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ABSTRACT

Clusters of COTS workstations/PCs are commonly
used to implement cost-effective high-performance
systems. A central coordinator/manager is often the
simplest way to implement many of the operations
required for managing these distributed systems. These
operations include scheduling of paralel tasks,
coordination of access to limited resources, as well as
high-level coordination of fault tolerance mechanisms and
interactions with external devices. A key disadvantage of
using a central manager is that it becomes a critical single
point of failure. The UCLA Fault-Tolerant Cluster
Testbed (FTCT) project is focused on the implementation
of fault-tolerant management for clusters. Unlike most
other cluster management projects, our approach is based
on active replication and voting and focused on tolerating
failure modes other than fail silent and minimizing
interruptions to management operations. We describe key
aspects of the design and implementation of the FTCT
and provide preliminary evaluation of the overheads
incurred by our management mechanisms.
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1. Introduction

Operating systems such as Amoeba[17], that are
designed from the ground up for distributed systems are
best suited for managing clusters and multicomputers.
However, the success of cluster computing is based on the
use of low-cost, widely-used commercial off-the-shelf
(COTS) hardware and software. Thus, in practice, each
node of a cluster runs alocal copy of what is essentially a
uniprocessor OS[1,4]. Hence, any system-level
management must be done by ‘‘middleware,’’ above the
0S[10].

The cluster-level management middieware is key to
the operation of clusters. For example, it has long been
known that for parallel tasks consisting of communicating
processes, independent scheduling of the processes on
different nodes is inefficient[18]. Cluster-level

management is needed for coscheduling (gang
scheduling), where the scheduling of processes on
different processors is coordinated so that all the
processes of a particular task are running at the same
time. Similarly, the assignment of processes to
processors has to be coordinated across the entire system,
taking into account such factors as the load on different
nodes or specific resources connected to particular nodes.
The cluster management tasks could be decentralized.
However, most clusters employ centralized managers
since they are simpler to design, implement, and
debug[10, 14].

For many applications of clusters (e.g., Internet
servers), high reliability and availability are key
requirements. In particular, this is the case for the
JPL/NASA Remote Exploration and Experimentation
(REE) project, whose goadl is to use COTS hardware and
software to deploy scalable supercomputing technology in
space. In thisenvironment, fault tolerance is more critical
than for most earth-bound systems due to the much higher
fault rate of COTS hardware in space. For cluster
management in general but for the REE application in
particular, a key problem with centralized management is
that the failure of the manager leads to the failure of the
entire system. Most cluster managers do not deal with
this problem. Some projects, such as Sun’s Grid Engine
Software[21], use a cold spare approach, where a backup
replica of the manager detects the failure of the primary
and takes over itstasks. In this case, the manager failure
mode is assumed to be fail-stop[20], i.e., the managers
never generate incorrect results. Since the fail-stop
assumption is often violated, this approach can result in
poor system reliability. Furthermore, recovery of the
management functionality on the cold spare can take a
long time (for example, up to a minute on Sun’'s Grid
Engine Software), resulting in unacceptably long service
interruptions.

The focus of the UCLA Fault-Tolerant Cluster
Testbed (FTCT) project is to develop and evauate
algorithms and implementations of fault tolerant cluster
managers. Some of the critical factors driving this work
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Figure 1. System Structure

are the need to deal with realistic fault models, the need to
minimize the performance and power overheads of the
fault tolerant mechanisms, and the need to support soft
real-time requirements. In addition, the cluster
management middleware must provide the mechanisms
needed to support, as a separate layer, application-level
fault tolerance for critical applications.

This paper describes the design and implementation
of the FTCT management layer. The system provides
gang scheduling for MPI paralel applications. The
management layer is based on authenticated
communication (signed messages[13]) and full replication
and voting that allow the cluster as a whole (i.e., the
management layer) to survive arbitrary single node
failures with virtually no impact on application tasks that
are not using the failed nodes. The system is currently
operational, allowing for preliminary experimenta results
to be presented.

2. System Overview

The overal structure of the system is shown in
Figure 1. The system consists of three components. a
group of managers, an agent process on each node, and a
library for user applications. The manager group is
responsible for resource alocation, scheduling, and
coordination of system level monitoring and fault
recovery procedures. The agent on each node alows the
manager group to control the node and transmits node
status information (e.g., heartbeat, identity of terminated
processes) to the manager group. From the manager
group each agent receives messages to start, kill and
schedule user applications as well as to start a new
manager replicaif a manager fails.

