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Self-Checking Self-Repairing Computer Nodes Using
the Mirror Processor

Yuval Tamir, Member, IEEE

Abstract—Fault-tolerant systems ofien rely on self-checking
computing nodes. Such nodes detect errors as soon as they oc-
cur, thus preventing the spread of erroneous information
throughout the system. System performance and reliability is
increased if the nodes can recover locally from meost errors
caused by transient faults without requiring system-level re-
covery. The circuitry added for concurrent error detection usu-
ally reduces performance. Using a technique called micro roli-
back, it is possible to eliminate most of the performance penalty
of concurrent error detection. Error detection is performed in
parallel with intermodule communication, and erroneous state
changes are later undone. We report on the design and imple-
mentation of a VLSI RISC microprocessor, called the Mirror
Processor (MP), which is capable of micro rollback. In order
to achieve concurrent error detection, two MP chips operate in
lockstep, comparing external signals and a signature of internal
signals every clock cycle. If a mismatch is detected, both pro-
cessors roll back to the beginning of the cycle when the error
occurred. In some cases the erroneous state is corrected by
copying a value from the fault-free processor to the faulty pro-
cessor. We describe the architecture, microarchitecture, and
VLSI implementation of the MP, emphasizing its error-detec-
tion, error-recovery, and self-diagnosis capabilities.

Index Terms—Micro rollback, self-checking modules, self-di-
agnosis, self-repair, VLSI RISC processor.

I. INTRODUCTION

HE DESIGN of computer systems involves trade-offs

between average performance, real-time perform-
ance, and reliability. In order to provide a high probabil-
ity of meeting real-time constraints, the system is under-
utilized most of the time, leading to reduced average
performance. In order to meet reliability requirements,
fault tolerance is often necessary. The goal of our re-
search is to design fault-tolerant systems that achieve high
average performance as well as a high probability of
meeting real-time constraints.

Fault-tolerant systems which include multiple proces-
sors often rely on self-checking computing nodes [14],
[19]. These nodes detect errors as soon as they occur, thus
confining the erroneous information to the failed node and
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minimizing the scope of recovery actions. This reduces
system unavailability following an error, while recovery
is in progress. Since transient faults are more likely to
occur than permanent faults [2], system average perform-
ance and ability to meet real-time constraints can be in-
creased if the computing nodes recover locally from most
errors caused by transient faults without requiring system-
level recovery.

In order to implement concurrent error detection for the
self-checking nodes, checkers are usually connected in the
communication paths between modules. The checkers re-
duce performance by requiring either longer clock cycles
or additional pipeline stages. As we have previously de-
scribed [21], [22], this performance overhead can be min-
imized if the checks are performed in parallel with inter-
module communication. Each module processes its inputs
immediately when they become available. If the data are
erroneous, they are followed, after a delay of a few cycles,
by an error indication. If the data processed by the re-
ceiver are later flagged as erroneous, any changes to the
state of the system due to this information must be un-
done. Hence, it is necessary to back up processing to the
state that existed just before the error first occurred. We
call the process of backing up a system several cycles in
response to a delayed error signal micro rollback [22].

We report on the design and implementation of a VLSI
RISC microprocessor, called the Mirror Processor (MP),
which can serve as a building block for self-checking self-
repairing computing nodes [23]. The MP implements the
instruction set of the Berkeley RISC II chip [11], [16].
The basic error-detection mechanism of the MP is dupli-
cation and comparison [5]. Following the scheme sup-
ported by several commercial microprocessors [4], [7],
[8], two MP chips, a master and a slave, operate in lock-
step, with the slave comparing their results every clock
cycle. Local recovery from an error caused by transient
faults is accomplished by undoing the erroneous state
changes and repeating the clock cycles that resulted in the
error. When necessary, the corrupted state in one MP chip
is repaired by copying values from the other MP chip.
The self-repair features are unique to the MP. Each MP
is capable of micro rollback of up to four cycles. Hence,
the latency for error detection does not require slowing
down normal operation.

The MP chip has been laid out using MOSIS scalable
CMOS design rules. The chip contains 52 644 transistors
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and, with 2-um technology, the size of the chip is ap-
proximately 8.4 mm X 6.7 mm. The operation of the chip
has been checked using simulations at the circuit level,
switch level, and register-transfer level. Based on these
simulations, the chip will operate at a peak execution rate
of 10 MIPS.

The basic techniques used in the MP have been pre-
sented in previous papers. The main contribution of this

paper is in presenting how these techniques can be incor-

porated in a real implementation of a complete micropro-
cessor. The MP uses a combination of techniques that,
together, result in a practical building block for high-per-
formance fault-tolerant systems. This paper describes the
architecture and microarchitecture of the MP, emphasiz-
ing its error-detection, error-recovery, and self-diagnosis
capabilities. We demonstrate the benefits of micro roll-
back in a real system, show that it can be implemented in
a practical VLSI chip, and evaluate the overhead and de-
sign issues encountered.

Section II is a brief description of micro rollback and
related terminology. The basic microarchitecture and tim-
ing of the MP are presented in Section III. The data path,
with its special features for micro rollback, error detec-
tion, and state repair, are described in Section IV. We
have found that much of the added design complexity of
the MP, relative to a conventional RISC microprocessor,
was due to the control unit. Section V describes the MP
control unit. With most self-checking modules, there are
difficulties in verifying that the self-checking features are
operational once the module is integrated with the rest of
the system. Section VI presents special instructions that
were added to the MP in order to facilitate self-diagnosis.
The VLSI implementation of the MP is described in Sec-
tion VII. This includes the floor plan of the chip, the over-
head for detection, repair, and micro rollback, as well as
a brief description of the design process.

