for that state. I also create a new factory method for the dragging

state, so that DragStateMachine itself satisfies my constraint. In this way, the new

state machine can itself be seamlessly extended by future subclasses. I will maintain

this hierarchical nature of the design pattern throughout.

To summarize, I add the following rules to the standard state design pattern, in

order to support new states:

• Each state class should have an associated factory method in the state machine

class.

• State objects must always be instantiated through their factory method.

4.2.2 Adding Events

As the diagram in Figure 4.3 shows, in order to implement our second extension we

need to respond to a new kind of event, representing a keyboard press. It is natural to

55

incorporate this event through an extension to the InputState event interface:

public interface KeyState extends InputState {
public void KeyDown(Key key);

}

Now a subclass KeyStateMachine of DragStateMachine can subclass each state

class to add a KeyDown method and implement this new interface. However, all of

the factory methods are declared to return an InputState, as is the currState field.

Therefore, the KeyStateMachine will have to use type-unsafe casts from InputState

to KeyState whenever it needs to make use of the new KeyDown method. If the im-

plementer forgets to subclass one of the state classes appropriately, this error will only

manifest as a runtime ClassCastException.

The underlying problem is that the state interface is set in stone in the base state

machine. To be able to update the state interface without typecasts, my pattern should

obey the following constraint:

Constraint: Each state machine must abstract over the events it responds

to. While it may require that certain events exist, it may not limit what

events can be added by future extensions.

Generics provide a natural way to satisfy this constraint. Rather than hard-coding

the interface for events as InputState, I use a type variable to represent the eventual

interface to be used, as shown in Listing 4.4. The State type variable replaces all

previous occurrences of InputState. The State type variable is declared to extend

InputState, so the implementation of the state machine can assume that at least the

three events in InputState will be handled.

Since the factory methods no longer know which concrete class will actually meet

the abstract interface State, they can no longer have a concrete implementation and

are instead declared abstract (making the entire class abstract as well). As a result,

56

abstract class InputStateMachine<State extends InputState> {
// standard currState members
private State currState = makeMouseUpState();
public State getCurrState() {

return currState;
}
protected void setCurrState(State newState) {
currState = newState;

}

// factory methods
protected abstract State makeMouseUpState();
protected abstract State makeMouseDownState();

// ...
}

Listing 4.4: InputStateMachine modified for adding events

the InputStateMachine class can no longer be instantiated directly. Rather, we must

concretize the state machine, as shown in Listing 4.5; this new class is identical in

behavior to our original version of the UI from Listing 4.1. Concretization serves

two purposes. First, it fixes the set of events by instantiating the State type variable

with an interface. Second, it fills in all of the factory methods by instantiating classes

that meet this interface. Because ConcreteInputStateMachine explicitly defines

the state interface, it effectively terminates future extensions being made from it. Of

course this does not prevent further extensions derived off of InputStateMachine.

The entire logic of the state machine is still contained within the abstract state

machine class. For example, the class in Listing 4.4 will contain the definitions of the

MouseUpState and MouseDownState classes that we have seen earlier. The uniform

usage of factory methods and the State type variable allow the definitions of these

state classes to remain unchanged. For example, a call of the following form is the

idiomatic way to change states and requires no typecasts within the context of the

class in Listing 4.4:

57

class ConcreteInputStateMachine extends InputStateMachine<InputState> {
protected InputState makeMouseUpState() {

return new MouseUpState();
}

protected InputState makeMouseDownState() {
return new MouseDownState();

}
}

Listing 4.5: The concretized InputStateMachine

abstract class DragStateMachine<State extends InputState>
extends InputStateMachine<State>

{
// new factory methods
protected abstract State makeDragState();
// ...

}

Listing 4.6: The DragStateMachine extension modified for adding events

setCurrState(makeMouseUpState())

Extending the state machine is now accomplished by subclassing from the abstract

state machine class. Listing 4.6 contains an updated version of our drag-and-drop state

machine. The body of this class is identical to that of Listing 4.3, except that the

State variable is used in place of InputState and the factories are abstract. Keeping

this class abstract allows it to be uniformly extended, as I will do next. Naturally,

the concretized drag-and-drop state machine would instantiate the State variable as

InputState and add the necessary implementations of the factory methods.

Finally, Listing 4.7 shows how to use my pattern to easily add new events. The

State variable is given the new bound KeyState, which indicates that the state ma-

chine must handle the KeyDown event in addition to the others. Accordingly, the exist-

ing state classes are subclassed in order to provide appropriate KeyDown implementa-

58

abstract class KeyStateMachine<State extends KeyState>
extends DragStateMachine<State>

{
public class KeyDragState extends DragState implements KeyState {

public void KeyDown(Key key) {
if (key.equals(COLOR_KEY))
changeButtonColor(key);

}
}

// default implementation
public class KeyMouseUpState

extends MouseUpState implements KeyState
{ public void KeyDown(Key key) {} }

// same for others ...
}

Listing 4.7: Adding a new event in a state machine extension

tions. The concretized version of this state machine (not shown) will instantiate State

with KeyState and override all of the factory methods to instantiate the new state

classes. Unlike with the original pattern, no type casts are necessary, and the Java

typechecker will signal an error if one of the state classes is not properly handling the

new event.

To summarize, I add the following rules to my design pattern, in order to support

new events:

• A state machine must define a type variable that is bound by the currently known

state interface.

• This type variable must be used uniformly in place of any particular state inter-

face.

• All factory methods are declared abstract.

• A state machine must be concretized before it can be used, by fixing the state

59

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Drag

MouseMotionMouseUp

KeyDownMouseMotion

Help

Figure 4.4: Interrupting the Drag

interface type and implementing the factory methods.

4.2.3 Adding “Subroutines”

With the above modifications to my pattern, we can modularly add both new states and

new events. While these abilities allow essentially arbitrary modifications to the base

state machine, there is a common extensibility idiom that deserves special support. It

is often useful to “interrupt” an existing state machine at some point, insert some new

state logic, and later “resume” the original state machine where it left off. Intuitively,

this is the interactive equivalent of a subroutine call, and it also naturally represents a

form of hierarchical state refinement, in which a state of the superclass is implemented

as its own state machine in the subclass.

A case in point is our final extension, shown pictorially in Figure 4.4. While drag-

ging an object, a user can press a specified key to bring up a dialog box about the entity

being dragged. Another key press will dismiss the dialog box, at which point the drag

should be resumed. Effectively, the drag state is being hierarchically refined. We

could implement this extension using the above techniques, but manually interrupting

60

and resuming the drag is tedious. Further, that approach requires care to ensure that

the state of the drag upon resumption is identical to the state before the interruption.

For example, in general it may not be sufficient to simply create a brand new instance

of DragState with which to resume the drag, since that could discard important state

from the original drag. This brings us to my final constraint:

Constraint: Each state transition should be able to be interrupted and later

resumed by a subclass.

As mentioned above, the interruption is akin to a subroutine call in traditional

program logic. We might therefore attempt to satisfy this constraint by allowing the

base state machine to include a call to a dummy method interruptKeyDown within

each KeyDown method:

public void KeyDown(Key key) {
// ...
interruptKeyDown(key)
// ...

}

The location for this call is decided in the superclass. Now, we can override inter-

ruptKeyDown in subclasses in order to perform the interruption. Unfortunately, such

an interruption would be forced to complete entirely within the current state transition,

before control is returned to the event sender. Therefore, such an approach does not

allow interruptions that require further user interaction, as is required in the example.

One way around this problem is to capture the part of the KeyDown method after

the interrupt as an explicit function that can be called at will by subclasses. Java’s

Runnable interface provides a solution:

public void KeyDown(Key key) {
// ...
interruptKeyDown(key, new Runnable() {

public void run() {

61

// ... rest of the transition after the interrupt
}

});
}

public void interruptKeyDown(Key key, Runnable next) {
next.run();

}

By default, interruptKeyDown simply invokes the given Runnable immediately,

thereby executing the rest of the transition. However, a subclass can override the

method to properly perform the interruption:

public void interruptKeyDown(Key key, Runnable next) {
if (key.equals(HELP_KEY)) {
setCurrState(makeHelpState(next));

} else {
super.interruptKeyDown(key, next);

}
}

In the above code, if the help key is pressed, then we move to the new help state (not

shown). That state is passed the given Runnable, so it can properly resume the original

transition when the dialog box is dismissed by the user. If a key other than the help

key is pressed, then a super call is used to perform the original transition as usual.

With this approach, a state machine designer can easily declare points in each state

transition that are interruptible, allowing future extenders to insert arbitrary state logic

without breaking the original state machine’s invariants.

There are two problems that need to be addressed in this approach. First, the

above code still requires the subclass to explicitly set the state back to the drag state

upon a resumption of the original transition. To address this problem, I require each

event handler to always end by setting its state appropriately, even if the state does

not change. With this rule, we can be sure that the original code will set its state

appropriately upon being resumed. To satisfy my rule, the original code for KeyDown

62

will be modified as follows:

public void KeyDown(Key key) {
// ...
interruptKeyDown(key, new Runnable() {

public void run() {
// ... rest of the transition after the interrupt
setCurrState(this);

}
});

}

The call to setCurrState ensures that we always return to the original drag state after

the dialog box subroutine completes.

Second, the use of simple functions (i.e., Runnables) to capture the code after the

interruption has a number of limitations. Since a runnable can only capture the code

within a single method, it has to be created in the top-level event handler method,

rather than in some auxiliary method. Similarly, these interrupt points cannot easily

occur within control structures like loops or conditionals, since the resulting runnable

would be stuck in a particular scope and therefore unable to capture the entire rest

of the computation. What we need is a uniform way to save the entire state of the

computation after an arbitrary interrupt point.

I discovered that delimited continuations [Fel88, BDS06, FYF07], a language fea-

ture developed in the functional programming community, does exactly this. Program-

mers can declare a reset point at any point in the code, which has no semantic effect.

However, if a shift is later executed, then the entire execution stack up to the most re-

cent reset is popped off and saved as a continuation. A block of code provided with the

shift is subsequently executed and is passed the continuation, which can be invoked to

restore the original computation.

For example, the shift-reset version of our KeyDown method is shown in Listing 4.8.

It has the same semantics as the earlier code, but it avoids the limitations mentioned

63

public void KeyDown(Key key) {
reset {

// ...
shift (continuation) {
interruptKeyDown(key, continuation);

}
// ...
setCurrState(this);

}
}

public void interruptKeyDown(Key key, Continuation cont) {
cont.execute();

}

Listing 4.8: Example use of delimited continuations

above. The shift can occur anywhere in our code, even in methods called by KeyDown

or inside of control structures. Further, the “rest” of the computation can be nicely

kept outside of the shift block, unlike with runnables.

