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Abstract

Most recovery schemes that have been proposed
for Distributed Shared Memory (DSM) systems require
unnecessarily high checkpointing frequency and
checkpoint traffic, which are sensitive to the frequency
of interprocess communication in the applications. For
message-passing systems, low overhead error recovery
based on coordinated checkpointing allows the frequency
of checkpointing to be determined only by the reliability
requirements of the application. Efficient adaptation of
this approach to DSM multicomputers is complicated by
the absence of explicit messages in DSM systems, the
presence of a shared and partially replicated address
space, and the presence of a distributed coherency
directory. We present solutions to these issues, and
propose an error recovery scheme based on coordinated
checkpointing and rollback for DSM multicomputers.
Our performance evaluation based on trace-driven
simulations indicates that this scheme incurs less
checkpoint traffic than recovery schemes previously
proposed for DSM systems.

I. Introduction

DSM multicomputers [2, 3, 11, 12] provide a single
shared address space on hardware where memory is
physically distributed, using cache coherency
protocols [3, 11, 13]. The reliability requirements of
large DSM multicomputers, consisting of thousands of
VLSI chips, can only be met by using fault tolerance
techniques.

Application-transparent error recovery in
message-passing systems can be achieved using message
logging or based on coordinated checkpointing. These
schemes do not require checkpointing at every
interprocess communication and yet are not susceptible
to the domino effect [15]. Message logging [18, 8]
involves the logging of interprocess messages as well as
periodic process checkpoints. The message logs are used
to restore a recovering process to a state consistent [15, 4]
with the rest of the system. Coordinated
checkpointing [1, 20, 10, 21] is based on checkpointing
‘‘together’’ consistent states of all the processes that

have interacted since their last checkpoint. Recovery
requires rolling back the entire interacting set of
processes containing the failed process. In
multicomputers, message logging requires significantly
higher overhead than coordinated checkpointing during
normal operation due to the need to log all
communication as well as to generate and process for
each message information for tracking dependencies [5].

Recovery schemes for DSM multicomputers must
address the same issues as messages-passing
multicomputers. Some proposed schemes use the simple
but costly approach of checkpointing prior to every
‘‘communication’’ with another process [24, 23, 19] (see
Section V). Based on message logging, it has also been
proposed to use independent process checkpoints
together with logs of remote page accesses [16]. As
mentioned earlier, these schemes suffer from
unacceptably high overhead during normal operation.

This paper presents an error recovery scheme for
DSM multicomputers based on coordinated
checkpointing. Coordinated checkpointing schemes
minimize the overhead during normal operation since
they require little or no special recovery-related actions
for interprocess communication. There is no need to log
messages or process complex dependency-tracking
information. Recovery may be more expensive than with
message logging. However, the overall cost (overhead)
of checkpointing will usually be lower. Far fewer
checkpoints may be taken since the frequency of
checkpointing can be tuned to the needs of the
application instead of being determined by the frequency
of interprocess communication. Thus, for
communication-intensive applications, recovery schemes
based on coordinated checkpointing are preferable over
other schemes [20, 5].

In DSM multicomputers, memory accesses that
result in a miss on the local node can require multiple
message exchanges between the nodes to transmit the
data and update the directories [3, 11, 12]. It is possible
to implement coordinated checkpointing and rollback on
DSM multicomputers by treating each one of these
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messages as an ‘‘interaction’’ between processes. With
this approach, since the directories modified by these
‘‘messages’’ are accessed by all tasks, processes of
different tasks (which do not communicate) become part
of the same interacting set and must be checkpointed and
rolled back together. Hence, this naive approach to
implementing coordinated checkpointing would result in
allii the processes in the system and all the cache
directories quickly becoming part of one interacting set.
Thus, virtually all checkpoints and rollbacks would have
to be of the entire system.