The manager group consists of three manager
replicas — a primary replica and two backup replicas.
All the manager replicas independently process every
message and independently transmit commands to the
agents. As described in the next section, the system
ensures that messages are delivered to all the manager
replicas in the same order and that all manager activities
are deterministic. Messages exchanged among managers,
and between managers and agents are authenticated
(signed[13]) to ensure that faulty nodes cannot forge
messages from other nodes, even if the message is
forwarded by the faulty node. The use of authenticated
messages is critical since al messages to the manager
group are sequenced by the primary manager replica and
forwarded to the other manager replicas.

Agents can act only when receiving identical
authenticated commands from at least two manager
replicas. Hence, a manager replicathat stops or generates
incorrect commands cannot corrupt the system. If a
manager replica fails, a new manager replica is restarted
using the states of the remaining two manager replicas.

Periodic heartbeats is one of the two basic
mechanisms for determining the status of the system.
Specifically, the agents send periodic heartbeats to the
manager group and the manager replicas send periodic
heartbeats to each other. As discussed later, some
additional status information is piggybacked on the
heartbeat messages. A faulty agent cannot corrupt the
entire system. Hence, during normal operation, it is
sufficient to rely on periodic heartbeats to (eventually)
detect problems with agents. On the other hand, faulty
outputs from the manager replicas must be detected
immediately since they can easily corrupt the entire



system. The mechanism used to detect faulty manager
replica outputs is the identification of conflicting (or
missing) messages from the manager replicas. If an agent
receives conflicting messages from the manager replicas,
it reports this to the manager group. The manager
replicas then enter a diagnostic procedure, where their
states are compared and, possibly, a faulty replica is
identified and terminated.

BEGIN LOOP
IF there are any expired time events THEN
push the event into event queue;
IF there are any delivered messages THEN
push the message into event queue;
IF the event queue is not empty THEN
pop out an event with the highest priority;
process the event;
ELSE
block until new event happens;
END LOOP

Figure 2: The Event Loop

The managers and agents are event-driven. An
event is a delivered message or a local time event (see
Section 2.2). The event loop to process these events is
shown in Figure 2. The processing of the events is
priority-based. When an event happens, it is assigned a
priority and inserted into the queue based on its priority.
Normally, events are processed in priority order without
preemptions. This can be problematic if the handling of
some low priority events is time consuming and should be
preempted by newly arrived high priority events. In order
to handle this case efficiently, we employ a lightweight
user-level thread library that alows low priority event
handlers to periodically yield control to the main event
loop.

3. Active Replication

As discussed earlier, detection of arbitrary
(Byzantine) failures requires multiple active replicas and
continuous comparison of the results. In order to avoid a
lengthy interruption for recovery when a discrepancy is
detected, more than two replicas are needed. With the
classic TMR scheme that is currently implemented in
FTCT, any single failure can be tolerated since there will
always be two manager replicas that agree on each result.

In active replication, all replicas of a process
execute and generate outputs independently. In the
absence of failures, they must produce the same outputs
in the same order — output consistency. In order to
achieve output consistency, two conditions must be
satisfied[3]: input consistency — the set of inputs
delivered to every correct replicas must be identical and
in same order, and processing consistency — each
replicas must perform consistent operations and produce

an identical set of output, in processing a consistent set of
input.

In order to achieve processing consistency, the
manager replica implementation must be deterministic.
Achieving this deterministic behavior is complicated by
the need to handle timer events, the fact that messages do
not arrive at all the replicas simultaneously, and the
priority-based  event  processing coupled  with
multithreading that allows a handler to yield control. The
next two subsections describe how these problems are
addressed.

3.1. Reliable Multicast

The input consistency condition implies that a
reliable group communication protocol has to be used to
transmit messages to the manager replicas. The multicast
protocol must be reliable — a message will be delivered
to all fault-free replicas or will be delivered to none of
them. The protocol must also be atomic — all messages,
sent by different sources, must be delivered to al fault-
free replicas in the exact same order.

