IFFE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 1], NOVEMBER 1983

977

Strategies for Managing the Register File in RISC

YUVAL TAMIR, STUDENT MEMBER, IEEE, AND CARLO H. SEQUIN, FELLOW, IEEE

Abstract—The RISC (reduced instruction set computer) archi-
tecture attempts to achieve high performance without resorting to
complex instructions and irregular pipelining schemes. One of the novel
features of this architecture is a large register file which is used to
minimize the overhead involved in procedure calls and returns. This
paper investipates several strategies for managing this register file.
The costs of practical strategies are compared with a lower bound on
this management overhead, obtained from a theoretical optimal
strategy, for several register file sizes.

While the results concern specifically the RISC processor recently

built at U.C. Berkeley, they are generally applicable to other processors
with multiple register banks.

Index Terms—~Cache fetch strategies, computer architecture,
procedure calls, register file management, RISC, VLSI processor,

l. INTRODUCTION

NVESTIGATIONS of the usc of high-level languages

show that procedure call/return is the most time-con-
suming operation in typical high-level language programs [8],
[9] due to the related overhead of passing parameters and
saving and restoring of registers. The RISC architecture [8],
[9] includes a novel scheme that results in highly efficient
execution of this operation.

In conventional, register-oriented computers, the procedure
call/return mechanism is based on a LIFO stack of variable
size invocation frames (activation records). When a procedure
is called, an area on top of the stack is used for storing the input
arguments, saving the return address and register values, al-
locating local variables and temporaries, and, if the procedure
calls another procedure, storing output arguments. A proce-
dure’s invocation frame denotes this area on the stack. At any
point in time, the number of invocation frames in the stack is
the current nesting depth. The invocation frame of the calling
procedure overlaps that of the called procedure so that the
memory locations containing the parameters passed from the
calling procedure 1o the called procedure are part of both
frames.

In most computers, register/register operations can be
performed faster than the corresponding memory /memory
operations. Therefore, the most heavily used local variables
and temporaries are placed in registers. When a procedure is
called, it must save the value of all the registers it will use and
restore these values before returning control to the calling

Manuscript received July 14, 1982 revised January 3. 1983, This work was
supporied by the Delense Advanced Research Projects Agency under ARPA
Order 3303, and monitered by Naval Electronic System Command under
Contract NODD39-81-K-0251.

The authors are with the Computer Science Division, Department of
Electrical Engincering and Computer Sciences, University of California,
Berkeley, CA 94720

OO1s-9330 K3

FHO0-097750] .00

procedure. Analysis of the dynamic behavior of Pascal and C
programs, executing ona VAX 11 /780, has shown [8], [9] that
saving and restoring register valucs and writing and reading
of parameters from the common area of the caller and the
callee are responsible for more than 40 percent of the data
memory references.

In RISC, the call /return mechanism is based on rwo LIFO
stacks. One of the stacks (henceforth “STACK ™) contains
fixed size lrames which hold scalar quantities of the invocation
frame (i.c., scalar input arguments, the return address, scalar
output parameters, and scalar local variables and temporaries).
The second stack (hencelorth “STACK2") contains variable
size frames, some of which may be empiy (i.c., their size is
zero). This stack is used for all nonscalar variables which are
normally placed on the single stack in conventional computers.
It is also used for scalars in casc there is not enough space in
the fixed size frame on STACKI1.

The size of the STACKI frame in RISC was determined
based on a study by Halbert and Kessler [5]. The dynamic
behavior of nine noninteractive UNIX™ C programs was an-
alyzed. These programs included the main part of the C
compiler ccom, the Pascal interpreter pi, the UNIX copy
command cp, the troff text formatier, and the UNIX sort
program. This study showed that a lixed frame size of 22
“words™ (22 registers), with an overlap of six “words™ between
adjacent frames, is sufficient Tor all the scalar variables and
arguments in over 95 percent of the procedure calls.

The implementation of STACK2 in RISC is identical to the
implementation of the single LIFO stack in conventional
computers: the stack itself resides in memory, there is a pro-
cessor register thal serves as a stack pointer, and there is an-
other register that serves as the frame pointer [4]. There is no
special hardware support for operations on STACK 2 but, due
1o STACK, such operations are far less frequent than oper-
ations on the LIFO stack of conventional computers. Since the
implementation and operation of STACKZ2 is identical to those
of the stack in conventional computers, STACK2 will not be
discussed any further in this paper.

In conventional computers, registers are used for storing part
of the invocation frame of the currently executing procedure
(i.e., the top frame on the stack). In RISC, there is a large
register file that is divided into several fixed size “register
banks,” each of which can hold one STACK| frame. Since
cach STACK| frame partially overlaps the previous STACKI
frame and the next STACK | frame, each register bank shares

" UMNIX is 2 trademark of Bell Laboratories,

c 19%3 IEEE

UK

some of its registers with the two neighboring register
banks.

The STACK] frame used by the currently executing pro-
cedure, 15 always in one of Lthe register banks. At each point in
time, the contents of onc of the register banks are addressable
as registers, thus providing a “window™ into the register file.
This register bank is always the one containing the STACK|
frame of the currently execuling procedure. A procedure call
modifies a hardware pointer and “moves™ the window to the
next register bank in the register file, where the STACK]
frame of the called procedure resides. Thus, for example,
register 15 (R15) in the calling procedure is in a different
physical position in the register file from R15 in the called
procedure, although the operand specifier for R15 is identical
in the two procedures.

A return instruction restores the previous value of the above
mentioned hardware pointer so the previous values of all the
registers are “restored™ without any data movement. Fur-
thermore, no memory refcrences are required for passing
arguments since they are passed in registers which are in the
region of overlap between the register banks containing the
STACKI frames of the caller and the callee.