II. Micro ROLLBACK

Micro rollback is based on the idea that a valid system
state can be restored by rolling back to a previously saved
checkpoint [13]. A micro rollback of a module (subsys-
tem) consists of bringing the module back a few cycles to
a state that it had reached in the past [22]. In order to be
able to perform such an operation, it is necessary to save
a “‘snapshot’’ of the state of the subsystem (checkpoint)
at each cycle boundary [6]. Micro rollback restores the
state of a subsystem by overwriting the current state with
a “‘snapshot’’ taken in the past (Fig. 1).

Unlike traditional checkpointing and rollback [13], with
micro rollback both checkpointing and rollback are per-
formed entirely in hardware. This allows checkpointing
to be performed in parallel with normal operation while
recovery is performed in a few clock cycles. Such rapid
checkpointing and rollback is essential in systems with
real-time constraints, where long delays for recovery are
intolerable. In [22] we presented a comparison between
micro rollback and traditional instruction retry [3] as well
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Fig. 1. Micro rollback of a module—restoring a saved snapshot.

as between micro rollback and schemes used for precise
interrupts [6], [18]. Micro rollback is performed at a lower
level, on the basis of clock cycles rather than instructions.
This allows rollback to be executed at the logic level,
without keeping track of instruction semantics and in-
struction pipeline conditions. As a result, the micro-roll-
back capability can be independently implemented in each
module of a synchronous system. Building blocks that are
capable of micro rollback can be interconnected in arbi-
trary ways to construct systems capable of micro rollback.
Such flexibility is difficult to achieve if the semantics of
rollback are tightly coupled to the specific function of each
module.

Shedletsky [15] proposed the use of rollback of a few
cycles for achieving self-checking with respect to per-
manent faults in modules which are self-testing but not
fault-secure [1]. With such modules errors are likely to be
detected within a few cycles after they occur so a rollback
of a few cycles is likely to restore the system to a valid
state. The goal of this scheme is not to reduce the per-
formance penalty of adding checkers, but rather to deal
with ‘imperfect’’ checkers. While this proposed scheme
may be quite useful for permanent faults, it is not appli-
cable to transient faults, which are more likely to occur
[2]. There is no discussion in [15] of how the rollback
will be performed.

The state of a module (subsystem) is the contents of all
storage elements which carry useful information across
cycle boundaries. When a rollback occurs, the number of
cycles to be undone must be provided to a rollback con-
troller. This number is called the rollback distance. One
of the design parameters of a system with support for mi-
cro rollback is the rollback range—the maximum rollback
distance that modules in the system must support. The
rollback range is determined by the number of stored
snapshots.

III. THE ARCHITECTURE OF THE MIRROR PROCESSOR

The choice of the basic processor architecture for the
MP was guided by several considerations: 1) since we
were not interested in instruction set design, it was pref-
erable to use an existing instruction set; 2) in order to
have a chance of successful implementation in an aca-
demic environment, the basic processor architecture had
to be simple; and 3) in order to be a convincing ‘‘proof
of concept,’’ the performance of the processor could not
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Fig. 2. The Mirror Processor. All the modules below busIN are part of the
data path. The control unit is shown above busIN.

be orders of magnitude below the performance of contem-
porary microprocessors. Based on these considerations,
we chose to use the Berkeley RISC II processor [11], [16]
as the basis for the MP. The RISC II was the basis of the
popular Sun SPARC architecture and is similar to other
“‘reduced instruction-set computers.’’ It is a load/store ar-
chitecture, where only explicit load and store instructions
access memory. All ALU and shift operations obtain their
operands from the register file and store their results back
to the register file. One-, 2-, and 4-byte integers are sup-
ported. The memory is accessed as a single, flat 4-giga-
byte segment. The register file has multiple register banks
to support fast procedure calls [11]. In the MP, the reg-
ister file consists of four banks of sixteen 32-b registers
for procedure stack frames plus ten global general-pur-
pose registers.

The data path of the MP, shown below the busIN bus
in Fig. 2, is almost identical to the original RISC II data
path [16]. The differences are related to the fault-toler-
ance features of the MP and will be described later. The
memory interface is over a multiplexed data/address bus,
which is used to reduce the number of pins and thus the
cost of fabrication and testing. Register-register instruc-
tions are executed at a rate of one instruction per cycle
with the bus used every cycle to fetch the next instruction.
Due to the multiplexed external bus, two cycles are needed
to execute load and store instructions.

Pipelining is used in order to maintain an execution rate
of one instruction per cycle. Four nonoverlapping clock
phases are used to sequence operations within each cycle,
As shown in Fig. 3, the multiplexed external bus is used
to transfer addresses during ¢, and ¢;, and transfer an
instruction or data in ¢, and ¢,. A typical ALU instruc-
tion requires reading two registers from the register file,
performing an ALU operation, and writing the result back
to the register file. The delayed write buffer [22], which
is added for micro rollback (Section IV), allows the result

to be written to the register file module in the same phase
(¢;) that the operands for the next instruction are read.

