Proceedings of the

17th International Conference on Parallel and Distributed Computing Systems
San Francisco, California, pp. 241-247, September 2004.

Practical Byzantine Fault Tolerance Using Fewer than 3f+1 Active Replicas

Ming Li and Yuva Tamir
Concurrent Systems L aboratory
Computer Science Department, UCL A
Los Angeles, California 90095
{mli,tamir} @cs.ucla.edu

Abstract

Byzantine fault tolerant state machine replication
(BFT-SMR) is a foundation for implementations of highly
reliable services. Existing algorithms for BFT-SMR
require at least 3f +1 active replicas to tolerate f faulty
replicas. We show that BFT-SMR can be achieved with
fewer than 3f +1 active replicas, as long as standby spare
replicas are available, such that the number of active
replicas plus the number of spares is at least 3f +1. In
particular, a single Byzantine fault can be tolerated with
only three active replicas and a single standby spare. The
gpares are rarely used — only for reconfigurations
triggered by faults or suspected faults. Each
reconfiguration leads to a different subset of nodes
running the active replicas. By reducing the number of
active replicas, our algorithm reduces power consumption
for processing and communication. It aso has the
potential to provide better performance. We present a
1-resilient algorithm that achieves BFT-SMR with only
three active replicas and one standby spare, and show the
results of preliminary performance evaluation.

1. Introduction

Reliable services can be implemented as
deterministic state machines that are replicated across
multiple nodes[16, 11]. Reliability is maximized if the
replication algorithm can tolerate arbitrary (Byzantine)
faults. Byzantine fault-tolerant state machine replication
(BFT-SMR) has been shown to be feasible and practical
even in asynchronous systems[4,5, 13], subject to weak
partial synchrony assumptions.

Existing BFT-SMR algorithms require at least 3f +1
replicas to tolerate up to f faulty replicas. All replicasin
those algorithms actively participate in the agreement on a
total order of client requests. In most algorithms, the
same 3f +1 replicas also process the requests and generate
replies. In a recently published agorithm[17], the nodes
that agree on request order are separate from the nodes
that actually process (execute) the requests. Only 2f +1
execution replicas are required while the requirement for
3f +1 agreement replicas is maintained.

In this paper, we show that the replication costs for
BFT-SMR can be further reduced, using fewer than 3f +1
active replicas for both agreement and execution. In
addition to the active replicas, the scheme requires
standby spares, such that the number of active replicas
plus the number of sparesisat least 3f +1. Standby spares
are involved in the agorithm only for reconfigurations
when the active replicas fail to make progress (due to
faulty replicas or simply due to unexpectedly long delays).

Each such reconfiguration leads to a different subset of
nodes running the active replicas. Eventually, the system
reaches a configuration where the 2f +1 active replicas are
fault-free and thus able to make progress.

Our agorithm provides the same Byzantine
resiliency and service characteristics as previous
agorithms for BFT-SMR under the same synchrony
assumptions. The use of fewer active replicas results in
reduced power assumption for processing and
communication. It aso has the potential to provide better
performance during normal, fault-free execution since
each active replica communicates with fewer replicas.

The next section introduces the basic ideas that
dlow fewer than 3f +1 active replicas to be used for
BFT-SMR. The system model and key assumptions are
described in Section3. A complete agorithm that
tolerates a single Byzantine fault is presented in Section 4.
Tolerating multiple faults is addressed in Section 5. In
Section 6, experimental results are used to compare the
normal-case performance of our algorithm to that of the
algorithm in[4]. Related work isdiscussed in Section 7.

2. BFT-SMR with Fewer than 3f+1 Active Replicas

The system implementing BFT-SMR is based on a
primary replica and multiple backup replicas[4]. Clients
send requests to the primary. The primary assigns a
sequence number to each request and multicasts it to the
backups. An agreement protocol ensures that fault-free
replicas agree on the message order. Each fault-free
replica then executes the request and sends a reply to the
client. The client accepts the reply upon receiving at least
f +1 consistent replies. If the client does not receive
replies ‘‘soon enough,’” it times out and broadcasts the
request to all the replicas. Any replica that is not a
primary and has not received the request previoudly,
forwards it to the primary. If the primary does not
multicast the request to the group, a view change is
eventualy triggered. This ensures liveness even if the
primary fails[4].