By using this scheme, a procedure call in R1SC can be made
as Tast as a jump and with fewer accesses to data memory than
arc required in conventional computers,

Since the size of the register file is limited, there is a need
for a mechanism which will handle the case when the proce-
dure nesting depth exceeds the number of STACKI frames
which [it in the register file. When a procedure call is executed,
a new “emply” register bank is needed. If all the register banks
in the register file are in use, an “overflow™ occurs. This ov-
erllow causes a trap which is handled by operating system
software. The operating system must {ree one or more register
banks to make room for the new frame. Since the STACKI
frames in the register banks which are “freed” must be pre-
served, the software copies the frames to a conventional LIFO
stack which is kepl in memory and contains only STACKI
frames.

When a return instruction is executed, the window must be
moved 1o a register bank containing the previous frame (i.e.,
the frame of the calling procedure). If all the register banks
are free (i.e., the calling frame is nol resident), an “underflow”
occurs. This underflow causes a trap, upon which the operating
system software loads one or more frames from memory where
they were stored when an overflow occurred.

The register file is simply a write-back cache of STACKI.
The cache blocks are the STACK] frames. The top few frames
of STACK are in the register file while the rest are in mem-
ory. When an underflow occurs, one or more occupied
STACK] frames are ferched from memory. When an overflow
occurs, one or more register banks are “freed.” This can be
interpreted as “fetching” empty STACKI frames from
memory. Since in both cases the “fetching” is done by sofltware,
there is great flexibility in defining the cache feich strategy
(algorithm) [10]. This strategy determines the number of
frames to be moved to/from memory when an overflow/
underflow occurs

In this paper. several feich strategies are considered. A
theoretical “optimal strategy™ is developed and is used as a

JEEE TRANSACTIONS ON COMPUTERS, vOl . €232, N0 (), ROVEMBER 983

reference point for evaluating the performance of several
practical strategies. In addition, the effect of register file size
on the performance of different strategies is investigated.

1. THE OPTIMAL STRATEGY

In this section an aptimal straregy for managing the register
file will be discussed. This strategy requires unbounded look-
ahead (possibly to the end of the call/return trace) and is
therefore only useful as a lower bound on the cost of practical
sirategies. A proof that the proposed strategy is, in fact, “op-
timal™ is presented.

A. Definitions

In order 1o Tacilitate further discussion, some formal defi-
nitions arc required.

When a program is cxccuting, its nesting depth constantly
changes: every procedure call increases the nesting depth by
one and every return decreases the nesting depth by one.
Hence, for every exccution of a program, there is a corre-
sponding sequence of nesting depths. This sequence will be
called a procedure nesting depth sequence (PNDS).

Definition 1: A procedure nesting depth sequence (PNDS)
is a sequence of integers D = (d,. d» -, d,) whered, = 1,
diz0forl <i<nand|d,—di—y|=1Tor2=i=<n

The integer 7 is an index into the PNDS: d, is the nesting
depth at the beginning of the program. Foreachi, 2 <i<n,
d; is the nesting depth after i — 1 calls and returns are executed
(i.e., after i — | changes in the nesting depth). Henceforth, an
index into the PNDS will be called a location. An example of
a PNDS is shown in Fig. 1.

The frames of STACK | are numbered from 1 to m (with
m being the current nesting depth, i.e., the number of the frame
of the currently executing procedure). The top (i.e., highest
numbered) few frames of the stack are always in the register
file while the rest arc in memory.

Definition 2: The regisier file position (RFP) is the number
of the lowest numbered frame which is in the register file,

When an overflow occurs, the lowest number frame(s) in
the register file are copied to memory and the register banks
they occupy in the register file are “freed.” This increases the
register file position. Similarly, when an underflow occurs the
RFP is decreased. Thus, the number of times the RFP is
changed during the execution of the program is equal to the
sum of the number of overflows and the number of underflows
which occur.

Definition 3: A register file move (RFM) denotes an in-
crease or decrease in the register file position.

Definition 4: The size of the register file move is the absolute
value of the difference between the RFP before the move and
the RFP after the move.

If the current nesting depth is d, the STACK | frame being
used by the currently executing procedure, is the one labeled
d. The register file position must be such that this frame is
contained in the register fle. Hence, if the register file can hold
w lrames and if the RFPis p,then p < d < p 4+ w. Before ex-
ecution begins, the RFP is some positive integer pg. During the
exccution of a program witha PNDS D = (d,.d..- -+, d,). for
each nesting depth d,, the corresponding RFP p; must be such
that the above condition is satisfied. e p, = d; < p, + w.

PASTIR ™0 sEadl 1% SEa a0 TIRL WitelsT0 R TR0

™ Kiw

Mesting [epth

1 2 3 4 b H T é 210 L1 IZ 13 14 15 1B 7T l:ﬂ'l-ﬁ?ﬁﬂ'l EFEEPJ-E;EEJEH;TEBEB

S Un & L UM g
"Location” - Index inte the PNDS n

Fig. 1.

Definition 3 Given o PNDS D = (d,, s, -+, d,) and a
register Nle that can hold w lrames, a valid register file position
sequence (RFPS) is a sequence of RFP's: P = (py, py, pa, -
) such that the p;'s are positive integers and forall i, 1 <4
=npiSdi<ptow

There is a one-lo-one correspondence between nesting
depths in the PNDS and RFPs in the RFPS. Successive
RFP's, py—y and py, in the RFPS may be unequal or equal
depending on whether the register file position is modified
between the f — 2 and j — | change in the nesting depth.

Definition 6: 1f P = (po, p\. p2.-* . ps) is an RFPS, an
RFM is said to oceur in location j (1 < j < n)of P, if and only
it p; # pj-y.

The number of RFM’s which occur during some interval in
which the program is exccuting is of interest in this paper. The
interval is defined as a subsequence of the RFPS (which cor-
responds to a subsequence of the PNDS).

Definition 7: 1T P = (po. pr. P2 pa) is an RFPS, the
number of RFM's occurring in location range [i. j] of P, where
| =7 =) = n. isthe number of unique integers &, such that i
=k = jand py # pi—. This number will be denoted by
RFMg[i. f].