IV. FAULT-TOLERANCE FEATURES IN THE MIRROR-
PROCESSOR DATA PATH

The MP was designed for use in self-checking nodes
where error detection is accomplished by error-detecting
codes (EDC’s) in the memory and duplication and com-
parison [5], [7], [19] for the processor. Two MP-chips are
used in each self-checking node. In order to reduce the
board chip count and complexity, a comparator for all the
key output pins is implemented in the MP chip. Based on
the value of a dedicated input pin, the chip operates as a
master or a slave [4], [7], [8]. The slave operates in lock-
step with the master, performing the same operation at
every clock phase. However, whenever the master pro-
duces an output (data or address), the slave instead reads
the value from the bus and compares it to its own inter-
nally generated value. A mismatch indicates an error.

With the scheme above, there is latency inherent in the
error-detection process. Specifically, once the master
generates some value, the value must be driven to the out-
put pins, received by the slave, and compared with the
slave’s internally generated values. If a mismatch is
found, the error signal must be driven from the slave to
the output pin and back to the master. Hence, an error can
corrupt the processor state before it is detected. The MP
uses micro rollback to undo such state changes and restore
the processor to its state prior to the instruction when the
error first occurred.

A. Support for Micro Rollback

Efficient implementation of micro rollback involves de-
laying commitment of state changes until the new values
are known to be correct (checking is complete). For the
MP, it is sufficient to delay commitment by four cycles
since the latency of the error-detection mechanisms used
is less than four cycles. As described in [22], this is ac-
complished using delayed write buffers (DWB’s), as
shown in Fig. 4. Updates are made by writing to the left
stage of the DWB and setting the corresponding valid bit.
The DWB is shifted right every cycle. After four cycles,
the updated value is shifted into the ‘‘permanent storage’”
for the register (the rightmost register). Updating of the
permanent storage is performed only if the rightmost valid
bit is set. On a read, the select circuitry determines the
most recent (the leftmost) value for which the valid bit is
set. A rollback of n cycles is accomplished in a single
phase by clearing the first (leftmost) # valid bits so that a
subsequent read will obtain an older value.

In [22] it was shown that the basic technique described
above can be used for the register file. The ‘‘permanent
storage’’ consists of 74 registers, as described in Section
III. In the DWB, the select circuit includes a tag with the
register number corresponding to the value stored in the
data part. On a write to the register file, the new value
and register number are written into the DWB. A read
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Fig. 4. A single register with delayed commitment of updates, using a four-
stage delayed write buffer (DWB). Writes modify the leftmost stage of the
DWB. Recent updates are undone by clearing the valid bits. Reads obtain
the most recent valid value.

from the register file involves comparing the register
number to all the tags to determine if a recent value should
be obtained from the DWB. Since the look-up in the DWB
is performed in parallel with the permanent register file
read, there is little additional delay [22].

As in the Berkeley RISC II processor, there are three
registers used for storing the next, current, and last values
of the program counter (PC) [9]. In the RISC II design
these registers are organized as a small FIFO queue and
the following transfers occur during each cycle:

new value = next PC — PC — last PC

Micro rollback of the PC unit could be supported by treat-
ing the three registers as individual state registers (Fig.
4). However, this would result in high area overhead of
12 DWB stages. For the MP we developed a special, more
efficient, mechanism for supporting micro rollback in the
PC. As explained below, this mechanism takes advantage
of the original FIFO organization of the PC unit.

The basic organization of the MP PC unit is shown in
Fig. 5. As with the single register (Fig. 4), there are four
valid bits, corresponding to the four DWB stages. A roll-

back of n cycles is accomplished by clearing the n left-
most valid bits. The key difference between the PC mod-
ule and the module of a single register is the selection
circuitry. Depending on whether the read access is to the
next_PC, PC, or last_PC, pass transistor logic, shown in
Fig. 5, is used to select the registers corresponding to the
first, second, or third valid bits, respectively. Following
a rollback, when several of the valid bits are cleared, this
selection process may select one of the permanent regis-
ters (npc, pc, or Ipc) instead of a value in the DWB.

Starting with a microarchitecture that does not include
support for micro rollback, it is clear that DWB’s are
needed for registers that hold values across cycle bound-
aries [22]. Many VLSI implementations depend on the
ability to store values for a few phases or cycles using the
inherent parasitic capacitance of the circuits for dynamic
storage. For example, once a value is asserted on an in-
ternal bus, it may be assumed that the value will remain
stable for several cycles, even if the driving circuit is dis-
connected. Whenever such dynamic storage is used to
store values across cycle boundaries, support for micro
rollback requires the ability to restore the value when roll-
back is performed.

The problem of rolling back dynamic storage was en-
countered in the design of the MP. One case led to the
addition of a memory address register (MAR), which was
not part of the original microarchitecture. As shown in
Fig. 3, the instruction fetch involves driving an address
to busOUT and to the external bus during ¢, of a cycle
and ¢, of the next cycle. This value is obtained by reading
next_PC during ¢, and incrementing it during ¢, of the
first cycle. When a rollback is performed to the cycle
boundary (between ¢4 and ¢,), the instruction fetch that
was in progress at the time must be re-executed. This re-
quires the address of the instruction to be restored to the
external bus. Furthermore, the processor must allow the
memory the same amount of time to perform the restored
instruction fetch as the time to perform a normal instruc-
tion fetch. In order to meet these requirements, a memory



IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 27, NO. I, JANUARY 1992

valid.1 valid.2 valid.3 valid.4
_______ oo ! i
: 1
1
: 1
select.Jpc—s3" 53+:—‘ - —1
! |
select.pe—js2—1> S2select| | select| " select
! C C C
041> s P PP
i
[
1 select '
1
pc gatepe !
-Giar - P - T vasT vanas
R p 1 1
I |
[} 1
selectnpc— & s+ —select —{select+{select
! select U] | mpe npc npc
L _npc _ _ gate.npe
gopclgpel |gnpedgpe2 lgnpelgncd g,npf4g,p1g_nn cSg.pcS  gpch 207
dwb.1 F—{ awb.2 {awb3 —{awba | npe 1 pe }{ 1pc |
—busD 7} busPC I 1 [ I