An f-resilient service based on BFT-SMR requires
3f +1 replicas to ensure both safety and liveness[4, 3].
This requirement holds even in a system where messages
can be authenticated using cryptographic techniques[3, 7].
Our work is based on the observation that safety can be
assured if the total number of replicas is 2f +1 and each
correct replica proceeds only after communicating with
the other 2f replicas. Hence, in our system, there are only
2f +1 active replicas. Thus, the system may either
generate the correct result or it may fail to make progress
if some of the faulty replicas do not respond.

Our approach to dealing with failure of the system
to make progress is to exploit the fact that, even with
3f +1 active replicas, existing schemes aready require
view changes triggered by timeouts to ensure liveness for
the case of primary replica failure[4]. While there are
only 2f +1 active replicas in our system, additional
standby spares participate in view changes that are
triggered by the same timeout mechanism. Each view
change results in a different subset of the replicas being
active. Eventually, the system can make progress after
reaching a configuration where there are 2f +1 fault-free
active replicas. Since a view change must transform a
standby spare into an active replica, the protocol includes
a mechanism that allows the standby to obtain the correct
state from the remaining active replicas.

3. System Model and Assumptions

The system model is the same as the one used in
[4]. We consider an asynchronous distributed system
consisting of nodes connected by a network.
Communication is unreliablee messages may be logt,
delayed, duplicated, or delivered out of order.

We do not assume a completely asynchronous
system model since it isimpossible to solve the consensus
problem in such an asynchronous system[8]. We make
the partial synchrony assumption that was introduced by
Dwork et a. [7]: the bounds on message delay and
relative speeds of different nodes exist but they are not
known and they hold only after some unknown time. Our
algorithm relies on partial synchrony to provide liveness.
Other schemes rely on similar synchrony assumptions by
relying on timeouts[4].

We assume a Byzantine faillure model: faulty
processes can exhibit arbitrary (Byzantine) behavior,
limited only by the restriction stated below. Fault-free
replicas must be deterministic — the execution of an
operation in a given state and with a given set of
arguments must always produce the same result [4].

We assume that cryptographic techniques are used
to prevent faulty processes spoofing or replaying other
processes messages. A process can verify the content
and the original sender of a message, even if the message
has been relayed by other processes. Thus, the fault
model we consider is the authenticated Byzantine
model [10]. The message authentication mechanism can
employ a public-key cryptosystem such as RSA[14].
Each process can digitally sign its messages with a private
key. Each process obtains the public keys of other
processes to verify signed messages. The signatures are
unforgeable. We use a message-digest algorithm such as
MD5[15] to compress a message of arbitrary length into a
fixed-length message digest. A process signs the digest of
amessage instead of signs the entire message.

4. A 1-Resilient BFT-SMR Algorithm Using Three
Active Replicas

In this section we present an algorithm that can
tolerate a single Byzantine fault using three active server

replicas and one spare replica. We identify each replica
using a number in {0,1,2,3}. Throughout the paper we
denote a message m signed by replicai as Om[]. The
algorithm provides both safety and liveness under the
single fault assumption. Safety requires agreement among
al correct replicas on the total ordering of client requests.
Liveness requires that the algorithm eventualy makes
progress despite faults, i.e., clients eventually receive
correct replies to their requests. The algorithm relies on
partial synchrony to provide liveness.

The algorithm is based on configurations of the
server replicas caled views. A view is identified by a
unique number v. View v can be succeeded by view
v+1l. The primary of view v is replica i, such that
i=v mod 4; the replica identified by (v+3) mod 4 is the
spare, and the remaining two replicas are backups. Thus,
in every fourth view, the same configuration is reused, but
with a new view number. During normal operation, the
standby spare replica does not send or receive any
messages and does not perform any operations. The
algorithm starts with view 0. View changes are carried
out by areconfiguration protocol (Section 4.2).

Active replicas send the current view number with
each message they send to the clients, so that view
changes are visible to the clients. A client ¢ sends its
requests to the replica that it believes is the current
primary. The request has the form [request, ts, — c[d,
where ts is the timestamp that is used to ensure the
request is executed exactly once by the server replicas,
and ‘‘—"’ represents the content of the request. Using the
protocol described below, the primary atomically
multicasts the request to the backups. All active replicas
then execute the operation for the request and send areply
directly to the client. The client accepts the result after
receiving consistent replies from two different replicas.