Definition 8: 1T P = (pg. pr, pa. - = pa),is an RFPS, the
memaory traffic occurring in location range [i, j] of P, where
| =i =j = n,isthetotal number of STACK | frames moved
to/from memory as the RFP isset Lo py, pis1. - - -, p; succes-
sively. This number is denoted by MTp[i, j]:

ann=§nrmh+

B. What is an “Optimal Strategy'"?

There is some overhead involved in handling overflow/
underflow traps: saving the current state, determining the
cause of the trap, activating the proper trap handling routine,
restoring state, and returning to normal execution. Hence, it
15 desirable 1o minimize the number of register file overflows
and underflows. In addition, there is the direct cost involved
in actually moving the data to/from memory. For each register

PMNDS and optimal REFPS

file move, this cost is proportional 1o the number of frames
moved (i.c., 1o the size of the register file move). Hence, it is
desirable 1o minimize the number of frames moved for cach
overflow funderflow, i.c.. the memory traffic which is the result
of overflows and underlows, :

The problem of finding the “best™ RFPS is similar to finding
optimal strategics for handling page faults in virtual memory
systems. In virtual memory systems it s also desirable 1o
minimize both the number of page faults (since there is over-
head involved in handling such faults) and the 1/0O involved
in moving memory pages to,/ from disk or drum. For the virtual
memaory problem, Belady [1] developed an “optimal™ page
replacement algorithm which causes the fewest possible page
Faults for a program which executes in a fixed number of main
memory page frames. Belady's algorithm is not realizable since
it requires knowledge of the future portion of the page
trace. :

In the next sections it is shown that if the entire call return
trace of the program (i.c., the PNDS) is known, there exists
a RFPS which achieves hoth the minimum number of over-
flow /underflow traps and the minimum memory traffic re-
sulting from register file moves. It is Turther shown that
knowledge of the entire PNDS is necessary for achieving an
optimum RFPS.

C. The Existence of an Optimal RFPS

In order to prove the existence of an optimal RFPS, an al-
gorithm for deriving such an RFPS from a given PNDS, is
presented. The optimality of the RFPS produced by the al-
gorithm is shown by proving that no other valid R FPS can have
fewer register file moves or result in less memory traffic,

An optimal RFPS can be obtained as follows. We start with
the RFP at 1 and keep it there until the nesting depth excecds
the number (w) of register banks in the register file. Now the
RFP must be changed, i.e., an RFM musi occur. In order 1o
determine the optimal size of the RFM, we must look ahead
in the call /return trace (i.e., in the PNDS). Starting from the
current location, we determine the longest subsequence of the
PNDS for which a constant RFP is possible (i.e., in which the

LA

difference between the maximum nesting depth and the min-
imum nesting depth does not exceed w — 1). The new RFP is
chosen so that it is valid for this entire subsequence. From the
end of this subsequence we repeat the procedure until the entire
PNDS is covered.

Special handling is required when determining the RFF for
the last subsequence in the PNDS. In this case the difference
between the maximum and minimum nesting depth within the
subsequence may be less than w — 1. Hence, there is some
freedom in setting the RFP. In order 1o minimize the memory
traffic, the new RFP is chosen so that it is valid for the entire
subsequence and the absolute value of the difference between
the new RFP and the previous RFP is minimized. An example
ol a PNDS and the corresponding optimal RFPS is shown in
Fig. 1.

More formally, the procedure can be stated as follows. Given
an arbitrary PNDS D = (d,, d5, -+, d,), an optimal RFPS
P = (po. 1. P2, o), Tor a register file that can hold w
frames, can be oblained as follows:

[1] leti=1,pg=1
[2] repeat
[3] let E = (di, diyy, -, dw)
where m is the maximum integer such that
i=m=nand max (E) —min(E) <w
[4] if (m < n)or(p;—; > min (E)) then

[5] forj=itom

let P = min (E)
6] else
(7] forj =i tom

let p; = max (E) = w+ |
(8] leti=m+ 1
9] untili > n

First, it must be shown that the algorithm generates a valid
RFPS for the given PNDS. Proof of the validity of the algo-
rithm and of the generated RFPS requires proving the fol-
lowing lemmas.

Lemma I: The repeat and for loops terminate after a finite
number of iterations, i.e., the algorithm always terminates.

Proof: Since n is finite and i is incremented by at least |
during each iteration of the repeat loop, n is an upper bound
on the number of iterations through the repeat loop.

Itis always true that i = 1 and m < n. Hence, n is an upper
bound on the number of iteration through the for loop (either
one) each time it is entered. [|

Lemma 2: Foralli, | £i<n,p;, <d; <p;+w,ie.,the
RFP's generated by the algorithm are valid.

Proaf: From the algorithm, if p; is set in step 5, then p;
= d; [since p; = min (£)] and 4; — p; <w (since max (E) =
min (E) < w). Hence, p; = d; <p; + w.

If p; is set in step 7, then p; 2 d; — w + 1 (since p; = max
(E)—=w+1)and p; + w = 1 — d; <w (since max (E) = p;
+ w = 1 and max (E) — min (E) < w). From the first in-
equality, d; < p; + w — | and from the second inequality p;
<d;+ 1. Hence,p, <d; <p, + w. L]

The proof of the optimality of the generated RFPS requires
some additional notation. The subsequence £ which is defined
during the kth iteration of the repeat loop will be denoted E;

IELE TRANSACTIONS ON COMPUTERS, vOL .32 NO. 1], NOVEMBER 1951

(it corresponds to the kth setting of the RFP). The corre-
sponding integer m will be denoted m;. For convenience in
notation, we define mg = 0. The number of iterations that the
repeat loop executes before terminating will be denoted by K
(it corresponds to the number of times that the RFP is ad-
justed). Note that | = m; <ms < - <my = n.

For each location range, [m;—) + 1, my;], the RFP's in the
RFPS generated by the algorithm are constant. Within this
location range, &, and ¥, are the locations of the first oc-
currence of the minimum and maximum nesting depths, re-
spectively. More formally, see the following.

Definition 9: &, and ¥, are the smallest integers, such that
foreach k (1 = k = K), both are in the location range [mg—,
+ 1. my], where dg, = min (Eg) and dy, = max (E,).

