
Modular Typechecking for Hierarchically
Extensible Datatypes and Functions

TODD MILLSTEIN
University of California, Los Angeles
and
COLIN BLECKNER and CRAIG CHAMBERS
University of Washington

One promising approach for adding object-oriented (OO) facilities to functional languages like ML
is to generalize the existing datatype and function constructs to be hierarchical and extensible, so
that datatype variants simulate classes and function cases simulate methods. This approach allows
existing datatypes to be easily extended with both new operations and new variants, resolving a
longstanding conflict between the functional and OO styles. However, previous designs based on
this approach have been forced to give up modular typechecking, requiring whole-program checks to
ensure type safety. We describe Extensible ML (EML), an ML-like language that supports hierarchi-
cal, extensible datatypes and functions while preserving purely modular typechecking. To achieve
this result, EML’s type system imposes a few requirements on datatype and function extensibility,
but EML is still able to express both traditional functional and OO idioms. We have formalized a core
version of EML and proven the associated type system sound, and we have developed a prototype
interpreter for the language.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; syntax; D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Classes and objects, data types and structures; procedures, functions, and subroutines

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Extensible datatypes, extensible functions, modular
typechecking

An earlier version of this article appears in the Proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP’02), 37:9.
This work was performed while the first author was at the University of Washington. This work
was supported in part by NSF grant CCR-9970986, NSF Young Investigator Award CCR-9457767,
gifts from Sun Microsystems and IBM, and a Wilma Bradley graduate fellowship.
Authors’ addresses: T. Millstein, Computer Science Department, 4531D Boelter Hall, University
of California, Los Angeles, Los Angeles, CA 90095-1596; email: todd@cs.ucla.edu; C. Bleckner and
C. Chambers, Department of Computer Science and Engineering, University of Washington, Box
352350, Seattle, WA 98195-2350; email: {colin,chambers}@cs.washington.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0164-0925/04/0900-0836 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004, Pages 836–889.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 837

1. INTRODUCTION

Many researchers have noted a difference in the extensibility benefits offered
by the functional and object-oriented (OO) styles [Reynolds 1978; Cook 1991;
Odersky and Wadler 1997; Krishnamurthi et al. 1998; Findler and Flatt 1998;
Garrigue 2000; Zenger and Odersky 2001]. Functional languages like ML al-
low new operations to be easily added to existing datatypes (by adding new
fun declarations), without requiring access to existing code. However, new data
variants cannot be added without a potentially whole-program modification
(since existing functions must be modified in place to handle the new vari-
ants). On the other hand, traditional OO approaches allow new data variants
to be easily added to existing class hierarchies (by declaring subclasses with
overriding methods), without modifying existing code. However, adding new op-
erations to existing classes requires access to the source code for those classes
(since methods cannot be added to existing classes without modifying them in
place).

There have been several recent research efforts to integrate the benefits of
the functional and OO styles in the context of ML. OCaml [Rémy and Vouillon
1998] adds OO features including class and method definitions to ML. The OO
constructs essentially form their own sublanguage that is largely separate from
the existing ML datatype and fun constructs. Adding a set of new constructs
has the advantage that existing language constructs are minimally affected by
the extension, retaining their traditional semantics and typing properties. Fur-
ther, the augmented language addresses the expressiveness differences of the
functional and OO styles in a very simple way, by providing both options. How-
ever, such simplicity comes at a cost to programmers, who are forced to choose
up front whether to represent an abstraction with datatypes or with classes. As
described above, this decision impacts the kind of extensibility allowable for the
abstraction. It may be difficult to determine a priori which kind of extensibility
will be required, and it is difficult to change the decision after the fact. Fur-
ther, it is not possible for the abstraction to enjoy both kinds of extensibility at
once.

An alternative approach is to generalize existing ML constructs to support
the OO style. OML [Reppy and Riecke 1996], for example, introduces an objtype
construct for modeling class hierarchies. This construct can be seen as a gen-
eralization of ML datatypes to be hierarchical and extensible. Therefore, pro-
grammers need not decide between datatypes and classes up front; both are
embodied in the objtype construct. However, OML still maintains a distinction
between methods and functions, which have different benefits. New methods
may not be added to existing objtypes without modifying existing code, while
ordinary ML functions may be. Methods dynamically dispatch on their associ-
ated objtype, while functions support ML-style pattern matching.

ML≤ [Bourdoncle and Merz 1997] integrates the OO style further with exist-
ing ML constructs. Like OML, ML≤ generalizes ML datatypes to be hierarchi-
cal and extensible. Further, methods are simulated via function cases that use
OO-style dynamic dispatch semantics. In this approach, programmers need
not choose between two forms of extensibility; a single language mechanism

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

838 • T. Millstein et al.

supports the easy addition of both new operations and new variants to existing
datatypes.

However, there are important ways in which ML≤ is not well integrated with
existing ML language features. First, ML≤ does not support ML-style pattern
matching. Patterns are essentially restricted to be top-level datatype construc-
tor tests, which are the analogue of dynamic dispatch tests in OO languages.
Other common ML-style patterns and patterns on subcomponents cannot be
programmed. Second, extensible datatypes are of limited utility without exten-
sible functions, which allow existing functions to be updated with new cases
as new data variants are declared. However, ML≤ does not support extensi-
ble functions: all function cases are provided when a function is declared. The
authors sketch a source-level language that supports extensible functions. Un-
fortunately, this critical generalization of their work causes a loss of modular
reasoning: static typechecking of a program cannot be completed until link
time, when all modules are available. Therefore, important software engineer-
ing benefits are lost, including early detection of errors, libraries that are guar-
anteed to be typesafe in any context satisfying their interface requirements, in-
dependent development of typesafe modules by separate teams of programmers,
and incremental modification (and subsequent incremental retypechecking) of
code.

The checks that must be delayed to link time in ML≤ constitute impleme-
ntation-side typechecking (ITC) [Chambers and Leavens 1995], which ensures
that each function in the program is exhaustively and unambiguously im-
plemented. Implementation-side typechecking contrasts with client-side type-
checking of functions, which checks that each function application in the pro-
gram is type-correct. Client-side typechecking in ML≤ is standard and can be
performed modularly.

In traditional functional languages, ITC checks each function for match
nonexhaustive and match redundant errors. Each function can be checked mod-
ularly, since a function declaration includes all of its cases, and datatypes are
not extensible. In traditional OO languages, ITC checks that each class declares
or inherits a most-specific method for each supported operation. Each class can
be checked modularly, since a class declaration includes all of its (noninherited)
methods and new operations cannot be added to existing classes.

The implicit restrictions in the traditional functional and OO settings that
allow for modular ITC do not hold in the presence of extensible datatypes and
functions. Unlike traditional functional languages, no module is guaranteed to
have access to all of a function’s cases. Unlike traditional OO languages, no
module is guaranteed to have access to all of a datatype variant’s associated
functions and function cases. Therefore, ML≤ is forced to perform ITC globally,
when the whole program is available.

In this work, we describe an ML-like language called Extensible ML1 (EML).
EML introduces a class construct, which is a form of hierarchical, extensible
datatype in the spirit of the constructs in OML and ML≤. As in ML≤, methods

1Not to be confused with Extended ML [Kahrs et al. 1997].

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 839

are simulated by function cases. In addition:
� EML generalizes the OO dispatching semantics in ML≤ to allow arbitrary ML-

style patterns. This generalization provides idioms that are not expressible
by either traditional functional or traditional OO languages.

� EML supports extensible functions while preserving purely modular type-
checking: each module can be typechecked given only the interfaces of the
modules it statically depends upon (in a sense described later), with no whole-
program checks required. To make per-module implementation-side type-
checking sound without necessitating link-time checks, EML’s type system
imposes certain requirements via the notion of a function’s owner position,
which serves to coordinate otherwise independent extensions to the func-
tion. The owner position is inspired by the properties of a method’s receiver
that achieve modular typechecking in traditional OO languages. Despite the
imposed requirements, EML’s classes and functions are still able to simul-
taneously express traditional functional and OO extensibility idioms. The
requirements are adapted from our earlier work on Dubious [Millstein and
Chambers 1999, 2002], a calculus designed to explore modular typechecking
for OO languages based on multimethods.

The rest of the paper is organized as follows. Section 2 describes EML by exam-
ple. Section 3 discusses the challenges for performing modular implementation-
side typechecking in EML and presents our solution to these challenges.
Section 4 defines MINI-EML, a core language for EML used to formalize our mod-
ular type system. Section 5 describes challenges for the interaction of EML’s
constructs with an ML-style module system, including signature ascription
and functors. Section 6 discusses related work, and section 7 concludes. The
appendix contains the type soundness proof for MINI-EML.

2. EML BY EXAMPLE

Figure 1 shows an EML implementation of integer sets. Classes, functions, and
function cases are declared in ML-style structs. In our discussion we assume
that structs contain only EML’s new declarations. This assumption is lifted in
Section 5, which describes the interaction of EML’s features with an ML-style
module system.

2.1 Classes

The Set class in Figure 1 is the top of the integer set hierarchy. The ListSet
class inherits from Set, implementing sets via lists. The CListSet class in-
herits from ListSet, additionally keeping track of the number of elements
in the set. A program’s subclass relation is the reflexive, transitive closure
of the declared extends relation. The Set class is declared abstract, so
it may not be instantiated, while its subclasses ListSet and CListSet are
concrete.

Each class declares a record type of its instance variables, using the of
clause. Superclass instance variables are inherited: the representation type of a
class C is the representation type (recursively) of its direct superclass (if any)

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

840 • T. Millstein et al.

Fig. 1. A hierarchy of integer sets in EML.

concatenated with the type in the of clause in C’s declaration. For example, the
representation type of CListSet is {es:int list,count:int}, since ListSet’s
representation type is {es:int list}.

Each class declaration also implicitly declares a constructor, similar to con-
structor declarations in OCaml [Rémy and Vouillon 1998] and XMOC [Fisher
and Reppy 2000], a core language for Moby [Fisher and Reppy 1999].
For example, the CListSet constructor expects arguments es of type int
list and c of type int, initializes inherited instance variables via the call
ListSet(es) to the superclass constructor, and initializes the new count in-
stance variable to c. In general, the arguments to the superclass construc-
tor call and the instance-variable initializers may be arbitrary expressions.
It would be straightforward to allow a class to have multiple constructors
by introducing a separate constructor declaration, similar to “makers” in
Moby.

Classes are as expressive as ordinary ML-style datatypes. An ML datatype
of the form

datatype DT = C1 of {L11:T11,. . .,L1m:T1m} |· · ·| Cr of {Lr1:Tr1,. . ., Lrn:Trn}
is encoded in EML by the following class declarations:

abstract class DT of {}
class C1(I11:T11,. . .,I1m:T1m) extends DT() of {L11:T11=I11,. . .,L1m:T1m=I1m}
ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 841

· · ·
class Cr(Ir1:Tr1,. . .,Irn:Trn) extends DT() of {Lr1:Tr1=Ir1,. . .,Lrn:Trn=Irn}
For example, the declarations of the Set and ListSet classes in Figure 1 could
have been written equivalently as follows:

datatype Set = ListSet of {es:int list}
Classes additionally generalize ML-style datatypes to be extensible, whereby

new variants can be written in modules other than the one declaring the
datatype, and hierarchical, whereby variants can have their own “subvari-
ants.” The CListSet subclass of ListSet in Figure 1 illustrates class hierar-
chies; datatype extensibility is described in Section 2.4 below. In addition to
being extensible and hierarchical, classes are also full-fledged types while ML
variants are not. For example, classes can appear in a function’s argument or
return type.

A concrete class is instantiated by invoking its constructor. For example, the
result of ListSet([5,3]) is an instance of ListSet representing the set {5,3}.
Like values of ML datatypes, class instances have no special object identity or
mutable state; refs can be used in a class’s representation type for this purpose.

Classes support only single inheritance. Single inheritance of classes is com-
patible with the ML style, in which each data variant conceptually singly in-
herits from the corresponding datatype, as shown in the above encoding of
datatypes into classes. However, EML can support multiple interface inheri-
tance, like Java [Arnold et al. 2000; Gosling et al. 2000]. Interfaces in EML have
a syntax similar to classes, but they do not have instance variables and do not
declare a constructor. For example, the abstract Set class in Figure 1 could
instead be declared to be an interface as follows:

interface Set

Classes may be declared to implement interfaces. Given the above declaration,
the declaration of ListSet would be modified to look as follows:

class ListSet(es:int list) implements Set of {es:int list = elems}
Like abstract classes, interfaces may not be instantiated. Unlike (abstract

or concrete) classes, an interface can inherit from multiple interfaces via
its extends clause, and a class can inherit from multiple interfaces via its
implements clause. As described below, interfaces must obey additional con-
straints in exchange for this extra expressiveness.

2.2 Functions and Function Cases

To make functions extensible, we break an ML-style function declaration into
two pieces. The fun declaration introduces a function and specifies its type. The
add function in Figure 1, for example, is declared to accept one integer and one
instance of Set or a subclass, and to return an instance of Set or a subclass.
The # in the function’s argument type signifies that the second argument to add
is in the owner position. Every EML function declaration must specify exactly
one owner position, and the type at that position must be a class or interface.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

842 • T. Millstein et al.

The owner position can be arbitrarily nested within a function’s argument type.
As a syntactic sugar, if a function’s entire argument type is simply a class or
interface, then that sole argument position is assumed to be the owner. This
sugar is used in the declarations of the other functions in Figure 1. A function
and its cases must satisfy several requirements with respect to its owner posi-
tion, to ensure that the function can be modularly checked for exhaustiveness
and unambiguity. These requirements are discussed in Section 3. The owner
position has no dynamic effect.

The extend fun declaration adds a case to an existing function. The dec-
laration specifies the name of the function being extended, a pattern guard,
and the new case’s body. There are two size function cases in Figure 1, han-
dling ListSets and CListSets, respectively. In a traditional OO language, these
cases would be declared as size methods in the ListSet and CListSet class
declarations.

The extend fun declaration updates the set of cases associated with the
specified function, instead of creating a new function containing the extra case.
The chosen semantics is necessary for extensible functions to faithfully model
OO-style methods. For example, suppose a new structure HashSetMod creates
a Set subclass HashSet, which represents sets using hash tables, along with
an overriding size function case for HashSet. (Such a structure is described in
Section 2.4 below.) The semantics of extend fun allows HashSet’s size case to be
invoked from the existing size application in the first isEmpty case in Figure 1,
even though HashSet and its size case are not known in SetMod. Similarly,
clients of the set hierarchy need not be aware of all Set subclasses and need not
be modified as new Set subclasses are introduced.

A regular ML-style function consisting of n function cases is encoded in EML

as a fun declaration followed by n extend fun declarations. EML functions can
be passed to and returned from other functions, like lambdas and ML-style
functions. However, a function’s extensibility is second-class: new cases may
only be added to statically known functions.

Patterns in EML allow the expression of both OO-style dynamic dispatch and
functional-style patterns. OO dispatch is encoded by a class pattern. For ex-
ample, the second size case is only applicable dynamically if the argument is
an instance of CListSet or a subclass. Class patterns contain a representation
pattern, which supports dispatch on instance variables recursively. While the
second size case’s representation pattern matches the representation of any
instance of CListSet (or a subclass), the second isEmpty case requires the ar-
gument’s count instance variable to have the value zero. As in ML, a pattern
may bind identifiers for use in its case’s body. For example, the first add case
binds the identifiers i, s, and es.

An OO-style “best-match” policy decides which function case to invoke; their
order does not matter. Given an application of function f with argument value
v, first the applicable cases of f for v are retrieved. These are the cases that
have a pattern that v matches. Of the applicable cases, the unique case that
is more specific than all other applicable cases is invoked. Intuitively, case c1
is more specific than case c2 if the set of values matching c1’s pattern is a
subset of the set of values matching c2’s pattern. We call the invoked case the

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 843

most-specific applicable case. If a function application has no applicable cases,
a match nonexhaustive error occurs. If a function application has at least one
applicable case but no most-specific one, a match ambiguous error occurs.

For example, consider the invocation isEmpty(CListSet([],0)). Both
isEmpty cases in Figure 1 are applicable to the argument value, and the second
case is invoked because it is the more-specific one. The best-match semantics
contrasts with the traditional “first-match” semantics of function cases in ML.
The first-match semantics does not generalize naturally to handle extensible
datatypes and functions, where typically the more-specific function cases are
written after the less-specific ones, as new data variants are defined.

Implementation-side typechecking of a function ensures that match nonex-
haustive and match ambiguous errors cannot occur at run time. Conceptually
this checking entails ensuring that each type-correct argument to the func-
tion has a most-specific applicable case to invoke. Each module’s typechecks
include ITC for functions whose exhaustiveness and unambiguity may be af-
fected by the module. These are functions declared in the module, functions
with cases declared in the module, and functions that can accept instances of
classes declared in the module. For example, ITC of SetMod in Figure 1 checks
the four functions declared there. Consider checking the size function for ex-
haustiveness and unambiguity. Any ListSet instance will invoke the first size
case, and any CListSet instance will invoke the second size case. The Set
class need not have a most-specific applicable case, because Set is declared
abstract. Therefore, ITC for size succeeds. On the other hand, if the first size
case were missing, a match nonexhaustive error would be statically signaled.
Alternatively, if another size case with pattern ListSet {es=es} were declared,
a match ambiguous error would be statically signaled.

Unlike (both concrete and abstract) classes, interfaces may not appear in
patterns. This restriction is the EML analogue of Java’s restriction that an in-
terface have no concrete methods. Both restrictions remove the potential for
dynamic-dispatch ambiguities caused by multiple inheritance. Because of EML’s
restriction, interfaces do not impact ITC any differently from abstract classes.
Therefore we ignore interfaces in the remainder of the paper.

2.3 Adding New Functions

As with ML datatypes, but unlike traditional classes, EML supports the easy
addition of new functions to an existing class hierarchy. For example, Figure 2
adds a function for computing the union of two Sets, without modifying any
code in the SetMod module.2 Two union function cases are provided. The first
case is applicable to any pair of Sets. The second union case provides a more
efficient implementation for two ListSets. ITC of UnionMod checks union for ex-
haustiveness and unambiguity. Any pair consisting of ListSet and/or CListSet
instances will invoke the second union case, so the function’s check succeeds.