A client sets atimeout when it sends a request to the
primary. If it does not receive valid replies before the
timeout, it sends the request to all replicas. This step may
indirectly trigger the reconfiguration protocol (see
Section 4.2) and is critical for ensuring liveness([4].

4.1. Normal-Case Operation

The protocol for normal-case operation in our
algorithm is very similar to the three-phase protocol in
[4]. The only difference is that in our agorithm only
three replicas, instead of four, participate in the protocol.

When a server replica receives a client request, it
checks the timestamp of the request. If it has aready
processed the request, it re-sends the reply to the client. If
the replica is a backup and it has not received a pre-
prepare message (described below) for the request from
the primary yet, it relays the request to the primary.

When the primary (denoted p) receives a client
request m for the first time, it starts the three-phase
ordering protocol. In the first phase, the pre-prepare
phase, the primary assigns a sequence number s to the
request m and multicasts a pre-prepare message with m to
al the backups. The pre-prepare message has the form

Cpre—prepare, v, s, dy[J, where v indicates the current
view, and d,,, isrequest m’s digest.

After the multicast, the primary inserts the request
m and the pre-prepare message into it message log. Each
active replica maintains a message log for recording the
messages it receives and it sends to others, in case they
are needed for retransmission or as certificates. Messages
must be kept in the log until the replica knows that the
requests have been executed by all active replicas. A
garbage collection mechanism is needed to keep the logs
from growing without bound. A description of this
mechanism is omitted due to limits on paper length.

A backup b accepts the [pre—prepare, v, s, dy [J
message and the request m if the following conditions are
al true it isin view v; the pre-prepare message and the
request m are all properly signed, by the primary of view
v and by the client ¢, respectively; it has not yet accepted
a pre-prepare message for view v with the same sequence
number s but a different digest; and predicate prepared
(m',v', s, b) (discussed below) is not true for a request
m' that is different than m for any previousview v'< v.

If backup b accepts the pre-prepare message, it
enters the prepare phase by multicasting a prepare
message [prepare, Vv, s, d,, bl to al other replicas
(including the primary), then adds the request m, the pre-
prepare message, and its prepare message to its message
log. Otherwise, it simply discards the message.

When a replica (including the primary) receives a
prepare message, it accepts and inserts the message into
its log provided that the message is properly signed, the
view number in the message is the same as the replica’s
current view.

Asin [4], the predicate prepared(m, v, s, i) istrue
if and only if replicai hasinserted into its log the request
m, the pre-prepare message for m in view v with
sequence number s and matching digest, and the prepare
messages from the two backups that match the pre-
prepare message (including its own prepare message if i
is a backup). The pre-prepare message and prepare
messages form the prepared certificate of m.

When prepared(m, v, s, i) becomes true, replica i
multicasts a Ccommit, v, s, d,,, il to al other replicas
and inserts the message into itslog. If areplicareceives a
commit message that is properly signed by the sender, and
the view number v in the message is equal to its current
view, it accepts the message and adds to its log.

A replicai can commit to aregquest m and sequence
number s inview v if and only if the following conditions
are al true: prepared(m,v,s,i) is true; it has the
committed certificate that consists of three commit
messages from different replicas (including its own) with
the same sequence number s, the digest d,,, of m, and the
same view v; and for every request that have a lower
sequence number than s, it has either committed to the
request, or its state shows the request has been executed
(the replica may get the state from another correct replica,
as described later). Each replica can then execute the

operation requested by m.

After the execution of m, the replica sends a
Creply, v, ts,— i [] to the client, where ‘“—'" is the
result of the execution, and ts is the original timestamp of
m put by the client. Figure 1 shows the message
exchanges in the normal-case protocol.

request iprepreparei prepare commit reply

N R 774
o X~ T XL

Figure 1. Normal operation. The primary is
P, B1 and B2 are backups, and C isaclient.

This algorithm provides safety: a correct replica
processes a request m in the order indicated by its
sequence number s only when it has received consistent
commit messages for m and s from al replicas —
prepared(m, v, s,i) is true for al replicas. At that
moment, it knows that all correct replicas will not accept
any different Om, sCpair in the same view. Therefore, al
correct replicas execute the requests in the same order
thus produce the same result.