Our checkpointing and rollback scheme takes into
account the fact that not all messages exchanged on
behalf of a process need to be considered in determining
the interacting set of processes that are checkpointed and
rolled back together. The identification of ‘‘real’’
process interactions is integrated with the coherency
protocol. The concept of unique ‘‘ownership’’ [9] in the
coherency mechanism is exploited to checkpoint and
recover the replicated address space. The state of the
distributed coherency directory is not checkpointed.
During recovery, the coherency directory is transformed
to accurately reflect the modified state of the physical
memories. We have evaluated the performance of our
coordinated checkpointing scheme using trace-driven
simulations. Our evaluation shows that coordinated
checkpointing presents a low overhead alternative to
previously proposed DSM error recovery schemes.

The following section is a brief summary of
coordinated checkpointing for message-passing systems.
Section III describes our system model and assumptions.
Our checkpointing and rollback scheme is presented in
Section IV. Section V is an overview of prior research
on DSM system recovery. Performance evaluation based
on trace-driven simulations is presented in Section VI,
where we compare our scheme to previously proposed
schemes for DSM recovery.

II. Coordinated Checkpointing and Rollback

In a system where processes interact with each
other, the states of two processes are consistent if they
agree on what messages have been exchanged between
them. Coordinated checkpointing and rollback schemes
require that the most recent checkpointed state of every
process is consistent with the most recent checkpointed
state of every other process [1, 20, 10, 21]. Hence, the set
of all the committed checkpoints in stable storage is
always a consistent snapshot [4] of the entire system.

Coordinated checkpointing and rollback do not
require all system processes to be checkpointed and
rolled back together. Instead, communication between
processes is tracked, and the state of interacting sets of

processes are checkpointed or rolled back in
coordination [1, 10, 21]. For each process, the system
maintains the set of processes with which it has
interacted directly since its last checkpoint. When a
process initiates a checkpointing session, this
communication information is used to build a
communication tree consisting of all the processes with
which the first process has communicated directly or
indirectly since the last checkpoint [21]. The initiator of
the session coordinates the consistent checkpoint of all
members of the communication tree [1, 10, 21] using a
two-phase commit protocol [6]. All participants in the
checkpointing session suspend their execution and all
messages in transit between them are flushed to their
destinations and become part of the destinations’ state.
Recovery is similar to the checkpoint session, except that
the flushed messages are discarded and the process states
are restored from stable storage.

III. System Model and Assumptions

The DSM multicomputer system consists of
several nodes interconnected by point-to-point links
(Figure 1). Each node in the system includes an
application processor, local memory, cache memory, and
coprocessors to assist in the coherency management and
interprocessor communication. Each node may be time-
shared between multiple processes. A set of processes
that share their address space form a task. The system
can execute multiple tasks simultaneously. Unique task
identifiers partition the total virtual system space into
disjoint task virtual spaces. Processes belonging to
different tasks execute in disjoint address spaces and
cannot share data.
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Figure 1: A DSM multicomputer system

DSM is implemented on the system using a
distributed directory-based coherence protocol [3, 11].
Ownership [9] is managed at a granularity of blocks (tens
of bytes). Multiple read-only copies can be distributed
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through the system. A node must obtain exclusive
ownership of a block prior to modifying it, by
invalidating all other copies. Each block of the address
space is initially managed by a default owner. The
default owner keeps track of who is the current owner of
the block. A hash function is used to map the default
ownership of blocks to the nodes in the system [13].

Each node maintains part of the distributed
directory which indicates, for each block present locally,
the access permission and the identity of the block
owner. The block owner maintains, in addition, the
location of read-only copies. Each node also maintains a
Migrated Block Table (MBT), in which it identifies the
current owner of all its default owned blocks that have
been migrated away from the node. A node that does not
know the identity of the block owner can request access
through the default owner of the block.

We assume that the underlying network guarantees
reliable FIFO delivery of messages between any pair of
nodes. Each node on the system is assumed to be self-
checking and fail-stop [17]. A subset of the nodes in the
system are connected to disks, and checkpoints are saved
onto these disks. These disks are assumed to be stable
storage; a disk failure will lead to a crash of the system.
Upon node failure, all the contents of the node memory
and the node directory are considered lost. The identity
of the failed node is broadcast to all other nodes in the
system.