— NP

busQUT

J@

Fig. 5. Support for micro rollback in the program counter. Three values are available at any instant: next_PC, PC, and last PC.
A four-stage DWB is used to delay commitment of updates to a three-stage FIFO queue of permanent storage registers.

address register, with the structure shown in Fig. 4, is
connected to busOUT. The value on busOUT is written
into the MAR during ¢, of every cycle. During ¢, of the
rollback cycle, the appropriate number of MAR DWB
stages are invalidated and the most recent remaining MAR
value is read. This value is driven onto busOUT, thus
correctly restarting the instruction fetch operation.

Two other registers with DWB’s had to be added to the
data path of the MP to support micro rollback: 1) the in-
struction register (IR) is used for restoring the instruction
that was fetched in the cycle preceding the cycle boundary
to which rollback is performed, and 2) the store data reg-
ister (SDR) is used to restore the data of a store instruction
if the rollback is to the boundary between the two cycles
of the store. A DWB (as in Fig. 4) is also required to
support micro rollback of the processor status word (PSW)
register. It should be noted that the external memory (or
cache) must also include a DWB [22] so that recent stores
to the memory can be rolled back to maintain a consistent
state with the processor.

B. Support for Error Detection and Error Recovery

As discussed earlier, the MP was designed as a building
block of self-checking nodes where the primary error-de-
tection mechanism is duplication and comparison. The
basic support for this mode of operation is the ability of
the chip to operate in slave mode, where it does not drive
values onto the external bus. Instead, the slave chip com-
pares the values on the external bus, generated by the
master, to internally generated values. In addition to the
external bus lines, the comparison includes the memory
control signals, a mode bit (system/user), and the inter-
rupt acknowledge signal.

Effective detection of errors in the external memory (or
cache) can be implemented using EDC’s at a lower cost
than using duplication and comparison. Hence, the master
and slave processors share (read from) the same memory

(or cache). The MP uses single-bit parity on the external
bus and memory for error detection. The external bus is
thus 33 b wide; all addresses and data generated by the
processor include a parity bit. A ‘‘compressed’’ tree of
static XOR gates [26] connected to busOUT (parOUT) is
used to generate the parity. Data and instructions read
from the external memory must include a parity bit. The
parity of these values is checked by a similar circuit
(parIN).

The two techniques described above are sufficient if the
only requirement is error detection. However, one of the
goals of the MP is to be able to recover from all errors
caused by a single transient fault in the processors. When
an error is detected, both processors (master and slave)
roll back to the cycle boundary preceding the likely cause
of the error. In the MP, both of the above errors require
a rollback of two cycles. If the error is incorrect parity on
the value read from the external bus, the rollback results
in re-executing the memory read operation. If the error is
a mismatch in the comparison, for example due to a tran-
sient fault in one of the ALU’s, the two-cycle rollback
results in the re-execution of the ALU operation. Unfor-
tunately, the above error detection schemes and micro
rollback are not sufficient for recovering from all errors
caused by single transient faults. One problem is caused
by the potential for long latencies in detecting errors. For
example, if the instruction executed is a register-register
operation, a transient fault in one of the ALU’s can result
in an incorrect value stored in the register file. Many
cycles later, a store of that register to memory will bring
the value to the master/slave comparator and an error will
be detected. At this point, a rollback will not restore a
valid state and there is no simple way for the system to
recover.

Error-detection latency can be reduced by including in
the master/slave comparison internal values that are nor-
mally not accessible from the pins. In particular, it can be
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useful to compare the ALU result as it is stored into the
register file. In order to reduce the number of pins used
to facilitate the comparison of internal values, a much
smaller signature [10] of the internal values can be used.
As shown in Fig. 6, one possible way to generate a 4-b
signature is to use interleaved parity, where each signa-
ture bit is the parity of the set of bits consisting of every
fourth bit of the original data [26]. A comparison of such
signatures will detect all single-bit errors, as well as ad-
jacent bit errors, and numerous other multiple-bit errors.
Compact high-performance VLSI implementation of this
signature generation circuitry is possible using chains of
switching cells [17] to implement the multiple-input XoRrR
for each signature bit [26]. In the MP, this basic technique
is used to generate, every cycle, a 4-b signature of the
value on busD (32-b ALU or shifter result), the 7-b
“‘physical”’ register number for the destination register of
the operation, a bit indicating whether a value is written
into the register file (the valid bit for the DWB), the 11 b
of the PSW, and all four state bits from the controller.
The 4-b signature is driven, by the master, onto output

pins and is included in the master/slave comparison every -

cycle.