2Technically, all references to Set, ListSet, add, and elems in UnionMod should instead be to
SetMod.Set, SetMod.ListSet, SetMod.add, and SetMod.elems. For readability, we omit the full path
names in examples when clear from context.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

844 • T. Millstein et al.

Fig. 2. Adding new functions in EML.

Fig. 3. Adding new data variants in EML.

2.4 Adding New Data Variants

Unlike ML datatypes, classes in EML also support the easy addition of new
data variants to existing hierarchies, without modifying existing code. An ex-
ample is shown in Figure 3, which provides a new implementation HashSet of
sets using an existing implementation (not shown) of hash tables. Implementa-
tions of add, size, and elems are provided for the new kind of set, while the first
isEmpty case in Figure 1 is inherited. In a traditional OO language, HashSetMod
corresponds to the declaration of a new subclass of Set with some overriding
methods. ITC of HashSetMod rechecks the four functions declared in Figure 1
to ensure that they handle HashSet instances properly. For example, if the new
size case were not declared, a match nonexhaustive error for size would be
signaled statically.

UnionMod and HashSetMod from Figures 2 and 3 illustrate EML’s support for
both functional and OO forms of extensibility in a single class hierarchy. The
original Set abstraction is flexibly reused by clients, who augment the abstrac-
tion with client-specific functionality and also add a specialized implementation
(subclass) of the abstraction, all without modifying existing code. UnionMod and
HashSetMod are completely independent: either, both, or neither module could
be linked into the final program. In this way, different versions of the Set ab-
straction may be used in different programs, depending on the needs of each
application.

If both UnionMod and HashSetMod are present in a program, then HashSet
implicitly supports the union operation and inherits any applicable cases. This
expressiveness is at the heart of the problem of modular ITC. Because the
two modules are independent, neither is “aware” of the other during its static

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 845

Fig. 4. Class hierarchies in EML.

Fig. 5. Polymorphic sets in EML.

typechecks. Therefore, neither module’s ITC ensures that union is exhaustively
and unambiguously implemented for HashSets. In this example, union happens
to have a case that handles HashSets (by handling any pair of sets). Without
extra requirements, however, things do not always work out so well, as we show
in Section 3.

Another example of data-variant extensibility is illustrated in Figure 4. A
new subclass of ListSet is created, representing an implementation of sets via
sorted lists. Overriding cases of add and union are provided, as well as a new
operation for accessing the minimum element of a set implemented as a sorted
list. ITC of SortedListSetMod checks the four functions declared in Figure 1 as
well as the new getMin function to ensure exhaustiveness and unambiguity for
SListSets.

2.5 Parametric Polymorphism

EML supports a polymorphic type system. Class, function, and function case
declarations optionally bind type variables. References to a polymorphic class or
function specify a particular type instantiation. As an example, Figure 5 shows
some of the declarations for a polymorphic version of the sets in Figure 1. Each
class in the set hierarchy is now parameterized by the element type, as is the add
function. As a convenience, each function case is also explicitly parameterized,

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

846 • T. Millstein et al.

allowing its function’s type variables to be renamed for use in the case’s body.
References to classes in a case’s pattern do not contain type parameters. The
unique typesafe instantiation for such classes is determined from the declared
argument type (for example, the reference to CListSet in the second add case’s
pattern is implicitly ’a CListSet).

EML’s polymorphic type system is deliberately simple. First, subclasses must
have the same type variables as their superclasses. This requirement is con-
sistent with polymorphism in ML, where data variants have the same type
variables as their associated datatype. Also, type parameters are invariant; for
example, T1 ListSet is a subtype of T2 Set if and only if T1=T2. Finally, there
is no support for bounded polymorphism [Cardelli and Wegner 1985]. We have
chosen to make the polymorphic type system simple because polymorphism is
orthogonal to the problems of modular ITC that we address in this work. Those
problems arise from the fact that some related classes, functions, and func-
tion cases are not modularly “aware” of one another; the problems are neither
reduced nor exacerbated by polymorphic types. Therefore, EML’s polymorphic
type system could be generalized in standard ways without affecting modular
typechecking. For example, EML could adopt ML≤’s subtype-constrained poly-
morphic type system for extensible datatypes and functions [Bourdoncle and
Merz 1997].

EML is also explicitly typed. This contrasts with ML’s polymorphic type sys-
tem, which supports type inference. Unfortunately, supporting both subtyping
and polymorphic type inference is known to be difficult [Fuh and Mishra 1990;
Hoang and Mitchell 1995; Nordlander 1999]. It would be useful to explore forms
of local type inference [Pierce and Turner 2000] to ease the type-annotation
burden somewhat. Recent work of Bonniot Bonniot [2002] has presented a sim-
plified account of ML≤’s type system and shown how to incorporate a form of
local type inference, so this could be a promising foundation for augmenting
EML.

3. MODULAR IMPLEMENTATION-SIDE TYPECHECKING

This section focuses on the problem of modular ITC for EML. First we define our
notion of modular typechecking. Next we illustrate the ways in which straight-
forward modular ITC is unsound. Finally we describe the requirements we
impose to achieve modular type safety.

3.1 Modular Typechecking

We say that a language’s typechecking scheme is modular if it has two prop-
erties. First, each module m can be typechecked given only the signatures3 of
other modules (without requiring access to the associated implementations).
Second, m can be typechecked given only those signatures that m statically
depends upon. Module m statically depends upon signature s if either of the

3We employ the ML terminology signature, rather than the more generic interface, to avoid confu-
sion with the notion of interface in languages like Java and EML.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 847

following conditions holds:

� Module m refers to a name that is bound in s.
� Module m statically depends upon module signature s′, and s′ refers to a

name that is bound in s.

Traditional functional languages can support modular typechecking. For
example, each structure in ML could be typechecked given only its statically
depended-upon signatures. A structure’s signature is either an explicitly as-
cribed one or else the structure’s principal signature. Similarly, each class in a
standard OO language can be typechecked given only the statically depended-
upon class signatures. Informally, the signature of a class consists of its list of
superclasses and superinterfaces, the types of its visible fields, and the headers,
but not bodies, of its visible methods. Signatures for modular typechecking in
the context of Java have been formally defined by others [Drossopoulou et al.
1999; Ancona et al. 2002].

A modular typechecking scheme for EML must typecheck each structure given
only the signatures it statically depends upon. An EML signature contains a se-
quence of class, function, and function-case specifications. The syntax of each
specification is identical to that of its associated declaration, but with all ex-
pressions removed. In particular, each class specification does not include the
arguments to the superclass constructor or the instance-variable initializer ex-
pressions, and each extend fun specification does not include the case’s body.

For now, EML does not support explicit signature ascription; this ability is
discussed in Section 5. Instead, each structure is implicitly ascribed to its prin-
cipal signature. This signature has the same name as its associated structure
and contains a specification for each declaration in the structure. Further, each
specification is identical to its associated declaration, but with all expressions
removed. For example, Figure 6 shows the principal signature of SetMod from
Figure 1.

Classes, functions, and cases that are declared in a module m or specified in
a signature upon which m statically depends are said to be available during
the typechecking of m. All other classes, functions, and cases are unavailable
and may not be considered during the typechecking of m. Our definition of mod-
ular typechecking validates the intuition that union of Figure 2 and HashSet
of Figure 3 are not “aware” of one another. Neither UnionMod nor HashSetMod
statically depends upon the other’s signature. Therefore, HashSet is unavail-
able during modular typechecks on UnionMod and union is unavailable during
modular typechecks on HashSetMod, so neither module’s typechecks ensure that
union properly handles HashSets.

One undesirable feature of an EML signature is the fact that it reveals
information about a function’s cases. Ideally, clients of an EML structure could
be safely typechecked given only type information about the classes and
functions declared in a module, without requiring any knowledge of individual
extend fun declarations. Such a revised EML signature would adhere to
Cardelli’s notion of modular typechecking, which requires each structure to be
typechecked given only the types of its free variables [Cardelli 1997]. However,

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

848 • T. Millstein et al.

Fig. 6. The principal signature of SetMod.

EML’s expressiveness makes this stronger notion of modularity infeasible. A
client of a structure may need access to the patterns in a structure’s extend
fun declarations in order to ensure that the associated functions remain
exhaustive and unambiguous in the face of the client’s declared classes and
function cases. Importantly, clients need never have access to the bodies of
those extend fun declarations.

EML is not alone in suffering from this problem. Indeed, EML’s notion of mod-
ularity generalizes the notion of modularity in traditional OO languages, which
also does not meet Cardelli’s definition. As mentioned above, the signature for
a class in such languages includes the headers of individual methods. Impor-
tantly, the signature for a class C reveals which of the operations that C supports
are implemented by a method that dynamically dispatches on C at the receiver;
methods for other operations are inherited from superclasses. This information
about individual methods is necessary so that subclasses can ensure the ex-
haustiveness and unambiguity of all operations they support. For example, an
abstract class’s concrete method headers determine which operations must be
implemented by concrete subclasses and which need not be. As another exam-
ple, a class that inherits from multiple other classes requires knowledge of the
method implementations in those classes in order to detect potential ambigui-
ties. Revealing the patterns of function cases is the EML generalization of this
revealing of individual methods’ receivers in traditional OO languages.

3.2 Implementation-Side Typechecking and Modularity

Consider ITC for an EML module m. A straightforward approach to modular ITC
checks each of m’s available functions f for exhaustiveness and unambiguity,

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 849

Fig. 7. Challenges for modular implementation-side typechecking.

given all available function cases and classes. We call this approach naive mod-
ular ITC. Unfortunately, naive modular ITC is unsound. The hierarchy of EML

classes in Figure 7 illustrates the kinds of problems that can occur. Naive mod-
ular ITC in ShapeMod checks intersect for exhaustiveness and unambiguity.
Since ShapeMod doesn’t statically depend upon any signatures (other than its
own), the check succeeds vacuously: Shape is abstract and so need not have
an intersect implementation. Since CircleMod declares a new intersect case,
intersect is again checked during naive modular ITC in CircleMod. CircleMod
statically depends on the signature of ShapeMod but not that of RectMod, so
CircleMod’s check does not consider the Rect class.4 Therefore, the only argu-
ment to check from CircleMod is a pair of two Circles. The intersect case in
CircleMod is most specific for two Circles, so intersect is found to be exhaus-
tive and unambiguous. By similar reasoning, intersect passes the checks from
RectMod, since RectMod does not statically depend on the signature of CircleMod.

Therefore each module’s naive modular ITC declares the intersect function
to be both exhaustive and unambiguous. However, intersect has neither of
these properties. If intersect is invoked on a pair of a Rect and a Circle (in
that order), a match nonexhaustive error will occur since neither intersect case
is applicable. If intersect is invoked on a pair of a Circle and a Rect (in that
order), a match ambiguous error will occur since both intersect cases apply
but neither is more specific than the other.

A final problem concerns the print function in RectMod. Since RectMod does
not statically depend on CircleMod’s signature, RectMod’s naive modular ITC
finds print to be exhaustive and unambiguous. However, if a Circle is ever
passed to print, a match nonexhaustive error will result.

3.3 Achieving Modular ITC

As we have seen, naive modular ITC is too permissive, allowing forms of exten-
sibility that are not modularly typesafe. To address this problem, we impose
some additional requirements on EML modules that ensure the soundness of
modular ITC. This section informally describes EML’s modular ITC algorithms
and requirements. ITC is divided into checks for exhaustiveness and checks for
unambiguity; we discuss each in turn.

A fundamental design goal for EML’s modular type system is that it still allow
the use of both functional and OO extensibility idioms in a single class hier-
archy. We are willing to sacrifice other kinds of extensibility expressible with

4Indeed, RectMod may not even have been written when CircleMod is typechecked.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

850 • T. Millstein et al.

extensible datatypes and functions in order to support the traditional func-
tional and OO idioms in a modularly typesafe manner. Functional languages
allow a new function to be added to an existing datatype. Therefore, EML must
allow a new function to be added to an existing class. OO languages allow a
new subclass to be added to an existing class, along with overriding methods
that have the new subclass as their receiver. To formulate this idiom in EML

we employ a function’s owner position, which generalizes a similar notion in
the Dubious language [Millstein and Chambers 2002]. The type at the owner
position in a function’s argument type is the function’s owner. For example, Set
is the owner of add in Figure 1. To express the OO extensibility idiom in EML,
we must allow a new subclass to be added to an existing class C, along with
overriding cases of functions for which C is the owner.

3.3.1 Modular Exhaustiveness Checking. For the purposes of modular ex-
haustiveness checking, we partition functions into two categories. A function is
called internal if it is declared in the same module as its owner; otherwise the
function is external. An internal function is guaranteed to be available to all
modules that declare subclasses of the function’s owner, while that is not true of
an external function. Therefore, an internal function can be thought of as part
of the “initial signature” of its owner class, while an external function is a later
extension to that signature. External functions have no analogue in traditional
OO languages, in which a class’s methods must all be declared with the class.
Modular exhaustiveness checking consists in enforcing two requirements, one
for external functions and the other for internal functions, which are discussed
in turn.

Exhaustiveness Requirement for External Functions. Consider the exhaus-
tiveness problem with the print function in RectMod of Figure 7. Because new
subclasses can be added to existing classes, some subclasses of a function’s
owner may not be available in the function’s module. Indeed, Circle is not
available in print’s module. On the other hand, because print is external,
there is no guarantee that print will be available to all modules declaring sub-
classes of Shape. Indeed, print is not available to Circle’s module. Therefore, to
modularly ensure that print is exhaustive, we require its module to contain a
global default case. A global default is a case whose pattern is applicable to all
type-correct arguments to the function. In general, we require each module that
declares an external function to include a global default case for the function.

Therefore, ITC on RectMod fails, because the global-default requirement is
not satisfied for its external function print. If print had a case with the pat-
tern (Shape {}), for example, then the requirement would be satisfied and the
exhaustiveness problem for Circle would be avoided. As another example, the
external function union in Figure 2 satisfies the requirement because its first
case is a global default, thereby handling the unavailable HashSet class of
Figure 3 and any other unavailable Set subclasses.

The ability to write an appropriate global default case depends heavily on
the functionality available in the “initial signature” of a class. In particular, the
global-default requirement only works well for external functions whose be-
havior can be expressed solely in terms of that signature. For example, the

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 851

requirement is very natural for union in Figure 2: the given global default is
appropriate for all unseen Set subclasses. However, had SetMod in Figure 1
not included the elems function, it is unlikely that a reasonable default case
for union could be written. Instead, the implementer may have no choice but
to make the global default case simply throw an exception, which is not much
different from the run-time match nonexhaustive error being prevented by the
global-default requirement.

The global-default requirement does not impose an extra burden from the
point of view of standard OO languages, as such languages do not even allow
external functions to be declared. However, standard functional languages like
ML do allow external functions, without requiring global default cases. Those
languages disallow data-variant extension, so an external function can be mod-
ularly checked against all possible data variants. In contrast, EML’s modular
ITC must always allow for the possibility of unavailable subclasses of a func-
tion’s owner. Section 5 introduces a mechanism for sealing class hierarchies,
which can be used to obtain the semantics of ordinary (nonextensible) datatypes
in EML. Analogous with ML, external functions on a sealed class hierarchy need
not include a global default case.

Exhaustiveness Requirement for Internal Functions. Consider the exhaus-
tiveness problem for a pair of one Rect and one Circle in the internal intersect
function of Figure 7. One way to solve the problem would be to require a global
default case, as we require for external functions. Indeed, if ShapeMod contained
an intersect case that is applicable to any pair of Shapes, the problem would
be resolved. While requiring global default cases solves the problem, it is un-
necessarily burdensome. As mentioned earlier, an internal function is guaran-
teed to be available to all modules declaring subclasses of the function’s owner.
Therefore, rather than requiring the function’s module to handle all unknown
subclasses, we can require each module that declares a concrete subclass of the
function’s owner to ensure exhaustiveness for its subclass. This idea is inspired
by standard OO languages, in which a method in an abstract class may safely
remain unimplemented, with each concrete subclass declaring or inheriting a
concrete implementation of the method.

Our requirement is that each module that declares a concrete subclass C of
an internal function’s owner must also declare or inherit a local default case for
the function. A local default case is one whose pattern accepts instances of C
and subclasses at the owner position, while every other argument position can
be passed any value of the appropriate type. Local default cases are the EML

analogue of traditional OO methods, which dispatch on the surrounding class
at the receiver position and do not dispatch on any other argument position. A
class’s local default cases ensure that the class exhaustively implements all of
the functions in its “initial” signature.

Given the local-default requirement, ITC on RectMod fails to typecheck be-
cause it does not declare or inherit a local default intersect case for Rect. (An
isomorphic error would occur in CircleMod if the second argument position in
the pair were designated the owner position.) A local default case is required re-
gardless of what other intersect cases exist, like the one shown in RectMod. The

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

852 • T. Millstein et al.

requirement would be satisfied, for example, if RectMod included an intersect
case with pattern (Rect , Shape), accepting Rects at the owner position and
accepting all Shapes in the other position. That case resolves the exhaustiveness
problem for a pair of one Rect and one Circle. A global default case need not
be written: intersect may still be safely left unimplemented for two Shapes. As
another example, the internal add function in Figure 1 does not have a global
default case. Instead, it has local default cases for the two concrete Set sub-
classes. When HashSet is introduced in Figure 3, an associated local default for
add is declared, satisfying the requirement and ensuring that add is exhaustive
for HashSets.

The local-default requirement does not impose an extra burden from the
point of view of standard OO languages. Whenever a local default case of some
internal function f is required for a class C, an OO language would require
C ’s declaration to contain an f method, so that C is properly implemented.
Therefore, the abstract-class idioms of traditional OO languages are preserved
in EML. However, standard functional languages do allow internal functions,
without requiring local default cases. As above, this is possible because such
languages disallow data-variant extension. In contrast, EML’s ITC must always
assume the possibility of unavailable concrete subclasses of classes in nonowner
positions of a function’s argument type. Again, we can use sealing, discussed in
Section 5, to remove the burden of writing local default cases.