IV. Coordinated Checkpointing and Rollback
for DSM Systems

In order to adapt coordinated checkpointing and
rollback to DSM multicomputers, we must examine the
unique characteristics of DSM systems: 1) processes
communicate by reading from and writing to a shared
address space, 2) a single communication event at the
application level (load or store) may trigger a complex
transaction, involving multiple internode messages,
3) the address space of each process is distributed among
multiple nodes, 4) multiple copies of memory blocks are
allowed, and 5) there is a distributed directory which is
common to all tasks but is not part of the state of any
process.

A. Tracking Interprocess Communication

A key requirement for coordinated checkpointing
is the ability to identify interacting sets of processes.
This is trivial when explicit messages are used for
interprocess communication. In a DSM system,
processes communicate by reading from and writing to a
shared address space. However, not all accesses to the
shared address space imply dependency. Including all

these accesses would unnecessarily enlarge the
interacting set. For example, consider a load that is
satisfied by accessing a block on a remote node. If the
block has not been modified since the last checkpoints of
all the processes in the system, this remote access should
be ignored when determining the interacting set of
processes that must be checkpointed together. Hence, an
efficient checkpointing scheme must identify which
accesses to the shared address space cause dependencies
that must be taken into account in determining the
interacting set.

Processes of a task that run on the same node
communicate by direct access to locations in local
memory. These intra-node interactions can be identified
with some architectural support in the local memory
access mechanism [24], but the cost of providing this
support is likely to be too high for the benefits gained.
Hence, we view all processes of a task that run on the
same node as having interdependent states. We label the
set of processes that belong to the same task and run on
the same node a process-cluster. Processes of a
process-cluster are always checkpointed and rolled back
together.

Processes of a task that run on different nodes
communicate by read-write sharing memory blocks
across the network with the cooperation of the coherency
protocol. To identify these interactions, we extend the
functionality of the coherency protocol. With each block
in local memory there is an associated dirty-since-
checkpoint (dsc) bit in the local directory. The dsc bit
indicates whether the block has been modified since the
last time it was checkpointed. Every block transfer is
tagged with the block’s dsc bit. Interprocess
communication that imply dependency can be identified
by the transfer of a block with the dsc bit set.

Using the dsc bit mechanism, each node maintains
for each process-cluster on the node a list of all process-
clusters with which there has been direct communication
since the last checkpoint (similar information is
maintained for each process in message-passing
systems[1, 10, 21]). The dependency between process
clusters on two nodes, P and Q, is established when a
block of a the task to which both process clusters belong
is transmitted from node Q to node P, with the block’s
dsc bit set. This dependency is recorded independently
in both nodes.

B. Transactions in Progress when Checkpointing
or Rollback are Initiated

In order to save a consistent snapshot of an
interacting set of processes in a message-passing system,
messages in transit between the processes when
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checkpointing is initiated must also be saved. This can
be done by ‘‘flushing’’ messages to their destination and
saving them with the destination process
checkpoint [20, 21]. Messages in transit between the
processes when rollback is initiated are
discarded [20, 21]. In a DSM multicomputer, process
interaction takes place through read and write
‘‘transactions’’ (which, in general, are not necessarily
atomic). Each transaction involves the exchange of
several network messages. When checkpointing or
rollback are initiated, transactions may be pending, with
the processor waiting for a response from one of the
other processors participating in the transaction.

The handling of transactions which are pending
when checkpointing or rollback are initiated is a critical
issue. There are four alternatives to be considered:
1) always abort the transaction, 2) always suspend the
transaction, 3) continue the transactions while the
checkpointing or recovery session proceeds, or
4) attempt to complete the transaction before proceeding
with the checkpointing or recovery session. This is more
complicated than flushing messages since it involves
multiple nodes and interactions with the coherency
management protocols.

When rollback is initiated, pending transactions
associated with processes being rolled back are
orphans [14] and should be aborted. However, always
aborting pending transactions when checkpointing is
initiated results in unnecessary performance loss.

It may be possible to always suspend pending
transactions when checkpointing is initiated. However,
this would add significantly to the complexity of
checkpointing since it would require saving the state of
partially executed transactions. Depending on how this
is done, some of this ‘‘transaction state’’ may involve
nodes that would otherwise not participate in the
checkpointing session.