I have created a simple Java library that implements delimited continuations, which

is discussed in Section 4.4. The library allows the code to be written essentially as

shown above, except that reset and shift are method calls into the library. For ease

of presentation, I continue to use the prettier syntax.

Listing 4.9 shows how to use delimited continuations to implement our final state-

machine extension. The relevant portion of the KeyStateMachine has been modified

to satisfy the new constraint. The KeyDown method properly ends by setting the state.

The getThis factory method is necessary in order to satisfy the typing constraints

introduced by abstracting on the State type variable; the concretization of this class

will implement getThis appropriately. The KeyDown method uses a shift to support

interruption by subclasses. As mentioned earlier, the state machine forwards each

event to currState. Therefore, it is natural to put a reset in each such forwarding

method, as shown at the bottom of the figure, thereby alleviating the need for resets

64

abstract class KeyStateMachine<State extends KeyState>
extends DragStateMachine<State>

{
public abstract class KeyDragState extends DragState implements KeyState {

public abstract State getThis();

public void KeyDown(Key key) {
if (key.equals(COLOR_KEY)) {
changeButtonColor(key);

}
shift (continuation) {
interruptKeyDown(key, continuation);

}
setCurrState(this.getThis());

}

protected interruptKeyDown(Key key, Continuation cont) {
cont.execute();

}
}

public void KeyDown(Point at) {
reset {

this .getCurrState().KeyDown(at);
}

}
}

Listing 4.9: The Key state machine with inserted interrupt-point

65

within the state classes.

Listing 4.10 shows our final state machine extension. I override interruptKey-

Down in the dragging state in order to move to the new help state, rather than simply

calling the continuation. The new state stores the continuation and opens up the di-

alog box. When any key is pressed subsequently, the dialog box is closed and the

continuation is invoked, in order to resume the drag.

To summarize, I add the following rules to my state design pattern, in order to

support state-logic interruptions:

• The last command on each path through an event handler must either be a

setCurrState call or an invocation of a continuation.

• Each forwarding method in a state machine class should set a reset before for-

warding an event to the current state.

• An interrupt point consists of a shift placed anywhere inside code that is part

of an event handler. The associated code block contains a call to an interrupt

method, to which it passes the created continuation as well as any auxiliary

information.

• The default behavior for an interrupt method is to immediately call the continu-

ation which it is passed.

4.3 Interrupt Points Explored

This section discusses how our novel notion of interrupt points may be used in our

pattern to gain even more flexibility, giving several examples to illustrate their expres-

siveness in a variety of dimensions.

66

abstract class HelpStateMachine<State extends InputState>
extends KeyStateMachine<State>

{
// new factory methods
public abstract State makeHelpState(Continuation cont);

public abstract class HelpDragState extends KeyDragState {
public void interruptKeyDown(Key key, Continuation cont) {

if (key.equals(HELP_KEY)) {
setCurrState(makeHelpState(cont));

} else {
super.interruptKeyDown(key, cont);

}
}

}

// new state class
public abstract class HelpState implements KeyState {

private Continuation cont;

public HelpState(Continuation cont) {
showHelpWindow();
this .cont = cont;

}

public void KeyDown(Key key) {
closeHelpWindow();
cont.execute();

}
// other events with the default body ...

}
}

Listing 4.10: Our extension using the added interrupt-point

67

4.3.1 Returning Values from Interrupt Points

So far shifts have been used only as control structures, copying the stack into a con-

tinuation to return in the future. Our library also allows a shift to return a value. The

following code illustrates a simple example:

String name = shift (Continuation<String> k) {
k.execute(‘‘Hello World!’’);

}

As usual, the shift saves the current execution state in the continuation k and executes

its body. The type of the continuation indicates that it expects a String as an argument.

Accordingly, the continuation is invoked with a string literal in the shift block. This

argument becomes the value of the entire shift expression, so the above code causes

name to have the value "Hello World!".

The ability for “interrupters” to easily pass values back to the interrupted state

logic is often extremely useful. Such values can be used to change the behavior of the

original state logic or to allow that logic to declaratively gather necessary data from its

extensions. Our case study in the next section uses this feature of shifts to good effect.

4.3.2 A Stack of Interrupted States

Since any state that stores a continuation from an interrupt point may itself be inter-

rupted, it is easy to form an arbitrarily long chain of states, each of which has been

interrupted by the next state on the chain. In essence, this is the interactive equivalent

of a run-time call stack. Executing a shift that transitions to a new state and passes

the current continuation to that state has the effect of pushing that new state onto the

call stack. Invoking a continuation has the effect of popping the top state off the call

stack. This ability makes the state machine powerful enough to declaratively encode a

pushdown system. Our case study in the next section relies on this technique to handle

68

parsing of arbitrarily nested XML data.

Similar functionality could be implemented by having each state keep a reference

to the previous state, given to it at creation time, forming a reference stack that does not

use delimited continuations. When a machine wants to transition back to a previous

state, it just calls setCurrState() with the stored state pointer. In the pure state

machine case, where the only purpose of state transitions is to end up in the specified

state, this would work fine. In real-world cases, when state transitions can have general

Turing-complete code on them, delimited continuations allow clean-up code to be run

after the interrupt point is returned to, such as that which may be desired in a locking

protocol. Further, the clean-up code could even be used to decide which state should

come next, based on the current context.

4.3.3 After-the-fact Interrupt Points

In our example in the previous section, the implementer of the base state machine

anticipated the need for an interrupt point in the KeyDown event handler. However,

subclasses can easily add new interrupt points after the fact, for use both within that

subclass and within any future extensions. Since our pattern requires that the base state

machine wrap each event handler call with a reset, any shifts within the dynamic extent

of an event handler are always well defined. For example, if KeyDown did not contain

a shift, a subclass could simply override KeyDown and add one. We make use of this

ability in our case study in the next section.

4.3.4 Interrupt Points and Information Hiding

In the traditional state design pattern the current state object must maintain all of the

data associated with the current execution state. If any data is needed in future states,

it must be explicitly passed along to a new state whenever a state transition occurs.

69

Thus states may have to store data that they don’t need in order to pass it on to states

that may use it later. Aside from being tedious, this also results in a loss of modularity,

since data has to be available where it logically should never be manipulated.

Interrupt points provide a convenient solution to this problem. A continuation uni-

formly stores all current data (indeed, all data on the stack up to the recent reset) and

encapsulates it as a single value. Therefore, a state need only accept a continuation

in order to maintain all of the data potentially needed in the future, and the state only

needs to explicitly maintain the data that it actually manipulates. When the continua-

tion is eventually invoked, the data in the continuation is restored and made available

to the state logic that has been resumed.

4.4 Implementation

As previously mentioned, I implemented delimited continuations as a Java library.

Each continuation is implemented as a thread, which is a simple way to save the current

execution state. A continuation thread waits on itself until it is invoked. At that point

the continuation thread is notifyed so it can run, and the calling thread in turn waits

on the continuation thread. When the continuation thread is to return, the reverse logic

happens. In this way I ensure a deterministic handoff of control between threads.

The delimited continuation library has a simple API. Listing 4.11 shows how List-

ing 4.8 looks using the API. Reset is a static method on the DelimitedContinuation

class. It takes a ResetHandler as an argument, whose doReset method provides the

implementation of the reset block. Shift is handled analogously. The ShiftHandler

is parametrized by the type of the result, as discussed in Section 4.3.1. The Unit type

admits only the value null, thereby acting similar to void. The doShift method is

provided the continuation thread as an argument. When the continuation is eventually

70

public void KeyDown(Key key) {
DelimitedContinuation.Reset(new ResetHandler() {

public void doReset() {
// ...
DelimitedContinuation.Shift(new ShiftHandler<Unit>() {

public void doShift(Continuation<Unit>() cont) {
interruptKeyDown(key, cont);

}
});
// ...
setCurrState(this);

}
});

}

public void interruptKeyDown(Key key, Continuation<Unit> cont) {
cont.execute(null);

}

Listing 4.11: Version of Listing 4.8 using the delimited continuation API

invoked, the Shift method returns the value the continuation was passed, and the code

proceeds as usual.

This library approach to implementing delimited continuations has a few limita-

tions. First, a continuation cannot be invoked more than once, and doing so results

in a dynamic error. Second, resets prevent exceptions from continuing up the stack,

thereby violating normal exception semantics. Others have considered direct support

for continuations in the Java virtual machine [DCV07], which could resolve these lim-

itations.

4.5 Experience

JDOM [JDO] is a Java implementation of the Document Object Model (DOM) for

XML, which represents XML data as a tree of objects. Clients can then use this tree

71

to easily access the XML data from within Java programs. JDOM’s implementation

parses XML files using a SAX parser, which reads an XML file and reports events to

an instance of JDOM’s SAXHandler class, such as the start of a new element, one by

one. The SAXHandler object incrementally builds the DOM tree in response to each

event from the parser. As such, SAXHandler is a real-world example of an interactive

software component.

The original SAXHandler implementation is written as a single monolithic class,

rather than using the state design pattern. I refactored the code to use the extensible

state machine pattern, creating explicit state classes. To illustrate the extensibility

provided by this pattern, I implemented the functionality of SAXHandler in two stages.

First I implemented a base state machine that can build the DOM tree for basic XML

documents. Then I created a subclass of this state machine to handle more advanced

features of XML, including entities, Document Type Definitions (DTDs), and CDATA

blocks. This class has the same functionality as the original SAXHandler class.

4.5.1 Base State Machine

The original SAXHandler class implements four interfaces, which contain the various

parsing events that must be handled. The basic refactored version of SAXHandler

implements only the ContentHandler interface, which provides events for, among

other things, the beginning and end of the XML document, the beginning and end of

an XML element, and character data within an element.

This state machine (depicted in Figure 4.5) is fairly simple. There are three main

states: The first is the initial state. On a startDocument event, it enters the main

parsing state. When the document is done, it gets sent the endDocument event which

causes it to enter the Document Complete state. There is one more state devoted to

parsing XML elements, which I will describe in more detail shortly.

72

Initial
State

Parsing
Document

Document
Complete

startDocument

endDocument

startElement

Parsing
Element

endElement

startElement

Figure 4.5: The State Machine for the Simple SAX Handler

Implementing this state machine in my pattern was straightforward. The most

interesting part is the need to handle arbitrarily nested elements. Effectively, the state

machine needs to maintain a stack of elements that are currently in the process of

being parsed. In the original code, this stack was maintained explicitly, and integer

fields were used to keep track of the current nesting depth during parsing.