Precise Default Checking. One practical issue that arises with checking for
(global and local) defaults in EML is the need to avoid being overly conserva-
tive. For example, a simple way to enforce the global-default requirement is
to check that every external function has a case whose pattern is the wildcard
pattern (). While using this algorithm in EML would be safe, it would also cause
many exhaustive functions to nonetheless be rejected. For example, the union
function in Figure 2 has a global default case, but it fails the above check. To
remedy this imprecision, EML instead checks that each external function has a
case whose pattern is some global default pattern: any argument of the func-
tion’s type matches the pattern. In the case of union, there are several possible
global default patterns, including , (,), (s1, s2), (Set ,), and (Set {},
Set).

EML performs the revised check by generating a precise global default pattern
and then requiring that this pattern be at least as specific as some case’s pat-
tern; that case is a global default. The algorithm retains precision via the notion
of a pattern’s depth, which is essentially the height of the pattern’s abstract syn-
tax tree representation. A valid global default case will not be overlooked by the
algorithm as long as the generated global default pattern has a depth no smaller
than that of the case’s pattern. Therefore, EML generates the pattern to have a
depth equal to the maximum depth of any available case on the function.5 In the
union example, exhaustiveness checking generates the global default pattern
(Set {}, Set {}), matching the depth of the second case’s pattern. The check

5Because class patterns allow pattern matching on a class’s representation, which may recursively
involve more class patterns, there is in general no a priori maximal depth for the patterns of a
given function.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 853

succeeds because the generated pattern is at least as specific as the first case’s
pattern, so that case is a valid global default. A similar algorithm is used for
checking for local default cases. These algorithms are implemented in the EML

prototype interpreter and are formalized in Section 4.

3.3.2 Modular Ambiguity Checking

Ambiguity Requirement. In Figure 7 the two intersect cases are ambigu-
ous, but neither CircleMod nor RectMod statically depends upon the other, so
the ambiguity is not modularly detected. We address this problem by restrict-
ing EML’s function extensibility such that cases declared in modules that do not
statically depend upon one another are guaranteed to be unambiguous. Our
restriction generalizes the implicit restrictions in standard functional and OO
languages. First we introduce the concept of a function case’s owner, which
is the class (if any) at the owner position of the case’s pattern. For example,
ListSet is the owner of the second union case in Figure 2 because it appears at
the owner position, while the first union case has no owner.

In functional languages, each case must be declared in the module that de-
clares the associated function. In OO languages, each method must be declared
inside the method’s receiver. Our requirement is the disjunction of these condi-
tions: every function case must either 1) be declared in the module that declares
the case’s function or 2) have an owner and be declared in the module that de-
clares that owner.

RectMod now fails to typecheck because its intersect case does not satisfy
our requirement: neither intersect nor Shape, the case’s owner, is declared
in RectMod. (An isomorphic error would occur in CircleMod if the second ar-
gument position in the pair were designated the owner position.) Therefore,
RectMod may not extend intersect in that way. Removing that intersect case
resolves the ambiguity for a pair of a Circle and a Rect. As another exam-
ple, the add cases in HashSetMod and SortedListSetMod of Figures 3 and 4 are
never compared for ambiguity, because the two modules do not statically depend
upon one another. However, each case satisfies our requirement by following
the traditional OO idiom of implementing an overriding case for a newly de-
clared subclass of add’s owner. Therefore the two cases are guaranteed to be
unambiguous.

Since our ambiguity requirement is the disjunction of the implicit require-
ments in standard functional and OO languages, our requirement does not re-
strict those programming styles and allows them to coexist. Therefore, we have
achieved our design goal of allowing the functional and OO extensibility idioms
in a single class hierarchy while preserving modular type safety.6 However,
other useful kinds of extensibility are disallowed by the ambiguity require-
ment. For example, a client of both UnionMod and HashSetMod from Figures 2
and 3 may want to implement a more efficient version of union for HashSets.
However, the new case would violate our ambiguity requirement, so HashSets

6In the presence of multiple implementation inheritance, other kinds of ambiguities that elude
modular detection can arise, necessitating an extra requirement [Millstein and Chambers 2002].
However, multiple interface inheritance, as in Java and EML, cannot cause such ambiguities.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

854 • T. Millstein et al.

are forced to use the default union case (or HashSetMod must be modified in
place to add the new case).

Pairwise Ambiguity Checking. The above ambiguity requirement guaran-
tees that each case declared in a structure S is not ambiguous with cases that
are unavailable from S. To complete modular ambiguity checking, each case c
declared in S is checked for ambiguity with each available case c′ other than
itself. Let the patterns of c and c′ be Pat and Pat′, respectively. Cases c and c′

are checked for ambiguity as follows:

� If Pat and Pat′ are congruent, meaning that they are identical when all iden-
tifier bindings are removed, then the cases are ambiguous.

� Else if the patterns are disjoint, meaning that no value can match both Pat
and Pat′, then the cases are unambiguous.

� Else there is some pattern Pat′′ that represents the intersection of Pat and
Pat′: all values matching both Pat and Pat′ also match Pat′′. The cases are
unambiguous only if there exists a case c′′ whose pattern is congruent to Pat′′.
We call case c′′ the resolving case, because it resolves the ambiguity between
c and c′.

A degenerate form of the third scenario above occurs when one of Pat and
Pat′ is strictly more specific than the other, so the resolving case is one of the
original two. For example, consider checking size for ambiguity in SetMod of
Figure 1. The two size cases in Figure 1 are neither congruent nor disjoint.
The intersection pattern is congruent to the second case’s pattern, and that
case itself is the resolving case.

3.4 Discussion

EML supports the extensibility idioms of traditional functional and OO lan-
guages: both new subclasses and new operations can be added to existing classes
without modifying existing code, resolving a longstanding tension between
these two forms of extensibility. At the same time, EML retains completely mod-
ular typechecking by imposing the modularity requirements described above.

The requirements rely heavily on the notion of a function’s owner position.
Although the owner position of a function f does not affect f ’s invocation se-
mantics, it has a large impact on the ways in which clients can interact with
and extend the function. Through the local-default requirement, the owner po-
sition determines the default cases that clients must implement. Through the
ambiguity requirement, the owner position determines what cases clients are
forbidden from implementing. Therefore, effective use of f by clients requires
some advance planning by the original implementer of f , who must choose an
appropriate owner position based on the kinds of extensibility that are antic-
ipated. This advance planning is analogous to the need to choose which argu-
ment of a method should be the receiver in traditional OO languages. That
choice has the same effects as the choice of the owner position in EML and ad-
ditionally determines the sole argument that may be dynamically dispatched
upon.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 855

Fig. 8. MINI-EML types, expressions, and patterns.

Intuitively, a class C in f ’s argument type is a good choice as the function’s
owner if the following conditions hold:

� It is expected that f ’s behavior will depend on the particular subclass of C
that is passed as an argument.

� It is expected that clients will declare new subclasses of C.

The first condition implies that methods will likely need to dispatch at C’s po-
sition. The second condition then implies that clients will likely need to declare
overriding methods of f for new subclasses of C. Making C the owner allows
these overriding methods to satisfy the ambiguity requirement. The first con-
dition also implies that it may be difficult to implement f for C itself, if C is
abstract. Making C the owner will obviate the need for such a default imple-
mentation, instead requiring concrete subclasses of C to provide their own local
defaults.

The EML exhaustiveness and ambiguity requirements together enforce an
important monotonicity property on EML programs: the local view of a program
from one structure is always consistent with the global view in a particular
sense. Specifically, if the view from one structure suggests that some available
type-correct argument a to an available function f will invoke the available case
c, then that will be true at run time, no matter what other structures are part of
the complete program. This property ensures that ITC can be safely performed
piecewise on a function, from each structure’s partial view of the program. It
also validates a programmer’s understanding given only a partial view of the
program, ensuring that a type-correct argument cannot be “hijacked” by an
unseen function case.

4. MINI-EML

This section describes MINI-EML, a core language that formalizes EML and its
modular type system.

4.1 Syntax

Figure 8 defines the syntax of types, expressions, and patterns in MINI-EML. The
syntax is essentially that of EML as informally presented so far, but some stan-
dard constructs are omitted, including base types, conditionals, anonymous and
lexically nested functions, local variables, references, and exceptions. Metavari-
able α ranges over type variable names, I over identifier names, Sn over struc-
ture names, Cn over class names, Vn over instance variable names, and Fn over

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

856 • T. Millstein et al.

Fig. 9. (a) MINI-EML structures and declarations. (b) MINI-EML signatures and specifications.

function names. X denotes a comma-separated sequence of elements of the do-
main X (and is independent of any variable named X); the empty sequence is
denoted •. The notation V = E abbreviates V1 = E1, . . . , Vk = Ek where V is
V1, . . . , Vk and E is E1, . . . , Ek for some k ≥ 0, and similarly for V = Pat.

MINI-EML types include type variables, class types, function types, and tuple
types. The domain Mt represents marked types, which contain a # mark on a
single component class type. Expressions include identifiers, function values,
function application, constructor calls, tuples, and instance expressions. The
instance expression Ct{V = E} is not available at the source level, as instances
may only be created via a constructor call Ct(E).

The construct {V = E} differs from an ordinary record in two ways. First, the
labels are scoped: the name of the structure in which an instance variable was
introduced becomes part of the instance variable’s name. Scoping allows a class
to introduce an instance variable with the same name as one in a superclass de-
clared in another module. While this ability provides only a minor convenience
in MINI-EML, scoping provides a foundation for allowing a class to safely hide
instance variables, as described in Section 5. Instance variables in EML use this
mechanism implicitly; regular static scoping rules determine which instance
variable is referred to. Second, for simplicity the components of {V = E} are
ordered, unlike traditional records.

Patterns include the wildcard pattern, identifier binding, class patterns, and
tuple patterns. For simplicity, the representation pattern {V = Pat} within
a class pattern must mention all of the associated class’s instance variables.
A pattern of the form I , used in our earlier examples, is syntactic sugar for
(I as).

The notation and semantic style of MINI-EML were influenced by Feather-
weight Java [Igarashi et al. 2001], a core language for Java. As in that lan-
guage, classes are formally represented by their names. A class is uniquely
represented as Sn.Cn, where Cn is the name of the class and Sn is the name of
the structure that declares Cn. Functions are represented similarly.

The subset of expressions that are MINI-EML values is described by the fol-
lowing grammar, which includes class instances, function values, and tuple
values:

v ::= Ct{V = v} | Fv | (v)

The syntax of structures and declarations is shown in Figure 9a. A struc-
ture consists of a sequence of class, extensible function, and function case dec-
larations. The syntax of the three declarations is faithful to that of EML, ex-
cept that cases now contain a case name, ranged over by metavariable Mn.
This name is used in the semantics to uniquely identify each function case

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 857

declaration. Angle brackets (<>) and double angle brackets (<<>>) denote
independent optional pieces of syntax. The notation Vn : τ = E abbreviates
Vn1 : τ1 = E1, . . . , Vnk : τk = Ek , and similarly for I : τ . The declared in-
heritance graph is assumed to be acyclic. The class, function, and case names
introduced in a given structure are assumed to be distinct. The type variables
parameterizing a given declaration are assumed to be distinct. All the instance
variable names introduced in a given structure are assumed to be distinct.
The identifiers introduced in a given function case’s pattern are assumed to be
distinct.

MINI-EML also includes an explicit notion of signature, as defined in
Figure 9b. In ML, the name of a signature is completely independent of the
names of structures that conform to the signature. However, there is a one-to-
one mapping between structures and signatures in a MINI-EML program (see be-
low), so for simplicity the name of a MINI-EML structure is also used as the name
of its associated signature. A signature contains a sequence of class, function,
and function-case specifications. The syntax for each specification is identical to
its corresponding declaration, but with all expressions removed. The notation
Vn : τ abbreviates Vn1 : τ1, . . . , Vnk : τk .

Inspired by Featherweight Java, a MINI-EML program is a pair of a structure
table and an expression to be evaluated. A structure table is a finite func-
tion from structure names to the associated structure declarations. The formal
semantics assumes a fixed structure table ST. The domain of ST is denoted
dom(ST). The structure table is assumed to satisfy some sanity conditions: (1)
ST(Sn) = (structure Sn = struct · · · end) for every Sn ∈ dom(ST); (2) for every
structure name Sn appearing anywhere in the program, Sn ∈ dom(ST).

The static semantics also relies on a fixed signature table SigT, which maps
each structure name Sn in dom(ST) to the principal signature of ST(Sn). SigT is
easily computed from ST: the principal signature of a structure S is simply the
signature of the same name as S whose body is identical to S’s body, but with all
expressions removed. Each structure in the range of ST is typechecked in the
context of SigT, without access to ST, thereby ensuring that the first criterion
for modular typechecking is met, as defined in Section 3.1: each structure is
typechecked only against the signatures, rather than the implementations, of
other structures. The domain of SigT is denoted dom(SigT).

4.2 Dynamic Semantics

MINI-EML’s dynamic semantics is defined as a mostly standard small-step oper-
ational semantics. The structure table is accessed whenever information about
a declaration is required in order to execute an expression. The metavari-
able ρ ranges over environments, which are finite functions from identifiers
to values. |X | denotes the length of the sequence X . The notation [I1 �→
E1, . . . , Ik �→ Ek]X denotes the expression resulting from the simultaneous
substitution of Ei for each occurrence of Ii in X , for 1 ≤ i ≤ k, and similarly
for [α1 �→ τ1, . . . , αk �→ τk]X . [I �→ E]X is used as a shorthand when I and E
have the same length, and similarly for [α �→ τ]X . In a given inference rule,
fragments enclosed in <> must either be all present or all absent, and similarly

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

858 • T. Millstein et al.

Fig. 10. Evaluation rules for MINI-EML expressions.

for <<>>. Sequences are sometimes treated as if they were sets. For example,
D ∈ D means that D is one of the declarations in D. Finally, D ∈ ST(Sn) is short-
hand for the two facts ST(Sn) = (structure Sn = struct D end) and D ∈ D,
and similarly for Sp ∈ SigT(Sn).

Figure 10 contains the rules for evaluating expressions. The notation
(I , v) abbreviates (I1, v1), . . . , (Ik , vk), and Sn.Vn = E abbreviates Sn.Vn1 =
E1, . . . , Sn.Vnk = Ek . For simplicity in the semantics, a constructor call is
treated as syntactic sugar for the instance expression obtained by expanding
the constructor’s definition. Rule E-NEW specifies this semantics, and Rule E-
REP evaluates instance expressions. It would be straightforward to instead use
a call-by-value semantics for constructor calls, at the cost of some additional
mechanism. Rule E-NEW uses the first two auxiliary rules at the bottom of the
figure. Rule CONCRETE checks that the class to be instantiated was declared with-
out the abstract keyword. Rule REP initializes the fields of the new instance
as directed by the class’s constructor, substituting the actual arguments to the

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 859

constructor call for the formals. The rule also substitutes the new instance’s
type parameters for the class’s type variables. Types have no dynamic effect
in MINI-EML, but maintaining types in the dynamic semantics eases the type
system’s proof of soundness.

The last rule in Figure 10 formalizes function-case lookup, used in E-APPRED.
The first premise of LOOKUP specifies the case to invoke. The second premise
ensures that this case is applicable: the argument value matches the case’s
pattern. That premise also produces an environment mapping each identifier
in the case’s pattern to the appropriate “pieces” of the argument value. This
environment is used by E-APPRED to evaluate the case’s body. The remaining
premise ensures that the chosen case is most specific: the case is strictly more
specific than any other applicable case. The condition Sn.Mn �= Sn′

.Mn′ uses
the case names to ensure that the chosen case is not compared for specificity
with itself.

The rules for pattern matching and specificity are shown in Figure 11. The no-
tation match(v, Pat) = ρ abbreviates match(v1, Pat1) = ρ1 · · · match(vk , Patk) =
ρk , and similarly for Pat1 ≤ Pat2. The matching rules are straightforward except
for E-MATCHCLASS. The judgment C ≤ C′ is defined at the bottom of Figure 11
as the reflexive, transitive closure of the declared class extends relation. There-
fore, an instance of class C matches a class pattern of class C′ if C subclasses C′

and the instance’s representation recursively matches the given representation
pattern. The instance may have more instance variables than are mentioned
in the given representation pattern, so that subclass instances can match su-
perclass patterns.

The judgment Pat ≤ Pat′ means that Pat is at least as specific as Pat′. Rule
LOOKUP uses Pat < Pat′ as shorthand for the two facts Pat ≤ Pat′ and Pat′ �≤ Pat.
The pattern specificity semantics generalizes OO-style best-match semantics
to support ML-style patterns. Any pattern is at least as specific as the wild-
card, and identifier binding has no effect on specificity. Class pattern speci-
ficity (SPECCLASS) follows the ordering induced by subclassing. Analogous with
E-MATCHCLASS, the more-specific pattern may contain extra instance variables.
The natural rule SPECTUP for specificity of tuple patterns is analogous to the
symmetric dispatching semantics of multimethod-based OO languages like
Dubious [Millstein and Chambers 2002]. When a tuple is used to send mul-
tiple arguments to a function, tuple patterns allow all arguments to be dynam-
ically dispatched upon, and no argument position is more important than the
rest.

4.3 Static Semantics

Figure 12 contains the rules for typechecking structures and declarations. �

is a type environment, mapping identifiers to types. The notation M̂t denotes
the type τ identical to Mt, but with the # mark removed. The notation Sn 	
D OK in Sn abbreviates Sn 	 D1 OK in Sn · · · Sn 	 Dk OK in Sn; α 	 τ OK
abbreviates α 	 τ1 OK · · · α 	 τk OK; (I , τ) abbreviates (I1, τ1), . . . , (Ik , τk); �; α 	
E : τ abbreviates �; α 	 E1 : τ1 · · · �; α 	 Ek : τk ; τ1 ≤ τ0 abbreviates τ11 ≤
τ01 · · · τ1k ≤ τ0k .