In order to prove the optimality of the RFPS generated by
the algorithm, it must be shown that this RFPS results in the
lowest possible memory traffic. This will be done by using in-
duction on the K boundaries of K — | location ranges. These
boundaries are defined below and are denoted by O, for all
k such that 1 =k = K. The boundary point O is the location
of the first minimum or maximum nesting depth within the
location range [mig—, + 1, mg]. If the RFPin the RFPS gen-
erated by the algorithm for location range [me—, + 1, my]is
less than the RFP for location range [my -2+ 1, my—], then
By = &, otherwise 8, = ¥,. More formally:

Definition 10: Oy is an integer such that for each k., 2 < k
=K, 0, =&, il dy, <dg,_,.and Oy = ¥, otherwise. For
convenience in notation, we define 8, = |

Fig. | shows the PNDS from the execution of Ackerman's
function with arguments (2, 1). The dotted squares show the
“optimal” RFP's for a register file that can hold three frames.
In this example, five RFM’s are necessary (RFMg[1, 29] =
5, K = 6) and the memory traffic resulting from those RFM's
is 12 frames (MTp[1, 29] = 12).

Let @ = (go.41. g2 - . §x) be an arbitrary valid RFPS for
D.

The rest of this section contains a formal proof that the
number of RFM's in P and the memory traffic resulting from
those RFM's are at most equal to the number of RFM'sin @
and the memory traffic resulting from those RFM’s, respec-
tively.

Lemma 3: 1f K > 1, then for all k, 1 < k <K, RFMgl[1, m;
+1]=k

Proof: See the Appendix.

From the algorithm, for all &, 1
— 1. It is now shown that for | < k
-]_

Lemma4:1[K > | thenforallk, 1 Sk <K —1,dy, -
de, =w-=1.

Proof: See the Appendix.

It should be noted that Lemma 4 makes no claims about the
value of (dy, — de,), i.e., it makes no claims about the case
k = K. From the algorithm it is clear that dy, — dg, < w. So
it is quite possible that dy, — dg, <w = 1.

Lemma 5:IfK > 1 forallk, | £k =K - 1. foralli, m—,
+1=i=my,p =dg, =dy, —w+ 1. For the last subse-
quence, i.e. k = K:if O = dy . thenp, = dy,.elsep;, = dy,
- wi+ |,

Proof: See the Appendix.

E.‘f.d“—d“ =w

=
S I.,dh—dhzw

k
K

PAMIR AN SE0H IS SIS AGiISG THE REGISTER BB 1% Hist

Lemma6: IFK > 1, thenforallk, 1 =k = K, MTg[1,0]

> MTp[l. O] + |90, — Po|-
Proof: Sce the Appendix.

Using the above lemmas, we can formally prove the “opti-
mality” of the RFPS generated by the algorithm.

Theorem 1: The RFPS P generated by the algorithm for the
PNDS D is an optimal RFPS for D, i.e., if @ is an arbitrary
valid RFPS for D, then

RFMg[l,n] = RFMpll, n]
and
MTg(l.n] = MTp[l, n].

Proof: It K = 1, then there are no RFM’s in P so
RFEMp[l,n] =0, MTg[l, n] =0, and the theorem holds,
Assume K > 1. In the algorithm, all the RFP's, corre-
sponding to the same subsequence, are set to the same value
(step 5 orstep 7). Hence, the only way that gy # py4 | can occur
isif i =my forsome k.1 £k =K — 1. Thus, RFMp[l,n] =
K-1
From Lemma 3, K — 1 = RFMg[1, mx-; + 1]. Since
mig—1+ 1 =n RFMp[l.mg_, + 1] = RFMg[1, n]. Hence,
K —1=RFMg[l,n]. Thus, RFMpg[1,n] < RFMg(1, n].
From Lemma 6, MTg[1, Ox] = MTp[1, Ok] + |qa, —
fog |- Since |go, — po,] 2 0, MTgl[l. O] 2 MTge[l, Ok].
Since Oy = n, MTp[1, n] =2 MTp[1, Bx]. Since dg, € Ex
and d, € Ex. Poy = Pox+1 =" = Pa. Thus, MTp[Of + 1,
n] = 0,50 MTg[1,B0x] = MTg[1, n]. Hence, MTp[l,n] =
MTgll. n).
Q.E.D.

D. The Unrealizability of an Optimal Strategy

When a computer is executing a program, the entire call/
return trace is not known ahead of time. In fact, it is unlikely
that there is any look-ahead possible. In this section it is shown
that knowledge of the entire PNDS is necessary for finding an
optimal RFPS.

First, it should be noted that no simplifying assumptions
about the properties of the call/return trace of “real” programs
can be made. In other words, for every given sequence of in-
tegers which satisfies the definition of a PNDS (Definition 1),
it is possible to construct a real program whose sequence of
nesting depths is the given sequence. This is demonstrated by
the program in Fig. 2 (which is written in the C language [7]).
When this program is executed, its sequence of nesting depths
is identical to the sequence of integers in the array deprhlist
(assuming that the sequence of integers in depthlist is a valid
PNDS).

To show that unbounded look-ahead on the call /return trace
is necessary for achieving an optimal RFPS, consider a system
where there is a bounded (or nonexistent) look-ahead; more
specifically, a system where at each point in time only the next
r calls and returns are known in advance. (MNote that in most
systems 1 = 0.) Assume that the register file of the system can
holé w frames and that there are two programs to be executed:
PROGI and PROG2. These programs have identical call/
return traces for the first s calls and returns, where w + 1 <
5. At some point, before 5 — ¢ calls/returns are executed, the
nesting depth (in both programs) reaches w + 1. The nesting

1

Lot depthlist[] = | /= This is the PNDS. O terminated *f |
1L,2322, 432 1.0}

| I6L depthind = 1§ ;

main

i

while (depthlist]depthind] > 1) |

desper(2) ;
depthind = depthind + 1;

i
deeper(curdep)
' ot curdep ;. " The current nesting depth */
depthind = depthind + 1;
while (depthlist[depthind] » curdep) |
desper{curdep+ 1) ;
depthind = depihind + | ;

i
if (depthtist]depthind] == 0)
emit{d) ;

Fig. 2. A program whose “behavior” follows an arbitrary PNDS,

depth stays between 2 and w + | until a total of 5 calls/returns
are executed. After that, in PROGI the nesting depth de-
creases and the program terminates at nesting depth 1. In
PROG2, on the other hand, the nesting depth increases tow
+ 2 and then decreases until the program terminates at nesting
depth 1.