As described so far, the algorithm does not ensure
liveness. If a faulty replica sends to others incorrect m
and s or simply does not send out messages, the correct
replicas may not proceed. However, as mentioned earlier,
our complete algorithm does ensure liveness since lack of
progress eventually results in a timeout that triggers the
reconfiguration protocol which is described next.

4.2. The Reconfiguration Protocol

The reconfiguration (or view-change) protocol
dlows the replicas to make progress despite a faulty
replica, thus ensuring liveness. The protocol moves the
replicas into view v+1 from the current view v, thus
making the current primary become a standby spare,
promoting a backup to be the primary, and bringing in the
spare as anew active replica.

In order to initiate the reconfiguration, correct
replicas must be able to find out that they are blocked. As
in [4], atimeout mechanism is used. If a client does not
receive valid replies within a timeout period, it multicasts
its request to all replicas. Hence, if the system fails to
make progress, every active replica receives the request
from the client. Each active replica (primary or backup)
starts a timer when it receives the request, if the timer is
not already running. When the timeout alarm is triggered,
the replica starts the reconfiguration protocol as described
below. The replica restarts the timer if it still has pending
requests waiting for ordering. It stops the timer only
when it has committed to all the requests it has received.

Because it isimpossible to identify which replica (if
any) is faulty, the reconfiguration protocol aways
“‘suspects’’ the primary and removes it from the active
replica set. The suspicion could be wrong, so the faulty

replica may remain in the active replica set and continue
blocking the ordering protocol. However, if that happens,
another reconfiguration will be triggered. Since the role
of the primary rotates among the four replicas, after at
most three consecutive reconfigurations, the faulty replica
is removed from the active replica set. The correct
replicas can then make progress.

The reconfiguration protocol must ensure correct
processing of requests across views. When a spare
becomes active as aresult of aview change, it must obtain
a state consistent with the state of the other replicas, as
well as information about requests that have been
prepared at correct replicas. This is achieved by having
two active replicas agree on the view-change and on a
consistent state, and pass the state and prepared
certificates to the spare replica. The active replicas
exchange view change requests and acknowledgments
until two replicas reach an agreement on a common
position on processing requests and on their state.
Because at least one of them is non-faulty, the agreed
state must be consistent with the state of other non-faulty
replicas. This state is then sent to the spare replica along
with messages that prove its correctness, and existing
prepared certificates. Once the spare verifies and restores
the state, the system can enter the new configuration.

When a timeout triggers the reconfiguration on
replicai in view v, it switches its operation state (mode)
to ‘‘reconfiguration.” It continues to process normal
messages as in normal operation mode. In addition, it
multicasts a view-change message to all other active
replicas. The message has the form Cview—change, v+1,
s,i [, where 5 is the sequence number of the last
message that has committed at i .

When areplica j receives the Cview—change, v+1,
s, 1 [message, if it is not aready in reconfiguration for
view v+1, it discards the message. Otherwise, if the
sequence number of the last message it has committed to
is higher than or equal to s, it sends back to i a
Mview—change—ack, v+1, s;, Dj, @, j,[J, WO message,
where s; is the sequence number of the last message that
has committed at j, and D; is the digest or checksum of
its server state after it executes that message. The set @
contains a set @, for each request m that prepared at |
with a sequence number higher than s;, i.e., request that
has prepared but not committed yet at j. Each &, isaset
containing a valid pre-prepare message for request m and
two matching, valid prepare messages signed by different
replicas with the same view, sequence number and digest,
i.e., the prepared certificate of m. The piggybacked W is
a set of W, for each request m that has a sequence
number s, § <s <s;. W could beanull setif 5=s;. Each
Y., isthe committed certificate of m.

When replica i receives a vaid
[Mview -change—ack, v+1, s D;, @, j [jj, Wrom replica
j, if it has not executed a request with a higher sequence
number than s;, it adds the commit messages in each W,
of W to it log and executes all the requests up to sequence
number s; provided that the committed certificate is valid.

It then computes the digest of its state and compares it to
D;. If the digest are the same, replicai sends a new-view
message to the standby spare. The new-view message has
the form Onew-view,v+1,s,D;, ®,i [, s, v L[] where
s is the sequence number of the last request it has
committed (should be equa to s;), D; isi’s state digest it
just computed. s is the complete state of i corresponding
to the digest D;. The set & contains prepared certificate
@,, for each request m that prepared at i but not yet
committed at i. The attached v is the view-change-ack
message received from j, without the piggybacked W.
This view-change-ack message is used as a justification to
the new-view message.