For performance reasons, it might be desirable to
allow pending transactions to proceed in parallel with a
checkpointing session (so that the transactions and
checkpointing are not delayed). This results in a
situation similar to the handling of dynamic interacting
sets in a message-passing system with asynchronous
coordinated checkpointing [22]. Specifically, the size of
the interacting set may increase while the checkpointing
session is already in progress. Whether or not a block
transmitted as part of a pending transaction should be
part of the checkpoint depends on the status of all the
participants in the transaction. The complexity of special
handling needed to manage this situation presents
sufficient reason to look at alternative approaches.

The approach we adopt is to wait for the

completion (successfully or unsuccessfully) of pending
transactions before proceeding with checkpointing or
recovery. It is necessary to ensure that checkpointing or
recovery sessions do not wait endlessly for the
transactions to complete. Hence, the coherency
protocols must be extended to provide a negative
acknowledgment terminating (unsuccessfully) the
transaction when service cannot be provided.

We assume that a node failure is broadcast to all
other nodes (Section III). Every participant in a
transaction must be capable of identifying the situation
when the transaction cannot progress due to the failure of
another participant. In this case, the node identifying the
situation must terminate the transaction. With many
coherency protocols [13, 11] the node initiating the
transaction is not always aware of the identity of the
node servicing the transaction. With these protocols,
there is no simple way for the initiator to determine that
the transaction cannot progress due to the failure of the
node servicing the transaction. For example, a node
requesting a read copy of a block may send the request to
the block’s default owner which, in turn, forwards the
request to the current block owner. In this situation, the
initiator of the transaction does not know the identity of
the block owner, and, hence, cannot associate the failure
of the latter node with the failure of the transaction. At
the same time, the default owner is not expecting a reply
from the current owner (the reply is sent directly to the
requester) and thus will not react to the failure of the
block owner. The coherency protocols can be modified
to solve this problem. For example, the response from
the block owner could be always propagated through the
default owner. The default owner will thus be able to
alert the requester if it determines that the owner failed
before responding to the request.

To summarize, with the above modifications to the
coherency protocol, checkpointing and recovery session
wait for the termination of all pending transactions. Any
inconsistency in the directory state due to the failure of a
transaction participant is repaired by the mechanism that
recovers the failed participant.

C. Checkpointing

A checkpointing session is initiated by a
checkpoint ‘‘timer’’ associated with each process-
cluster, or when a process-cluster needs to write a dirty
block to stable storage. All process-clusters that have
communicated (directly or indirectly) with the initiating
process-cluster checkpoint together using a two-phase
protocol [6], exactly as in message-passing
systems [1, 10, 21]. Since processes of different tasks do
not communicate, each checkpointing session is
localized to a task.
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checkpoint → {

suspend processes in process-cluster;

await termination of pending transactions;
reject all transaction requests;

begin saving local process states and dirty private blocks;
begin saving shared locally-owned blocks with dsc = 1;
propagate checkpoint messages

await acknowledgments for checkpoint messages;

await completion of locally-initiated transmission and
storage of checkpoint data

acknowledge parent;

await checkpoint commit message;

propagate checkpoint commit message;

commit checkpoint;

clear all dsc bits; }

Figure 2: A checkpointing session

In the first phase, the system constructs a tree of all
process-clusters that have communicated (directly or
indirectly) with the process-cluster that initiates
checkpointing. The communication tree is built
recursively, with each node sending checkpoint messages
to all nodes containing process clusters with which it has
communicated directly. Upon receiving a checkpoint
message for a task, the node suspends execution of all
local processes of that task. No new coherency
transactions are initiated or serviced for the task until the
checkpointing session is terminated. When all the
coherency transactions pending for the task have
terminated, the node begins sending the checkpoints of
the local members of the task to stable storage. In
parallel, the node propagates the checkpoint message to
all nodes containing process clusters with which it has
communicated directly. Once successful
acknowledgments are received from all these nodes, a
successful acknowledgment is propagated back up the
tree. When all process-clusters complete saving their
checkpoints, this informations is propagated up the tree.
Once checkpointing coordinator at the root of the tree is
informed that all the checkpoints have been saved to
stable storage, it commits its checkpoint and initiates the
second phase by sending ‘‘commit’’ messages down the
tree. Upon receipt of the commit message, each node
commits its checkpoint.