In both programs, when the nesting depth first reaches w
+ 1, the same information about the call/return trace is
available, and therefore any strategy for managing the register
file will result in the same action being taken for both pro-
grams. This action is clearly not optimal for at least one of the
programs. For PROGI, the optimal action is to move one
frame to memory. This action is not optimal for PROG2 since
another overflow will occur when a nesting depth of w + 2 is
reached. The optimal action for PROG2 is to move two frames
to memory so that only one overflow will occur during the
execution of the program. Moving two frames to memory is
not the optimal action for PROG 1 since it results in unneces-
sary memory traffic: moving two frames to and from memory
instead of one.

The fact that an optimal strategy is not realizable does not
imply that all practical strategies for managing the register
file are equally bad. As seen in the next section, simple changes
in the strategy for managing the register file may significantly
affect the cost of handling calls and returns.

I1l. PRACTICAL STRATEGIES FOR MANAGING THE
REGISTER FILE

In most real systems, no look-ahead at the call/return trace
is possible. Thus, the decision as to how many frames should
be moved to/from memory when an overflow funderflow oc-
curs must be based on the previous behavior of the executing
program or be completely independent of the PNDS of the
execuling program.

As indicated above, two factors contribute to the cost (ex-
ecution time) of handling register file overflows and under-
flows: the handling of the interrupt/trap that is initiated by
the overflow/underflow and the actual transfer of the
STACKI frames to/from memory. If the number of frames
which are moved when an interrupt occurs is not fixed, some
computation may be required in order to calculate this number.
The cost of this calculation is included in the cost of handling
the interrupt. In order to evaluate the effectiveness of different

U

strategies for managing the register file, these strategics can
be tried out on the call /return trace of benchmark programs.
The number of overlows/underflows and transfers of
STACK] frames which result from each strategy can thus be
determined. These numbers can then be related Lo the cosr of
the overfllow /underflow handler using the following for-
mula:

cosl = ¢ X (number overfllows + number underflows)
+ 3 % (number framecs moved)

where e and 3 are constants: o is the cost of responding to the
interrupt and caleulating the number of lrames to be moved,
and 3 is the cost of moving one STACK frame 10 or from
Memory,

A Measwrement Technigue

The method used lor obtaining the call /return trace of the
benchmark programs used in this paper relics on the Tact that
the call/return trace of a program exccuting on a RISC
computer is identical to the call/return trace of the same
program exccuting on any similar computer. In this case, the
benchmark programs arc all writien in the C language | 7], and
their call/return trace is obtained from their execution on a
VAX 11/780. The assembly code produced by the C compiler
is processed by an editor script which inseris calls 10 special
procedures before and after each procedure call instruction.
When the program is exccuted, in addition to producing its
normal output, it creates a file containing a string of bits. The
ith bitin the string corresponds to the ith call /return exccuted
by the program. This bit is 1 i a call was exccuted, 0l a return
wis execuled. The bit siring is the call/return trace of the
program. Routines which simulate differcnt strategies lor
managing the régister file use this string to obtain the number
of overflows/underflows and the resulting memory traffic
which will oceur if the benchmark program is executed using
the simulated strategy.

For this study. three benchmark programs were used:

The RISC C compiler [2] which is based on
Johnson’s portable C compiler [6]. The call/
return trace used was gencrated by the com-
piler compiling the UNIX file concatenation
utility car. 88 606 calls and returns were exe-
cuted and a nesting depth of 26 was reached.
This is a bin-packing program which solves a
three-dimensional puzzle. It was developed by
Forest Baskett. During the exccution of the
program, 42 710 calls and returns were exe-
cuted and a nesting depth of 20 was reached.
This is a Tower of Hanoi program. The call/
return trace used, was obtained for the pro-
gram moving 18 disks. 1 048 574 calls and
returns were executed and a nesting depth of
20 was reached.

e

mizzle

fower

In this paper, the cost of handling register file overflows and
underflows is assumed to be directly proportional to the
number of RISC instructions they reguire. I no caleulation
15 needed in order 1o determine the number of frames 10 be
moved, the cost of responding to the interrupt is approximately

LR TRANSACTIONS O COMPUTERS, VO 32, N0 DL SNOVEMBI R 1953

30 instructions (o = 30 in the above discussion). The cost of
moving one STACK]1 frame is 16 instructions (3 = 16 in the
above discussion).

B. The Cost af "Fixed" Strategies

The simplest strategy for managing the register [ilc is 10
always move the same number of frames (say /) ro memory,
when an overflow occurs, and always move the same number
of frames (say j) from memory, when an underflow occurs,
For a register file that can hold w frames, such a strategy will
be denoted fixed(i, j) where i and j are integers such that 1 =
iswandl £j<w,

When a fixed strategy is used, no computation is required
in order 1o determine the number of frames 10 be moved.
Hence, the equation

cosl = 30 X (number overfllows + number underflows)
+ 16 X (number frames moved)

is used 1o evaluate the cost of managing the register file. This
equation is also used in evaluating the cost of the optimal
strategy, which serves as a lower bound on the cost of other
strategics.

1) Measurement Results: The actual “performance” of the
optimal strategy and fixed stratcgies is presented in this sec-
tion. All possible fixed stratcgies for register files containing
3.5,7,9, 13, and 17 register banks have been tried with the
three benchmark programs.

Tables 1-111 summarize the results for cach one of the three
benchmark programs with six different register file sizes and
for seven different strategies. The results include the number
of overfows, number of underlows, memory trafTic, and cost.
For the optimal sirategy, the “raw™ numbers arc presented.
For the other six strategies, the figures shown are normalized
with respect to the corresponding entries for the optimal
strategy with the same register file size. In the three tables w
denotes the number of register banks in the register file.