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

860 • T. Millstein et al.

Fig. 11. EML pattern matching, pattern specificity, and subclassing.

Structures are typechecked (STRUCTOK) by checking each declaration in turn.
It is assumed that S OK holds for each structure S in the range of ST. Sn
in STRUCTOK denotes those signatures in SigT that may be accessed during
ITC on the current structure. As defined in Section 3.1, ITC is only modular
if the current structure statically depends upon each signature in Sn. Later
judgments ensure the well-formedness of the chosen Sn, as described below.7

7This “guess and check” style is used for simplicity. An alternative would be to take an initial pass
over each structure’s declarations in the static semantics, in order to compute the appropriate Sn
before typechecking the structure.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 861

Fig. 12. Static semantics of MINI-EML structures and declarations.

The formalism does not explicitly enforce modularity of the rest of static type-
checking, as those checks are standard and are naturally modular.

The rules for typechecking the three declaration forms are largely straight-
forward. Rule CLASSOK checks that a class’s superclass constructor call is well-
typed, that all types mentioned in the class declaration are well-formed, and
that the instance-variable initializer expressions have the appropriate types.
The first premise in the rule ensures that the new class has the same type vari-
ables as its superclass, as mentioned in Section 2.5. Rule FUNOK checks that
a function’s declared type is well-formed. Rule CASEOK ensures that the case’s
pattern and body are compatible with the associated function’s declared type.
The “ITCTransUses” and “ITCUses” judgments in CLASSOK and FUNOK ensure
well-formedness of the signatures Sn to be accessed during ITC of the enclos-
ing structure; these judgments are described below. Finally, each rule enforces
one of the three requirements for modular ITC: CLASSOK enforces the local-
default requirement (“funs-have-ldefault-for”) if the class is concrete; FUNOK
enforces the global-default requirement (“has-gdefault”) if the function is ex-
ternal; CASEOK performs ambiguity checking (“unambiguous”) for the given
case, which includes enforcement of the ambiguity requirement as described in
Section 3. The judgment for each requirement has Sn in the context, to ensure
that only signatures in this sequence are accessed during enforcement of the
requirement.

Figure 13 contains the static semantics of types. The judgment α 	 τ OK
ensures that τ refers only to type variables in α and that each class in τ has the
correct number of type parameters. The subtyping relation τ ≤ τ ′ is completely
standard [Cardelli 1988].

Figure 14 contains the rules for typechecking expressions. The notation
Sn.Vn : τ abbreviates Sn.Vn1 : τ1, . . . , Sn.Vnk : τk . The judgment �; α 	 E : τ

ensures that an expression is well-typed in the context of the type environment
and sequence of type variables currently in scope. Most of the rules are stan-
dard. Rule T-FUN looks up a function’s declared type in the signature table and
substitutes the given use’s type parameters for the function’s type variables.
Rule T-NEW uses T-CONSTR to check that a constructor invocation includes a

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

862 • T. Millstein et al.

Fig. 13. Static semantics of MINI-EML types.

Fig. 14. Static semantics of MINI-EML expressions.

well-formed class type and that the actual arguments have appropriate types,
as dictated by the class’s specification. Rule T-REP ensures that an instance
expression includes a well-formed class type and that the instance-variable ex-
pressions have appropriate types, as dictated by the class’s specification. Rule
T-REP uses REPTYPE, which computes a class’s representation type.

Figure 15 contains the rules for typechecking patterns. The notation
matchType(τ , Pat) = (�, τ ′) abbreviates matchType(τ1, Pat1) = (�1, τ ′

1) · · ·
ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 863

Fig. 15. Static semantics of MINI-EML patterns.

Fig. 16. Well-formedness of the signatures to be accessed during ITC of a structure.

matchType(τk , Patk) = (�k , τ ′
k). The judgment matchType(τ, Pat) = (�, τ ′)

checks that a pattern is compatible with type τ . The judgment produces a type
environment mapping the identifiers bound in Pat to their types. This type
environment is used in CASEOK (Figure 12) to typecheck the associated case’s
body. The type τ ′ represents the particular subtype of τ to which Pat conforms;
it is used to give precise types to any identifiers bound to Pat, as shown in rule
T-MATCHBIND.

Figure 16 contains the well-formedness rules for the signatures Sn (which
are “guessed” in STRUCTOK) to be accessed during ITC of a structure Sn. Rule
CLASSITCTRANSUSES is used by CLASSOK in Figure 12 to ensure that Sn con-
tains all the signatures that specify a (reflexive, transitive) superclass of a
class declared in Sn. Rule FUNITCUSES is used by CASEOK to ensure that Sn
contains the signature specifying the associated function for a case declared in
Sn. In either case, if Sn is required to include some signature Sn′, then Sn does
indeed statically depend upon Sn′ according to the definition of static depen-
dency given in Section 3.1. The rules do not ensure that all statically depended
upon signatures are in Sn, but only those required for precise modular ITC.
The rules also do not explicitly forbid Sn from including signatures that are
not statically depended upon. However, the type soundness proof for MINI-EML

can only rely on the two properties of Sn enforced by rules CLASSITCTRAN-
SUSES and FUNITCUSES. Therefore, the proof validates the safety of modular
ITC.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

864 • T. Millstein et al.

Fig. 17. Modular exhaustiveness checking for MINI-EML.

Figure 17 formalizes the portion of modular ITC that ensures func-
tions are exhaustive. The notation defaultPat(τ , C, d) = Pat abbreviates
defaultPat(τ1, C, d) = Pat1 · · · defaultPat(τk , C, d) = Patk . Metavariable
T ranges over both types and marked types, and metavariable d ranges over
nonnegative integers. Rule GDEFAULT checks that a given function has a global
default case, and LDEFAULT checks that all available functions whose owners
are superclasses of a given class C have a local default case for C. Since a global
default case of F is equivalent to a local default case of F for C, where C is
the owner of F , the two requirements are able to share the helper rule DEFAULT

that performs the checks.
The global- and local-default requirements are enforced by the algorithm

described in Section 3 above. Rule DEFAULT generates a (global or local) default
pattern and checks that this pattern is at least as specific as the pattern of some
available function case. The judgment defaultPat(T, C, d) = Pat generates a
default pattern of (possibly marked) type T. The default pattern dispatches on
C in the marked position (if any) of T and accepts any type-correct argument
in the other positions. The integer d represents the depth that the generated

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 865

Fig. 18. Modular ambiguity checking for MINI-EML.

pattern should have. Rule DEFAULT chooses the depth non-deterministically, and
the MINI-EML type soundness proof implies that any depth can safely be used.
However, as discussed in Section 3, an implementation of the algorithm should
choose a large-enough depth to ensure precision.

Figure 18 formalizes the portion of modular ITC that ensures functions are
unambiguous. The notation Pat′ ∩ Pat′′ = Pat abbreviates Pat′1 ∩ Pat′′1 = Pat1 · · ·
Pat′k ∩ Pat′′k = Patk . The top-level rule is AMB. The second premise enforces the
ambiguity requirement, ensuring that the given function case is declared in the
same module as either its associated function or its owner. The final premise
in AMB uses PAIRAMB to check that the given case is unambiguous with each
available function case other than itself.

PAIRAMB uses the pairwise ambiguity algorithm described in Section 3.
Pat ∼= Pat′ denotes that Pat is congruent to Pat′; it is an abbreviation for the
two facts Pat ≤ Pat′ and Pat′ ≤ Pat. Pattern intersection is formalized by the
judgment Pat∩Pat′ = Pat′′. If Pat and Pat′ are disjoint then there is no Pat′′ such
that Pat ∩ Pat′ = Pat′′. The rules for pattern intersection are straightforward.
The intersection of class patterns (rule PATINTCLASS) is simplified by the fact
that classes support only single inheritance. In particular, if two class patterns
are applicable to a common value, then one class must be a subclass of the other.

Figure 19 contains the helper judgments for accessing the class at the
owner position of a function, type, and pattern. Finally, the rules defining the

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

866 • T. Millstein et al.

Fig. 19. Accessing the owner.

judgments concrete(C), Pat ≤ Pat′, and C ≤ C′ in Figures 10 and 11 are bor-
rowed from the dynamic semantics.8

4.4 Type Soundness

MINI-EML’s type system is sound: a well-typed MINI-EML program cannot incur
type errors at run time. MINI-EML’s type errors are defined implicitly by the
stuck expressions, which are those expressions that are not values but cannot
be further evaluated (because there is no applicable rule in the MINI-EML dy-
namic semantics). The match nonexhaustive and match ambiguous type errors
are represented by the fact that function invocations lacking a most-specific ap-
plicable function case are stuck in the MINI-EML dynamic semantics. MINI-EML’s
soundness therefore validates the correctness of modular ITC, showing that it
is sufficient to ensure that function-case lookup always succeeds at run time.

As is standard [Wright and Felleisen 1994], we prove type soundness via a
progress theorem and a type preservation theorem. The progress theorem says
that a well-typed expression can always take a step in the dynamic semantics:

THEOREM (PROGRESS). If 	 E : τ and E is not a value, then there exists E ′

such that E −→ E ′.

8Technically, the version of rules CONCRETE and SUBEXT in the static semantics should access the
signature table rather than the structure table. It is clear by inspection that the rules do not access
anything from a structure that is not also available in its principal signature.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 867

Fig. 20. Value declarations and modular ITC.

The type preservation theorem says that evaluation preserves well-
typedness:

THEOREM (TYPE PRESERVATION). If 	 E : τ and E −→ E ′, then there exists τ ′

such that 	 E ′ : τ ′ and τ ′ ≤ τ .

The proofs of these two theorems are provided in Appendix A. Proving
progress requires reasoning about modular ITC, in order to show that function
applications can always make progress. The key lemma says that a most-specific
applicable function case exists for each type-correct function application:

LEMMA. If 	 Fv : τ2 → τ and 	 v : τ ′
2 and τ ′

2 ≤ τ2, then there exist ρ and E
such that most-specific-case-for(Fv,v) = (ρ , E).

Proving type preservation is relatively straightforward, as it is completely in-
dependent of modular ITC.

5. ML-STYLE MODULES

This section discusses the interaction of EML with an ML-style module system,
including structures, signatures, and functors [MacQueen 1984; Milner et al.
1997]. We describe the problems that can arise for modular ITC in this context
and sketch some possible solutions.

5.1 Structures

Thus far we have assumed that EML structures contain only a sequence of class,
function, and function case declarations. EML structures should also accommo-
date the ordinary ML declarations. These include the ability to bind a name
to a value, provide a synonym for a type, declare an exception, and declare an
inner structure. The latter three kinds of declarations can be straightforwardly
incorporated, but special care is needed to handle value declarations. Figure 20
shows an example of the problems that can occur. As presented so far, ITC on
BadMod succeeds, because function f has an appropriate case for C. However,
at run time a match nonexhaustive error occurs when the val declaration is
executed, because f’s function case has not yet been declared.

There are several approaches to handling this problem. One solution would
be to adopt a two-pass style of structure evaluation. The first pass would eval-
uate all of the declarations except the value declarations, and the second pass
would evaluate the value declarations. In Figure 20, this semantics would en-
sure that f’s function case is declared before f is invoked. An alternative ap-
proach would be to make the unit of modularity used in the ITC requirements
more fine-grained than an entire structure, with val declarations forming the

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

868 • T. Millstein et al.

Fig. 21. Signature ascription and modular ITC.

boundaries of these units. For example, BadMod would consist of two units, one
of which contains the first two declarations and the other containing the last
declaration. When ITC is performed on the first unit, the incompleteness of
f for C would result in a static error. Our prototype EML interpreter uses this
approach.

5.2 Signature Ascription

By default, clients of an ML structure Sn access its components through the
view provided by Sn’s principal signature. Information hiding in ML is achieved
by explicitly ascribing a signature to a structure. Let metavariable SigN range
over signature names. Clients of a structure

structure Sn :> SigN = struct . . . end

may only access Sn’s components through the view provided by the signature
SigN.9 The ascribed signature may include less information than the struc-
ture’s principal signature. For example, in ML an ascribed signature may omit
specifications for some of the structure’s declarations, making them inaccessible
to clients.

Signature ascription for EML provides forms of OO-style encapsulation. For
example, classes, functions, and function cases can be hidden from clients, mak-
ing them private to their enclosing structure. However, these declarations can-
not be hidden arbitrarily, or else modular ITC would become unsound. Figure 21
shows a simple example of the problems that can occur. ShapeMod creates the ab-
stract Shape class and two associated functions, print and bad. ITC in ShapeMod
succeeds vacuously for both functions since Shape is abstract. Because ShapeSig
is ascribed to ShapeMod, print is hidden from ShapeMod’s clients, who therefore
cannot perform ITC on print. ITC succeeds for CircleMod, because bad has a

9Standard ML includes two kinds of ascription: transparent and opaque. Transparent ascription
can be desugared into opaque ascription, so we focus exclusively on the latter form.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 869

case handling Circles. If bad is ever invoked with a Circle instance, however,
print will be invoked, causing a match nonexhaustive error.

The example is purposely similar to the print example in Figure 7. In that
case, the global-default requirement ensures that the problem is modularly
detected. Intuitively, the modular ITC problems of signature ascription can be
solved in the same way: a set of declarations can be safely hidden if that set could
have been declared in a separate structure that passes modular ITC [Millstein
and Chambers 2002]. The print function in Figure 21 does not satisfy this con-
dition. If print were declared in its own structure, the modular requirements
would force the existence of a global default case for print, since print would
now be an external function. If print had such a case, then the function (and
that case) could be hidden via signature ascription, and the problem for Circle
would be resolved.

Aside from hiding entire declarations, it is useful to hide properties of a dec-
laration. Several properties of classes may be hidden. First, any subset of a
class’s instance variables may be hidden. This hiding does not preclude clients
from creating instances of the class, because instances are created only by in-
voking constructors, and neither the class’s constructor nor any constructor
arguments have been hidden. As mentioned in Section 4, instance variables
are scoped—the name of the structure declaring an instance variable is implic-
itly part of the name of the instance variable. Therefore, there is no conflict if
a subclass in a new module creates an instance variable of the same name as a
hidden one in the superclass. Second, a concrete class can be viewed as an ab-
stract one, thereby disallowing clients from instantiating the class. The global-
and local-default requirements ensure that clients will provide the appropri-
ate default cases in the face of these supposedly abstract classes. Treating a
concrete class as abstract could be useful, for example, to enforce the singleton
pattern [Gamma et al. 1995], in which a class has a single instance.

Finally, a signature can declare a class C sealed [Shalit 1997], which hides
C’s extensibility: classes declared outside of C’s structure may not directly sub-
class from C. This construct can be used to faithfully model ML-style (nonex-
tensible) datatypes. For example, if SetMod in Figure 1 were ascribed to a signa-
ture that specified Set, ListSet, and CListSet as sealed, then other structures
would be disallowed from declaring new (direct or indirect) subclasses of Set.
In that case, sets form a sealed hierarchy. As discussed in Section 3.3, func-
tions in ML can safely omit (local and global) default cases, because datatypes
are nonextensible. EML similarly need not enforce the global- and local-default
requirements for functions on sealed hierarchies. For example, if the set hier-
archy were sealed, then UnionMod of Figure 2 could safely omit the first union
case, which is the global default. Because there would never exist concrete
subclasses of Set other than ListSet and CListSet, the second union case in
UnionMod would be sufficient to ensure exhaustiveness.

Hiding inheritance properties of classes is more problematic. It would be
useful for a signature to expose only a transitive, rather than the direct, super-
class of a class. This ability would reduce the dependence of clients on a class’s
particular implementation. Unfortunately, this flexibility makes modular ITC
unsound. For example, a client of two classes C and C′ can write ambiguous

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

870 • T. Millstein et al.

Fig. 22. Encoding mixins with EML functors.

function cases that appear to be unambiguous if the fact that C subclasses C′

is hidden. It would similarly be useful to ascribe an ML-style type specifica-
tion to a class declaration, possibly augmenting the specification with partial
revelations [Nelson 1991] to reveal some of the class’s underlying structure.

Finally, a function may be sealed by ascribing an ordinary ML-style value
specification to the function and its cases. For example, union and its two cases
in Figure 2 could be represented in a signature by the specification val union
: (Set * Set) → Set. Clients can still invoke the sealed union function, but
its extensibility is hidden (and the # mark is no longer necessary): clients may
not add new cases to union and do not perform ITC on it. In this way, function
sealing allows us to model ML-style (nonextensible) functions. Function seal-
ing is allowed under the same circumstances that the function and its cases
may be hidden, thereby ensuring that the sealed function is exhaustive and
unambiguous.

5.3 Functors

Standard ML supports functors, which are structures parameterized by other
structures. In the presence of EML’s features, functors can provide a great deal
of flexibility. Figure 22 illustrates some of the idioms that would be useful to
express. The PointMod structure contains a Point base class with an associated
print function. The Colorize functor implements a form of mixin [Bracha and
Cook 1990; Findler and Flatt 1998; Flatt et al. 1998], which is a class parame-
terized by its superclass. The functor can be instantiated by applying it to any
structure that conforms to the APointSig signature, thereby creating a colored
version of that structure’s Point subclass. An overriding case for the existing
print function is given, in order to print colored points specially. The functor

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 871

Fig. 23. Three-valued modular ITC of functor bodies.

also introduces a new function for accessing the color of a colored point, with
an associated case.

In ML, each functor body can be safely typechecked once, given only the sig-
nature of the argument structure. EML should similarly perform modular ITC
once on a functor body, guaranteeing exhaustiveness and unambiguity of all
relevant functions, no matter how the functor will be instantiated. The major
challenge for modular ITC of functors like Colorize is the fact that the identities
of some classes, for example M.APoint, are unknown. Instead only partial infor-
mation is known about the relationship between M.APoint and other classes.
While others have investigated the integration of functors (or related forms of
parameterized modules) with classes (e.g. [Fisher and Reppy 1999; Ancona and
Zucca 2001; McDirmid et al. 2001]), the interaction of functors with EML’s gen-
eralization of OO and functional dispatching semantics has not been considered
previously.