The above use of signatures does not ensure recovery
from all possible transient faults in the processor. Specif-
ically, a transient fault can invert the value of a bit in the
register file. Many cycles later, a read from the register
file will obtain the corrupted value. The corrupted value
will, of course, cause a mismatch between the master and
slave so that the error will be detected. A rollback of a
few cycles will not correct this error and there is no way
to determine which processor, the master or slave, has the
correct value. In order to allow the two processors to de-
termine which one has the corrected value, a single parity
bit is stored with each register in the register file. When-
ever the register file is read, the parity is checked (parB
and parD in Fig. 2). If a parity error is detected, a roll-
back of one cycle is initiated. In addition, the master and
the slave communicate to each other the results of the re-
spective parity checks using dedicated pins. Following
rollback, if the results are clear regarding which processor
has the corrupted data, two cycles are used to transfer the
value from the fault-free processor to the faulty processor.
If both processors detect parity errors in the same register,
no state repair is performed following rollback (see Sec-
tion V). Since a transient error in the register file decoder
can cause a register to be stored in the wrong location,
the parity stored with each register is calculated over the
physical register number as well as the data. This error
will be detected when there is an attempt to read this reg-
ister. The state repair mechanism will allow recovery from
this error.

The state repair mechanism with the dedicated error de-
tection, as used for the register file, is not required for
any other register on the MP chip. The reason for this is
that the other registers are all modified every cycle. Since
there is an update every cycle, all stages of the DWB’s of
these registers generally contain valid values. If an error
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Fig. 6. Generating a ‘‘signature’’ of a 32-b word using four interleaved
parity bits. The parity bits are computed using four interleaved chains of
switching cells.

occurs due to a corrupted value in one of these registers
(e.g., the value of a condition code bit in the PSW is in-
verted, causing a conditional branch to behave incor-
rectly) the resulting micro rollback will invalidate the cor-
rupted DWB stage. Thus, when the instruction is re-
executed, a valid value will be obtained from the DWB.

V. THE MIRROR-PROCESSOR CONTROL UNIT

The Berkeley RISC II processor was characterized by
a simple small control unit [9], [16]. A single PLA was
used to decode the opcode, producing 39 control bits,
which were ANped with different clock phases to produce
approximately 100 control signals. The MP data path is
more complex than the RISC II data path due to the sup-
port for micro rollback, error detection, and state repair.
Hence, the number of control bits required by the MP is
approximately double the number of control bits in RISC
II. Furthermore, many of the control bits are dependent
on rollback and repair signals in addition to the opcode.
As a result, the MP control unit (Fig. 7) is significantly
more complex than the RISC II control.

Instructions are read from the external bus through
busIN and are latched onto busIR. A four-state finite state
machine keeps track of whether the processor is executing
a normal instruction, executing the second cycle of a two-
cycle instruction, or performing the first or second cycle
of state repair. The next-state logic block computes the
next state based on the incoming opcode and on the repair
signals generated by the rollback logic. The next state,
plus the opcode and the repair signals, are sent to three
PLA’s that generate the majority of the control signals
used by the data path.

Fig. 8 shows the sequence of operations involved in
micro rollback, starting from ¢, of the normal cycle pre-
ceding the rollback cycle. Each module in the rollback’
domain may detect an error by ¢, of a normal cycle. Spe-
cifically, the MP slave determines the results of the mas-
ter/slave comparison during ¢, of each cycle and the re-
sults of the parity checks in both MP chips are determined
during ¢, of the cycle. In the simplest case, if a compar-
ison or busIN parity error is found, the chip requests a
rollback of two cycles. If a register file (parB or parD)
parity error is found, a rollback of one cycle is signaled.
If an error is detected, at the beginning of ¢, of the fol-
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lowing cycle the module pulls down the rollback line and
pulls down the rollback-amount lines according to the
number of cycles that it needs to roll back. All four lines
are connected to all the modules, which are part of the
same rollback domain. Each module connects to these
lines through a bidirectional open-drain pad driver. The
lines are held high by external pullup resistors. During ¢,
of every cycle, the control reads the value on the rollback
pin and the three rollback-amount pins and determines
whether the current cycle is a rollback cycle as well as the
number of cycles to be rolled back.

Since the system is synchronous, when there is a roll-
back all the modules in the rollback domain must roll back
the same distance. If several modules simultaneously re-
quest rollbacks by different amounts, the entire system
must determine the maximum rollback distance requested
and roll back by that amount. The maximum rollback dis-
tance requested is determined by a straightforward imple-
mentation of the Futurebus arbitration protocol [24]. By
¢, of a rollback cycle, the rollback distance for all the
modules is available on the rollback-amount lines.

During a normal cycle, a maximum of two values are
read from the register file of each processor onto the in-
ternal buses, busA and busB (Fig. 2). Four pins on the
chip are dedicated to coordinating state repair between the
master and slave. They signal possible parity errors in the
values read from the register file. Two of the pins are
driven by the master and indicate possible parity errors in
the values it reads from its register file. The other two pins
are driven by the slave based to the parity checks of the

values read from the slave’s register file. These four sig-
nals are set during ¢, of a rollback cycle and are read
during ¢,.

During ¢, of the rollback cycle, the appropriate valid
bits in the various DWB’s are cleared in order to perform
the rollback. At the same time, each processor’s control
unit independently determines whether state repair should
be initiated. If none of the repair bits are set, no repair is
initiated. If one of the processors detected an error in the
value read on busA while the other did not, the busA re-
pair will occur regardless of possible errors detected in
the values read on busB. If both processors detect errors
on busA, a repair of busA is impossible and none is at-
tempted. If a busA repair is not needed, a busB repair may
be initiated, as appropriate. Two points should be noted:
1) if repair is needed for both busA and busB, only the
busA repair will be done and then normal operation will
resume. When the instruction is re-executed following the
repair, the busB error will be detected and, since there is
no error on busA, the busB repair will be done. 2) If both
the master and slave detect an error on the same internal
bus, no repair will be done. However, rollback will be
done so that the operation will be retried. If the error in
at least one of the processors was not permanent (e.g., a
transient on an internal bus), at least one of the values
will be correct when the instruction is re-executed.