The use of interrupt points provides a much more natural solution. I employ my

aforementioned “subroutine” idiom to parse a single element. This pattern is indicated

in Figure 4.5. The interrupt point (represented by the double triangle) is the entrance

to the subroutine that begins at the small triangle at the top, entering the “Parsing Ele-

ment” state. When this state receives an endElement event, it will exit the subroutine

environment and return the constructed element, allowing the remainder of the “call-

ing” code to complete (in this case, adding the returned element to the document).

The parsing element state will also enter into the same subroutine upon receiving the

startElement event, causing a recursive call. This recursion is what gives rise to the

implicit stack-like nature of this idiom.

Listings 4.12 and 4.13 show the code that implements this approach. When a

startElement event occurs, we invoke the readElement method shown in List-

73

public Element readElement(String name) {
return shift (Continuation<Element> k) {

setCurrState(makeParsingElementState(name, k));
}

}

Listing 4.12: The readElement() method

public void endElement(String name) {
prevCont.execute(currElement);

}

Listing 4.13: The endElement() event handler for the ParsingElementState

ing 4.12. This method shifts the event handler’s execution, stores it into a continuation

k, and transitions into a ParsingElementState object, which stores the continuation

(in field prevCont) for later use. Recall that the pattern places a reset at the beginning

of each event handler, so this shift is well defined. The ParsingElementState builds

up the current element (in field currElement) as it receives characters events. If

it receives a startElement event, then it invokes readElement to recursively in-

terrupt execution in order to parse the nested element. Finally, as shown in List-

ing 4.13, when the ParsingElementState receives the endElement event it invokes

the stored continuation in order to resume execution of the interrupted state machine,

passing the parsed element back. This value becomes the return value of the shift from

readElement.

In addition to methods representing possible events, the ContentHandler interface

contains a method getDocument. This method should return the root of the DOM tree

if parsing has completed and null otherwise. This method does not update any local

state and hence is not part of the state logic of the machine. Therefore, it is safe to

implement it as a regular method, which does not conform to the rules of the design

pattern. For instance, it does not begin with a reset nor end by updating the state.

74

This design pattern naturally accommodates such methods, which query the state of

the machine but do not update it.

4.5.2 Extended State Machine

The subclass of the above state machine class adds support for the events in the

DeclHandler, DTDHandler, and LexicalHandler interfaces. These interfaces re-

spectively add support for XML entities, DTDs, and CDATA blocks. With the addition

of support for these events, this version of SAXHandler implements all of the function-

ality of the original class. While for brevity’s sake I implemented these aspects in a

single extension, I could just as easily have created one extension for each of these

aspects.

In total, I added four new states and support for 12 new events. I also used four

interruption points to insert “subroutines” in the original logic. The extensible state

machine pattern made these additions straightforward. The most inconvenient part was

the addition of the new events, which required subclassing each of the existing state

classes in order to add the new methods. If Java had multiple inheritance, we could

create a class DefaultState which contains default handlers for the new events, and

each new state class could then inherit from both the appropriate old state class as

well as DefaultState. Because Java lacks multiple inheritance, each new state class

instead has its own implementation of each of the new events, thereby incurring some

code duplication.

I briefly discuss each of the three new pieces of functionality in turn. XML entities

are names that can be given to a block of XML data. When the name is later refer-

enced, it has the effect of inserting the associated data at the current point, similar to a

#include directive in C. Accordingly, when the SAX parser encounters a reference to

an entity, it sends events that correspond to the entity’s associated data.

75

The original implementation of SAXHandler allowed the client code to decide

whether to handle entities properly or to simply ignore them. This was accomplished

via a boolean field suppress, which was consulted within each event handler to de-

termine whether to handle the current event or not. My implementation uses a more

declarative approach. When we receive a startEntity event in the ParsingEle-

mentState, we check the suppress field once. If the client has configured us to

expand all entities, we simply continue as usual. Otherwise, we transition to a new

SuppressedState, which simply ignores all events.

When the SuppressedState receives an endEntity event, we must transition

back to the state we were in before the most recent startEntity event. Effectively,

the logic for suppressing entities interrupts the ordinary flow of the state machine and

later resumes it. Therefore, an interrupt point is the natural approach for implementing

this extension. Accordingly, the ParsingElementState’s startEntity method uses

a shift to transition to the SuppressedState:

shift (Continuation<Unit> cont) {
setCurrState(makeSuppressedState(cont));

}
setCurrState(this.getThis());

Upon an endEntity event, the SuppressedState invokes the given continuation in

order to resume the original state logic. After invoking the continuation, the last state-

ment above is executed, in order to return the state machine to the proper state before

returning control to the SAX parser.

Both DTDs (inline declarations of the XML schema) and CDATA blocks (inline

escaped text) were parsed in a similar manner. A new state was defined for each, which

was able to accept the events necessary to parse their respective structure. The parsing

of a CDATA block produces a value, so I implemented a readCDATA method in the

same mold of the readElement method shown in Listing 4.12.

76

// ...
if (atRoot) {
document.setRootElement(element);
atRoot = false ;

} else {
factory.addContent(getCurrentElement(), element);

}
currentElement = element;

Listing 4.14: A snippet of startElement() from the original SAXHandler implemen-
tation

4.5.3 Comparison

It is instructive to compare the refactored version of SAXHandler with the original one.

The original class maintained its state through many fields, including seven boolean

variables and an explicit stack for keeping track of the incomplete elements. The

event handlers were typically rife with if statements dispatching on the aforementioned

boolean fields to implement state-like behavior. For instance, Listing 4.14 shows a

snippet from the startElement event handler which used the atRoot field to decide

which implementation to use. Thus implementation for two states was put into the

same method, making it hard to understand. In contrast, the extensible state machine

pattern allowed us to separate out code associated with different states, with each state

class maintaining its own fields. For example, the refactored version of Listing 4.14

has each branch as an event handler in a distinct state.

The refactored code was longer than the original code. Some of this was due to

boilerplate code that, to a practiced eye, could be quickly understood. Some of it was

due to the extra classes and methods which the pattern requires. The base class in

the refactored version has 388 non-comment non-whitespace lines and the extension

has 600, while the original JDOM code has 424 non-comment non-whitespace lines.

Excluding boilerplate (forwarding methods, empty event handlers, and factory decla-

77

rations), the numbers are 270 lines for the base and 330 lines for the extension.

I believe that the improved readability and extensibility of the reimplemented code

outweighs the increase in code length. The mental overhead of the pattern could be

reduced by using a static checking framework such as JavaCOP [ANM06] to auto-

matically ensure that the pattern’s constraints are obeyed. It could also be possible to

automatically generate much of the boilerplate code, given a high-level description of

the state machine.

4.6 Related Work

Family polymorphism [Ern01] is an inheritance scheme that allows a group of classes

to be extended simultaneously, enabling each of the extensions to explicitly use the

new features of the other extended classes. This allows for much more powerful in-

terrelationships between the classes in the group as compared to our state class exten-

sions. Several languages such as gbeta [GBe] and Scala [Sca] implement a version of

it. Family polymorphism could be used to make our pattern more lightweight. For

instance, some forms of family polymorphism can obviate the need for factory meth-

ods by making constructors virtual. Even so, our pattern remains simple and can be

implemented in vanilla Java 1.5.

The PLT Scheme web server [KHM07] uses continuations to store the state of

HTTP sessions. This allows them to maintain state while transferring information over

the otherwise stateless HTTP. This approach is similar to our implicit stack approach.

We additionally identify the synergy between delimited continuations and inheritance

in OO languages, in order to support natural forms of state machine extensibility, and

we codify this idiom in a general design pattern.

Others have recently added direct support for various forms of continuation in the

78

Open Virtual Machine [Ovm] for Java [DCV07]. By leveraging their work, we may

be able to avoid the overhead of switching thread contexts in our implementation,

thus improving our performance and making our delimited continuation library more

powerful.

4.7 Conclusion

We have defined the extensible state design pattern, which adds a small number of

requirements onto the traditional state design pattern. By requiring a state machine to

obey extra constraints, we make it possible for subclasses to easily and flexibly extend

the state machine in several dimensions. Our pattern is implementable in Java, and

we have also shown how a library based on the notion of delimited continuations can

give the pattern more power. Our experience indicates that our pattern’s new require-

ments are easy to respect and that the pattern provides commonly desired forms of

extensibility in a practical manner.

79

CHAPTER 5

The Dialogue Pattern

5.1 Overview

Both approaches to implementing interactive software that we’ve discussed here, from

ResponderJ (Chapter 3) to the Extensible State Machine Pattern (Chapter 4), have

shared an important trait: They both follow the classic state-machine interaction model.

In each solution, we have some component which is sent messages by some external

entity which the component then has an opportunity to respond to. As I discussed in

Chapter 1, this model suffers from the problem of asymmetric control. We’ve seen

how sufficiently intricate interactive logic can turn the tables on a controller, making

that controller receive events instead of sending them. The state-machine interaction

model on the other hand requires that one entity be declared the sole message-passer

of the interaction. While communication can flow the other direction, from the com-

ponent to the controller, this is often in an entirely ad-hoc fashion, making it harder to

ensure its correctness, and harder to ensure the other side handles the messages cor-

rectly. Ideally, we would like an interactive programming model which would make

message passing in both directions behave identically, providing along the way the

static type-checking benefits of my other solutions.

My solution is a simple software pattern I call the dialogue pattern. As a pat-

tern, it requires no external tools nor language extensions to implement in existing

languages. It allows us to define how two interactive components communicate with

80

one another(or those components’ protocol), including how control will be exchanged

between them. This pattern is so designed that the language’s type system itself auto-

matically checks a developer’s implementation against the defined protocol, ensuring

that the implementation follows it correctly.

In addition, these interactive protocols provide heterogeneity: the ability to have

each state only provide the implementation of pertinent events. This allows interactive

logic to use a large set of events without the additional complexity of implementing

those events for every other logical state in the interaction.

Finally, I provide a new form of code reuse called subprotocols. These allow a

developer to implement a fragment of interactive logic and reuse it in other pieces of

interactive logic, similar to how subroutines allow you to reuse code wherever they’re

called. As such, subprotocols provide code reuse for interactive software.