The fixed strategics included in the tables are: the best of
all fixed strategies (i.c., the strategy resulting in the least cost)
for the particular program and register file size, the worst of
all fixed strategies (i.c.. the strategy resulting in the greatest
cost) for the particular program and register file size, fived{w,
1) which guarantees the minimum number of overflows,
Sixed(1, w) which guarantees the minimum number of un-
derflows, fixed(1, 1) which guaraniees the minimum memory
traffic, and fixed([w /2], [w/2]) which is “symmetrical.”

2) Discussion of Measurement Resulis: Although the three
benchmark programs used are quite dilferent, the results show
many common characteristics in their behavior, as far as the
management of the register file is concerned. In addition, the
results for the fixed(w, 1), fixed(1, w), and fixed(l, 1)
stralegies provide an experimental verification to the fact that
the “optimal strategy,” presented in Section 11, does indeed
minimize the number of overflows /underflows and memory
traffic simultancously.

The register file size and the way that the register file is
managed can significantly affect the cost of procedure calls,
Table IV shows the average number of instructions per pro-
cedure call required for managing the register file. For every

ARIEH Al sEad % SIS anaisds P RIGISEL R BT 1% His N1
I ABLE | TABLE I
Fixt i3 STRATEGIE S WITH Foy II'I‘ IPRTRATIGIES WITH fower
[.._ﬁ. Siae (w) a S | 7 | & | @ | 17 Hey Fue Size {w)]] T | % | 13 17T
Beat Pixed Strategy (1) () lfzal fea)l f22) | [2&) Beat Fized Srrategy gyl Ay ool ig] 19
'i'ﬂ l‘1l1= 31!“:': % ‘i ii | [z ?l [TEXE] Warat Floed 3!11!:': ii;ﬁ ‘ﬁﬂ [4
I | fCverfiows 1481 S48 238 (5] 18 | JOverfiows 7 18912 a4 i
| optimal [fUnderflows | #200] 1232 47| 1T1] 71 14 Optimal flnderflows | TaBiA| 18§12 B4 4
EI Strategy Wem. Traffic | 10008 5554 2462 1278 458 T4 Sirategy Mem Traffic | 262142] 65534 54 14
i = Cont B84938| 170314 70372\ Jaz28| 11048| 2084 = cont |nanmisz| 2083284 z7oss| THOM s
T forerBows 183 187 LA8& LB7| LAT| L.58 Jover e 1 111 200 LaA L.0a
:‘:“ fUnderfiows 1.23] 223] 191 258 1,94 1.7% | 2:;:‘ flUnderflows LTS L1t 2.00 1.98, 1,00
S":““ Mem. Trafc | 100 100/ 148] 1.26] 12| 135 | Strategy Mem. Traffic 00| LTI 1.00] _ 1.00 1.71
[marmmalis e} | Cont 13 050 139 180 les| 1@ [ermansed) Cawi 139 142 148) 148] 148 1.4
| gOverfiows 230 TO8| D49 10.84] 4340 T3 | w rlaws a84] 32 28] 198.00] 4 00] 1638400
Warst [fUnderflows | 218 A.50| I0.87] 16.89] 50.73 B0Ba | ’:;:; fUnderfows 200 388 3228 128.00] 84.00] 18384.00
51 ?r:-.‘.-., Mem Traffic | 4.24] 18.85] 29.93] 32 88| 204 48] 58205 Strategy CMem. Trafic 2.43] 10,00 97 54| 57741 419 28] 159158 88
Cost 3.18| 13.53] 20.99] 28 54| 143.50] 387.78 | {rarmakeed) Cont 280 723 ese82|350.88| 248.87| 8520980
| jOverfloms T00] 100|100 100 . 109|100 | T iorerfoms To0] 100 tool 100l 100 100
jUnderfiows | 262 8.02) B.09) 12.42) 1320 1943 | flnderfiows 300, s00| TOD| B00| 13.00 17.00
Predfw.t} Py Trafc | 184] 267 308 308 emi] 735 fredfut) Fyem TraMe | 171] 238 353 a1 ass|__ e
| Eant res| 268 am| 408 s8] e32 Cont 188 2| a7s| a8 a77 (e
{~owerfiaws 308 188 S48 5688 4 304 lvarfnws So0] 500] S99 B899 700 3.00
JUnderfiows 1.00 1001 1.00] 1.00 100 1.00 | fUnderfows 1.00 1.00 1.00 1.00 100 1.0
ﬁ,m[‘:":’ Mem, Trafic L“'r' 207] 240] 194] 15[170 . fredil.w) [Mem Traflie 1.71 236] 352l ss0f 153 1.71
Coet zo1| 23| zea| esv| =228 2oe | | cost Loa| 279) 378 474 3TE 1.8
— —_ —i
Foverftows Toa| 187 Zz8| ce2| 278 31 [[jOveraaws LT Lea| L98] eo0| L#8 .75
fUnderfiows | 133 =225 282 aoe 323 284 fUnderfiows L75] _ 194] 190 200 198 174
fredfld) e Trafic | L09] 1.00] 100 1.00] 100] 100 J'"m'ﬂ‘, [Mem. Traffic 100 1.00] 100 100 1.00] 1.00
Cost 131 150 ez 88| 17e| 183 Coat L8| 148 Led| 148 a8 198
]
JOverfaws 184 73] 0B £.51| 148|419 Joverfiow P ST I T T
] JUnderficws 155 320 27al 248 1v0] 470 ‘""“#HI JUnderflows 273 1.11 47| a8 100] B4.00
"'-4 {0 Mam. Trafic | 202 #.38] 4.21] 4.30] 3.70| 18.30 0B Mem. Trafic 287 171] 1707 a3 3.53] IEM
nd P 7o) 37| 34 am| zesl 1@ Cant 24| 142| 1289 2 z.mi 19200
TABLE 11 TABLE 1V