A possible approach to conservatively performing ITC in the presence of
partial information in EML is to generalize the subclass relation in the static
semantics to be three-valued, saying “don’t know” when the partial class hier-
archy information is inconclusive. The pattern specificity relation is then also
generalized to be three-valued, making use of the generalized subclass rela-
tion. Last, modular ITC is modified to be conservative with respect to three-
valued subclassing and pattern specificity. In exhaustiveness checking, a local
default should be required for any class that may subclass an available func-
tion’s owner. The generated (local or global) default pattern must be at least
as specific as some function case’s pattern. In ambiguity checking, all tests for
pattern congruence and disjointness should succeed only if the given patterns
must be congruent and disjoint, respectively. Similarly, the intersection of two
patterns should result in an exact intersection pattern. If the two patterns are
neither definitely disjoint nor definitely intersecting, then the associated cases
are conservatively considered ambiguous.

As an example, consider three-valued ITC on negate in Negate of Figure 23.
The first case is definitely a global default, so negate is exhaustive. The first
two cases are found to be unambiguous as usual. The first and third cases are
similarly found to be unambiguous: even though the identity of M.APoint is not

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

872 • T. Millstein et al.

known, from APointSig in Figure 22 it is clear that M.APoint strictly subclasses
Point, and this is enough information to compute the exact intersection of the
two patterns. Finally, the second and third cases are found to be ambiguous:
their patterns are neither definitely disjoint nor definitely intersecting. There-
fore ITC on negate fails. Indeed, if Negate is ever instantiated with APointMod,
the resulting negate function will be ambiguous for APoint.

The restrictions on signature ascription described earlier can severely limit
the reusability of functors. For example, the Colorize and Negate functors can
only be instantiated with a class APoint that is a direct subclass of Point, rather
than an indirect (transitive) one. Also, APoint’s module must contain a print
case with the pattern specified in APointSig. While relaxing these restrictions
would increase functor reusability, it would also force ITC on functor bodies to
become much more conservative, in order to account for the new expressiveness
of clients. The relaxation could therefore reduce the overall benefit of functors
by requiring the type system to disallow too many of them.

A pragmatic way to avoid the restrictions on signature ascription could be to
move some of the burden of ITC to clients of the functor. In the limit, EML would
perform modular ITC once per instantiation of the functor, on the structure
resulting from the instantiation. At the point of instantiation, all the identities
of classes and functions in the functor’s argument would be known, so ordinary
modular ITC as described in Section 3.3 would suffice. It is possible that in
practice most of ITC could still be performed on the functor body in isolation,
with only a few additional checks performed per instantiation. Such a scheme
would provide early feedback about a functor’s type correctness while still safely
supporting the desired expressiveness.

6. RELATED WORK

In previous work we defined Dubious [Millstein and Chambers 1999, 2002],
an expressive multimethod-based OO calculus, along with requirements for
modular typechecking of Dubious programs. Dubious was then used as the
foundation for our work on MultiJava [Clifton et al. 2000], an extension to
Java that supports multimethods as well as the addition of new operations
to existing classes. MultiJava illustrates how Dubious’s expressiveness and
modular typechecking requirements can underlie an extension to a traditional
OO language, and EML does the same for a traditional functional language. In
particular, in EML we have adapted Dubious’s requirements to support modular
typechecking of extensible datatypes and functions in an ML-like setting. EML

also improves on Dubious’s theoretical foundations in several ways. First, we
have significantly simplified both the informal and formal presentations of the
modularity requirements. Second, the notion of modularity in EML is stronger
than that of Dubious: an EML module requires access to less of the program
to soundly perform ITC than does a Dubious module. Finally, Dubious does
not address modular typechecking in the face of pattern matching, parametric
polymorphism, or ML-style modules.

OML [Reppy and Riecke 1996] and ML≤ [Bourdoncle and Merz 1997] were
described earlier. Zenger and Odersky [2001] describe an extensible datatype

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 873

mechanism in the context of an OO language. Extending a datatype has the
effect of creating a new datatype that subtypes from the original one. To en-
sure exhaustiveness in the presence of datatype extension, all functions on
extensible datatypes must include a global default case, while EML often re-
quires only local defaults. Because Zenger’s functions are not extensible, if
new data variants require overriding function cases, a new function must be
created that inherits the existing function cases and clients must be modi-
fied to invoke the new function. Like OML, Zenger’s language includes both
OO-style methods and ML-style functions. Garrigue shows how to use poly-
morphic variants, which are variants defined independent of any particular
datatype, to obtain both modular data-variant and function extensibility in
ML [Garrigue 2000]. As in Zenger’s language, functions are not extensible,
so existing clients must be modified as new variants with overriding function
cases are introduced. Unlike EML, polymorphic variants preserve ML-style type
inference.

The mixin modules of Duggan and Sourelis [1996] allow datatype and func-
tion declarations to be split across multiple modules, thereby providing a form
of extensible datatypes and functions.10 Mixin modules must be explicitly com-
posed with one another and “closed” to form an ordinary ML module containing
nonextensible datatypes and functions. Therefore, adding a new mixin mod-
ule that extends an existing datatype or function requires modifying existing
code to explicitly include the new mixin module in the composition. In contrast,
EML datatypes and functions may be extended by new modules without modi-
fying existing code. Mixin modules are also not hierarchical and do not support
subtyping. Follow-on work [Duggan and Techaubol 2001] incorporates mixin
modules into a traditional class-based OO language. A distinction is made be-
tween class-based and mixin-based objects; mixin-based objects do not support
subtyping. Mixin-based objects support a form of type specialization for meth-
ods, which EML lacks.

Jiazzi [McDirmid et al. 2001] is an extension to Java based on units [Findler
and Flatt 1998; Flatt and Felleisen 1998], a form of parameterized module
with recursive linking. The authors show how to encode an open class pattern
in Jiazzi, whereby a module imports a class and exports a version of that class
modified to contain a new method or field. In this way, Jiazzi supports adding
both new subclasses and new methods to existing classes. Similar to mixin
modules, the final version of a class must be explicitly created by composing
the relevant modules.

Work on predicate dispatching [Ernst et al. 1998] describes ITC for patterns
that are more general than those in EML, including conjunctions, disjunctions,
and negations of arbitrary predicates in the host language. An OO-style dis-
patching semantics is used, with predicate implication as the specificity relation
among patterns, and functions are extensible. However, the ITC algorithm is
nonmodular, requiring access to the entire program.

10Other proposals that also use the name “mixin modules” [Ancona and Zucca 2002; Hirschowitz
and Leroy 2002] lack extensible datatypes and functions and are not directly related to our work.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

874 • T. Millstein et al.

7. CONCLUSIONS AND FUTURE WORK

We described Extensible ML, an ML-like language that supports hierarchical,
extensible datatypes and functions. Such constructs allow for the easy addition
of both new data variants and new operations to existing abstractions, resolv-
ing a longstanding tension between the functional and object-oriented styles.
At the same time, EML retains completely modular typechecking of function
implementations. This contrasts with previous languages based on extensible
datatypes and functions, which require link-time checks to ensure type safety.
We have formalized EML in MINI-EML and proven its type system sound.

There are several directions for future work. First, Section 2.5 discussed
future work related to EML’s polymorphic type system. Second, more work is
needed to integrate EML with ML-style modules, particularly functors. Section 5
sketched some of the challenges and solutions, but additional study and experi-
ence are necessary to find practical requirements that balance expressiveness
and modular typechecking. Third, EML’s extensibility is currently second class:
only statically known classes and functions may be extended. Allowing lexi-
cally nested classes and functions to be created and extended would enhance
EML’s expressiveness and would better integrate its constructs with the ML
style. A form of linear types [Wadler 1990] could possibly be used to statically
track classes and functions for the purpose of ITC. Finally, it would be useful
to investigate practical compilation techniques for EML’s extensible datatypes
and functions. These techniques can likely build on efficient implementation
strategies for multimethod and predicate dispatch [Chambers and Chen 1999].

APPENDIX

A. TYPE SOUNDNESS FOR MINI-EML

This appendix provides the proof of type soundness for MINI-EML. As discussed
in Section 4.4, progress and type preservation theorems are proven. The first
section below contains a proof of the progress theorem and the key technical
lemmas that it depends upon. The second section does the same for the type
preservation theorem. Both theorems also rely on several basic facts about
MINI-EML, which are stated in the final section.

As in the formal dynamic and static semantics, the proof assumes a fixed
structure table ST satisfying the two sanity conditions given in Section 4 and a
fixed signature table SigT containing the principal signatures of the structures
in ST. Also as in the formal rules, it is assumed that S OK holds for each
structure S in ST.

A.1 Progress

The progress theorem is straightforward except for the case when E is a func-
tion application. That case follows easily from lemma 1, which is given below.

THEOREM 1 (PROGRESS). If 	 E : τ and E is not a value, then there exists an
E ′ such that E −→ E ′.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 875

PROOF. By (strong) induction on the depth of the derivation of 	 E : τ . Case
analysis of the last rule used in the derivation.
� Case T-ID. Then E = I and (I, τ) ∈ {}, so we have a contradiction. Therefore

this rule could not be the last rule used in the derivation.
� Case T-NEW. Then E = Ct(E) and Ct = (τ Sn.Cn) and {}; • 	 Ct(E) OK and

concrete(Sn.Cn). Therefore by Lemma 32, there exist V1 and E1 such that
rep(Ct(E)) = {V1 = E1}. Then by E-NEW we have E −→ Ct{V1 = E1}.

� Case T-REP. Then E = Ct{V1 = E1, . . . , Vk = Ek} and for all 1 ≤ i ≤ k we
have 	 Ei : τi for some τi. We have two subcases:
—For all 1 ≤ i ≤ k, Ei is a value. Then E is a value, contradicting our

assumption.
—There exists some j such that 1 ≤ j ≤ k and E j is not a value. Without loss

of generality, let j be the smallest integer satisfying this condition, so for
all 1 ≤ q < j we have that Eq is a value. By induction, there exists an E ′

j
such that E j −→ E ′

j . Therefore by E-REP we have Ct{V1 = E1, . . . , Vk =
Ek} −→ Ct{V1 = E1, . . . , Vj−1 = E j−1, Vj = E ′

j , Vj+1 = E j+1, . . . , Vk =
Ek}.

� Case T-FUN. Then E = τ Sn.Fn. Then E is a value, contradicting our
assumption.

� Case T-TUP. Then E = (E1, . . . , Ek) and τ = τ1 ∗ · · · ∗ τk and for all 1 ≤ i ≤ k
we have 	 Ei : τi. We have two subcases:
—For all 1 ≤ i ≤ k, Ei is a value. Then E is a value, contradicting our

assumption.
—There exists some j such that 1 ≤ j ≤ k and E j is not a value. Without

loss of generality, let j be the smallest integer satisfying this condition,
so for all 1 ≤ q < j we have that Eq is a value. By induction, there exists
an E ′

j such that E j −→ E ′
j . Therefore by E-TUP we have (E1, . . . , Ek) −→

(E1, . . . , E j−1, E ′
j , E j+1, . . . , Ek).

� Case T-APP. Then E = E1 E2 and 	 E1 : τ2 → τ and 	 E2 : τ ′
2 and τ ′

2 ≤ τ2.
We have three subcases:
— E1 is not a value. Then by induction, there exists an E ′

1 such that E1 −→
E ′

1. Therefore by E-APP1 we have E1 E2 −→ E ′
1 E2.

— E1 is a value, but E2 is not a value. Then by induction, there exists an E ′
2

such that E2 −→ E ′
2. Therefore by E-APP2 we have E1 E2 −→ E1 E ′

2.
—Both E1 and E2 are values. Since 	 E1 : τ2 → τ and E1 is a value, the

last rule in the derivation of 	 E1 : τ2 → τ must be T-FUN, so E1 has the
form Fv. Therefore by Lemma 1 we have that there exist ρ0 and E0 such
that most-specific-case-for (Fv,E2) = (ρ0, E0). Let ρ0 = {(I , v)}. Then by
E-APPRED we have Fv E2 −→ [I �→ v]E0.

This lemma says that a most-specific applicable function case exists for each
type-correct function application. It follows easily from Lemmas 2 and 7, which
say that all functions are exhaustive and unambiguous, respectively.

LEMMA 1. If 	 Fv : τ2 → τ and 	 v : τ ′
2 and τ ′

2 ≤ τ2 then there exist ρ and E
such that most-specific-case-for (Fv,v) = (ρ , E).

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

876 • T. Millstein et al.

PROOF. Let Fv = (τ F). By Lemma 2, there exists some Sn ∈ dom(SigT),
some (extend funMn α F Pat) ∈ SigT(Sn), and some environment ρ0 such that
match(v, Pat) = ρ0. Then by Lemma 7 there exists some Sn′ ∈ dom(SigT), some
(extend funMn′ α1 F Pat′) ∈ SigT(Sn′), and some ρ ′ such that match(v, Pat′) =
ρ ′ and ∀Sn′′ ∈ dom(SigT).∀(extend funMn′′ α2 F Pat′′) ∈ SigT(Sn′′).∀ρ ′′.
((match(v, Pat′′) = ρ ′′ ∧ Sn′

.Mn′ �= Sn′′
.Mn′′) ⇒ Pat′ < Pat′′).

By the definition of SigT we have that Sn′ ∈ dom(ST) and there ex-
ists some E ′ such that (extend funMn′ α1 F Pat′) ∈ ST(Sn′) and ∀Sn′′ ∈
dom(ST).∀(extend funMn′′ α2 F Pat′′ = E ′′) ∈ ST(Sn′′).∀ρ ′′. ((match(v, Pat′′) =
ρ ′′ ∧ Sn′

.Mn′ �= Sn′′
.Mn′′) ⇒ Pat′ < Pat′′).

Since 	 Fv : τ2 → τ , by T-FUN we have F = Sn0.Fn0 and (fun α0 Fn0 : Mt0 →
τ0) ∈ SigT(Sn0) and |α0| = |τ |. Since (extend funMn′ α1 F Pat′) ∈ SigT(Sn′), by
CASEOK we have |α1| = |α0|. Therefore we have |α1| = |τ |. Then by LOOKUP there
exist ρ and E such that most-specific-case-for ((τ F),v) = (ρ , E).

A.1.1 Exhaustiveness. These lemmas prove that all functions are exhaus-
tive. They make use of the notion of the owner of a value v with respect
to a marked type Mt. Intuitively, v’s owner is the class in v located at the
owner position as specified by Mt. It is defined via the following two inference
rules:

owner (Mt, v) = C

owner(Mt, vi) = C
owner(τ1 ∗ . . . ∗ τi−1 ∗ Mt ∗ τi+1 ∗ . . . ∗ τk(v1, . . . , vk)) = C

OWNERTUPVAL

owner(#Ct, (τ̄C){V̄ = v̄}) = C
OWNERINSTANCE

This is the main exhaustiveness lemma, which says that every type-correct
argument value for a function has at least one applicable function case. Its proof
follows from the global- and local-default requirements. If the function has a
global default case, then the result follows from the definition of a global default.
Otherwise, the function must be internal. Then there must be a local default
case for each type-correct argument value’s owner, and the result follows from
the definition of a local default case.

LEMMA 2 (EXHAUSTIVENESS). If 	 (τ F) : τ2 → τ and 	 v : τ ′
2 and τ ′

2 ≤ τ2, then
there exist some Sn ∈ dom(SigT), some (extend funMn α1 F Pat) ∈ SigT(Sn), and
some environment ρ such that match(v, Pat) = ρ.

PROOF. Since 	 (τ F) : τ2 → τ , by T-FUN we have F = Sn′
.Fn and (fun α

Fn : Mt → τ0) ∈ SigT(Sn′) and |α| = |τ | and τ2 → τ = [α �→ τ](M̂t → τ0).
By the definition of SigT, also (fun α Fn : Mt → τ0) ∈ ST(Sn′). Let ST(Sn′) =
(structure Sn′ = struct D end). Then by STRUCTOK we have Sn ⊆ dom(SigT)
and Sn 	 (funα Fn : Mt → τ0) OK in Sn′, so by FUNOK we have that owner(Mt) =
Sn′′

.Cn. Then by Lemma 3 there exists some class C such that owner(Mt, v) =
C and concrete(C) and C ≤ Sn′′

.Cn. Also by FUNOK we have either Sn 	
F has-gdefault or Sn′ = Sn′′. We consider these cases separately.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 877

� Case Sn 	 F has-gdefault. By GDEFAULT we have owner(F) = C′ and Sn 	
F has-default-for C′. By OWNERFUN, C′=Sn′′

.Cn. Then by Lemma 4 there ex-
ists some Sn ∈ Sn, some (extend funMn α1 F Pat) ∈ SigT(Sn), and some
environment ρ such that match(v, Pat) = ρ. Since Sn ⊆ dom(SigT), we have
Sn ∈ dom(SigT) and the result is shown.

� Case Sn′ = Sn′′. Let C = Sn0.Cn0. Since concrete(C), by CONCRETE we have
(class α0 Cn0 . . .) ∈ ST(Sn0). Let ST(Sn0) = (structure Sn0 = struct D0 end).
Then by STRUCTOK we have Sn0 ⊆ dom(SigT) and Sn0 	 class α0 Cn0 . . . OK
in Sn0, so by CLASSOK we have concrete(C) ⇒ Sn0 	 funs-have-ldefault-for
C. Since concrete(C) holds, we have Sn0 	 funs-have-ldefault-for C.

Also by CLASSOK we have Sn0 	 C ITCTransUses. Since C ≤ Sn′′
.Cn and

Sn′ = Sn′′, by Lemma 37 we have Sn′ ∈ Sn0.
Since F = Sn′

.Fn and Sn′ ∈ Sn0, by FUNITCUSES we have Sn0 	
F ITCUses. Since (fun α Fn : Mt → τ0) ∈ SigT(Sn′) and owner(Mt) =
Sn′

.Cn, by OWNERFUN we have owner(F) = Sn′
.Cn. Also, we showed above

that C ≤ Sn′
.Cn. Therefore, since Sn0 	 funs-have-ldefault-for C, by LDE-

FAULT we have Sn0 	 F has-default-for C. By SUBREF C ≤ C, so by Lemma 4
there exists some Sn ∈ Sn0, some (extend funMn α1 Sn.Fn Pat) ∈ SigT(Sn),
and some environment ρ such that match(v, Pat) = ρ. Since Sn0 ⊆ dom(SigT),
we have Sn ∈ dom(SigT), and the result is shown.