Like the extensible state machine pattern of Chapter 4, the dialogue pattern is a

general technique which can be implemented in many high-level languages. In this

chapter, I will use Java 1.5 as a target language for describing the pattern. I will state

which features of Java are needed, or would be desired, for implementing this pattern.

In this chapter, I will fully describe the mechanics of the pattern (Section 5.2), dis-

cuss advantages, disadvantages, and other related topics (Section 5.3), and give some

guidelines to best practices when implementing the pattern (Section 5.4). I have made

a case study of this pattern within JSettlers, an existing open-source implementation

of the board game “Settlers of Catan”, of which I will discuss the details (Section 5.5).

I will then finally conclude (Section 5.6).

81

5.2 Approach

In this chapter, I will describe the dialogue pattern in full. I will first demonstrate the

basic properties and techniques of my pattern using the guessing game example I have

used several times now. I will then describe subprotocols using the classic “Who Stole

the Cookie?” game.

First, a few definitions: I define an interaction to occur when two software entities

communicate with one another. I describe these entities as the sides of the interaction.

Between these sides, communication occurs by each side sending events to the other.

A protocol is a convention over the interaction which dictates which events can be

passed between the sides, and in what order they can be passed.

The dialogue pattern itself is composed of two major aspects:

1. A protocol definition convention.

2. A technique to implement clients of the protocol.

Conceptually, protocol definitions can be modeled as deterministic finite automata

(DFAs). They have a number of states, each which define a set of outgoing edges

labeled with events. For each of these edges, an event of the label type can be sent

from one side of the interaction within that state. Each state is categorized as either

shaded or unshaded. This shading determines the role of each side (either sender or

receiver) when the protocol is in that state.

Syntactically, a protocol definition is made out of a number of Java interfaces.

These interfaces are similar to the state interfaces in the standard state design pattern

in that they all provide a number of event methods. When one side calls an event

method on a state object, the analogous event is sent to the other side. Unlike the

state design pattern, one protocol definition is comprised of an arbitrary number of

82

interfaces, each of which corresponds to a separate state of the protocol.

My implementation technique for clients of a protocol definition uses a variation

on continuation passing style (CPS) to pass messages between each other. Unlike the

general form of CPS, this style only puts a few constraints on the programmer at the

protocol boundaries of a component. The majority of the component code can be (and

indeed should be) written using standard Java style.

5.2.1 The Guessing Game Re-Revisited

I introduced the guessing game example in Chapter 1. As a reminder, the guessing

game is played between two sides: the player and the game. Initially, the game is in an

idle state. The player sends the startGame() event, and the game starts. The player

then can send guess() events with integer guesses. The game send back feedback

whether the player was higher, lower, or correct. If correct, the game returns to the idle

state.

As I discussed in Section 1.1.3, the state design pattern implementation of the

guessing game (Listing 1.2) is inherently asymmetric. When the player calls the

guess() event, if the guess was correct, it is an error if the player continues guess-

ing. They player must call startGame() again to continue. Thus, once a guess is

made, the game is in control.

I will now show how we can use the dialogue pattern to implement the guessing

game. I’ve created a protocol definition that is visualized in Figure 5.1. This is the

DFA which models the protocol between the player and the game. Every state in this

DFA represents a single interface in the protocol definition, with the outgoing edges of

that state representing the methods in that interface.

The states of a protocol diagram are partitioned into two sets, which I arbitrarily

83

Idle

Running

Handle
Guess

correct

tooHigh/
tooLow

start guess

Figure 5.1: The Guessing Game Interaction Diagram.

name the shaded set and the unshaded set. A state is shaded if it is in the shaded set,

and unshaded if it is in the unshaded set. The shading of a state dictates which role

each side of the interaction has in that state. Within this example, the player is a sender

in every shaded state, and is thus able to decide which event to send to the game. In the

unshaded states the player is the receiver, and must be ready to accept an event from

the game. The opposite is true for the game side. Naturally, shaded states are shown

as shaded in the model diagrams, while unshaded states are left unshaded.

I find these visualizations to be a convenient way of reading protocol definitions,

and will use them throughout the paper. I have also developed an auxiliary tool which

allows these diagrams to be generated automatically from protocol definitions, which

I describe in Section 5.4.2.

I will now describe the guessing game protocol definition in more detail, exploring

different kinds of event methods in my pattern and how they are implemented.

5.2.1.1 Simple Event Methods

Listing 5.1 shows the “Running” state interface of the guessing game protocol defini-

tion. This interface has a single event method, guess(). This sort of event is called a

84

public interface Running {
void guess(HandleGuess state, int guess);

}

public interface HandleGuess {
void tooHigh(Running state);
void tooLow(Running state);
void correct(Idle state);

}

Listing 5.1: The interfaces for the “Running” and “Handle Guess” states.

simple event. If a simple event is called in a state, the protocol follows the edge labeled

with that event in the DFA. A simple event will always cause the sides to trade roles.

As a consequence, a simple event will always bridge two states of different shadings.

A method for a simple event must take another state interface as an argument. The

type of this state argument is the interface for the state which the event leads to in the

diagram, which I call the target state for that event. Here, the guess() event method

takes a HandleGuess state interface as an argument. In addition to the state object,

the simple event method can take any other set of arguments. Here, the guess() event

method takes an integer argument indicating the player’s guess.

My pattern provides heterogeneity through these state interfaces, as each state only

needs to provide those events which are pertinent in that state. In the Running state

interface above, for instance, only the guess() event method is defined.

Each state interface in a protocol definition is implemented as part of one of the

two sides depending on that state’s shading. In the shaded “GameRunning” state,

for instance, the game is the receiver, and must wait for the guess() event from the

player. As such, it is the game which must implement the Running interface, as well

as all other shaded state interfaces.

Conversely, when the guess() event method is called on a GameRunning object,

85

public class GameRunning implements Running {
private int correctAnswer;

public GameRunning() {
correctAnswer = Random.randInt();

}

public void guess(HandleGuess state, int guess) {
if (correctAnswer == guess) {
state.correct(new GameIdle());

} else if (correctAnswer < guess) {
state.tooHigh(this);

} else {
state.tooLow(this);

}
}

}

Listing 5.2: An implementation of the “Running” state by the unshaded side.

the game side is passed a state object of type HandleGuess, as in Listing 5.2. Within

this event method, we are in the “HandleGuess” state, as indicated by the file handle

having access to an HandleGuess state object. As this is an unshaded state, the game

is the sender and has the option of sending either the correct, tooLow or tooHigh

events to the player by calling the respective methods on that state object. In this case,

it checks to see if the guess is correct. If it is, the game sends the correct event,

which will make the protocol enter the “Idle” state. If not, it sends either the tooLow

or tooHigh event, both of which return the protocol to the “Running” state.

When a simple event method is called, the side which calls it must pass along

a state object of the target state interface type, as the game side does in calls to the

correct(), tooLow(), and tooHigh() state methods above. Since the calling side

becomes the receiver when sending a simple event, the passed state object’s job is to

receive the next event from the other side. In this case, the Idle object created in the

correct() call is ready for the player side to call the start() event method.

86

Note that the partitioning of states into shadings is not explicitly defined in the state

interfaces, but rather implicitly defined in how events connect them. For instance, with

the knowledge that a simple event connects up states on opposite sides, we can put

them in opposite partitions. By doing this for all events, we can partition the entire

protocol definition.

The dialogue pattern allows the two sides of the interaction to be implemented

separately given a common protocol definition. For instance, when the game side

calls the correct() event method on a state object which implements HandleGuess,

it passes a new Idle object as its argument. The player class (which I will call

PlayerHandleGuess) takes this object, only knowing that it has type Idle. Neither

side needs to know the concrete types of the other.

The dialogue pattern uses variant of CPS: When one side calls an event method

it passes along another state object to receive the next event. This is only necessary

when event methods are called, and does not limit the internal implementation of an

interactive component.

Within a single event handler, this state object argument may only have one method

called on it at most during that event handler’s execution. This ensures that the protocol

is followed correctly; each state transitions into the next without any ambiguity or

accidental backtracking. Furthermore, any simple event methods should be called in a

tail position. This ensures that all the code before the event call will be executed even

if the event method never returns, as is the case in CPS. This also prevents languages

which implement tail-call optimization from overflowing the stack even in the worst

situations. For languages which do not implement tail-call optimization (like Java) I

have other ways to ensure this pattern operates correctly, as I’ll discuss in Section 5.4.

87

public interface Idle {
Running start();

}

Listing 5.3: The interfaces for the “Idle” state.

// reopen file
state.start().guess(new PlayerHandleGuess(), 20);

Listing 5.4: An use of the close() event method.

5.2.1.2 Control-Preserving Events

When a simple event is sent, the sending side trades roles with the other side, which

becomes the new sender. In effect, the sending side passes control to the other side.

This effect is not always desirable. When the only reasonable response to the mes-

sage would be an acknowledgment, there’s no need for the response itself. This often

happens in protocols when one side only wants to notify the other of some event. To

allow protocol definitions to represent these sorts of events, I introduce the control-

preserving event. These events are represented as dashed event edges in the diagrams.

Since the sides do not have to swap roles on a control-preserving event, I do not

require them to use the same CPS style that the simple events do. Instead of taking

a state interface argument, they return objects of the event’s target state type as the

start() event method does in Listing 5.3. The return type of a control-preserving

event, like the state argument type of the simple event, indicates the state which this

event will lead to. In the example, the start() event leads to the Running state.

When calling a control-preserving event, like the start() event in Listing 5.4,

we can be sure that the event call itself will return. The returned state object can

immediately be used as the current state, such as in Listing 5.4. Because of this,

control-preserving events add no rules to the pattern. The only requirement on the part

of the receiving side of these events is to return a state object of the return type (as in

88

public class GameIdle implements Idle {
public Running start() {

return new GameRunning();
}

}

Listing 5.5: An implementation of the start() event method on the GameIdle state
class.

Listing 5.5) that will be responsible for receiving events in the next state.

5.2.1.3 Summary

In this section, we have learned the following things:

• An interactive protocol consists of a number of interfaces, each of which corre-

sponds to of a state of the protocol between two entities.

• Each state is considered either shaded or unshaded, determining the role each

side has in that state.

• Each state interface has a set of methods. Each method represents an event which

transitions from that state to another (possibly the same) state.

• Each event method must either be a simple event or a control-preserving event.

• A simple event method takes another state interface as an argument. It transitions

between two oppositely-shaded states. These event methods must be called in a

tail position.

• A control-preserving event returns a state interface. It transitions between two

states which are shaded the same.