With coordinated checkpointing in a message
passing system, at any point in time there is only a single,
committed checkpoint of every process in stable storage
(Section II). In a DSM system it is desirable to maintain
this property and store in stable storage only a single
copy of each block in a location that is independent of
the current block owner or the existence of multiple

copies of the block in system nodes. This simplifies the
management of checkpoints in stable storage and reduces
the size of checkpoints.

Shared blocks may be replicated on multiple
nodes, and may thus be saved by any one of these nodes.
Since each block has a unique owner node, that node is
assigned the responsibility for checkpointing the block, if
needed. Each node participating in the checkpointing
session checkpoints private data of the local process
cluster (registers and any other private memory) and all
shared blocks which are ownediiiiii locallyiiiiii and for which the
dsc bit is set. Since interprocess dependency used to
construct the interacting set is determined by the transfer
of a block with the dsc bit set (Section IV.A), it is
guaranteediiiiiiiii that if a block of the task has its dsc bit set in
any of the participants in the checkpointing session, the
current owner of the block will also be one of the
participants. Hence, all the blocks of this task that have
been modified on the checkpointing nodes since their last
checkpoint (for this task) will be part of the checkpointed
state. The dsc bit of all these blocks are cleared at the
end of the checkpointing session.

Since the checkpoint mechanism does not change
the distribution of data in the local memories of the
nodes, the coherency directory continues to be valid, and
is, hence, not altered. The key steps in a checkpointing
session are summarized in Figure 2.

D. Recovery

The failure of a node causes the loss of all state in
that node — register state of processes that were active
on that node, sections of the address space of several
tasks that were resident in the node’s local memory, and
the fragment of the distributed coherency directory
resident in the node. The most recent committed
checkpoint contains the private process states and
corresponding shared memory state from which correct
execution may be restarted. However, the state of the
coherency directory is not a part of the state of any task,
and is thus not implicitly checkpointed or recovered with
memory and process states. Following recovery, the
entire distributed directory, including directory fragments
on nodes that do not participate in any rollback, must
accurately reflect the distribution of copies in the system.

With coordinated recovery, the rollback of
processes that were active on the failed node requires the
rollback of processes on other nodes that communicated
(directly or indirectly) with the failed processes. All
these processes are rolled back to their previous
checkpoints in coordination, employing the same two-
phase protocol used for checkpointing. Recovery is
initiated for each process-cluster that was active on the
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recover → { /* in a recovering failed node */

send rollback messages down the ‘‘rollback tree’’

reject all transaction requests;

invalidate MBT entries;

send repair_directory (selfid) messages to allii nodes;

await ownership messages;

await acknowledgments to rollback messages;

restore processor state from checkpoint;

send rollback commit messages to
children in the rollback tree;

}

repair_directory (nodeid) → {

/* repair coherency directory */

invalidate local copies of all
blocks owned by nodeid;

eliminate nodeid from the copy directories of
all locally-owned blocks;

send to nodeid ownership messages for owned
blocks that are default owned by nodeid;

}

rollback → {

suspend processes in process-cluster;

await for termination of pending transactions;
reject all transaction requests;

propagate rollback messages down the rollback tree;

await acknowledgments to rollback messages;

acknowledge parent;

await rollback commit message;

/* roll back task state */

restore state of process-cluster from checkpoint;

invalidate all dirty private blocks;

forall (shared blocks with block.dsc = 1)

if (readonly) invalidate block;

else {

restore block from last checkpoint;

invalidate copy directory;

block.dsc = 0;

}

propagate rollback commit messages down
the recovery tree;

}

Figure 3: A recovery session

failed node. Since processes belonging to different tasks
do not communicate with each other, different tasks can
recover independently. Hence, the two-phase protocol is
executed independently for each task that was active on
the failed node. A task can resume execution once its
state is restored and the associated coherency directory
repair is completed.