The standby spare in view v accepts a new-view
message for view v+1 from any other replica provided:
both the new-view message and the piggybacked view-
change-ack message are properly signed and contain the
same sequence number and state digest; the state s
matches the digest. It then restores its state from s and go
through the @ sets in both the new-view message and the
piggybacked view-change-ack message. If there is at
least one valid certificate @, in the two ® sets for any
request m, it adds the messages in @, into its log. This
ensures the predicate prepared to be also true at the spare
for request m, its sequence number s and view v. Once it
has finished, it relays the new-view message and the
view-change-ack message (without the piggybacked s) to
al other replicas and installs view v+1.

When areplicain view v receives the relayed new-
view message for v+1 from the spare replica, it first
checks the validity of the message and the piggybacked
view-change-ack message. If they are valid, the replica
accepts them and installs view v +1.

Completion of the reconfiguration protocol with a
new view relies on the correct behavior of the spare
replica. The spare replica may actually be faulty and may
block the reconfiguration. However, the single fault
assumption means that if the spare is faulty, none of the
current active replicas are faulty. In that case, the
reconfiguration was *‘incorrectly’’ triggered by premature
timeouts. Since the active replicas are not redly faulty,
they do eventually complete the normal case operation
and pending requests are executed. When they have no
request left for processing, the active replicas abort the
reconfiguration and switch back to normal mode.
Therefore, either the normal-case operation or the
reconfiguration will eventually proceed, preventing the
algorithm from blocking indefinitely.

After successfully changing to view v+1, the
primary p of the new view first creates its own
Cpre—prepare, v+1, s, dy,[§ message for every request
that has prepared in previous views but not yet committed
a p, using the same sequence number and message
digest, in consecutive order. If there is a gap in the pre-
prepare message set, p creates a specia pre-prepare
message [pre—prepare, V+1, s, dyy [, where dy; isthe
digest of specia null request. A null request is processed
like other request but invokes no operation for execution.

After this step, the primary switches back to ‘‘normal’’
and starts the normal-case protocol for new requests.

The primary of the previous view v becomes the
gpare in view v+1. It discards its state and cleans up its
message log, then enters standby mode. Other replicas
simply go back to normal state after the view change and
proceed as described in Section 4.1.

After changing to view v+1, a backup replica may
see a gap in the sequence numbers, from the last message
it has committed to, to the first pre-prepare message it
receives in the new view. In that case, it asks the primary
to send the pre-prepare messages again for the missed
seguence numbers, using the view number v+1.

The reconfiguration protocol ensures that non-
faulty active replicas also agree on the sequence numbers
of requests that commit locally in different views at
different replicas. A reguest m commits locally at a non-
faulty replica with sequence number s in view v only if
prepared(m, v, s, i) is true for every non-faulty active
replicai in view v. The view v+1 will not be installed
unless two active replicas in view v agree on the view-
change and the standby replica receives both messages
(new-view and view-change-ack) from these two replicas.
At least one of the two replicas must be correct; the set @
in its new-view or view-change-ack message then ensures
that prepared(m, v, s, k) isalso true for the standby spare
k. Therefore, the fact that m prepared at every non-faulty
activereplicain view v is propagated to view v+1.

5. Multiple Faults

Although our algorithm is described for single
Byzantine fault, it can be easily extended to tolerate
multiple simultaneous faults by requiring at least 2f +1
active replicas. However, the required reconfigurations
(view changes) can become expensive.

Idedlly, we want to have a minima number of
active replicas in each configuration, that is, 2f +1 active
replicas. Theremaining f replicas are standby spares, for
a tota of 3f+1 replices. |If configurations are
distinguished only by which nodes are the spares, the
number of goss'ble configurations is the binomial

f +1
f

coefficient Among all these configurations,

only one can be guaranteed to consist of only non-faulty
replicas as active replicas. With a configuration that has
only 2f +1 active replicas, one faulty replica can block the
ordering protocol until a view change. Therefore there is
only one configuration that can ensure that the replicas
make progress. In the worst case, the system hasto iterate
through al the possible configurations via view changes
to reach this ‘*clean’”” configuration. The average time to
reach it grows rapidly when f increases.