• Any state object (those that implement a state interface) should never have an

event call occur on it twice within any event handler.

89

5.2.2 Example: The “Cookie” Protocol

Now that we’ve seen the dialogue pattern work in a simple example, I will present a

more complicated one. I will describe the workings of this pattern on the high level,

as well as introduce the final feature of the pattern.

This section will use the “Who stole the cookie?” game as its primary example.

Some readers may remember playing this ice-breaker during their elementary school

days. For those who don’t remember, here’s a transcript of how the game goes:

• Teacher: Who stole the cookie from the cookie jar?

• Alice: Bob stole the cookie from the cookie jar!

• Bob: Who me?

• Alice: Yes you!

• Bob: Couldn’t be!

• Alice: Then who?

• Bob: Charlie stole the cookie from the cookie jar!

...

The accused has become the new accuser, and the game repeats.

Unlike the previous example, this example has many actors who must communi-

cate with each other. The dialogue pattern, on the other hand, only defines protocols

between exactly two entities. To use the pattern in this context, I create one mediator

entity, who I call the teacher. Instead of the students interacting with each other di-

rectly, they will instead relay all of their messages through the teacher. This protocol

will define the way that each student communicates with the teacher and vice-versa.

90

Start

Accuse Approve
Accuse

Incredulous Stand By By-
stander

Incredulous

startAccuse standBy

standBy notify

accuse

deny

approve

Final
State

accusedFinal State

done

Figure 5.2: The “Cookie” protocol diagram.

Note that the all of the protocols between the teacher and the students do not have to

be in the same state. This architecture should be familiar as a standard client/server

style architecture.

Figure 5.2 contains the diagram for the protocol between the teacher and student

sides. Here, the teacher side is the sender in shaded states and the receiver in unshaded

ones, while the opposite is true for the student side. In the start state, the teacher may

tell the student that it is the accuser (with the startAccuse event), or that it is should

stand by. In the former, the student becomes the new sender, allowing them to make the

accusation in the “Accuse” state, whereas in the latter, the student remains the receiver,

ending up in the “Stand By” state. In that case, the teacher will send messages to the

students in the “Stand By” state to tell them what to do.

A student can now accuse another student, but the teacher must approve the accu-

sation. After all, the student can make a mistake like naming someone who doesn’t

exist. Here, we see once again the common scenario of one side (the student) taking

91

some action which can be approved or denied by the other side (the teacher).

Students which aren’t accusing end up in the “Stand By” state. Once a student who

was standing by is accused, all of the remaining students in “Stand By” are sent the

standBy message and become bystanders. As the accuser and the accused interact,

the bystanders are notified by the notify control-preserving event. Once the accuser

and the accused are done, the bystanders are all sent the done message, which returns

them to the “Stand By” state.

For this style of server/client protocol, this is a common scenario. Clients who are

not taking an active role are notified about what is happening with the other clients

who are. During this time, the clients never get control, so all of the events are control

preserving.

5.2.2.1 Subprotocols

The rectangular boxes in the protocol diagram are not states themselves, but are instead

instantiations of a subprotocol. Subprotocols provide a way to abstract, reuse, and

encapsulate pieces of an interactive protocol in the same way that subroutines provide

a way to abstract, encapsulate, and reuse pieces of code. In the cookie protocol, we are

able to encapsulate the interactive logic for the accusal exchange (“Who, me?”, “Yes,

you!”, and so on) into a single subprotocol and reuse it twice within the protocol. This

makes the protocol simpler, and thus easier to read and modify.

Subprotocols are much like top-level protocols in that they contain states that are

connected by events. They are similarly partitioned into shadings, although the shad-

ings of a subprotocol and those of the top-level protocol are independent. Unlike

top-level protocols, a subprotocol defines some of its states as entry points, indicating

which states the subprotocol can be entered from. They also define a number of exit

points, which are stand-ins for actual states that can be transitioned to, but cannot be

92

Incredulous

Final State

Exchange Subprotocol

Incredulous

Affirm

Denial

Query

whoMe

yesYou

couldNotBe

thenWho

Figure 5.3: The exchange subprotocol.

transitioned from within the subprotocol. Figure 5.3 shows the exchange subprotocol

I’ve used in the cookie example. Here, the “Incredulous” state is the only entry point,

whereas “Final State” is the only exit point.

In order to be useful, these subprotocols must be instantiated into a protocol, al-

lowing us to effectively copy them back into the protocol wherever they’re needed.

Figure 5.4 contains an example of a subprotocol instantiation. This instantiation in-

dicates through its label that it’s using the “Incredulous” entry point of the exchange

subprotocol. Its outgoing edge indicates that the instantiation associates the “Final

State” exit point with the “Accuse” state. When we instantiate a subprotocol, all events

targeting the subprotocol instantiation really target a copy of the entry point state the

instantiation has indicated. Here the accused event actually targets the copy of the

“Incredulous” state. Events in the subprotocol that target an exit point will instead

target the state associated with that exit point when instantiated, as the thenWho event

targets the “Accuse” state in the example.

93

Stand
By

Incredulous

accused

Accuse

Final
State

Stand
By

Incredu-
lous

Accuse

Query

accused

...

thenWho

Figure 5.4: An instantiation of the exchange subprotocol.

Note that, while the “Incredulous” state in Figure 5.3 is unshaded, the equivalent

state in Figure 5.4 is shaded. I allow subprotocols to be instantiated with all of its

state’s shadings reversed. To indicate this, I shade the instantiation the same as the

instantiated entry point.

Looking at the cookie protocol, I instantiate the exchange subprotocol twice with

opposite shadings to allow the accused and the accuser to communicate. Once the

teacher approves the accuser’s accusation, the teacher sends the accused event to the

accused student. That student enters the subprotocol through the unshaded subproto-

col instantiation. The “Incredulous” state is unshaded in this context, so the accused

student can send the whoMe event to the teacher. When they do, the teacher sends that

event to the accusing student, who has been waiting in the shaded “Incredulous” state,

and is thus ready to receive the whoMe event. The conversation continues this way,

with the teacher relaying events between the two students, until the accuser sends the

94

thenWho event. At that time, the accuser returns to the “Stand By” state, which indi-

cates he is no longer the accuser. The teacher relays this last message to the accused,

who then enters the “Accuse” state, indicating he’s the new accuser.

If we allow subprotocols to be reversed in this manner, we have to make sure

that the shadings of the exit points match as well. In the cookie protocol (Figure

5.2), notice that in the case of both subprotocol instantiations, the shading of each of

the “Incredulous” instantiations is the same as that of the states those instantiations

exit to via the “Final State” edge. In the subprotocol in Figure 5.3, we see that the

“Incredulous” state and “Final State” exit point are also the same shading. Thus these

instantiations have valid shadings for their exit states. For simplicity, I have the exit

point edges leaving a subprotocol instantiation look like control-preserving event edges

if the entry point and exit point are the same shading, while they look like simple event

edges if they are different.

Subprotocols are useful for a number of reasons. The clearest here is that it simpli-

fies the structure of the protocol as a whole, making it easier to read. Subprotocols can

also reduce the code necessary to implement a protocol, as I discuss in Section 5.3.

Subprotocols are not simply notational conveniences for describing protocols. They

have a code analogue, just as normal states in these diagrams are representations of

state interfaces. Our subprotocols definitions leverage generics (such as are in Java

1.5) to allow us to abstract over the final states.

Listing 5.6 shows an elided version of our subprotocol. Each state interface in the

subprotocol takes a type variable FinalState. This variable represents the exit point

of the subprotocol. A subprotocol state can transition to another state within the same

subprotocol by using that state as a target state of an event, passing along the exit

point as a type argument. The whoMe() event method in the Incredulous interface

transitions to the Affirm state interface in this way.

95

public interface Incredulous<FinalState> {
void whoMe(Affirm<FinalState> state);

}

// ...

public interface Query<FinalState> {
void thenWho(FinalState state);

}

Listing 5.6: The interfaces for the “Incredulous” subprotocol.

public interface ApproveAccuse {
Incredulous<StandBy> approve();
void deny(Accuse state);

}

Listing 5.7: A use of the cookie subprotocol

To exit the subprotocol, an interface simply uses the type variable as the target state

of an event, such as in the thenWho() event in the Query interface.

To instantiate a subprotocol, an event method simply targets a subprotocol state,

passing along the state an exit point will transition to as a type variable. I do this in the

approve() event of the ApproveAccuse state interface, as seen in Listing 5.7.

5.2.2.2 Summary

In this section, we have learned the following:

• A subprotocol is a piece of state logic which can be instantiated within other

protocols.

• The states interfaces in a subprotocol take one or more state variables. These

state variables represent the states the subprotocol can exit to. An event method

can target a state variable to leave the subprotocol.

96

• An event method can enter a subprotocol by targeting a subprotocol state inter-

face the type variables filled with concrete types.

• Implementations of a subprotocol state are similar to that of a normal subpro-

tocol state. The implementation can either extend the state with concrete type

arguments or pass on its own type variables to create a reusable implementation.

5.2.3 Protocol Definition Rules

I have given a number of requirements for protocol definitions above which have to

be followed for all of its state interfaces. These provide the backbone of our pattern,

ensuring that the Java type system will catch any protocol errors. If these constraints

are not followed, these properties are no longer ensured.

Violations of these constraints are not checked by the static type system. Fortu-

nately errors like this are generally simple enough to check locally without needing

external tools, and only need to be verified once for any number of implementations.

However, as our protocol definitions get more complicated it becomes more useful to

have a way to check them automatically. I have created such a tool to do this, which I

discuss in Section 5.4.2.

5.3 Discussion

The core mechanics of the dialogue pattern, which I covered in Section 5.2, are fairly

simple to understand but have a number of interesting consequences. I have identified

a number of these, and discuss them here.

97

public class AccuserIncredulous<State>
implements Incredulous<State>

{
State finalState;

public AccuserIncredulous(State state) {
this .finalState = state;

}

public void whoMe(Affirm<State> state) {
state.yesYou(

new AccuserDenial<State>(finalState));
}

}

Listing 5.8: A generic implementation of the Incredulous state.

5.3.1 Subprotocol Implementations

We’ve already seen that subprotocols are a convenient way of abstracting away pieces

of a protocol for reuse, but they can also be used to simplify our component implemen-

tations as well. We can create generic classes which implement the generic protocol

state interfaces. With this, we can reuse state implementations as well as the interfaces.