FIXED STRATEGIES WITH puzzle

| EI File Siie {w) 3 | & 1 7] NE] 17
[West Fized Strategy | pnlpy|Eal 77| @x
|__Worst Fixed Strat gﬁ ‘gﬁ (27 g 3t (177
r_%.-] T 1 28 8 1 1
[Optimal #Underfiaws T 158 30] 1 1
| Strategy Mem Traffic | 2058 S14] 94| 30 1t]
B Coat 7ass| 17Tea| 3ia| Bio| 2e4 158
; [#Overfows | 140 162 181 167 100] 1.00]
| #Underfliows | 1.08] 182] 157 200 100 100
| Strategy L Mem Trame | 100[100] 100] 13| 100[I
(marmahoedd | Coae 122| 1.33) 138 183 100 1
. - — q —— —_—
e T gTverfiaws | 980, 3850 13058, 70 B3| 1482.00) 2791.00
| JUndarficws | 0 85] 3650/ 113,17 B5.00(1482.00] 279100
| Sirategy Wam Traffic | 21 05]122.20| 505 84 |235.00|2715. 14| 13815.67
[ermakaed) Cost 1454 TT.TE J02.82)182.50|2450.39] 10808.18
JOverfiows | 1.09] 1.00| 106 io6) 100 1.00)
JUndarfiows | 298| 800 so7| 1080 1300 17.00
fzedfe) S me | 215] 3.08] 387 380 1sel sar
Cont 208 204 379 438 2@ aes
[JOverflows | .04 409 78S 850 700l 3.00
fUnderflows | 1.00] 100] 100 100] 100] _1.00
f_"'rf'“‘_"_, [uerm. Trame | 2.18] 309 43¢] 283] 100 100
| cont zo8| 204 28] 337 183 13
Dverfiows | 140 182 1Bl 250] 700 300
a2 :Und.lrﬂ.mn 138] 182 157 300 700 300
,___':,:‘L [Mem. Trafhc | 100| 100 L00] 100 100 100
' Cast vez| 133 1ae| wve| 2Er| v
; Foverfows | 130, 238 2038 17 100l 200
| ,_‘{HHI fUnderfiows | 1.28) 238 207 140 100 200
! 2]|2]| [Mem TraMc | 1.88] 442 528 2033 100 800
| Cont 153 233 2es| 190 100| 4em

call there is a corresponding return. Hence, in this context,
“procedure call” includes returning from the procedure as well
as invoking it.

CosT o REGISTER Fiip MANAGEMENT PER PROCEDURE CAlLL
] lii 7]
0.77] 0. o,

Qptimal .Lm I TSELn:nI :I:Ii
b LN

el B 0.04] 0.01] 0.01
| il | 7 7] _0.24] D02 000"

——
| Best ree

Fired puels | 4.43

Slnuﬂ 0.38

Worst ree JAT. 18.73

Fized | pursia F:u B4.T1[45.15] @.93]3250] TAE4 |
Suralegy | fower |44 57|28 4484 00] 87.17] 372[7550

cost of managing the register file may become prohibitive if
the register file is too small (three register banks). In this case,
for two out of the three programs (rec and tower), it is likely
that a conventional stack mechanism for handling procedure
calls would have resulted in better performance. If a larger
register file is used, the cost of managing the register file drops
sharply. The results indicate that, for a register file of five or
more register banks, this scheme compares favorably with the
conventional stack mechanism.

Invoking a high-level language procedure and returning
from it requires several RISC instructions in addition to those
used for managing the register file. Specifically, arguments
have 1o be copied to the area of overlap between the current
STACK] frame and the next STACKI frame; if the procedure
returns a value, it may have to be copied from this overlap area:
the stack pointer and frame pointer for STACK2 may need
1o be updated; the actual RISC call and ret instructions must
be executed. C procedures typically have less than four argu-
ments [5]. Hence, in addition to the RISC instructions that
manage the register file, between three and seven instructions

The data indicate that, even with the optimal strategy, the will be executed for each procedure call/return pair.

Y4 RN

If an efficient strategy (such as the “best fixed strategy™)
is used, the cost of managing the register file decreases as the
number of register banks in the register file increases. Once
this cost reaches approximately one RISC instruction per
procedure call /return pair (e.g., using the “best fixed strategy™
with a register file containing nine register banks), it no longer
dominates the total number of instructions required for each
procedure call/return. In a single chip VLS| microprocessor,
chip area is a precious resource. Rather than adding more
register banks (c.g., beyond nine), the limited chip area can
be used more effectively for other purposes, such as an on-chip
cache or hardware support for multiply, that are likely to make
a greater contribution to overall processor performance. Even
for the benchmarks used here, which reach a relatively high
nesting depth [5), a register file with between five and nine
register banks seems optimal.

Choosing a “good” strategy is critical to the success of the

register file scheme. Tables 11 and 111 show that choosing the
“wrong” strategy can result in more than four orders of
magnitude increase in the cost of managing the register file.
Furthermore, if an ineflicient strategy is used, an increase in
the register file size can result in an increase in the cost of
managing the register file (since there is an opportunity 1o
generate more useless memory traffic). In most cases, the best
fixed strategy is to minimize the memory traffic (i.e., use the
fixed(1, 1) strategy). This can be explained by the fact that
the cost of moving one frame tc memory and then from
memory back to the register file is about the same as the cost
of handling the trap when an overflow or underfllow occurs.
Hence, the immediate cost of unnccessarily moving a frame
{which results in one frame’s worth of traffic to memory and
later back 1o the register file) is about equal to the cost of not
moving a frame when it should have been moved (an extra
overflow or underflow trap). In addition, il an unnecessary
move is made, the cost may include the cost of an extra over-
flow or underflow which will occur later. Hence, the “penaliy™
for moving one more frame than necessary, when an overfllow
or underflow occurs, 1s greater than the “penalty™ for moving
one fewer frame than necessary. Thus, if the call/return se-
quence is random, the best fixed strategies are likely to be those
that require the movement of only one or two frames when an
overllow or underflow occurs. The use of such strategies is
further supported by the fact that with the optimal strategy,
in cases where there are more than ten overflows /underflows
throughout the execution of the program, the average number
of frames moved when an overflow or underflow occurs is be-
tween 1.4 and 3 and in most cases is approximately 2.