An dternative to the algorithm above is to increase
the number of active replicas in each configuration to 3f .
This leads to only 3f +1 possible configurations. Among
them there is one configuration with a faulty replica being
the standby spare. This configuration can assure progress
because it includes at least 2f +1 non-faulty active

replicas. Therefore, the system needs at most 3f view
changes to get to this configuration. Thus, there is a
tradeoff between the number of active replicas and the
amount of time a client may have to wait while the server
replicas go through a sequence of view changes.

6. Evaluation

With fewer active replicas during normal operation
there is a reduction in computation and communication
overhead. Although the required number of replicas is
3f +1, asin existing schemes[4], the standby replicas stay
dormant most of the time. Thus, the machines they reside
on can be used for other applications. Alternatively, the
hardware components (processors, memory, disks, etc.)
can be turned off to reduce power consumption through
dynamic power management (DPM)[1]. Since the spare
replicas are activated only on reconfigurations, which do
not occur often, there would be little overhead activating
and deactivating the spare replicas.

Another overhead reduction with our scheme is that
with fewer active replicas, each replica sends and receives
fewer messages during normal operation. This leads to
reduced power consumption for communication and may
result in better performance for the norma case. To
evaduate this adventage, we used a simplified
implementation (emulation) to compare the normal-case
performance of our agorithm to the algorithm described
in [4]. In both cases a single faulty replica can be
tolerated and the total number of replicas is four. The
evauation was performed on a network of 350MHz
Pentium-11 PCs, running Solaris 8, interconnected by a
100Mb switched Ethernet, using TCP/IP for
communication. The service operation is a computation
that executes in a set amount of time.

For the two algorithms we measured the average
response time for requests and the throughput of the
service under fault-free operation. The response time is
the time interval from when a client sends its request to
the primary replica to the time when it receives replies
from two different replicas. The response time was
measured with the system processing only one request at a
time. The throughput is the number of requests per
second the replicas are able to process. To show the
overhead of the replication agorithms, the results are
normalized to the results we measured for the same
unreplicated service.

The message authentication in our experiments is
based on 512-bit RSA moduli and MD5 digests using the
OpenSSL 0.9.7b package. On our PCs, it takes 6.2
milliseconds to generate an RSA signature of an MD5
digest and 0.5 milliseconds to verify a signature. The
generation of MD5 digest of a 1KB message takes 30
microseconds.

Figure 2 shows the results for a service that takes 1
millisecond to execute each request. The results show
that with the full cost of authentication (*'1x’’), there is
not much difference in response time overhead between
the two replication algorithms. The reason for thisis the

30

—— 4r-1x ,
— 3r-1x ;
25 L a0x
- = — 3r-10x _
) 20 .. .«... 4r-100x
Relative | 3r-100x SUF
Response 151 _.._.//,
Time :'.'///
10- */
g
5. L
S s A e R

16 64 256 1K 4K 16K 64K 256K 1M
Reguest Size (Bytes)

Relaive 03} ~—F—F— %% —= 37—
Throughput % 4r-Ix

0.5+

04 -

> x <

0.2 — 3r-Ix
— = — 4r-10x
- - — 3r-10x

01- coox- - 4r-100X
------- 3r-100x

0 1 1 1 1 1 1 1 1 1
16 64 256 1K 4K 16K 64K 256K 1M
Request Size (Bytes)

Figure 2: Response time and throughput relative to the unreplicated case, as request size and message
authentication overhead vary. ‘*4r’’ isthe algorithm that uses four active replicas[4] while**3r"’ is our
algorithm with three active replicas. Execution time for each request is 1 millisecond. Authentication
overhead with speedup of 1x, 10x, or 100x relative to measured overhead.