As a simple example of this, take the subprotocol from the cookie example. Listing

5.8 shows an implementation of Incredulous with a generic class named Accuser-

Incredulous. This class’ constructor takes an argument which is the state object we

will eventually transition into, and passes that along until we’re ready to enter it. This

way, this implementation can be reused at multiple points in the protocol by passing it

the right state object to match the exit point type.

As it stands, we now must pass the final state along for every state of the subpro-

tocol. This is inconvenient, producing unnecessary code. By leveraging Java’s inner

classes, we can simplify the implementation. Listing 5.9 shows an implementation

where individual state classes are created within an outer class AccuserSubprotocol

98

public class AccuserSubprotocol<State> {
State finalState;

public AccuserSubprotocol(State state) {
this .finalState = state;

}

public class AccuserIncredulous
implements Incredulous<State>

{
// ...

}
}

Incredulous<Dest> nextState =
new AccuserSubprotocol<Dest>(state)

.new AccuserIncredulous();

Listing 5.9: An inner-class implementation of the cookie subprotocol.

that contains the finalState member. When we first want to enter the subprotocol,

we can instantiate the outer class, then instantiate the appropriate inner class as I do

in the above figure. From that point on, whenever a new inner class is made within

another inner class context the outer class instance is automatically reused. In this way

we can keep around the finalState field automatically.

5.3.2 Common Protocol Definition Patterns

In my experience with the dialogue pattern, I have found a number of different com-

mon patterns of protocol design which I have used in my examples and case study. I

discuss a few of them here.

99

Approve

deny

approve

Figure 5.5: The protocol diagram for the approve pattern.

5.3.2.1 Approval

Often when the two components must coordinate on a decision, and one either is not

fully trusted to give correct information or may not have all the information necessary

to make a decision, one of the modules must “approve” the decision. The diagram

for an approve state is shown in Figure 5.5. When the event method is called from

the shaded state, the protocol enters our unshaded approve state. From this state, the

sending side can decide to send the approve event, making the protocol advance to

the next state, or it can send the deny event which will return the protocol to the state

where the event was called in the first place. If the shaded side has approved of the

originating event, then both sides of the interaction have agreed that the event can be

sent. We’ve seen examples of this in both of the protocols described in Section 5.2.

The approval pattern is one of the most common patterns because of how often such

coordination must occur.

While the approval pattern is very common, the question of when to use the ap-

proval pattern is a more subtle one than it might seem at first glance. A cursory exam-

ination would suggest that the approval pattern should be used in any case where one

side can get its inputs semantically “wrong”. For instance, if you had an integer rep-

resenting some entity ID within a system, passing an integer which is not associated

with any entity would be an error, which would suggest the approval pattern should

be used. If however the current side had recently been notified of the valid entity IDs,

then the current side should be responsible for sending a valid entity ID. We have to

100

Turn
Choice

yourTurn theirTurn

Your
Turn

Their
Turn

Figure 5.6: The protocol diagram for the role choice pattern.

distinguish between reasonable errors, where a side can be expected to give incorrect

information to an event, and unreasonable errors, where passing incorrect arguments is

an exceptional situation. In the former situation the approval pattern is well motivated.

In the latter it would simply complicate the protocol.

Ultimately, this comes down to a design decision on the part of the protocol de-

signer, but my philosophy is simply this: If the computation necessary to know the

possible values to pass as part of an event is trivial, or is fundamental to the operation

of the protocol, errors are unreasonable and should not need approval. If it is compli-

cated to keep track of, and it’s not a fundamental part of the information a side must

maintain, then any errors are reasonable.

5.3.2.2 Role Choice

When we are using a client/server model for interaction, the server often has to tell a

client whether it is an active participant or a passive participant, as in Figure 5.6. A

passive participant is often fed information by the server, but never has control until

given by the server. The active participant will be able to make most choices until it

yields control back to another player by notifying the server as such. This pattern often

has a “home base” state, which all of the clients are put into whenever such a decision

101

@DlgInterface
public interface Closed {

void open(@DlgState ApproveOpen state, String path);
}

Listing 5.10: Annotations for dialogue pattern state interfaces.

must be made. At that time, the server sends messages to each entity to tell it what its

role is going to have until everyone returns to the home base again. This allows the

server to clearly assign which interactive logic each client should execute until it’s the

next client’s turn.

In my experience, the different branches often have a similar structure, as the event

calls that the active participant makes are converted to notifications for the passive

participants. Depending on the situation, there may be opportunities for using subpro-

tocols in this environment especially if there are times where all of the clients have to

take the same action in the middle of the active participant’s logic.

5.4 Auxiliary Tools

Although the core of this pattern requires no additional tools, the dialogue pattern can

use some tools to give additional benefits to the users of the pattern. Here, I describe

two tools I built. The first is a library which allows my pattern to not only work within

the same application, but between components which may or may not be executed on

the same machine. The second tool allows us to analyze a protocol definition to ensure

that it follows the rules laid out in Section 5.2 by passing some simple checks, and

automatically create a visualization from it.

For both of these tools, I require the protocol designer to annotate their state inter-

faces as in Listing 5.10. State interfaces must be preceded by the @DlgInterface an-

notation, while the state argument for normal events must be preceded by the @DlgState

102

annotation. Control-preserving events don’t need any additional annotations. By re-

quiring these annotations, I can use common Java language mechanisms to analyze the

protocol without needing any language extensions.

I have released this software, which can be found at http://www.cs.ucla.edu/

∼naerbnic/dlgpat.tgz.

5.4.1 The Dialogue Pattern Engine

The dialogue pattern is a pattern that provides a mechanism to allow two components

to interact with each other, each knowing only the protocol definition. Since each

component does not depend on anything but that protocol we can put anything we want

between the two components as long as it follows the protocol correctly. To leverage

this, we have created the dialogue pattern engine, a multipurpose proxy layer for my

pattern. Given a protocol definition, it creates a proxy which has an attached message

socket. When an event call occurs in the component on the other side of the proxy, it

creates a message object corresponding to that event message that is sent out on the

message socket. When a message is received by the message socket the corresponding

event method is called on the current state object.

These message sockets are part of the API which I’ve developed for the dialogue

pattern engine. Given a message socket a developer can connect it directly up to an-

other message socket, which allows messages to be passed between them. By con-

necting up the message socket of two corresponding proxies, the attached components

can interact across their protocols normally. If a developer uses this API to implement

an object which has a message socket, that object can route the message arbitrarily

to allow the dialogue pattern to operate between different processes via IPC or even

different computers across a network.

To capture these event calls my engine creates proxy objects to stand in for actual

103

state objects. Instead of directly responding to event calls on the object, it stores the

next state object that was passed along, and creates a message object that it passes

out. When a message object comes in, it takes the stored state object and calls the

appropriate event method on it. This has an indirect benefit: It removes the requirement

that the target language needs to use tail-call optimization. Since the proxies only

create message objects on an event call, we can trust that the next message is executed

only after the current event call terminates, preventing stack overflow. I could also add

a runtime check to the proxy objects to check each state reference is used once and

only once.

My proof-of-concept implementation uses Java reflection to extract the protocol

information from a protocol definition, which is used to create the proxy state objects

(using Java’s java.reflect.Proxy implementation). Naturally reflection is not the

most efficient way of creating these proxies. Although I do not implement it, I could

use Java’s annotation processing architecture to get the same information from the

protocol definition and have it generate classes for the proxy objects.

5.4.1.1 Avoiding Round-Trip Times

Since the message objects may go over an arbitrarily expensive channel to reach their

destination, we should try to avoid any costs involved with message transfer. The

simplest of these is round-trip times: we often have opportunities where one side sends

a message to the other, which then sends a message back. If we can predict how the

other side will behave, we don’t have to wait for its response.

The most obvious example of this is control-preserving events. When we call a

control-preserving event, the only thing the other side can do is return an event object

of the return state type. Instead of waiting for this, we can have the proxy immediately

return a new proxy of that state type. The client code can then run until it actually

104

needs to wait for something, as opposed to artificially wait for a message that we know

is coming back.

5.4.2 The Protocol Checker/Diagram Generation Tool

To make writing and understanding my protocols simpler, I created a tool which can

take an arbitrary protocol definition written in plain Java with the above annotations,

check it for any violations of the rules in Section 5.2, and generate a visualization of

the protocol definition like those in the rest of this paper. This tool infers the shading

of all of the states in the definition which is used to ensure that shading is consistent

throughout, including over subprotocol instance boundaries.

This tool is an important addition our repertoire. With it, we can quickly under-

stand the behavior of a protocol definition without needing to read the code directly,

while checking for some simple errors.

5.5 Experience

As a basis for a case study, I chose JSettlers [JSe] as an example of nontrivial inter-

active logic. JSettlers is a Java implementation of “Settlers of Catan” [Set], a board

game where four players vie for control of an island. The game itself is turn based, but

players may need to act even when it is not their turn in response to occurrences within

the game. The JSettlers implementation uses a network client/server architecture with

one player at each client, each which uses Swing to display the current state of the

players and board. The code base is roughly 9,000 lines of code for both client and

server implementations.

105

public void processCommand(String s, Connection c)
{

SOCMessage mes = SOCMessage.toMsg(s);

if (mes != null)
{

switch (mes.getType())
{
case SOCMessage.STARTGAME:

handleSTARTGAME(c, (SOCStartGame) mes);

break;

case SOCMessage.ROLLDICE:
handleROLLDICE(c, (SOCRollDice) mes);
break;

// ...
}

}
}

Listing 5.11: The JSettlers Dispatch Logic.

106

5.5.1 Applicability of Existing Techniques

The first question I pose: Of existing techniques, are any of them well suited to imple-

menting a protocol between the clients and the server? JSettlers itself uses an ad-hoc

protocol between the two. Each side sends a stream of game messages to the other

side. No static checks are used to check the validity of messages, opting instead for

manual checking and dispatch (Listing 5.11), while the interactive logic is scattered all

throughout the code. Clearly this is not the ideal method.

The primary alternative, the state design pattern, would be no better, and possi-

bly even worse. There are about forty different types of game messages defined by

JSettlers, over about thirty different states to my estimation. In a homogeneous en-

vironment, having to handle every one of those events in each of the different states

would be a gargantuan task, requiring up to 1200 different method implementations,

many of which would be nonsense event handlers.

Further, even had we the patience to implement each of the different events for ev-

ery state, the asymmetry of the state design pattern would quickly become a nuisance.