The first step in recovery is to roll back to the most
recent checkpoint the private states (e.g., registers) of all
the processes belonging to interacting sets that include
processes on the failed node. Next, all modifications to
the task’s shared address space performed by all these
processes since their most recent checkpoints are
undone. On nodes that have not failed, all memory
blocks modified since their last checkpoint have their dsc
bit set. Since interprocess dependency used to construct
the interacting set is determined by the transfer of a
block with the dsc bit set (Section IV.A), it is guaranteediiiiiiiii
that if a node that has modified a block since the node’s
last checkpoint is a member of the interacting set, any
other node holding a copy of the block is also a member.
Hence, the ‘‘unwanted’’ modifications of the shared
address space can be undone by each member of the
interacting set restoring all blocks with the dsc bit set
from their last checkpoint.

The failed node recovers with all blocks in its local
memory marked invalid. Hence, any modifications to
the shared address space performed locally prior to
rollback are automatically undone. During post-recovery
execution, valid data will be accessed either from the last
checkpoint or from the restored memory on other nodes.
The correct choice will be made since, with an empty
directory, references to a block that is not found locally
are referred to the block’s default owner. If the default
owner is the node that has failed, it can recover the block
from the last checkpoint.

Interprocessor traffic associated with restoring
memory blocks can be minimized by restoring onlyiiii dirty
blocks that are ownediiiiii locallyiiiiii. Stale read-only copies can
be invalidated and incrementally obtained during post-
recovery execution. Consistency of the directory can be
maintained by restoring the owner’s copy of the block
from the last checkpoint in the exclusively owned state
(to indicate the absence of read-only copies).

During the recovery session, the coherency
directory must be restored to a valid state. Node failure
causes three inconsistencies in the directory state. First,
the Migrated Block Table (MBT) entries that were in the
local memory of the failed node are lost. The absence of
these entries in the default owner implies that the default
owner retains ownership of the blocks, leading to a
conflict of ownership with the actual current owner of
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Figure 4: Repair of the directory state during recovery. In the figure, the directory maintains the block id,
the access permission, and the copy directory. A node which possesses a block in the ‘‘write’’ or
‘‘shared’’ states is the owner of the block, and maintains the location of copies. A node that possesses a
‘‘read’’ copy of a block maintains the identity of the block owner. Node 1 owns blocks a and b, and has
copies of blocks c and k. Node 1 fails and later recovers with an empty memory state. Directory
fragments on other nodes are repaired by marking the local copy of blocks owned by node 1 (a and b)
invalid, and by eliminating references to read-only copies in node 1 (blocks c and k).

these blocks. Second, read-only copies that the
coherency directory (on other nodes) indicates as present
in the failed node, are no longer present there. Third,
blocks that are owned by the failed node are no longer
available in the failed node, and neither is the associated
copy directory which maintains the distribution of the
copies. The repair of the coherency directory must
resolve these inconsistencies.

Since the directory state possesses no application
level semantics, it is unnecessary to restore it to any prior
state. It is sufficient to transform it to a new state that
correctly represents the state of the local memories. Our
scheme restores the failed node’s MBT by
reconstruction. All nodes in the systemiiiiii update the
restarting node with a list of their owned blocks that are
default-owned by the failed node. The recovering node
uses this information to reconstruct its MBT.

Directory inconsistencies associated with the loss
of read-only blocks and of copy directories in the failed
node are repaired by transforming the directory and
memory state in other nodes. While several
transformations are possible, we employ one in which
each node requires only local information, thus
minimizing network traffic. To repair the inconsistency
associated with the loss of read-only copies in the failed
node, each node eliminates all references to such copies
from its copy directories (recall that all nodes know the
identity of the failed node). When a node loses its copy

directories, it loses information about the location of
read-only copies of its owned blocks. Hence, each node
marks invalid all read-only blocks owned by the failed
node. This allows the recovering failed node to be
restored with null copy directories for all its owned
blocks.

Blocks that were owned by the failed node prior to
failure are absent from its local memory following
recovery. However, these blocks continue to be owned
by the recovering node. Accesses to any of these owned
blocks are satisfied, on demand, by restoring them with
exclusive ownership from their last checkpoint.