Fig. 9 shows the sequence of operations involved in
state repair, starting from the rollback cycle preceding the
first repair cycle. During ¢, of the first repair cycle, both
processors reread the same registers that were read in the
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cycle preceding the rollback cycle. During ¢; and ¢4, the
register containing the value to repair is then gated onto
busD through the shifter. During ¢, of the second repair
cycle, the processor with the correct value assumes mas-
ter mode. Then, during ¢, and ¢;, the master gates busD
onto busOUT and the address/data pins while the other
processor (the slave) reads the correct data in from the
address/data lines. The slave gates the correct value
through the shifter during ¢; and finally to the register file
during ¢, and ¢, of the next (normal) cycle. During ¢4 of
the second repair cycle, both processors restore their re-
spective master/slave modes and resume with the instruc-
tion that was rolled back to.

Fig. 10 shows the rollback and repair controller, which
is part of the MP control unit. It controls the operations
described above and includes many features for handling
multiple faults and system-level recovery from massive
errors. The rollback controller consists of two parts. The
first part monitors the error signals generated by the parity
checkers and comparators and pulls the external rollback
line if an error is detected. It also determines the distance

to roll back and recognizes conditions where local recov-
ery is not possible (see below). The second part of the
rollback controller monitors the external rollback, roll-
back-amount, and repair lines and sets internal rollback
signals.

As discussed earlier, the MP was designed to recover
from errors caused by single transient faults. However,
several features were added to allow recovery from some
multiple faults. For all the registers the DWB storage is
implemented using dynamic latches. Hence, this storage
is susceptible to transient faults. If the value in a DWB
stage is corrupted, it is possible for a rollback to restore
an erroneous state in the master or slave. This will be
detected one or two cycles later, triggering a rollback.
Unfortunately, without a special mechanism for dealing
with this case, the second rollback may restore the erro-
neous state. In order to prevent this situation, the rollback
controller includes the post-rollback counter (Fig. 10),
which counts the number of cycles since the last rollback
until it exceeds three cycles. Based on the value of this
counter, the internal rollback block can determine whether



12

IEEE JOURNAL OF SOLID-STATE CIRCUITS

parity error detected
roll back 1
register file read

check for parity error
error

rollback B
cycle

no error

determine bus

repair 1
% 1o repair

busA busB

¢3—¢41 busA—busD } [ busB—busD ‘%—%

determine if

¢, SENDER or
RECEIVER

SENDER RECEIVER
(correct data) (corrupted data)

set mode to
SLAVE (02

1

set mode to
02| MASTER

l

0203 busD—busOUT
—pads

l

wmpa{e buf:OU'I‘ pads—>busIN
parity with = —busT—shifter .2

error .
busD parity
o error

repair 2

Testore

MASTER/SLAVE |¢,
mode

) I

Fig. 9. The sequence of operations for state repair.

extel

state.shutdown  state.reset
state.rb  state.shutdown state.reset

, VOL. 27, NO. 1, JANUARY 1992

mal external

repair  rollback
signals  signals

i“ %“ o+ Tepair
|+ signals

clear

Input Latches | 3 rollback
amount

Cﬁame [*rollback bit
ounter
[0 2} |Post-roliback
Counter @,

state.rb
4

3
back (<04

state.rb

Roliback Enable | yalid
e %4 jﬁ?{‘
external

2} [Roll
Counter
roliback 2
]
[

state.rb amount

Select rollback
amount

6

3
h internal |-j [nteral Rollback|
Shuidown error signals s s J )
1

’
3

Rollback Amount
Arbitration
3

state.rb 1
clear
%2 rollback bit | EnablePads [ —§ 12
1
rollback bit >
external repair
signals

Fig. 10. Rollback and repair controller.

roliback amount
pad enabie




TAMIR: SELF-CHECKING SELF-REPAIRING COMPUTER NODES USING MIRROR PROCESSOR 13

a rollback will restore the state just restored, several cycles
earlier, by a previous rollback. If this situation is de-
tected, the select logic is used to determine how many
DWRB entries must be invalidated in order to invalidate the
state restored by the previous rollback. This determina-
tion is done based on a 4-b shift register, into which a 1
is shifted every normal execution cycle. During rollback
of n cycles, the n most recent entries in this shift registers
are cleared. Hence, the shift register contains a record of
which of the last four cycles was a normal execution cycle
that has not been rolled back.

It is possible for the master/slave comparison to detect
errors from which recovery is not possible using micro
rollback and the state repair mechanism discussed above.
For example, if 2 b in one of the registers of the register
file are inverted, a store of that register will bring the er-
roneous value to the output pins, causing a master/slave
mismatch to be detected. In this situation, the parity
checks on values read from the register file cannot indi-
cate which register file is at fault. The mismatch will trig-
ger a rollback. However, when the instruction is re-exe-
cuted, the same error will be repeated. Without some
additional mechanism, the processors will continuously
execute the same two cycles followed by a rollback. No
repair will be made and there is no way for the node to
participate in system-level recovery that might allow nor-
mal operation to resume.