In the protocol there are times when the server has control over the interaction, and

there are times when the client has control. The state design pattern does a poor job

of managing these changes in control due to its asymmetric nature. Take the example

state design pattern code in Listing 5.12. The yourTurn event will transfer control

to the user then return a response object to indicate what the user chose. The biggest

problem with this approach is that the response is not checked by any part of the lan-

guage, even though the events themselves are checked. Any future changes to the

protocol will be error prone, as it will be easy to send the wrong response at the wrong

time without any static checks. This problem is multiplied as the number of states and

events gets larger. Given that the static checking of the state design pattern is one of

its strengths, not allowing one communication direction to be validated is a notable

107

// In the state machine code
public class TurnState implements SettlersState {

public StateResponse yourTurn() {
UserAction userAction = waitForUserTurnAction();
switch(userAction.getType()) {

case RollButtonClicked:
setState(new RollState());
return new HasRolledResponse();

// ...
}

}

// ...
}

// In the controller code
Response stateResponse = client.yourTurn();
switch(stateResponse.getType()) {

case HasRolled:
// ...

}

Listing 5.12: A Problem with symmetry in the State Design Pattern

108

limitation.

This code is also not good Java style by necessity. Doing manual type dispatch is

generally frowned upon, yet we have to if we’re going to follow the classic format of

the state design pattern. Yet again, this style becomes more unmaintainable as the scale

of the protocol increases. Given that we have to make such control changes frequently

in the JSettler protocol, we can see that the state design pattern is not the correct way

to implement this interactive protocol.

5.5.2 Overview

The question I now pose: Is the dialogue pattern a better way to define and implement

JSettlers’ interactive protocol than the existing solutions? I will answer this question

in this section by demonstrating the dialogue pattern is very well suited to complicated

real-world protocols such as those represented by JSettlers. In doing so, I will mention

some of the benefits and limitations of my pattern.

To validate my claim, I created a communication adapter for the existing JSettler

protocol as in Figure 5.7. This adapter is made of two components, the server adapter

and the client adapter, that are connected using the dialogue pattern. The server adapter

takes messages of the existing protocol as input from the server, which it then uses to

select which event to call next on a dialogue pattern state object. That event call gets

passed over to the client adapter, which converts the event back into JSettler game

messages and passes it on to the client. This process also works in reverse. I then

interposed this communication adapter in between each client and the server using the

pattern to allow the server and client to communicate without a network channel.

This process of adapting game messages into the protocol and back is nontrivial be-

cause there is no one-to-one correspondence between game messages and event calls.

The original protocol was designed such that each message is a simple state change.

109

Client

Server

Client

Server

Client
Adapter

Server
Adapter

Before After

Figure 5.7: Architecture of the Connection Adapters

For instance, one game message just changes the number of resources that a player

has, another adds a piece to the board. Since these messages don’t capture a lot of

the high-level details of the interaction, each adapter has to extract event calls from

the low-level details contained in a number of game messages. The other adapter then

takes the high-level event calls, and generates a number of low-level game messages

from them.

I’ll now discuss the implementation of the adapters. First I’ll discuss the protocol

definition for the protocol between the two adapters, followed by a discussion about

the implementations of both adapter modules.

110

Start

Select
Turn

Your
Turn

Dice Roll

Their
Turn

Dice Roll

theirTurnyourTurn

rollDice diceRolled

RollDone

OnRobberOnRobber

TurnDone

RollDone

Initial
Setup

Notify
Robber

Notify
Turn

Place
Robber

Take
Turn

Figure 5.8: An Overview of the Server/Client Protocol for JSettlers.

111

5.5.3 JSettlers: Protocol Definition

The final version of the protocol definition had 30 states and six subprotocols (which

had a total of 20 instantiations), with a total of 64 different event methods for an

average of 2.13 event methods per state. Although I did increase the number of event

types from roughly 40 to 64, the pattern’s heterogeneity allowed me to minimize the

total number of event method implementations. No one state had more than five event

methods to handle, most only having one or two methods.

I show an overview of the general structure of the protocol in Figure 5.8. Here,

clouds represent conceptual pieces of the protocol. In designing the protocol definition

for JSettlers, I needed to use many of the techniques I’ve discussed to this point. For

each turn, the role choice technique is used to put each player into either an active

or passive role during an individual turn. The dice roll (which happens once each

turn) shares almost all of its semantics for all players, regardless of whose turn it is.

Thus it was an ideal candidate for my technique of having a single implementation for

all instances of the subprotocol. Finally the approval pattern is used throughout the

protocol, as there are many times that the clients are provided with choices that can be

illegal depending on the current state of the game.

I discovered that the definition was simpler if I encoded common protocol patterns

like the approval pattern as subprotocols. This way I minimize the number of separate

interfaces necessary, and could just instantiate the subprotocol whenever I needed that

pattern.

5.5.4 JSettlers: Protocol Implementations

The protocol definition for JSettlers succinctly described the protocol between my

adapters, keeping the complexity of any individual state to a minimum. This is only

112

useful if that reduction of complexity translated to the implementations of that defi-

nition. Fortunately, it did. I implemented the server adapter and the client adapter as

separate modules. As I implemented the appropriate interfaces for each side of the in-

teraction I quickly discovered when I did not follow the protocol definition by simply

using the errors produced by Java’s static type system. States which didn’t handle all

of the necessary events were signaled by an interface-method-not-implemented error.

Calling an invalid event on a state appeared just as a missing method.

Almost all of the event methods were implemented once and only once for each

adapter, which made the number of implementations much less than the number that

would be required by the state design pattern.

As for the symmetry problems of the state design pattern, the dialogue pattern

handles these easily having been designed specifically to handle those situations. In

Listing 5.13 I have a simple example where the server tells the player if it is their turn

or another person’s turn, and the way the client adapter responds. Notice here that

the client, upon getting the yourTurn event, installs an event handler for the client

to handle more messages from it. This event handler will do the necessary event dis-

patch of the messages from the client to decide which event to call next. Because of

the symmetric nature of this protocol, I have the flexibility to create an event handler,

something I could not do with the asymmetric version. I had to perform manual dis-

patch on the existing game messages due to the way they are defined, but I only had to

handle a small number of message types for any individual event handler.

The validation by the static type system was especially useful when the protocol

definition had to change. This sometimes happened because I had incorrectly defined

the protocol (like if I discovered that the correct event in the guessing game didn’t

unconditionally succeed) and other times because I noticed I could coalesce some

logic into a subprotocol (as I did in the cookie example). When I made these changes,

113

// Server Implementation
if (turnMessage.getPlayer() == playerID) {

state.yourTurn(new ServerYourTurn());
} else {

state.theirTurn(new ServerTheirTurn(), playerID);
}

// ...

// Client Adapter Implementation
public class ClientSelectTurn implements SelectTurn {

public void yourTurn(YourTurn state) {
sendToClient(new TurnMessage(playerID));
setClientHandler(new ClientYourTurnHandler(state));

}
}

public class ClientYourTurnHandler
implements ClientHandler

{
YourTurn currState;

public void acceptMessage(Message msg) {
switch(msg.getType()) {

case RollDice:
currState.rollDice();
break;

// Handlers for other messages
}

}
}

Listing 5.13: Example Implementation of the Adapters Using the Standard State De-
sign Pattern.

114

the type checker quickly let me focus on the implementation code which had to change

by signaling errors there. The changes I needed to make to the code were generally

simple and localized. In contrast, changes to a state design pattern protocol become

onerous; adding, removing, or modifying existing events on the state interface requires

every class which implements it (that being every state in the entire state machine) to

modify their implementation. The larger the state logic, the more effort each change

requires.

I used the technique of using outer classes to automatically maintain shared state

between independent protocol states several times throughout the implementation. The

most extreme example of this was the client player ID. Both sides of the protocol

needed to keep track of the player ID of the client in order to send the correct messages.

For example, when a client requests that the dice are rolled, the actual message has the

player number attached to it. Since many classes needed access to that ID, I created

a wrapper class around all the state classes. This wrapper class contains a player ID

field which all of the containing classes had access to.

I used that same technique for many of the subprotocols. For the dice-rolling sub-

protocol, I created a single implementation for both active players and passive players.

I discovered that, instead of just passing a state object, it was often more convenient

to pass factory objects which generated the next state instead, as in Listing 5.14. This

allowed the entity which entered the subprotocol to write code which would be run just

before the next state was entered. This code often involved sending a game message

to signal the state change, like the code at the end of the above example.

The CPS style required at the boundary of the protocol did not end up being a

major difficulty. It did not put any limitations on me which prevented me from using

the familiar Java programming style, and it was easy to ensure that event calls only

occurred in tail-call positions.

115

interface Factory<T> {
T makeState();

}

interface RollDice<T> {
T diceRolled(int value);

}

class GeneralRollDice<T> implements RollDice<T>{
private Factory<T> factory;
public GeneralRollDice(Factory<T> factory) { ... };
public T diceRolled(int value) {

// ...
return factory.makeState();

}
}

// in theirTurn ():
return new GeneralRollDice<NotifyTurn>(

new Factory<NotifyTurn>() {
public NotifyTurn makeState() {

sendToClient(new StateChangeMessage());
return new ClientNotifyTurn();

}
});

Listing 5.14: An example of a state factory

116

The only difficulty I ran into was a small amount of confusion as I implemented

alternate sides of the protocol. Since I developed both sides of the protocol at the same

time, I was continually reversing my perspective on the protocol. Initially I made a

number of mistakes, like implementing the wrong interfaces for the current side of the

protocol. The static type system notified me when I made errors when I tried to connect

the pieces of the code which allowed me to fix these errors. As I gained experience

with the system, the process became much easier.

Making communication adapters for the JSettlers project was a nontrivial task

which the dialogue pattern made easy. I developed a protocol definition which was

compatible with the existing low-level protocol. This definition provided many high-

level details missing from the original protocol. In implementing the client and server

adapters, the pattern provided several benefits in the process. For example, Java’s static

type checker was able to validate the correctness of the protocol usage automatically,

while I was able to reuse implementation code in several places using the subprotocol

feature. Maintenance costs were kept to a minimum as any changes to the definition

only required a proportional amount of work to fix in its implementations. Ultimately

these adapter implementations took 1402 lines of code, 618 and 784 lines for the client

and server adapters respectively, which I assert is a reasonable size for what the code

was intended to do.

5.6 Conclusion

I have presented the dialogue pattern, a pattern for interactive software allowing two

software components to interact symmetrically using heterogeneous interfaces. This

pattern requires no external tools or language modifications to operate. Although it

can work in many object-oriented languages, I have demonstrated its mechanics using

Java 1.5. I have provided a number of auxiliary tools to aid and more easily understand

117

dialogue pattern protocol definitions, and increase the flexibility of the existing pattern.