This lemma says that a value conforming to a marked type has a well-defined
owner (with respect to that marked type), which is a subclass of the marked
type’s owner.

LEMMA 3. If 	 v : τ ′ and τ ′ ≤ τ and τ = [α �→ τ]M̂t and owner(Mt) = C′,
then there exists some class C such that owner(Mt, v) = C and concrete(C) and
C ≤ C′.

PROOF. By induction on the depth of the derivation of 	 v : τ ′. Case analysis
of the last rule used in the derivation.

� Case T-REP. Then v has the form (τ0 C){V = v} and τ ′ = (τ0 C) and concrete(C).
Since τ ′ ≤ τ , by Lemma 13 τ has the form (τ1 C′′). Since τ = [α �→ τ]M̂t, M̂t has
the form (τ2 C′′), and by the grammar for marked types Mt must be #(τ2 C′′).
Then by OWNERINSTANCE we have owner(#(τ2 C′′), (τ0 C){V = v}) = C. We’re
given τ ′ ≤ τ , so by lemma 15 we have C ≤ C′′. Since owner(Mt) = C′, by
OWNERCLASS we have C′ = C′′, so C ≤ C′.

� Case T-FUN. Then v has the form (τ0 F) and τ ′ has the form τ1 → τ2. Therefore
by Lemma 18 τ has the form τ ′

1 → τ ′
2. Since τ = [α �→ τ]M̂t, M̂t has the form

τ ′′
1 → τ ′′

2 , but this contradicts the grammar of marked types. Therefore, T-FUN

cannot be the last rule in the derivation.
� Case T-Tup: Then v has the form (v1, . . . , vk) and τ ′ has the form τ ′

1 ∗ · · · ∗ τ ′
k

and for all 1 ≤ j ≤ k we have 	 vj : τ ′
j . Therefore by Lemma 20 τ has the form

τ1 ∗ · · · ∗ τk , where for all 1 ≤ j ≤ k we have τ ′
j ≤ τ j . Since τ = [α �→ τ]M̂t,

M̂t has the form τ ′′
1 ∗ · · · ∗ τ ′′

k , and by the grammar for marked types Mt is

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

878 • T. Millstein et al.

τ ′′
1 ∗ · · · ∗ τ ′′

i−1 ∗ Mti ∗ τ ′′
i+1 ∗ · · · ∗ τ ′′

k , where M̂ti = τ ′′
i . We’re given owner(Mt) =

C′, so by OWNERTUP we have owner(Mti) = C′.
Therefore we have 	 vi : τ ′

i and τ ′
i ≤ τi and τi = [α �→ τ]M̂ti and

owner(Mti) = C′, so by induction there exists C such that owner(Mti, vi) = C
and concrete(C) and C ≤ C′. By OWNERTUPVAL we have owner(τ ′′

1 ∗ · · · ∗ τ ′′
i−1 ∗

Mti ∗ τ ′′
i+1 ∗ · · · ∗ τ ′′

k , (v1, . . . , vk)) = C, so the result follows.

This lemma validates the has-default-for judgment: if a function F has a
default for class C, then F has at least one applicable function case for each
type-correct argument value whose owner is a subclass of C.

LEMMA 4. If 	 v : τ ′
2 and τ ′

2 ≤ τ2 and τ2 = [α �→ τ]M̂t and (fun α

Fn : Mt → τ0) ∈ SigT(Sn) and owner(Mt, v) = C0 and C0 ≤ C and Sn 	
Sn.Fn has-default-for C, then there exists some Sn′ ∈ Sn, some (extend funMn
α1 Sn.Fn Pat) ∈ SigT(Sn′), and some environment ρ such that match(v, Pat) =
ρ.

PROOF. Since Sn 	 Sn.Fn has-default-for C, by DEFAULT we have
defaultPat(Mt, C, d) = Pat′. Therefore by Lemma 5 there exists ρ ′ such that
match(v, Pat′) = ρ ′. Also by DEFAULT we have (extend funMn α1 Sn.Fn Pat)
∈ SigT(Sn′) and Pat′ ≤ Pat and Sn′ ∈ Sn. By Lemma 25 there exists ρ such
that match(v, Pat) = ρ, so the result follows.

The next two lemmas validate the defaultPat judgment, by showing that
the generated pattern is in fact a (global or local) default pattern: each
type-correct argument value matches the generated pattern. The first lemma
handles patterns generated with respect to marked types, and the sec-
ond lemma handles patterns generated with respect to ordinary unmarked
types.

LEMMA 5. If 	 v : τ ′ and τ ′ ≤ τ and τ = [α �→ τ]M̂t and owner(Mt, v) =
C0 and C0 ≤ C and defaultPat(Mt, C, d) = Pat, then there exists ρ such that
match(v, Pat) = ρ.

PROOF. By strong induction on the depth of the derivation of
defaultPat(Mt, C, d) = Pat. Case analysis of the last rule in the derivation.
� Case DEFZERO. Then Pat has the form , so by E-MATCHWILD we have

match(v,) = {}.
� Case DEFOWNERCLASSTYPE. Then Mt has the form #(τ1 C′) and Pat has the

form (C{V = Pat}) and repType(τ1 C) = {V : τ ′} and defaultPat(τ ′, C, d −1) =
Pat and d > 0. By Lemma 23 we have repType([α �→ τ]τ1 C) = [α �→ τ]{V : τ ′}.
Since owner(#(τ1 C′), v) = C0, by OWNERINSTANCE we have that v is of the form
(τ0 C0){V2 = v2}.

Since we’re given that 	 v : τ ′, by T-REP we have that τ ′ = (τ0 C0) and
• 	 (τ0 C0) OK and repType(τ0 C0) = {V2 : τ2} and 	 v1 : τ ′

2 and τ ′
2 ≤ τ2. We’re

given that τ ′ ≤ τ , so that means (τ0 C0) ≤ ([α �→ τ]τ1 C′), and by Lemma 14
we have τ0 = [α �→ τ]τ1. Since C0 ≤ C and • 	 (τ0 C0) OK, by Lemma 16 we

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 879

have (τ0 C0) ≤ (τ0 C). Therefore by Lemma 36 we have {V2 : τ2} = {V : [α �→
τ]τ ′, V3 : τ3}.

Therefore there is some prefix v4 of v2 and some prefix τ4 of τ ′
2 such that

	 v4 : τ4 and τ4 ≤ [α �→ τ]τ ′ and defaultPat(τ ′, C, d −1) = Pat, so by Lemma 6,
there exists ρ such that match(v4, Pat) = ⋃

ρ. Finally, we’re given C0 ≤ C, so
by E-MATCHCLASS we have match((τ0 C0){V2 = v2}, (C{V = Pat})) = ⋃

ρ.
� Case DEFTUPTYPE. Then Mt has the form τ1 ∗ · · · ∗ τi−1 ∗ Mti ∗ τi+1 ∗ · · · ∗ τk and

Pat has the form (Pat1, . . . , Patk) and for all 1 ≤ j ≤ k such that j �= i we have
defaultPat(τ j , C, d − 1) = Pat j and we have defaultPat(Mti, C, d − 1) = Pati.
Let τi = M̂ti. Since τ ′ ≤ [α �→ τ](τ1 ∗ · · · ∗ τk), by Lemma 19 we have that τ ′

has the form τ ′
1 ∗ · · · ∗ τ ′

k , where for all 1 ≤ j ≤ k we have τ ′
j ≤ [α �→ τ]τ j .

Since 	 v : τ ′, by T-TUP we have that v has the form (v1, . . . , vk) and for all
1 ≤ j ≤ k we have 	 vj : τ ′

j . Therefore by Lemma 6, for all 1 ≤ j ≤ k such that
j �= i we have that there exists some ρ j such that match(vj , Pat j) = ρ j . We’re
given that owner(Mt, v) = C0, so by OWNERTUPVAL we have owner(Mti, vi) =
C0. Therefore by induction we have that there exists some ρi such that
match(vi, Pati) = ρi. Then by E-MATCHTUP we have match(v, Pat) = ρ1 ∪ · · · ∪
ρk .

LEMMA 6. If 	 v : τ ′ and τ ′ ≤ τ and τ = [α �→ τ]τ0 and defaultPat(τ0,
C0, d) = Pat, then there exists ρ such that match(v, Pat) = ρ.

PROOF. By strong induction on the depth of the derivation of
defaultPat(τ0, C0, d) = Pat. Case analysis of the last rule in the derivation.

� Case DEFZERO or DEFTYPEVAR or DEFFUNTYPE. Then Pat has the form , so by
E-MATCHWILD we have match(v,) = {}.

� Case DEFCLASSTYPE. Then τ0 has the form (τ0 C) and Pat has the form (C{V =
Pat}) and repType(τ0 C) = {V : τ ′} and defaultPat(τ ′, C0, d −1) = Pat and d >

0. Since τ = [α �→ τ]τ0, by Lemma 23 we have repType(τ) = [α �→ τ]{V : τ ′}.
Further, τ = [α �→ τ](τ0 C) = ([α �→ τ]τ0 C). Since τ ′ ≤ τ , by Lemma 12 τ ′ has
the form (τ1 C′). Since 	 v : τ ′, by T-REP v has the form (τ1 C′){V1 = v1} and
• 	 (τ1 C′) OK and repType(τ1 C′) = {V1 : τ1} and 	 v1 : τ ′

1 and τ ′
1 ≤ τ1.

Since (τ1 C′) ≤ ([α �→ τ]τ0 C), by Lemma 15 we have C′ ≤ C. Fur-
ther, by Lemma 36 we have that {V1 : τ1} = {V : [α �→ τ]τ ′, V2 : τ2}.
Therefore there is some prefix v3 of v1 and some prefix τ3 of τ ′

1 such that
	 v3 : τ3 and τ3 ≤ [α �→ τ]τ ′ and defaultPat(τ ′, C0, d − 1) = Pat. Therefore
by induction, match(v3, Pat) = ρ. Therefore by E-MATCHCLASS we have
match((τ1 C′){V1 = v1}, (C{V = Pat})) = ⋃

ρ.
� Case DEFTUPTYPE. Then τ0 has the form τ1 ∗ · · · ∗ τk and Pat has the form

(Pat1, . . . , Patk) and for all 1 ≤ i ≤ k we have defaultPat(τi, C0, d − 1) = Pati
and d > 0. Since τ ′ ≤ [α �→ τ](τ1 ∗ · · · ∗ τk), by Lemma 19 we have that τ ′ has
the form τ ′

1 ∗ · · · ∗ τ ′
k , where for all 1 ≤ i ≤ k we have τ ′

i ≤ [α �→ τ]τi. Since
	 v : τ ′, by T-TUP we have that v has the form (v1, . . . , vk) and for all 1 ≤ i ≤ k
we have 	 vi : τ ′

i . Therefore by induction, for all 1 ≤ i ≤ k we have that there
exists some ρi such that match(vi, Pati) = ρi. Then by E-MATCHTUP we have
match(v, Pat) = ρ1 ∪ · · · ∪ ρk .

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

880 • T. Millstein et al.

A.1.2 Ambiguity. The following lemma says that if a value has at least one
applicable function case then it has a most-specific applicable case. The lemma
thereby validates our modular ambiguity checking algorithm and requirement.
The lemma is proven by induction on the number of applicable function cases
that are not overridden by the given one. If there are none (other than the given
case itself), then the given case is the most-specific applicable case. Otherwise,
another applicable function case is not overridden by the given one. Then we
show that, by modular ambiguity checking, there must exist a resolving case,
and the result follows by induction on the resolving case.

LEMMA 7 (UNAMBIGUITY). If 	 v : τ and Sn ∈ dom(SigT) and (extend
funMn α F Pat) ∈ SigT(Sn) and match(v, Pat) = ρ, then there exists some
Sn′ ∈ dom(SigT), some (extend funMn α1 F Pat′) ∈ SigT(Sn′), and some ρ ′ such
that match(v, Pat′) = ρ ′ and ∀Sn′′ ∈ dom(SigT).∀(extend funMn α2 F Pat′′) ∈
SigT(Sn′′). ∀ρ ′′.((match(v, Pat′′) = ρ ′′ ∧ Sn′

.Mn′ �= Sn′′
.Mn′′) ⇒ Pat′ < Pat′′).

PROOF. By (strong) induction on the number of function cases of F that are
applicable to v but are not overridden by Sn.Mn. These are the cases of the form
(extend funMn0

α0 F Pat0) such that (extend funMn0
α0 F Pat0) ∈ SigT(Sn0) for

some Sn0 ∈ dom(SigT), and match(v, Pat0) = ρ0 for some ρ0, and Pat �< Pat0.
� Case there are zero function cases of F that are applicable to v but are not

overridden by Sn.Mn. We’re given that Sn ∈ dom(SigT) and (extend funMn α

F Pat) ∈ SigT(Sn) and match(v, Pat) = ρ. Further, since it cannot both be the
case that Pat ≤ Pat and Pat �≤ Pat, we have Pat �< Pat. Therefore, Sn.Mn itself
is applicable to v but is not overridden by Sn.Mn, so we have a contradiction.

� Case there is exactly one function case of F that is applicable to
v but is not overridden by Sn.Mn. Then from the previous case we
know that Sn.Mn must itself be that function case. Therefore it fol-
lows that ∀Sn′′ ∈ dom(SigT).∀(extend funMn′′ α2 F Pat′′) ∈ SigT(Sn′′).∀ρ ′′.
((match(v, Pat′′) = ρ ′′ ∧ Sn.Mn �= Sn′′

.Mn′′) ⇒ Pat < Pat′′). Then the result
follows.

� There are k > 1 function cases of F that are applicable to v but are not
overridden by Sn.Mn. Let (extend funMn1

α3 F Pat1) be one such function
case, so (extend funMn1

α3 F Pat1) ∈ SigT(Sn1) for some Sn1 ∈ dom(SigT),
and match(v, Pat1) = ρ1 for some ρ1, and Pat �< Pat1. Since k > 1, at least
one of the function cases satisfying the conditions is not Sn.Mn, so assume
without loss of generality that Sn.Mn �= Sn1.Mn1.

By CASEOK we have matchType(τ0, Pat) = (�0, τ ′
0) and matchType(τ1,

Pat1) = (�1, τ ′
1). We’re given that 	 v : τ . Finally, we saw above that

match(v, Pat) = ρ and match(v, Pat1) = ρ1. Therefore by Lemma 30 there
exists some Patint such that Pat ∩ Pat1 = Patint . Further, by Lemma 8 we
have dom(SigT) 	 (Pat, Pat1) unambiguous. Therefore by PAIRAMB we have
that Pat �∼= Pat1 and there exists some Sn2 ∈ dom(SigT) and some (extend
funMn2

α4 F Pat2) ∈ SigT(Sn2) such that Patint ∼= Pat2. Since match(v, Pat) =
ρ and match(v, Pat1) = ρ1 and Pat ∩ Pat1 = Patint , by Lemma 31 there ex-
ists some ρint such that match(v, Patint) = ρint . Then since Patint ≤ Pat2, by
Lemma 25 there exists ρ2 such that match(v, Pat2) = ρ2.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 881

So we have shown there exists some Sn2 ∈ dom(SigT) and some (extend
funMn2

α4 F Pat2) ∈ SigT(Sn2) and some ρ2 such that match(v, Pat2) = ρ2. Let
l be the number of function cases of F that are applicable to v but are not
overridden by Sn2.Mn2. This case is finished by showing that l < k, so that
the result follows by induction with respect to Sn2.Mn2.

First we show that l ≤ k. Consider some Sn0 ∈ dom(SigT), some (extend
funMn0

α0 F Pat0) ∈ SigT(Sn0), and some ρ0 such that match(v, Pat0) = ρ0 and
Pat2 �< Pat0. We will show that also Pat �< Pat0.

Since Pat ∩ Pat1 = Patint , by Lemma 28 we have that Patint ≤ Pat and
Patint ≤ Pat1. Since Pat2 ≤ Patint , by Lemma 26 also Pat2 ≤ Pat and Pat2 ≤
Pat1. Since Pat2 �< Pat0, either Pat2 �≤ Pat0 or Pat0 ≤ Pat2. We consider these
cases in turn.
—Case Pat2 �≤ Pat0. Suppose Pat ≤ Pat0. Since Pat2 ≤ Pat, by Lemma 26

we have Pat2 ≤ Pat0, contradicting the assumption of this case. Therefore
Pat �≤ Pat0, so also Pat �< Pat0.

—Case Pat0 ≤ Pat2. We showed above that Pat2 ≤ Pat. Then by Lemma 26
Pat0 ≤ Pat, so Pat �< Pat0.

Therefore we have shown that every function case of F that is applicable to v
and is not overridden by Sn2.Mn2 is also not overridden by Sn.Mn, so l ≤ k.
To finish the proof, we show that there exists a function case of F that is
applicable to v and is not overridden by Sn.Mn but is overridden by Sn2.Mn2.
We showed in the first case above that Sn.Mn is not overridden by itself. We
will show that Sn.Mn is overridden by Sn2.Mn2. We do this by proving that
Pat2 < Pat. We showed above that Pat2 ≤ Pat, so we simply need to prove that
Pat �≤ Pat2. Suppose Pat ≤ Pat2. We’re given that Pat �< Pat1 and Pat �∼= Pat1.
Therefore, Pat �≤ Pat1. On the other hand, since Pat ≤ Pat2 and Pat2 ≤ Pat1,
by Lemma 26 we have Pat ≤ Pat1, and we have a contradiction.

This lemma says that every pair of function cases belonging to the same
function is unambiguous. If the two cases are both available during some struc-
ture’s modular ITC, then the result follows from that structure’s ambiguity
checks. Otherwise, the modular ambiguity requirement ensures that the cases
are disjoint, so they are also unambiguous.