10

—=— 4r-p0
——— 3r-p0
8- — = — 4rpl
-~ — 3rpl
) Ceoxe s 4r_p]_0
Relaive 6 3r-p10
Response
Time 4 e :
2l ¥ ¥ ¥ ¥ ¥ ¥ o
0 1 1 1 1 1 1 1 1 1

16 64 256 1K 4K 16K 64K 256K 1M
Reguest Size (Bytes)

Throughput

0.5

04

. 0.3
Relative
0.2

0.1-

0

16 64 256 1K 4K 16K 64K 256K 1M
Request Size (Bytes)

Figure 3: Response time and throughput relative to the unreplicated case, as request size and execution
time for requests vary. ‘*4r’’ isthe algorithm that uses four active replicas while**3r’’ is our algorithm
with three active replicas. The message authentication overhead is the actual measured overhead on our
system. The execution time in the figure is in milliseconds, e.g., "-p1" means the execution time for

each request is 1 millisecond.

high overhead of generating RSA signatures. Although
each replica in our algorithm sends and receives fewer
messages per reguest, it performs the same number of
multicasts as in the 4-replica algorithm. RSA signatures
are only generated once for each multicast and for the
reply to the client. Hence, the two algorithms have the
same overhead for signing messages. Although the 3-
replica algorithm reduces the overhead for sending,
receiving and verifying messages, the benefit is
insignificant compared to the overhead of signing. In
terms of throughput, with the full cost of authentication,
our algorithm results in slightly higher performance due to
the reduction in the number of messages exchanged.

If fast hardware implementations of the RSA
algorithm[2] is used, or faster but less secure
cryptography can satisfy the requirement of the service,
the overhead for message authentication is reduced.
Under these conditions the overhead of signing messages
is no longer the dominant factor and there is more of a
benefit to using fewer active replicas. This is shown in
Figure 2 that present response time and throughput results
with authentication that is ten and a hundred times faster.

Figure 3 shows a performance comparison between
the two algorithms with various request execution times.

The **-p0’’ results are presented to simulate the cases that
the request execution time is insignificant. It would also
represent the scenario that the execution is performed on
other nodes, separated from the agreement. As the
request execution time increases, the performance
advantage of the 3-replica algorithm is reduced.

7. Related Work

Consensus and state machine replication in an
asynchronous and Byzantine environment has be studied
in both theoretical and practical settings[3,7,9,6,4,13].
In order to tolerate up to f faulty replicas, all previous
algorithms require 3f +1 active replicas for at least part of
the processing (agreement on message ordering). The
work presented in this paper is derived from the work by
Castro and Liskov[4], which provides a complete
BFT-SMR solution.

In [4], the view-change procedure is invoked only
when the primary fails. With our algorithm, there will be
more view changes since any faulty replica may cause the
invocation of a view change. However, since, in most
environments, faults are rare, the replicas can be expected
to spend nearly al their time in normal-case operation.
Hence, there is a clear benefit in reducing the overhead

for fault-free execution, even of the cost of increased
overhead when there is afault.

A step towards reducing the replication costs was
taken by Yinet a [17]. Their optimization is achieved by
separating the agreement protocol that orders requests
from the execution (processing) of the requests. The
number of replicas that execute the service operation and
reply to client requests is reduced to 2f +1. However, the
scheme requires 3f +1 agreement replicas that actively
participate in the agreement protocol for ordering
requests. If there is no need for the privacy firewall
described in [17], the scheme can be executed on 3f +1
nodes, where 2f +1 nodes participate in both agreement
and execution, while f nodes only participate in the
agreement protocol.

The agorithm presented in this paper is a further
step in reducing the replication cost by reducing the
number of active agreement replicas aswell. This may be
a significant improvement in cases where the cost of
processing a request is small compared to the cost of the
agreement protocol. For example, this could be the case
with a service where most results are cached and reused to
respond to client requests.

The scheme presented in this paper could be
integrated with the scheme in [17] to reduce their
overhead for reaching agreement. Our algorithm could be
used for the agreement phase in [17], with their inter-
cluster protocol to drive 2f +1 execution replicas.

The standby spares in our algorithm are similar to
the witnesses in the Harp file system[12]. In Harp, a
witness is a server replica that does not store actual copies
of thefile. The witnessis only used to facilitate recovery
if one of the full replicas fails or if the full replicas are
temporarily unable to communicate with each other. Harp
was designed to tolerate fail-stop failures only. Our
algorithm can be viewed as a Byzantine fault-tolerant
extension of the replication method in Harp.

8. Conclusionsand Future Work

We presented a new algorithm for Byzantine fault-
tolerant state machine replication that reduces replication
costs by using fewer active replicas than previous
algorithms. Additional standby spare replicas are used
only for reconfigurations triggered by faults or suspected
faults. This leads to reduced computation and
communication resources, resulting in reduced power
consumption and, in some circumstances, improved
performance.