It is important to note that the directory repair
requires the participation of allii nodes that hold any of the
blocks that were managed or were resident in the failed
node. This includes nodes that were not members of any
of the recovery trees used to coordinate rollback. The
repair of directory inconsistencies is illustrated in
Figure 4. The key steps in a recovery session are
summarized in Figure 3.

V. Previous DSM Recovery Schemes

Many recovery schemes proposed for DSM
systems focus on avoiding rollback propagation, at the
cost of frequent checkpointing [24, 23, 19, 7] or high
overhead for maintaining logs [16]. Due to the absence
of rollback propagation, these schemes have the
advantage of fast recovery, at the cost of high overhead
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during normal operation.

Consider a process Q that reads data modified by a
process P, so that the state of Q depends on the state of P.
Rollback propagation occurs if P fails and recovers by
rolling back, forcing Q to also roll back since P may
compute a different value for the data during re-
execution.

Wu and Fuchs [24] have proposed a scheme where
rollback propagation is avoided by forcing processes to
checkpoint before providing modified data to any other
process. Checkpointing a process involves the flushing
of pages modified by the process since the last
checkpoint and saving the process state onto disk. At
recovery, the processes that were running on the failed
node are restarted from their checkpointed states, and
re-acquire memory pages on demand. If the state of the
centralized directory is lost, the directory information is
reconstructed on demand. When a page is requested by a
node, a special message is broadcast requesting the
owner and the copy holders of the page to identify
themselves to the new centralized manager. If no node
claims ownership of the page, the new centralized
manager assumes ownership of the page. The requested
page is provided by the owner of the page, unless the
owner is recovering, in which case the page is fetched
from stable storage. In [7], this scheme is extended to
systems supporting weak consistency by checkpointing a
process only when a synchronization variable is to be
read by another process.

Tam and Hsu [23] propose a scheme where a
modified page is permitted to migrate only after all
modified pages are logged to stable storage (as in [24]).
At recovery, the process’ state is restored from the
checkpoint. The key contribution of this scheme is the
use of a ‘‘token database’’ that allows the coherency
directory to be repaired withoutiiiiiii consulting all the
directory fragments on the system (as required by our
scheme). Stumm and Zhou [19] propose a variation that
tolerates only single faults. When a node is about to
migrate modified data to another node, all modified data
from the first node is checkpointed in the local memory
of the second node.

Richard and Singhal present a recovery scheme for
an environment where checkpoints are costly [16]. All
pages read by a process are logged to volatile storage.
When a modified page is to be read by another process,
the log is committed to stable storage. Upon failure of a
process, the process is restored from the checkpoint, and
its up-to-date state is recomputed using the logged pages.
With this scheme there is no rollback propagation and no
need for frequent checkpointing. However, there is high
overhead for collecting, committing, and storing the logs.

VI. Evaluation

A key measure of error recovery schemes based on
checkpointing and rollback is the overhead they incur
during normal operation. This overhead includes the
cost of checkpointing as well as any other special
processing, such as for keeping track of dependencies,
logging messages, etc. Our evaluation is focused on the
overhead for checkpointing, specifically on the extra
interconnection network traffic due to checkpointing.
We compare our coordinated checkpointing scheme to
the scheme proposed by Wu and Fuchs [24].

Our evaluation is based on trace-driven simulation,
using address traces from a possible execution on a 64
node multiprocessor of three parallel applications:
Weather, Speech, and FFT. Weather uses finite
difference methods to solve a set of partial differential
equations describing the state of the atmosphere. Speech
uses a modified Viterbi search algorithm to find the best
match between paths through a directed graph
representing a dictionary and another through a directed
graph representing the input. FFT is a radix-2 fast
Fourier transform. Details about the applications and the
traces can be found in [3].

The simulator faithfully implements the
checkpointing phase of both recovery schemes on top of
the block level coherency scheme. Simulations were
performed for a range of block sizes and, in the case of
coordinated checkpointing, for a range of checkpointing
frequencies. The interconnection network traffic
includes interprocessor traffic as well as traffic to stable
storage. This traffic is calculated assuming that the size
of a control message is 16 bytes, the size of data
messages is 16 bytes plus the data being transmitted, and
that the size of a process’ register state is 128 bytes.