Many reliable atomic multicast protocols have been
described in the literature and/or implemented in real
systems. These protocols vary in complexity,
performance, overhead, and ability for fault tolerance.
We chose a protocol similar to the group communication
protocol used in Amoeba[11], because of its simplicity
and efficiency [7]. Specifically, we use a sequencer-
based protocol, with the primary manager replica as the
sequencer. Senders from outside the manager group
communicate with the group by sending messages to the
primary manager replica only. The primary manager
replica assigns a sequence number to the message and
forwards it to all the backup manager replicas. A reliable
point-to-point communication protocol is used to transmit
the message to the primary replica and then to forward the
message to the backup replicas.

The reliability of the multicast is assured by the
underlying reliable point-to-point communication as long
as the primary manager replica does not fail. However,
the primary manager replica may fail before it
successfully forwards a message to all the backup
replicas. In that case, some of the manager replicas may
receive the message while others may not, thus violating
the reliability requirement. In order to be able to recover
from such primary replica failures, every backup replica
maintains a history buffer where it stores copies of al the
messages it received from the primary manager. When
the primary replica fails, al the backup replicas report to
each other the highest sequence number that each has
received from the primary replica. The one with the
highest sequence number becomes the new primary
manager, since it is ahead of others. The new primary
manager then sends copies of messages which were
missed by the other backup managers to each of them.



Hence, a message received by one manager replica will
be eventually received by all the replicas, thus meeting
the reliability requirement.

The size of the history buffer a each manager
replica is limited. Hence, the replica must reclaim the
storage of messages once they have been delivered to all
the other replicas. Thisis accomplished by piggybacking
the message receive sequence number (RSN) on the
heartbeat messages exchanged among the replicas.

The primary manager replica has a critical role in
the operation of the cluster since it receives messages
from the agents and forwards them to the backup manager
replicas. Thus, a faulty primary manager replicaisin a
position to generate forged messages as well as to modify,
discard, or reorder messages it is supposed to forward to
the backup replicas. The possihility of the primary
manager replica forging agent messages is eliminated
through the use of authenticated communication (signed
messages[13]). Backup manager replicas discard
messages that are not properly authenticated.
Authentication coupled with error-detecting codes also
alow the backup replicas to detect and discard modified
messages.

Discarded or reordered messages lead to agents
receiving inconsistent acknowledgements from the
manager replicas. Agents report such inconsistencies
directly to al the replicas. The manager replicas then
initiate a self-diagnosis procedure that can lead to the
termination of the faulty replica and the initiation of a
replacement.

3.2. Group Time Events

As mentioned earlier, the manager group is event-
driven, where events are either arriving messages or time
events that are invoked by a local timer. Examples of
time events are the termination of atime dice given to a
particular parallel task or a timeout triggered when a
message to an agent fails to be acknowledged. The time
events must be processed by al manager replicas in the
same order with respect to other time events and with
respect to message arrival event. Hence, the time events
must pass through the sequencer (the primary replica) in
the same way that messages do. Thus, under normal
conditions, the backup replicas do not process time events
based on their loca times. Instead, the primary replica
timer triggers the time event and is then sequenced with
the message arrival events and forwarded with an
appropriate sequence number to the backup replicas.

The problem with the above approach is that if the
primary backup fails the time event may never occur.
This problem is solved by scheduling ‘‘backup time
events’ on each of the backup replicas using the backup
replicas own timer. These backup time events are
scheduled for some fixed delay after the primary time
event is scheduled. Under normal circumstances, the

primary time event is triggered on the primary replica and
then delivered in sequence to the backup replicas before
the backup time events are triggered. The backup
replicas then dismiss the corresponding backup time
event.

If a backup time event is triggered, that implies a
possible faulty primary manager. Hence, the backup
replica initiates a manager group self-diagnosis procedure
that involves state comparison. As a result of this
procedure, one of the replicas may be identified as faulty
and terminated. If no faulty replica is identified or if the
faulty replica is not the one reporting the problem, the
primary (possibly a new primary) sequences the time
event and forwards it to the other replicas so that it can be
processed as a normal time event.

4. Gang Scheduling

As discussed earlier, the manager group maintains
information about the system based on periodic node
status information from the agents. New tasks are
submitted to the cluster through the manager group. The
manager group then assigns the task’s processes to nodes
based on the state of the nodes and, possibly, special
requirements of particular processes of the task.