In order to better handle the situation of useless re-
peated rollbacks, the node must have the capability of de-
tecting when local recovery is impossible. In the MP, this
is handled by detecting that the fourth rollback is being
attempted within the last 16 cycles and causing the pro-
cessor to trap to an error handling routine instead of per-
forming the rollback. In the rollback controller, the frame
counter is a simple 0 to 15 counter which is incremented
every cycle. The rollback counter counts the number of
rollbacks within the current frame. The rollback counter
is cleared whenever the frame counter reaches 0. If a roll-
back is initiated and the value of the rollback counter is
3, the shutdown logic initiates a shutdown trap. As with
any interrupt or trap, the shutdown trap causes the pro-
cessor to begin executing code in a predetermined ad-
dress. The code stored in this address can, for example,
perform self-diagnosis and then, if the node is opera-
tional, integrate the node back with the rest of the system.
In a multiprocessor system this self-resetting capability
[19] is essential since system-level recovery procedures
require active cooperation from every operational node.

VI. SuppPoRT FOR PERIODIC SELF-DIAGNOSIS

In any design of self-checking modules, there is the
problem of preventing latent faults from remaining un-
detected for long periods. If faults remain undetected,
multiple faults can eventually exist in the system simul-
taneously and cause the concurrent error-detection mech-
anism to fail, leading to an undetected error. One solution
to this problem is for the system to periodically perform

self-diagnosis whose purpose is to flush out latent faults.
Generally, the probability of multiple faults occurring be-
tween diagnosis runs can be reduced to the required level
by adjusting the frequency of the self-diagnosis runs ap-
propriately. In a general-purpose processor, self-diagno-
sis can be accomplished by an operating system that pe-
riodically suspends normal execution and runs programs
that were designed specifically to exercise all the features
of the processor. This approach can be quite successful
for simple RISC processors, where relatively short func-
tional tests can be expected to achieve high-fault coverage
[25].

With the MP, there is a special problem of how to test
the circuitry for error detection, micro rollback, and state
repair. This circuitry is designed to be transparent to the
application and is generally not exercised unless there is
an error and rollback is initiated. Special hardware and
dedicated instructions were added to the MP in order to
permit self-diagnosis of the error-detection, repair, and
rollback circuitry. The new instructions are all privileged
instructions which can only be executed in kernel mode.
An unusual feature of these instructions is that they per-
form different actions on the master and slave processors.
Furthermore, a primary consideration in the design of
these instructions was to minimize the complexity of
hardware modifications needed to support them. Low
priority was given to the generality or ‘‘elegance’’ of these
instructions.

The additional instructions provide two key facilities:
1) the ability of code to force apparent errors by storing
incorrect parity or performing a different operation on the
master and slave, and 2) the ability of code to determine
whether a micro rollback has occurred since a flag was
last cleared. A single rollback bit register was added to
the control unit. This register can be explicitly cleared
(see below) and is set to 1 every time there is a rollback.
The dedicated instructions for self-diagnosis are as fol-
lows:

Clear Rollback Bit: clrrbm clrrbs
Clears the rollback bit in the rollback controller. clrrbm
clears the rollback bit on the master, while clrrbs clears
the bit on the slave.
Add with Bad Parity:
addbpm S1,52,Rd addbps S1,52,Rd
Functions as a normal add instruction, except that an
incorrect parity bit is stored in the destination register
of one of the processors. addbpm stores the bad parity
in the master, while addbps stores the bad parity in the
slave. This instruction is used to force parity errors on
busA and busB.
Jump if Roliback Bit Is Set:
jmprbm Rs1,Rs2,Rd jmprbs Rs1,Rs2,Rd
If the rollback bit is set, a PC-relative jump is per-
formed, using the contents of register Rs2 as the offset
for the jump, while, at the same time, the contents of
register Rs1 are stored in the destination register Rd. If
the rollback bit is not set, the branch is not taken, and
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either Rs1 or Rs2 is gated onto busD and stored in Rd,
depending on the instruction and mode: for jmprbm,
the master stores Rsl, and the slave stores Rs2; for
jmprbs, the slave stores Rs1, and the master stores Rs2.
Since the branch offset can have only a few limited val-
ues, there are two separate instructions to allow both
the master and the slave to gate any value onto busD in
order to exercise the busD state compression logic. This
instruction is used to force state compression compari-
son errors as well as to verify that a rollback has oc-
curred.

Store Bad Data: strbdm Rs,X strbds Rs, X
Similar to a normal PC-relative store instruction. If the
rollback bit is set, both processors will store the con-
tents of Rs into location X ; if the rollback bit is cleared,
one of the processors will store the contents of the MAR
instead. For strbdm, the master will store the bad data,
while for strbds, the slave will do so. This instruction
is used to force a comparison error on the data portion
of a memory write.

Load with Bad Parity: ldrbpm X,Rd ldrbps X,Rd
Similar to a normal PC-relative load instruction. If the
rollback bit is set, both processors will load Rd with the
contents of location X; if it is cleared, one of the pro-
cessors will gate the loaded data onto busIN with an
incorrect parity bit. For ldrbpm, the master will load a
bad parity bit, while for ldrbps, the slave will do so.
This instruction is used to force a parity error on busIN.

As an example of using these special instruction, we
consider testing of the handling of a parity error in the
register file. The test program can use the addbpm or
addbps instructions to store incorrect parity in a register
of the master or slave, respectively. The rollback bits of
the master and slave are cleared using clrrbm and clrrbs.
Then, an instruction that reads the register stored with
incorrect parity is executed. If everything is operating

correctly, this instruction should cause a rollback of one
cycle followed by the repair of the register. To check
whether a rollback has occurred, the jmprbm or jmprbs
instruction is used. In this use of the ‘‘jump if rollback’’
instruction, the Rs1 field is set to the same register num-
ber as the Rs2 field, so that there will not be a master/
slave mismatch if the rollback bit was no set. If a rollback
has occurred this is an indication that the rollback mech-
anism is working. The next step of this test is to clear the
rollback bits again, read the register originally stored with
bad parity, and check the rollback bits. In this case a roll-
back should not have occurred if the state repair mecha-
nism operated correctly the first time.