LEMMA 8. If (extend funMn α F Pat) ∈ SigT(Sn) and (extend funMn α′
F Pat′) ∈ SigT(Sn′) and Sn.Mn �= Sn′

.Mn′, then dom(SigT) 	 (Pat, Pat′)
unambiguous.

PROOF. Since (extend funMn α F Pat) ∈ SigT(Sn), by STRUCTOK we have
Sn ⊆ dom(SigT) and Sn 	 (extend funMn α F Pat = E) OK in Sn for some Sn
and E, so by CASEOK we have Sn; Sn 	 extend funMn α F Pat unambiguous.
Similarly, Sn′ ⊆ dom(SigT) and Sn′; Sn′ 	 extend funMn′ α′ F Pat′ unambiguous,
for some Sn′. There are several cases.

� Case Sn′ ∈ Sn. Since Sn.Mn �= Sn′
.Mn′ and Sn; Sn 	 extend funMn α F Pat

unambiguous, by AMB we have Sn 	 (pat, pat ′) unambiguous. Since Sn ⊆
dom(SigT), by AMB also dom(SigT) 	 (Pat, Pat′) unambiguous.

� Case Sn ∈ Sn. Symmetric to the above case.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

882 • T. Millstein et al.

� Case Sn′ �∈ Sn and Sn �∈ Sn′. Since Sn; Sn 	 extend funMn α F Pat unambigu-
ous, by AMB we have F = Sn1.Fn and (fun α1 Fn : Mt → τ) ∈ SigT(Sn1) and
Sn = Sn1∨ owner(Mt, Pat) = Sn.Cn. Similarly, Sn′ = Sn1∨ (owner(Mt, Pat′) =
Sn′

.Cn′. We have three sub-cases.
—Case Sn′ = Sn1. Since Sn 	 (extend funMn α F Pat = E) OK in Sn, by

CASEOK we have Sn 	 Sn′
.Fn ITCUses. Then by FUNITCUSES Sn′ ∈ Sn, so

we have a contradiction.
—Case Sn = Sn1. Symmetric to the above case.
—Case owner(Mt, Pat) = Sn.Cn and owner(Mt, Pat′) = Sn′

.Cn′. First we show
that Pat and Pat′ are disjoint: there does not exist Pat0 such that Pat ∩
Pat′ = Pat0. Suppose not. Then by Lemma 29 either Sn.Cn ≤ Sn′

.Cn′ or
Sn′

.Cn′ ≤ Sn.Cn. There are two subcases.
—Case Sn.Cn ≤ Sn′

.Cn′. By STRUCTOK Sn 	 (<abstract> class α4 Cn. . .)
OK in Sn, so by CLASSOK Sn 	 Sn.Cn ITCTransUses. Since Sn.Cn ≤
Sn′

.Cn′, by Lemma 37 we have Sn′ ∈ Sn, which is a contradiction.
—Case Sn′

.Cn′ ≤ Sn.Cn. Symmetric to the above case.
So we have shown that there does not exist Pat0 such that Pat ∩ Pat′ = Pat0.
Then by the contrapositive of Lemma 27, Pat �≤ Pat′, so also Pat �∼= Pat′.
Then by PAIRAMB we have dom(SigT) 	 (Pat, Pat′) unambiguous.

A.2 Type Preservation

The type preservation theorem is straightforward except for the case when E
is a function application. That case follows easily from Lemmas 9 and 10.

THEOREM 2 (TYPE PRESERVATION). If 	 E : τ and E −→ E ′ then 	 E ′ : τ ′, for
some τ ′ such that τ ′ ≤ τ .

PROOF. By (strong) induction on the depth of the derivation of E −→ E ′.
Case analysis of the last rule used in the derivation.

� Case E-NEW. Then E has the form Ct(E) and E ′ has the form Ct{V0 = E0}
and Ct = (τ C) and concrete(C) and rep(Ct(E)) = {V0 = E0}. Since 	 E :
τ , by T-NEW we have τ = Ct and {}; • 	 Ct(E) OK. Then by T-CONSTR we
have • 	 Ct OK. Therefore by Lemmas 33 and 34 there exists τ0 such that
repType(Ct) = {V0 : τ0}, and by Lemma 35 we have 	 E0 : τ ′

0, where τ ′
0 ≤ τ0.

Then by T-REP we have 	 Ct{V0 = E0} : Ct, and by SUBTREF we have Ct ≤ Ct.
� Case E-REP. Then E has the form Ct{V0 = v0, V0 = E0, V1 = E1} and E ′

has the form Ct{V0 = v0, V0 = E ′
0, V1 = E1} and E0 −→ E ′

0. Since 	 E :
τ , by T-REP we have τ = Ct = (τ C) and concrete(C) and • 	 Ct OK and
repType(Ct) = {V0 : τ0, V0 : τ0, V1 : τ1} and 	 v0 : τ ′

0 and τ ′
0 ≤ τ0 and 	 E0 : τ ′

0

and τ ′
0 ≤ τ0 and 	 E1 : τ ′

1 and τ ′
1 ≤ τ1. By induction we have 	 E ′

0 : τ ′′
0 , for

some τ ′′
0 such that τ ′′

0 ≤ τ ′
0. Therefore by SUBTTRANS τ ′′

0 ≤ τ0. Then by T-REP

	 Ct{V0 = v0, V0 = E ′
0, V1 = E1} : Ct, and by SUBTREF Ct ≤ Ct.

� Case E-TUP. Then E has the form (v1, . . . , vi−1, Ei, . . . , Ek) and E ′ has the
form (v1, . . . , vi−1, E ′

i, Ei+1, . . . , Ek) and Ei −→ E ′
i, where 1 ≤ i ≤ k. Since

	 E : τ , by T-TUP τ has the form τ1 ∗ · · · ∗ τk and 	 vj : τ j for all 1 ≤ j < i

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 883

and 	 E j : τ j for all i ≤ j ≤ k. By induction we have 	 E ′
i : τ ′

i for some τ ′
i

such that τ ′
i ≤ τi. Then by T-TUP we have 	 (v1, . . . , vi−1, E ′

i, Ei+1, . . . , Ek) :
τ1 ∗ · · · ∗ τi−1 ∗ τ ′

i ∗ τi+1 ∗ · · · ∗ τk . By SUBTREF we have τ j ≤ τ j for all 1 ≤ j ≤ k,
so by SUBTTUP we have τ1 ∗ · · · ∗ τi−1 ∗ τ ′

i ∗ τi+1 ∗ · · · ∗ τk ≤ τ1 ∗ · · · ∗ τk .
� Case E-APP1. Then E has the form E1 E2 and E ′ has the form E ′

1 E2 and
E1 −→ E ′

1. Since 	 E : τ , by (T-App) we have 	 E1 : τ2 → τ and 	 E2 : τ ′
2

and τ ′
2 ≤ τ2. By induction 	 E ′

1 : τ ′, for some τ ′ such that τ ′ ≤ τ2 → τ . By
Lemma 17 τ ′ has the form τ ′′

2 → τ ′′, where τ2 ≤ τ ′′
2 and τ ′′ ≤ τ . Therefore by

SUBTTRANS we have τ ′
2 ≤ τ ′′

2 , so by T-APP we have 	 E ′
1 E2 : τ ′′, where τ ′′ ≤ τ .

� Case E-APP2. Then E has the form v1 E2 and E ′ has the form v1 E ′
2 and E2 −→

E ′
2. Since 	 E : τ , by T-APP we have 	 v1 : τ2 → τ and 	 E2 : τ ′

2 and τ ′
2 ≤ τ2.

By induction 	 E ′
2 : τ ′′

2 , for some τ ′′
2 such that τ ′′

2 ≤ τ ′
2. By SUBTTRANS we have

τ ′′
2 ≤ τ2, so by T-APP we have 	 v1 E ′

2 : τ and by SUBTREF we have τ ≤ τ .
� Case E-APPRED. Then E = (τ F) v and E ′ = [I0 �→ v0]E0 and most-specific-

case-for((τ F), v) = ({(I0, v0)}, E0). Since 	 E : τ , by T-APP we have 	 (τ F) :
τ2 → τ and 	 v : τ ′

2 and τ ′
2 ≤ τ2. Then by T-FUN we have and F = Sn.Fn

and τ2 → τ = [α �→ τ](M̂t → τ0) and (fun α Fn : Mt → τ0) ∈ SigT(Sn) and
• 	 τ OK. By LOOKUP we have E0 = [α0 �→ τ]E ′

0 and (extend funMn α0 F
Pat = E ′

0) ∈ ST(Sn′) and match(v, Pat) = {(I0, v0)}. Then by CASEOK we have
matchType([α �→ α0]M̂t, Pat) = (�, τ ′′) and �; α0 	 E ′

0 : τ ′
0 and τ ′

0 ≤ [α �→ α0]τ0.
By Lemma 24 we have matchType([α0 �→ τ][α �→ α0]M̂t, Pat) = ([α0 �→

τ]�, [α0 �→ τ]τ ′′). By FUNOK we have α 	 M̂t OK, so by Lemma 11 all type
variables in M̂t are in α. Therefore [α0 �→ τ][α �→ α0]M̂t is equivalent to [α �→
τ]M̂t = τ2, so we have matchType(τ2, Pat) = ([α0 �→ τ]�, [α0 �→ τ]τ ′′). Then
by Lemma 10 we have τ ′

2 ≤ [α0 �→ τ]τ ′′ and dom([α0 �→ τ]�) = dom({(I0, v0)})
and for each (Ix , τx) ∈ [α0 �→ τ]�, there exists (Ix , vx) ∈ {(I0, v0)} such that
	 vx : τ ′

x , where τ ′
x ≤ τx .

By Lemma 22 we have [α0 �→ τ]�; • 	 [α0 �→ τ]E ′
0 : [α0 �→ τ]τ ′

0. Then by
Lemma 9 	 [I0 �→ v0][α0 �→ τ]E ′

0 : τsub and τsub ≤ [α0 �→ τ]τ ′
0. By Lemma 21

we have [α0 �→ τ]τ ′
0 ≤ [α0 �→ τ][α �→ α0]τ0. By FUNOK we have α 	 τ0 OK, so

by Lemma 11 all type variables in τ0 are in α. Therefore [α0 �→ τ][α �→ α0]τ0 is
equivalent to [α �→ τ]τ0 = τ , so we have [α0 �→ τ]τ ′

0 ≤ τ . Then by SUBTTRANS

we have τsub ≤ τ . Therefore we have shown 	 E ′ : τsub and τsub ≤ τ .

This is a standard lemma showing that type-correct substitution preserves
the well-typedness of an expression.

LEMMA 9 (SUBSTITUTION). If �; α0 	 E : τ and � = {(I0, τ0)} and �0; α0 	 E0 :
τ0

′ and τ ′
0 ≤ τ0, then �0; α0 	 [I0 �→ E0]E : τ ′, for some τ ′ such that τ ′ ≤ τ .

PROOF. By (strong) induction on the depth of the derivation of �; α0 	 E : τ .
Case analysis of the last rule used in the derivation.

� Case T-ID. Then E = I and (I, τ) ∈ �, so I = I j and τ = τ j for some 1 ≤ j ≤ k,
where I0 = I1, . . . , Ik and τ0 = τ1, . . . , τk and E0 = E1, . . . , Ek . Therefore
[I0 �→ E0]E = E j . Since we’re given that �0; α0 	 E j : τ ′

j and τ ′
j ≤ τ j , the

result is shown.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

884 • T. Millstein et al.

� Case T-NEW. Then E = Ct(E) and τ = Ct and �; α0 	 Ct(E) OK and Ct =
(τ1 Sn.Cn) and concrete(Sn.Cn). Then by T-CONSTR we have α0 	 Ct OK and
(<abstract> class α1 Cn(I : τ) . . .) ∈ SigT(Sn) and �; α0 	 E : τ ′ and
τ ′ ≤ [α1 �→ τ1]τ . Since [I0 �→ E0]Ct = Ct and [I0 �→ E0]Sn.Cn = Sn.Cn,
we have α0 	 [I0 �→ E0]Ct OK and concrete([I0 �→ E0]Sn.Cn). By induction
we have �0; α0 	 [I0 �→ E0]E : τ ′′ and τ ′′ ≤ τ ′. Then by SUBTTRANS we have
τ ′′ ≤ [α1 �→ τ1]τ . Therefore by T-CONSTR we have �0; α0 	 [I0 �→ E0]E OK, so
by T-NEW we have �0; α0 	 [I0 �→ E0]E : τ . By SUBTREF we have τ ≤ τ , so the
result is shown.

� Case T-REP. Then E = Ct{V = E} and τ = Ct and α0 	 Ct OK and Ct =
(τ1 Sn.Cn) and concrete(Sn.Cn) and repType(Ct) = {V : τ } and �; α0 	 E : τ ′
and τ ′ ≤ τ . Since [I0 �→ E0]Ct = Ct and [I0 �→ E0]Sn.Cn = Sn.Cn, we have
α0 	 [I0 �→ E0]Ct OK and concrete([I0 �→ E0]Sn.Cn) and repType([I0 �→
E0]Ct) = {V : τ }. By induction we have �0; α0 	 [I0 �→ E0]E : τ ′′ and τ ′′ ≤ τ ′.
Then by SUBTTRANS we have τ ′′ ≤ τ , so by T-Rep we have �0; α0 	 [I0 �→
E0]E : τ . By SUBTREF we have τ ≤ τ , so the result is shown.

� Case T-FUN. Then since � is not used in T-FUN and �; α0 	 E : τ , also �0; α0 	
E : τ . Further, we have E = Fv, so [I0 �→ E0]E = E. Therefore �0; α0 	 [I0 �→
E0]E : τ , and by SUBTREF τ ≤ τ , so the result is shown.

� Case T-TUP. Then E = (E1, . . . , Ek) and τ = τ1 ∗ · · · ∗ τk and for all 1 ≤ j ≤ k
we have �; α0 	 E j : τ j . Then by induction, for all 1 ≤ j ≤ k we have
�0; α0 	 [I0 �→ E0]E j : τ ′

j and τ ′
j ≤ τ j . Then by T-TUP we have �0; α0 	 [I0 �→

E0](E1, . . . , Ek) : τ ′
1∗· · ·∗τ ′

k . Finally, by SUBTTUP we have τ ′
1∗· · ·∗τ ′

k ≤ τ1∗· · ·∗τk .
� Case T-APP. Then E = E1 E2 and �; α0 	 E1 : τ2 → τ and �; α0 	 E2 : τ ′

2 and
τ ′

2 ≤ τ2. By induction we have �0; α0 	 [I0 �→ E0]E1 : τ0 and τ0 ≤ τ2 → τ .
Also by induction we have �0; α0 	 [I0 �→ E0]E2 : τ ′′

2 and τ ′′
2 ≤ τ ′

2. Then by
SUBTTRANS we have τ ′′

2 ≤ τ2. By Lemma 17 τ0 has the form τar g → τres, where
τ2 ≤ τar g and τres ≤ τ . Therefore by SUBTTRANS we have τ ′′

2 ≤ τar g . Therefore
by T-APP we have �0; α0 	 [I0 �→ E0](E ′

1 E ′
2) : τres. We saw above that τres ≤ τ ,

so the result is shown.

This lemma relates the results of pattern matching to its static approxima-
tion. In particular, the type of any value matching a pattern is a subtype of the
pattern’s type, and similarly for values bound to identifiers in the pattern. The
proof is straightforward.

LEMMA 10. If 	 v : τ ′′ and τ ′′ ≤ τ and match(v, Pat) = ρ and
matchType(τ, Pat) = (�, τ ′), then (1) τ ′′ ≤ τ ′; and (2) dom(�) = dom(ρ) and
(3) for each (I0, τ0) ∈ �, there exists (I0, v0) ∈ ρ such that 	 v0 : τ ′

0, for some τ ′
0

such that τ ′
0 ≤ τ0.

PROOF. By (strong) induction on the length of the derivation of match
(v, Pat) = ρ. Case analysis of the last rule used in the derivation:
� Case E-MATCHWILD. Then Pat has the form and ρ = {}. By T-MATCHWILD

we have � = {} and τ ′ = τ . Therefore, conditions 1 and 2 are shown, and
condition 3 holds vacuously.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 885

� Case E-MATCHBIND. Then Pat has the form I as Pat′ and ρ = ρ ′ ∪ {(I, v)}
and match(v, Pat′) = ρ ′. By T-MATCHBIND we have � = �′ ∪ {(I, τ ′)} and
matchType(τ, Pat′) = (�′, τ ′). By induction we have τ ′′ ≤ τ ′ and dom(�′) =
dom(ρ ′) and for each (I0, τ0) ∈ �′, there exists (I0, v0) ∈ ρ ′ such that 	 v0 : τ ′

0,
where τ ′

0 ≤ τ0. Therefore, we have τ ′′ ≤ τ ′ and dom(�′ ∪ {(I, τ ′)}) = dom(ρ ′ ∪
{(I, v)}) and for each (I0, τ0) ∈ �′ ∪ {(I, τ ′)}, there exists (I0, v0) ∈ ρ ′ ∪ {(I, v)}
such that 	 v0 : τ ′

0, where τ ′
0 ≤ τ0.

� Case E-MATCHTUP. Then v = (v1, . . . , vk) and Pat has the form (Pat1, . . . , Patk)
and ρ = ρ1 ∪ · · · ∪ ρk and for all 1 ≤ i ≤ k we have match(vi, Pati) = ρi. By
T-MATCHTUP we have τ = τ1 ∗ · · · ∗ τk and � = �1 ∪ . . . ∪ �k and τ ′ = τ ′

1 · · · ∗ τ ′
k

and for all 1 ≤ i ≤ k we have match(τi, Pati) = (�i, τ ′
i).