Gang scheduling of tasks is done by the manager
group using the Ousterhout matrix algorithm[18] with the
simple ‘‘first fit'’ policy. When it istime to switch atask,
the manager group send the appropriate message to all the
agents of the relevant nodes. As in many other cluster
managers[10], agents stop and resume processes on their
nodes using the SIGSTOP and SIGCONT signals,
respectively.

5. Experiments and Results

The FTCT currently consists of eight PCs, each
with dua 350MHz Pentium-I1 processors, interconnected
by a high-speed Myrinet[6] LAN. For these experiments,
the nodes operating system is Solaris x86.

The processing and associated power consumption
of the manager group and agents are system overhead that
should be minimized. This is particularly important for
the REE application in space, where the number of nodes
and the available power are severely limited. One simple
way to measure the overhead is to evauate the fraction of
“‘processing’’ that becomes unavailable to the application
when it is executing on the same node as a manager
replica. The manager overhead is largely dependent on
the rate of status report messages (heartbeats) that it must
handle. Figure 3 shows the percentage of processor time
used by the managers given different event processing
rate.

When a manager replica fails the system loses its
ability to mask a failure of another manager replica
Hence, a new replica must be instantiated as quickly as
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Figure 3: The overhead of a manager.

possible. We measured the recovery time from a
manager replica failures — the time from when a
manager replica failure is detected until a new manager
starts and restores a compl ete (triplicated) manager group
to normal operation. The results are shown in Table 1
and exclude the operating system time to load the
executable from disk. Out of the time reported in the
table, about 40 millseconds are spent initializing the
communication system (GM) on Myrinet. Hence, the
recovery time can be reduced significantly by maintaining
an initialized **cold’’ manager replica, ready to accept the
state from other manager replicas and become active.

Failed M anager Recovery Time (msec)
primary 63
backup 60

Table 1: Manager recovery time (excluding
the time to load the executable from disk).

During recovery from a manager replica failure, the
functionality of the manager group is maintained by the
remaining replicas. However, if the failed replica is the
primary, communication from the agents will fail for a
short period since the agents will continue to send
messages to the primary until the agents are informed of
the identify of the new primary replica. Our preliminary
measurements show that, once the failure of the primary
replica is detected, the time to identify and advertise the
identity of the former backup replica that is now the
primary replicais approximately 3.7 milliseconds.

6. Related Work

Over the past decade, a number of resource
management systems for cluster computing have been
implemented[10, 19, 21, 23]. A survey of 20 research and
commercial cluster management systems can be found
in[2]. Excluding the management fault tolerance

features, the basic functionality of the FTCT is currently
similar to the functionality of the GLUnix system[10].
While various projects mention the possibility of active
replication of the managers for fault tolerance, none that
we have seen report actually implementing and evaluating
an actively replicated manager.

The Deta4[3] project designed an open
architecture for dependable distributed systems through
the use of atomic multicast protocol and specialized
hardware. Active, passive and semi-active replication
techniques can be used to achieve fault tolerance.
Chameleon[12] provides an adaptive software
infrastructure to satisfy different levels of availability
requirements for user applications. Chameleon has a
centralized manager, and passive replication is used to
tolerate the failures of this manager.

Reliable group communication has served as the
basis for many fault-tolerant distributed systems, such as
ISIS[5], Horus[22], Totem[15], and Transis[9]. Severa
systems, such as AQUA [8] and Eternal [16] provide fault
tolerance for distributed CORBA applications by using
replicated objects.

7. Conclusion and Future Work

We have designed and implemented middleware
that provides fault-tolerant cluster management using
active replication. Based on this approach, the
management layer can survive a much larger class of
failures than other cluster management systems
implemented on COTS hardware and software. Such
middleware is critical enabling technology for the
deployment of cost-effective supercomputing in space
applications. Our preliminary overhead measurements
indicate that if error detection latency of a few hundred
milliseconds is acceptable, a central manager running on
arelatively slow CPU can handle a cluster with afew tens
of nodes with processing overhead of only a few percent.
Lower detection latencies and/or larger clusters will
require a hierarchical mechanism for collecting status
reports.

The system is till in development. Future work
will include topics such as the evaluation of mechanisms
for recovery from agent failure, the integration of
application level recovery mechanisms, and the
characterization and optimization of the (soft) real-time
performance of the system.
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