It is also possible to test the master/slave comparison
of the signature of internal results (Section IV). This is
done by clearing the rollback bits and then using the
Jjmprbm or jmprbs instruction to store different values to
the destination registers. Since different ‘‘ALU results’’
will be transmitted over busD, the signatures of the mas-
ter and slave will differ, triggering a rollback of two
cycles. After the rollback, the execution cycle of the
jmprbm or jmprbs instruction will be repeated. How-
ever, now the rollback bits will be set, causing the branch
to be taken. Thus, reaching the target of the ‘‘jump if
rollback’ instruction is an indication that the signature
comparison operated correctly.

VII. VLSI IMPLEMENTATION OF THE MIRROR
PROCESSOR

We have completed a full-custom CMOS VLSI layout
of the MP, using the MOSIS scalable CMOS design rules
(SCMOS). All the features discussed in this paper are fully
implemented. The chip contains 52 644 transistors, fits in
an 84-pin package (76 pins are used), and, assuming
2-um technology, the size of the chip is approximately
8.4 mm X 6.7 mm (Fig. 11).
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We have used the switch-level simulator bdsim to sim-
ulate the entire chip executing several test programs. A
phase-by-phase register-transfer-level (RTL) description
of the chip was written in Zycad’s ISP’ hardware descrip-
tion language. The results of RTL simulation of the chip
were compared, phase by phase, with the results of the
switch-level simulations in order to verify the operation
of the chip.

All the modules in the chip were simulated, at the cir-
cuit level, using a version of the SPICE circuit simulator
(HSPICE), assuming 2-pm technology and using pessi-
mistic (slow) values for the device parameters. The tim-
ing analyzer crystal was used to determine the critical
paths for each phase. Based on SPICE simulations of the
critical paths, the chip will operate correctly using a 100-
ns clock, with 25-ns ¢, and ¢, 15-ns ¢, and ¢,, and a 5-
ns nonoverlap distance between phases. At this clock rate,
power consumption is expected to be approximately 0.9
W per chip. The chip includes circuitry to generate the
clock phases described above from an external 50% duty
cycle, 40-MHz signal. This circuitry also requires an ex-
ternal 10-MHz signal, which is used to ensure that the
master and slave execute the different phases in lockstep.

The area overhead for the error detection and recovery
capabilities of the chip is significant. In particular, we
estimate that by removing all the features for fault toler-
ance, the width of the chip could be reduced from 8.4 mm
by approximately 1.8 mm and the height could be reduced
from 6.7 mm by approximately 1.5 mm. Thus, approxi-
mately 39% of the chip area is devoted to supporting fault
tolerance. Very little performance overhead is incurred
for the fault tolerance capabilities. Specifically, the only
additional delay is caused by a slightly larger capacitance
to be charged during register-file reads due to longer buses
across the register-file DWB and parity circuitry. This in-
creases the clock cycle by less than 3 ns.

Regarding the area overhead, it should be noted that
with modern microprocessors a large fraction of the chip
is devoted to on-chip caches [12]. Our techniques would
require using error-correcting codes in the caches and
adding a DWB to the data cache. The relative area over-
head for fault tolerance will thus be much lower for caches
than for the rest of the chip, leading to a significantly
lower relative area overhead for the entire chip.

VIII. SUMMARY AND CONCLUSIONS

We have presented the design and implementation of
the Mirror Processor—a VLSI RISC microprocessor with
unique capabilities for fault tolerance. A self-checking
computer node, implemented with two MP chips operat-
ing in lockstep, can recover from most errors caused by
transient faults. For those cases where a transient fault
may permanently modify a stored value, we introduce the
use of rapid hardware-supported state repair. When local
recovery is impossible, the use of duplication and com-
parison results in a very high probability of detecting er-
rors, so that system-level recovery can be initiated. As

with other systems that use duplication and comparison,
there is a low probability of undetected errors due to com-
mon-mode failures [20].

With traditional duplication, triplication, and voting
[27], or even quad modular redundancy [4], a transient
fault can corrupt the state of one of the copies, requiring
lengthy system-level resynchronization [27] to restore the
original redundancy to system. A duplex node constructed
with Mirror Processors has the advantage that, in most
cases, both processors maintain a valid state. Hence, the
node can maintain its full detection and/or recovery ca-
pabilities without resorting to system wide recovery. An
additional difficulty with schemes that involve voting [27]
is that the voters cannot be ‘‘hidden’’ on the processor
chip and thus require a higher chip count and more inter-
chip wiring.

Our implementation of the MP demonstrates that micro
rollback is a practical technique for minimizing the laten-
cies normally associated with concurrent error detection.
Micro rollback is used for re-execution of cycles (as op-
posed to instructions) during which errors are generated.
Since local recovery is not sufficient for all possible er-
rors, our design supports node self-reset, which guaran-
tees that the node will reestablish a ‘‘sane’’ state from
which it can participate in system-level recovery. The
problem of latent faults in the detection and recovery
mechanisms is addressed by special instructions that fa-
cilitate periodic self-diagnosis. The extensive fault-toler-
ance features of the Mirror Processor involve significant
chip area overhead but only negligible performance over-
head.
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