Since 	 v : τ ′′, by T-TUP we have that τ ′′ = τ ′′
1 ∗ · · · ∗ τ ′′

k and for all 1 ≤ i ≤ k
we have 	 vi : τ ′′

i . Since we’re given that τ ′′ ≤ τ , by Lemma 19 we have τ ′′
i ≤ τi

for all 1 ≤ i ≤ k. Then by induction, for all 1 ≤ i ≤ k we have τ ′′
i ≤ τ ′

i .
Then by SUBTTUP we have τ ′′

1 ∗ · · · ∗ τ ′′
k ≤ τ ′

1 ∗ . . . ∗ τ ′
k , proving condition 1.

Also by induction, for all 1 ≤ i ≤ k we have dom(�i) = dom(ρi) and for each
(I0, τ0) ∈ �i, there exists (I0, v0) ∈ ρi such that 	 v0 : τ ′

0, where τ ′
0 ≤ τ0.

Therefore conditions 2 and 3 follow.
� Case E-MATCHCLASS. Then v = ((τ C){V1 = v1, V2 = v2}) and Pat has the form

(C′{V1 = Pat1) and C ≤ C′ and ρ = ⋃
ρ1 and match(v1, Pat1) = ρ1. By T-

MATCHCLASS we have τ = (τ ′ C′′) and τ ′ = (τ ′ C′) and � = ⋃
�1 and C′ ≤ C′′

and repType(τ ′ C′) = {V1 : τ1} and matchType(τ1, Pat1) = (�1, τ ′
1).

Since 	 v : τ ′′ and v = ((τ C){V1 = v1, V2 = v2}), by T-REP we have that
τ ′′ = (τ C) and • 	 (τ C) OK and and repType(τ C) = {V1 : τ ′′

1 , V2 : τ ′′
2 } and

	 v1 : τ ′′′
1 and τ ′′′

1 ≤ τ ′′
1 . Since τ ′′ ≤ τ , we have (τ C) ≤ (τ ′ C′′), so by Lemma 14

we have τ = τ ′. Since C ≤ C′ and • 	 (τ C) OK, by Lemma 16 we have
(τ C) ≤ (τ C′), and since τ = τ ′, condition 1 is shown. By Lemma 36 we
have τ ′′

1 = τ1. Therefore 	 v1 : τ ′′′
1 and τ ′′′

1 ≤ τ1 and match(v1, Pat1) = ρ1 and
matchType(τ1, Pat1) = (�1, τ ′

1), so by induction it follows that dom(
⋃

�1) =
dom(

⋃
ρ1) and for each (I0, τ0) ∈ ⋃

�1, there exists (I0, v0) ∈ ⋃
ρ1 such that

	 v0 : τ ′
0, where τ ′

0 ≤ τ0. Therefore, conditions 2 and 3 are shown.

A.3 Basic Lemmas

These lemmas state some simple and intuitive properties about EML’s seman-
tics. The proofs are all straightforward and can be found in the first author’s
dissertation [Millstein 2003].

A.3.1 Type Well-formedness

LEMMA 11. If α 	 τ OK, then all type variables in τ are in α.

A.3.2 Subclassing and Subtyping

LEMMA 12. If τ ≤ (τ C), then τ has the form (τ1 C′).

LEMMA 13. If (τ C) ≤ τ , then τ has the form (τ1 C′).

LEMMA 14. If (τ C) ≤ (τ1 C′), then τ = τ1.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

886 • T. Millstein et al.

LEMMA 15. If (τ C) ≤ (τ1 C′) then C ≤ C′.

LEMMA 16. If C1 ≤ C2 and α 	 (τ C1) OK then (1) (τ C1) ≤ (τ C2); and (2)
α 	 (τ C2) OK.

LEMMA 17. If τ ≤ τ1 → τ2, then τ has the form τ ′
1 → τ ′

2, where τ1 ≤ τ ′
1 and

τ ′
2 ≤ τ2.

LEMMA 18. If τ1 → τ2 ≤ τ , then τ has the form τ ′
1 → τ ′

2.

LEMMA 19. If τ ≤ τ1 ∗ · · · ∗ τk, then τ has the form τ ′
1 ∗ · · · ∗ τ ′

k, where for all
1 ≤ i ≤ k we have τ ′

i ≤ τi .

LEMMA 20. If τ1 ∗ · · · ∗ τk ≤ τ , then τ has the form τ ′
1 ∗ · · · ∗ τ ′

k, where for all
1 ≤ i ≤ k we have τi ≤ τ ′

i .

A.3.3 Type Substitution

LEMMA 21. If τ ≤ τ ′ and |α| = |τ |, then [α �→ τ]τ ≤ [α �→ τ]τ ′.

LEMMA 22. If �; α 	 E : τ and |α| = |τ | and α0 	 τ OK, then [α �→ τ]�; α0 	
[α �→ τ]E : [α �→ τ]τ .

LEMMA 23. If repType(Ct) = {V : τ } and |α| = |τ |, then repType([α �→
τ]Ct) = [α �→ τ]{V : τ }.

LEMMA 24. If matchType(τ, Pat) = (�, τ ′) and |α| = |τ |, then
matchType([α �→ τ]τ, Pat) = ([α �→ τ]�, [α �→ τ]τ ′).

A.3.4 Pattern Matching, Specificity, and Intersection

LEMMA 25. If match(v, Pat) = ρ and Pat ≤ Pat′, then there exists ρ ′ such that
match(v, Pat′) = ρ ′.

LEMMA 26. If Pat ≤ Pat′ and Pat′ ≤ Pat′′ then Pat ≤ Pat′′.

LEMMA 27. If Pat ≤ Pat′ then there exists some Pat0 such that Pat ∩ Pat′ =
Pat0.

LEMMA 28. If Pat ∩ Pat′ = Pat0 then Pat0 ≤ Pat and Pat0 ≤ Pat′.

LEMMA 29. If owner(Mt, Pat′) = C′ and owner(Mt, Pat′′) = C′′ and Pat′ ∩
Pat′′ = Pat, then either C′ ≤ C′′ or C′′ ≤ C′.

LEMMA 30. If 	 v : τ and match(v, Pat′) = ρ ′ and match(v, Pat′′) = ρ ′′ and
matchType(τ ′, Pat′) = (�′, τ ′

0) and matchType(τ ′′, Pat′′) = (�′′, τ ′′
0), then there ex-

ists some Pat such that Pat′ ∩ Pat′′ = Pat.

LEMMA 31. If match(v, Pat′) = ρ ′ and match(v, Pat′′) = ρ ′′ and Pat′ ∩ Pat′′ =
Pat, then there exists some ρ such that match(v, Pat) = ρ.

A.3.5 Representations and Representation Types

LEMMA 32. If �; α 	 Ct(E0) OK then there exist V and E such that
rep(Ct(E0)) = {V = E}.
ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 887

LEMMA 33. If α 	 Ct OK then there exist V0 and τ0 such that repType(Ct) =
{V0 : τ0} and α 	 τ0 OK.

LEMMA 34. If rep(Ct(E)) = {V1 = E1} and repType(Ct) = {V2 : τ2} then
V1 = V2.

LEMMA 35. If �0; α0 	 Ct(E) OK and rep(Ct(E)) = {V0 = E0} and
repType(Ct) = {V0 : τ0}, then �0; α0 	 E0 : τ ′

0, for some τ ′
0 such that τ ′

0 ≤ τ0.

LEMMA 36. If • 	 Ct OK and Ct ≤ Ct′ then repType(Ct) has the form {V1 :
τ1, V2 : τ2}, where repType(Ct′) = {V1 : τ1}.

A.3.6 Module Dependency Relation

LEMMA 37. If Sn 	 C ITCTransUses and C ≤ C′, then Sn 	
C′ ITCTransUses.

ACKNOWLEDGMENTS

Thanks to Jonathan Aldrich, Sorin Lerner, and Vass Litvinov for helpful com-
ments on the paper.

REFERENCES

ANCONA, D., LAGORIO, G., AND ZUCCA, E. 2002. A formal framework for Java separate compilation.
In Proceedings of the 2002 European Conference on Object-Oriented Programming, Lecture Notes
in Computer Science, vol. 2374, Malaga, Spain (June). Springer-Verlag.

ANCONA, D. AND ZUCCA, E. 2001. True modules for Java-like languages. In J. L. Knudsen, Ed.
ECOOP 2001–Object-Oriented Programming, Lecture Notes in Computer Science, vol. 2072.
Springer.

ANCONA, D. AND ZUCCA, E. 2002. A calculus of module systems. J. Funct. Prog. 12, 2, 91–132
(March).

ARNOLD, K., GOSLING, J., AND HOLMES, D. 2000. The Java Programming Language Third Edition.
Addison-Wesley, Reading, MA, third edition.

BONNIOT, D. 2002. Type-checking multi-methods in ML (a modular approach). In The Ninth
International Workshop on Foundations of Object-Oriented Languages, FOOL 9, Portland,
Oregon, USA (January).

BOURDONCLE, F. AND MERZ, S. 1997. Type-checking higher-order polymorphic multi-methods. In
Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 302–315, Paris, France, 15–17 (Jan).

BRACHA, G. AND COOK, W. 1990. Mixin-based inheritance. In ECOOP/OOPSLA ’90, 303–311.
CARDELLI, L. 1988. A semantics of multiple inheritance. Information and Computation 76, 2/3,

138–164 (Feb).
CARDELLI, L. 1997. Program fragments, linking, and modularization. In Conference Record

of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 266–277, Paris, France, 15–17 (Jan.).

CARDELLI, L. and WEGNER, P. 1985. On understanding types, data abstraction, and polymorphism.
ACM Comput. Surv. 17, 4, 471–522 (Dec.).

CHAMBERS, C. AND CHEN, W. 1999. Efficient multiple and predicate dispatching. In L. Meissner, Ed.
In Proceeings of the 1999 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA‘99), volume 34.10 of ACM Sigplan Notices, 238–255, N.Y.,
Nov. 1–5. ACM Press.

CHAMBERS, C. AND LEAVENS, G. T. 1995. Typechecking and modules for multimethods. ACM Trans.
Prog. Lang. Sys. 17, 6, 805–843 (Nov.).

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

888 • T. Millstein et al.

CLIFTON, C., LEAVENS, G. T., CHAMBERS, C., AND MILLSTEIN, T. 2000. MultiJava: Modular open classes
and symmetric multiple dispatch for Java. In OOPSLA 2000 Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, Minneapolis, Minnesota, volume 35(10) of
ACM SIGPLAN Notices, 130–145 (Oct.).

COOK, W. R. 1991. Object-oriented programming versus abstract data types. In J. W. de Bakker,
W. P. de Roever, and G. Rozenberg, Eds. Foundations of Object-Oriented Languages, REX
School/Workshop, Noordwijkerhout, The Netherlands, May/June, LNCS 489, 151–178. Springer-
Verlag, New York, NY.

DROSSOPOULOU, S., EISENBACH, S., and WRAGG, D. 1999. A fragment calculus—towards a model
of separate compilation, linking and binary compatibility. In Logic in Computer Science, 147–
156.

DUGGAN, D. AND SOURELIS, C. 1996. Mixin modules. In Proceedings of the 1996 ACM SIGPLAN
International Conference on Functional Programming, 262–273, Philadelphia, Pennsylvania
(May).

DUGGAN, D. AND TECHAUBOL, C.-C. 2001. Modular mixin-based inheritance for application frame-
works. In Proceedings of the OOPSLA ’01 conference on Object Oriented Programming Systems
Languages and Applications, 223–240. ACM Press.

ERNST, M., KAPLAN, C., AND CHAMBERS, C. 1998. Predicate dispatching: A unified theory of dispatch.
In E. Jul, Ed. ECOOP ’98–Object-Oriented Programming, Lecture Notes in Computer Science,
vol. 1445, 186–211. Springer.

FINDLER, R. B. AND FLATT, M. 1998. Modular object-oriented programming with units and mix-
ins. In Proceedings of the ACM SIGPLAN International Conference on Functional Programming
(ICFP ’98), 34(1) of ACM SIGPLAN Notices, 94–104. ACM (June).

FISHER, K. AND REPPY, J. 1999. The design of a class mechanism for MOBY. In Proceedings of the
ACM SIGPLAN ’99 Conference on Programming Language Design and Implementation, 37–49,
Atlanta, Georgia (May 1–4).

FISHER, K. AND REPPY, J. 2000. Extending Moby with inheritance-based subtyping. In 14th
European Conference on Object-Oriented Programming, LNCS 1850, 83–107 (June).

FLATT, M. AND FELLEISEN, M. 1998. Units: Cool modules for HOT languages. In Proceedings of the
ACM SIGPLAN’98 Conference on Programming Language Design and Implementation (PLDI),
236–248, Montreal, Canada (17–19 June).

FLATT, M., KRISHNAMURTHI, S., AND FELLEISEN, M. 1998. Classes and mixins. In Conference Record
of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, California, 171–183, New York, NY.

FUH, Y.-C. C. AND MISHRA, P. 1990. Type inference with subtypes. Theoretical Computer Science
73, 2, 155–175 (June).

GAMMA, E., HELM, R., JOHNSON, R. E., AND VLISSIDES, J. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Massachusetts.

GARRIGUE, J. 2000. Code reuse through polymorphic variants. In Workshop on Foundations of
Software Engineering, November.

GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. 2000. The Java Language Specification Second
Edition. The Java Series. Addison-Wesley, Boston, Mass.

HIRSCHOWITZ, T. AND LEROY, X. 2002. Mixin modules in a call-by-value setting. In D. Le Métayer,
Ed, Programming Languages and Systems, ESOP’2002, volume 2305 of Lecture Notes in
Computer Science, 6–20. Springer-Verlag.

HOANG, M. AND MITCHELL, J. C. 1995. Lower bounds on type inference with subtypes. In Confer-
ence Record of POPL ’95: 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Francisco, Calif., 176–185, New York, NY (Jan.) ACM.

IGARASHI, A., PIERCE, B. C., AND WADLER, P. 2001. Featherweight Java: A minimal core calculus for
Java and GJ. ACM Transactions on Programming Languages and Systems 23, 3, 396–450, May.

KAHRS, S., SANNELLA, D., AND TARLECKI, A. 1997. The definition of extended ML: A gentle intro-
duction. Theoretical Computer Science 173, 2, 445–484, 28(Feb.).

KRISHNAMURTHI, S., FELLEISEN, M., AND FRIEDMAN, D. P. 1998. Synthesizing object-oriented and
functional design to promote re-use. In E. Jul, Ed. ECOOP’98–Object-Oriented Programming,
12th European Conference, Brussels, Belgium, Lecture Notes in Computer Science, vol. 1445,
91–113. Springer-Verlag (July).

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

Modular Typechecking for Hierarchically Extensible Datatypes and Functions • 889

MACQUEEN, D. 1984. Modules for standard ML. In Conference Record of the 1984 ACM Sympo-
sium on Lisp and Functional Programming, 198–207. ACM (Aug.).

MCDIRMID, S., FLATT, M., AND HSIEH, W. C. 2001. Jiazzi: new-age components for old-fashioned
java. In Proceedings of the OOPSLA ’01 conference on Object Oriented Programming Systems
Languages and Applications, 211–222. ACM Press.

MILLSTEIN, T. 2003. Reconciling Software Extensibility with Modular Program Reasoning. Ph.D.
dissertation, Department of Computer Science & Engineering, University of Washington.

MILLSTEIN, T., BLECKNER, C., AND CHAMBERS, C. 2002. Modular typechecking for hierarchically
extensible datatypes and functions. In Proceedings of the ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’02), volume 37(9) of ACM SIGPLAN Notices, 110–122,
New York, NY (Sept.) ACM.

MILLSTEIN, T. AND CHAMBERS, C. 1999. Modular statically typed multimethods. In R. Guerraoui,
editor, ECOOP ’99 – Object-Oriented Programming 13th European Conference, Lisbon Portugal,
Lecture Notes in Computer Science, vol. 1628, 279–303. Springer-Verlag, New York, NY (June).

MILLSTEIN, T. AND CHAMBERS, C. 2002. Modular statically typed multimethods. Information and
Computation 175, 1, 76–118 (May).

MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. 1997. The Definition of Standard ML
(Revised). The MIT Press.

NELSON, G. 1991. Systems Programming with Modula-3. Prentice Hall.
NORDLANDER, J. 1999. Pragmatic subtyping in polymorphic languages. In Proceedings of the ACM

SIGPLAN International Conference on Functional Programming (ICFP ’98), 34, 1, 216–227.
ODERSKY, M. AND WADLER, P. 1997. Pizza into Java: Translating theory into practice. In Conference

Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 146–159, Paris, France, 15–17 (Jan.).

PIERCE, B. C. AND TURNER, D. N. 2000. Local type inference. ACM Trans. Prog. Lang. Syst. 22, 1,
1–44 (Jan.).

RÉMY, D. AND VOUILLON, J. 1998. Objective ML: An effective object-oriented extension of ML.
Theory and Practice of Object Systems 4, 1, 27–52.

REPPY, J. AND RIECKE, J. 1996. Simple objects for Standard ML. In Proceedings of the ACM
SIGPLAN ’96 Conference on Programming Language Design and Implementation, 171–180,
Philadelphia, Pennsylvania, 21–24 (May).

REYNOLDS, J. C. 1978. User defined types and procedural data structures as complementary ap-
proaches to data abstraction. In D. Gries, editor, Programming Methodology, A Collection of
Articles by IFIP WG2.3, 309–317. Springer-Verlag, New York, NY.

SHALIT, A. 1997. The Dylan Reference Manual: The Definitive Guide to the New Object-Oriented
Dynamic Language. Addison-Wesley, Reading, Mass.

WADLER, P. 1990. Linear types can change the world! In M. Broy and C. Jones, editors, IFIP TC 2
Working Conference on Programming Concepts and Methods, Sea of Galilee, Israel, 7–359. North
Holland (Apr.).

WRIGHT, A. K. AND FELLEISEN, M. 1994. A syntactic approach to type soundness. Information and
Computation 115, 1, 38–94, 15 (Nov.).

ZENGER, M., AND ODERSKY, M. 2001. Extensible algebraic datatypes with defaults. In Proceed-
ings of the 2001 ACM SIGPLAN International Conference on Functional Programming. ACM
(September) 3–5.

Received August 2002; revised September 2003; accepted February 2004

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 5, September 2004.