Figure 5 shows the number of bytes of network
traffic per data reference as a function of the block size.
In all three applications, the additional traffic due to
coordinated checkpointing is quite low for a wide range
of block sizes. The checkpointing scheme proposed
in [24] has higher network traffic than the coordinated
checkpointing scheme. Furthermore, this overhead
becomes significantly higher for larger block sizes.
Larger blocks increase false-sharing, thus increasing the
frequency of read-write sharing and hence, the frequency
of checkpointing with the Wu and Fuchs scheme. This is
important since some DSM system designs use large
block sizes (e.g., 1 KB blocks are used in [12]
and [24]).

Figure 6 shows the interconnection network traffic
per data reference and the number of checkpoints as a
function of the checkpointing interval, with a block size
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à∆
×
à∆
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à∆

×

à∆
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Figure 5: Network traffic as a function of block size with checkpointing as proposed in [24] (Wu and
Fuchs), with our proposed coordinated checkpointing, and without checkpoints. The coordinated
checkpointing scheme results are shown at two checkpoint intervals: after every 1000 references by any
processor, and after every 10000 references by any processor.
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Figure 6: Network traffic and number of checkpoints as a function of the checkpointing interval. The block
size is 128 bytes. The checkpointing interval is the maximum number of references made by any
processor between checkpoints — it is an approximate measure of the time between checkpoints. For
the scheme proposed in [24] (Wu and Fuchs), the checkpointing interval is determined by the behavior
of the application and cannot be set by the system.

of 128 bytes. With the Wu and Fuchs scheme, the
checkpointing interval is a characteristic of the particular
application and cannot be varied. These curves
demonstrate the benefits of being able to tune the
frequency of checkpoints in an application-independent
manner instead of being forced to checkpoint by the
sharing behavior of the application. A lower
checkpointing frequency can imply significantly lower

overhead. Hence, if the requirements of the application
(e.g., real-time response specifications) allow it, the
overhead for coordinated checkpointing can be reduced
by simply lowering the checkpointing frequency. This is
not possible with the Wu and Fuchs scheme — whether
or nor there is a need, checkpointing will be frequent and
costly.

The Wu and Fuchs scheme has the advantage of
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checkpointing traffic which is evenly distributed over
time. With coordinated checkpointing, the checkpointing
traffic is likely to be burstier. This disadvantage of
coordinated checkpointing can be eliminated through the
use of asynchronous coordinated checkpointing with a
memory system that supports copy-on-write pages [22].
In this case, volatile checkpoints are taken locally on
each node and are spooled gradually to stable storage
once normal operation resumes.

VII. Summary and Conclusions

Many error recovery schemes for multiprocessors
and multicomputers are based on checkpointing a
process whenever it communicates with another process
or on the use of message logging techniques. For
scalable high performance systems, used for
communication-intensive applications, all of these
schemes incur unacceptably high overhead.

We have presented an error recovery scheme for
DSM multicomputers based on coordinated
checkpointing and rollback. Our scheme is an adaptation
of coordinated checkpointing and rollback for message-
passing systems. This adaptation efficiently solves
several potential difficulties with DSM systems which
are due to the lack of explicit messages, the presence of a
shared replicated address space, and the distributed
coherency directory. We have developed mechanisms to
identify and track read-write communication in the DSM
system and to checkpoint and recover the shared
replicated address space. Our scheme does not
checkpoint and rollback the coherency directory.
Instead, at recovery, the distributed coherency directory
is ‘‘repaired’’ to restore it to a correct state. Our
checkpointing scheme allows the frequency of
checkpointing to be adjusted independently of the
sharing behavior of the application. Trace-driven
simulations have demonstrated the significant
performance advantages of our recovery scheme. By
allowing lower checkpointing frequency, leading to
lower overall checkpointing traffic, our approach can
result in dramatically lower overhead than alternate
schemes, leading to minimal impact on the normal
operation of the system.
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