Finally, I have shown that the pattern scales to real-world applications by redefining

an existing non-trivial protocol in a widely used piece of interactive software.

118

CHAPTER 6

Conclusion

In this dissertation, I described three major problems of implementing interactive logic

in classic languages: inversion of control, lack of modularity, and asymmetric control.

I have shown three approaches, each of which try to solve one or more of these prob-

lems. ResponderJ adds the responder language feature to allow developers to write

interactive logic without needing inversion of control, while still remaining compatible

with the Java programming language. It also provides for modularity via inheritance

between responders. The extensible state design pattern provides a modification to

the classic state design pattern which allows developers to add new states, modify old

states, add new events, and insert new logic into existing interactive logic. The di-

alogue pattern provides symmetry between two interactive components, allowing for

more expressive interactive protocols and more scalable implementations of interac-

tive logic than is typically provided by other state machine model techniques. It also

provides for code reuse of interactive logic with the concept of subprotocols.

I feel there is more work to be done here, especially in the context of the dialogue

pattern. There are several aspects of interactive logic which the dialogue pattern does

not handle. An important one of these is asynchronous logic. My pattern currently

requires two entities to take turns sending messages back and forth. However there

are times in many interactive applications where both the user and the program should

both be able to send a message to the other in the same state. A simple example of

this is a progress dialog. The user is able to push the cancel button on the dialog, thus

119

ending the operation, whereas it’s equally valid for the computer to signal completion,

thus taking down the dialog. I believe the dialogue pattern’s interaction model can be

extended to allow for these asynchronous protocols.

Although not directly related, the concept of asynchronicity fits well with that of

concurrency. If dialogue pattern’s protocols can describe how two components can

interact asynchronously, we can run each of the components in different threads, or

different machines entirely. Complicated fine-grain interactions could be handled in

parallel with comparatively little work needed on the part of the programmer to ensure

that the interaction is implemented correctly. I would like to research these ideas of

asynchronicity and how it relates to concurrency to discover new ways for program-

mers to design their concurrent software.

The dialogue pattern also requires some glue code and a few constraints to behave

correctly because it is hosted in a procedure-based language. Using the ideas behind

the dialogue pattern as a basis, I would like to explore new models for languages which

use interactive components as a fundamental unit of abstraction.

Although these techniques are ultimately designed for developing strictly interac-

tive software, I’m curious if they would be applicable to a more general segment of

implementation. Many smaller components of software, such as some classes of data

structures, are somewhat interactive in nature. With a language which makes such in-

teractions natural, there could be more powerful and intuitive ways of implementing

these components that would simplify even non-interactive applications.

120

REFERENCES

[AH01] Luca de Alfaro and Thomas A. Henzinger. “Interface automata.” SIGSOFT
Softw. Eng. Notes, 26(5):109–120, 2001.

[AHT02] A. Adya, J. Howell, M. Theimer, W.J. Bolosky, and J.R. Douceur. “Coop-
erative Task Management without Manual Stack Management.” In Proc.
Usenix Tech. Conf., 2002.

[ANM06] Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. “A
framework for implementing pluggable type systems.” ACM SIGPLAN
Notices, 41(12):57–74, December 2006.

[Arn00] Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language Third Edition. Addison-Wesley, Reading, MA, third edition,
2000.

[BDS06] Dariusz Biernacki, Olivier Danvy, and Chung chieh Shan. “On the static
and dynamic extents of delimited continuations.” Sci. Comput. Program,
60(3):274–297, 2006.

[BR02] Thomas Ball and Sriram K. Rajamani. “The SLAM project: Debugging
system software via static analysis.” In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 1–3. ACM Press, 2002.

[CCH89] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C.
Mitchell. “F-Bounded Polymorphism for Object-Oriented Programming.”
In Proc. of 4th Int. Conf. on Functional Programming and Computer Ar-
chitecture, FPCA’89, London, UK, 11–13 Sept 1989, pp. 273–280. ACM
Press, New York, 1989.

[CK05] Ryan Cunningham and Eddie Kohler. “Making events less slippery with
eel.” In HOTOS’05: Proceedings of the 10th conference on Hot Topics in
Operating Systems, pp. 3–3, Berkeley, CA, USA, 2005. USENIX Associa-
tion.

[DCV07] Iulian Dragos, Antonio Cunei, and Jan Vitek. “Continuations in the Java
Virtual Machine.” In Proceedings of the Second Workshop on Implementa-
tion, Compilcation, Optimization of Object-Oriented Languages, Programs
and Systems (ICOOOLPS’07), 2007.

121

[DF01] Robert DeLine and Manuel Fähndrich. “Enforcing high-level protocols
in low-level software.” In Proceedings of the ACM SIGPLAN 2001 con-
ference on Programming language design and implementation, pp. 59–69.
ACM Press, 2001.

[DF04] Robert Deline and Manuel Fähndrich. “Typestates for objects.” In In Proc.
18th ECOOP, pp. 465–490. Springer, 2004.

[DOM] “The Document Object Model (DOM) Level 1 Specification.” http://
www.w3.org/TR/2000/WD-DOM-Level-1-20000929/.

[Ern01] Erik Ernst. “Family Polymorphism.” In ECOOP ’01: Proceedings of
the 15th European Conference on Object-Oriented Programming, pp. 303–
326, London, UK, 2001. Springer-Verlag.

[FAH06] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen
Hunt, James R. Larus, and Steven Levi. “Language support for fast and re-
liable message-based communication in singularity OS.” In EuroSys ’06:
Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006, pp. 177–190, New York, NY, USA, 2006. ACM.

[Fel88] Matthias Felleisen. “The Theory and Practice of First-Class Prompts.” In
POPL, pp. 180–190, 1988.

[FMM07] Jeffrey Fischer, Rupak Majumdar, and Todd Millstein. “Tasks: language
support for event-driven programming.” In PEPM ’07: Proceedings of
the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation, pp. 134–143, New York, NY, USA, 2007.
ACM.

[FYF07] Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen.
“Adding Delimited and Composable Control to a Production Programming
Environment.” In Proceedings of the ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’07), 2007.

[Gar00] J. Garrigue. “Code reuse through polymorphic variants.” In Workshop on
Foundations of Software Engineering, November 2000.

[GBe] “GBeta home page.” http://www.daimi.au.dk/∼eernst/gbeta.

[GHJ95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Massachusetts, 1995.

122

[Objektorientierte Software Loesungen fuer haufig auftretende Design-
Probleme werden in katalogisierter Form mit Anwendungsbeispielen und
Implementierungsbeispielen in C++ oder Smalltalk dargestellt.]

[Gos05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification, Third Edition. Addison-Wesley, 2005.

[Har87] D. Harel. “Statecharts: A Visual Formalism for Complex Systems.” Sci-
ence of Computer Programming, 8(3):231–274, 1987.

[HJM02] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. “Lazy abstrac-
tion.” In In POPL, pp. 58–70. ACM Press, 2002.

[HO06] Philipp Haller and Martin Odersky. “Event-Based Programming Without
Inversion of Control.” In Proceedings of theModular Programming Lan-
guages, 7th Joint Modular Languages Conference, JMLC 2006, volume
4228 of Lecture Notes in Computer Science, pp. 4–22. Springer, 2006.

[HVK98] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. “Language Prim-
itives and Type Discipline for Structured Communication-Based Program-
ming.” In Chris Hankin, editor, Programming Languages and Systems—
ESOP’98, 7th European Symposium on Programming, volume 1381 of
Lecture Notes in Computer Science, pp. 122–138, Lisbon, Portugal,
28 March–4 April 1998. Springer.

[JDO] “JDOM home page.” http://www.jdom.org/.

[JSe] “JSettlers home page.” http://www.jsettlers.com.

[KHM07] Shriram Krishnamurthi, Peter Walton Hopkins, Jay McCarthy, Paul T.
Graunke, Greg Pettyjohn, and Matthias Felleisen. “Impelementation and
Use of the PLT Scheme Web Server.” Higher-Order and Symbolic Compu-
tation, 2007.

[Knu97] Donald Knuth. Fundamental Algorithms, third edition. Addison-Wesley,
1997.

[Lis93] Barbara Liskov. “A history of CLU.” ACM SIGPLAN Notices, 28(3):133–
147, 1993.

[MOS96] Stephan Murer, Stephen Omohundro, David Stoutamire, and Clemens
Szyperski. “Iteration Abstraction in Sather.” ACM Transactions on Pro-
gramming Languages and Systems, 18(1):1–15, January 1996.

123

[NCM03] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. “Poly-
glot: An Extensible Compiler Framework for Java.” In Proceedings of CC
2003: 12’th International Conference on Compiler Construction. Springer-
Verlag, April 2003.

[Ous96] J. K. Ousterhout. “Why Threads are a Bad Idea (For Most Purposes).”
Invited talk at the 1996 USENIX Technical Conference, January 1996.

[Ovm] “Ovm home page.” http://www.ovmj.org/.

[OZ05] Martin Odersky and Matthias Zenger. “Independently Extensible Solutions
to the Expression Problem.” In Proc. FOOL 12, January 2005.

[Pyt] “PEP 255: Simple Generators.” http://www.python.org/peps/
pep-0255.html.

[Rey75] J. C. Reynolds. “User-defined Types and Procedural Data Structures as
Complementary Approaches to Type Abstraction.” In S. A. Schuman, ed-
itor, New Directions in Algorithmic Languages, pp. 157–168. IRIA, Roc-
quencourt, 1975.

[SAX] “The Simple API for XML (SAX) home page.” http://sax.
sourceforge.net.

[Sca] “The Scala language home page.” http://scala.epfl.ch.

[Set] “Settlers of Catan publisher page.” http://www.mayfairgames.com.

[Tar91] Marc Tarpenning. “Cooperative multitasking in C++.” Dr. Dobb’s Journal,
16(4):54, 56, 58–59, 96, 98–99, April 1991.

[Tor04] Mads Torgersen. “The Expression Problem Revisited.” In Proceedings
of European Conference on Object-Oriented Programming (ECOOP’04),
LNCS 3086, pp. 123–146. Springer Verlag, June 2004.

[Wad98] Philip Wadler. “The Expression Problem.” Email to the Java Genericity
mailing list, December 1998.

[3 references.]

[ZO01] Matthias Zenger and Martin Odersky. “Extensible Algebraic Datatypes
with Defaults.” In In Proceedings of the International Conference on Func-
tional Programming, pp. 241–252. ACM Press, 2001.

124