Our agorithm trades off increased overhead when a
replica fails (or appears to fail) for reduced overhead
during normal operation. The benefits of our agorithm
are most pronounced for handling requests that require
relatively little processing. The algorithm can be used to
minimize the overhead for agreement in conjunction with
an existing scheme[17] that separates agreement from
execution for fault-tolerant state machine replication.

We are investigating the feasibility of wusing

symmetric cryptography for message authentication with
our agorithm as well as extending the algorithm to
tolerate any number of faults over the lifetime of the
system provided no more than f replicas are faulty within
awindow of vulnerability [5].

Acknowledgements

This work was supported by the Jet Propulsion
Laboratory under NASA’s New Millennium Program.

References

[1] L. Benini, A. Bogliolo, and G. De Micheli, ‘“A Survey of Design
Techniques for System_level Dynamic Power Management,”
IEEE Transactions on Very Large Scale Integration (VLS)
Systems, vol.8, no.3 (June 2000).

[2] T. Blum and C. Paar, ‘‘High-Radix Montgomery Modular
Exponentiation on Reconfigurable Hardware,”’ |EEE Transactions
on Computers, vol.50, no.7, pp. 759-764 (July 2001).

[3] G. Bracha and S. Toueg, ‘‘Asynchronous Consensus and
Broadcast Protocols,”” Journal of the ACM, vol.32, no.4, pp. 824-
840 (October 1985).

[4] M. Castro and B. Liskov, ‘‘Practical Byzantine Fault Tolerance,”
the 3rd Symposium on Operating Systems Design and
Implementation, pp. 173-186 (February 1999).

[5] M. Castro and B. Liskov, ‘‘Proactive Recovery in a Byzantine-
Fault-Tolerant System,”’ the 4th Symposium on Operating Systems
Design and Implementation, pp. 273-287 (October 2000).

[6] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper,
‘*Muteness Failure Detectors: Specification and Implementation,’”’
the 3rd European Dependable Computing Conference , pp. 71-87
(15-17 September 1999).

[7] C. Dwork, N. A. Lynch, and L. Stockmeyer, ‘‘Consensus in the
Presence of Partial Synchrony,”” Journal of the ACM, vol.35, no.2,
pp. 288-323 (April 1988).

[8] M. J Fischer, N. A. Lynch, and M. S. Paterson, ‘‘Impossibility of
Distributed Consensus with One Faulty Process,”” Journal of the
ACM, vol.32, no.2, pp. 374-382 (April 1985).

[9] K. P.Kihlstrom, L. E. Moser, and P. M. Méelliar-Smith, ‘* Solving
Consensus in a Byzantine Environment Using an Unreliable Fault
Detector,” the International Conference on Principles of
Distributed Systems, pp. 61-75 (December 1997).

[10] L. Lamport, R. Shostak, and M. Pease, ‘‘ The Byzantine Generals
Problem,”” ACM Transactions on Programming Languages and
Systems, vol.4, no.3, pp. 382-401 (July 1982).

[11] L. Lamport, ‘‘Time, Clocks, and the Ordering of Events in a
Distributed System,”” Communications of the ACM, vol.21, no.7,
pp. 558-565 (July 1982).

[12] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M.
Williams, ‘‘Replication in the Harp File System,”’ the 13th ACM
Symposium on Operating Systems Principles, pp. 226-238
(October 1991).

[13] M. K. Reiter, ** Secure Agreement Protocols: Reliable and Atomic
Group Multicast in Rampart,”’ the 2nd ACM Conference on
Computer and Communications Security, pp. 68-80 (November
1994).

[14] R. L. Rivest, A. Shamir, and L. M. Adleman, ‘‘A Method for
Obtaining Digital Signatures and Public-key Cryptosystems,’”’
Communications of the ACM, vol.21, no.2, pp. 120-126 (Feburary
1978).

[15] R. L. Rivest, ‘‘The MD5 Message-Digest Algorithm,”’ Internet
RFC-1321 (April 1992).

[16] F. B. Schneider, ‘‘Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial,”” ACM Computing Surveys,
vol.22, no.4, pp. 299-319 (December 1990).

[17] J. Yin, J-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,
‘‘Separating Agreement from Execution for Byzantine Fault
Tolerant Services,” the 19th ACM Symposium on Operating
Systems Principles, pp. 253-267 (October 2003).