C. Taking the Past into Account

The fixed strategies do not attempt to take into account the
previous behavior of the executing program. It is conceivable
that a strategy that does take past behavior into account would
result in a lower cost, closer to that of the optimal strategy.

One way of “taking the past into account™ involves keeping
track of which register banks have been used since the last
overflow or underflow. If two or more STACK | frames are
moved whenever an overflow or underflow accurs, it is clear
that, in some cases, it will turn out that wo many frames will
be moved. resulting in unnecessary memory traffic. When an

TRASSACUTIONS ON COMPUTERS. VIOH

C-AX %00 1], SOVEMBER (983

overllow occurs, register banks are “freed™ by copying their
contents to memory. If some of the freed register banks remain
unused until the next underflow, their contents remain intact
and need not be copied from memory to the register file.
Similarly, if 1oo many register banks are loaded when an un-
derflow occurs, the contents of those that are unused until the
next overflow need not be copied to memory since their con-
tents are already in the appropriate memory locations,

Many practical strategies result in unnecessary memory
traffic, i.e., more memory traffic than is required by the opti-
mal strategy. The above technique reduces the memory traffic
resulting from any such strategy. Our measurements indicate
that with the useless “worst fixed strategy,” which produces
an exorbitant number of unnecessary moves of STACKI
frames, keeping track of which register banks are used can
reduce this memory traffic by up to an order of magnitude.
However, with “reasonable” strategies, the gains are less im-
pressive. If the “best fixed strategy™ is fixed (1, 1) then clearly
no gain is possible. With the fixed(2, 2) strategy, the decrease
in memory traffic is less than ten percent. The above technigue
requires some extra hardware and a few more instructions in
the trap handling routine. When the overhead of these extra
instructions is taken into account, the total cost of managing
the register file for the fixed(2, 2) strategy is about the same
as without this extra mechanism. For the fixed (1, 1) strategy,
the extra instructions will simply add to the cost of managing
the register file without any saving in memory traffic.

We have investigated two other methods for “taking the past
into account.” They both involve determining the number of
frames 1o be moved when an overllow or underflow occurs
based on the previous behavior of the program. The first
method (henceforth denoted C/R) is to use the call/return
trace immediately preceding the overflow or underflow. The
second method (henceforth denoted O/U) is to use the trace
of overflows and underflows which preceded the trap being
handled.

The C/R method can be implemented by adding a special
shift register to the processor. Every call instruction shifts a
1 into the register and every return shifts a 0. The routine
which handles the overflow /underflow trap examines the
contents of this register and determines the immediately pre-
ceding call/return trace of the program. This pattern is used
to access a table containing the “optimal” number of frames
that should be moved, given a particular call/return pattern.
This scheme adds very few instructions to the cost of handling
the overflow /underflow trap.

The O/U method does not require any additional hardware,
The “overfllow /underflow trace™ is kept in a fixed memory
location and is updated each time an overflow or underflow
occurs by the routine that handles these traps. The pattern in
this memory location is used in the same way as the contents
of the shift register for the C/R method.

Both the C/R method and O/U method require finding a
mapping between “call/return patterns” or “overflow /un-
derflow patterns” and “number of frames 1o be moved™ so thal
the total cost is reduced. In order to find such a mapping (for
either one of the methods) we tabulated the optimal number
of Trames 1o be moved (which can be found given unbounded
look-ahead) following various call/return or overflow/un-

TAasiil asEd SE s stAas s s T REGINTER FILE 1% HING
derflow patterns for the three benchmark programs. We at-
tempted to use these tables 1o determine which patterns indi-
cate that a single frame should be moved and in which cases
moving more than one frame would be preferable. However,
we could not find a single mapping which worked better than
the fixed(1, 1) strategy for all three programs!

For the three benchmark programs used in this work, it
appears that the optimal number of frames to be moved is, for
all practical purposes, independent of the immediately pre-
ceding call/return pattern of length ten or less. The O/U
method shows more promise but the results are inconclusive,
Following a suggestion by Denning [3], we tested an O/U
method which involved moving two frames after two consec-
utive overflows or underflows and moving one frame otherwise.
For register file sizes of interest (between five and nine frames),
the cost of managing the register file using this method was
compared to the cost using the fixved(1, 1) strategy. Reductions
of up to 28 percent in the number of overflows and underflows
and increases of up to 59 percent in the memory traffic were
measured. When the extra instructions in the trap handling
routines are taken into account, the overall cost was either
equal to or greater than the cost of the fixed(1, 1) strategy in
all but one case.

IV, CoNCLUSIONS

The success of the RISC architecture is due, in part, to the
reduction in the number of memory accesses which is pussible
through the use of the register file [11]. We have shown that
the effectiveness of the register file is dependent on choosing
the “right™ size for the register file and an efficient strategy
for deciding how many frames should be moved to/from
memory when an overflow funderflow occurs.

Our measurements indicate that with the simple fixed
strategy, fixed(1, 1), the cost of managing the register file is
within a factor of two of the cost of the optimal strategy (which
requires unbounded look-ahead). For a register file containing
more than eight register banks, the fixed(2, 2) strategy yiclds
slightly better performance.

If a “reasonable™ strategy is used, the cost of managing the
register file is inversely proportional to its size. I the register
file is too small, the number of overflows and underflows be-
comes prohibitively large. Since the STACK] frames have a
fixed size, the large number of overflows and underflows results
in a lot of memory traffic even when the number of registers
actually used (for arguments-and local variables) is small.
Hence, if the register file is too small, the overall cost of pro-
cedure calls may be greater than if a conventional stack
mechanism is used. Our measurements indicate that if the
register file contains five or more frames, the use of the register
file scheme rather than a conventional stack mechanism is
worthwhile.

We have attempted to use past behavior of the program in
order 1o predict the future behavior and reduce the cost of
managing the register file. So far, our attempts have not suc-
ceeded.

The first method (keeping track of which register banks have
been used since the last overflow or underflow), reduces the
cost of managing the register file only for inefficient strategies.

For efficient sirategies, such as fixed(1, 1) or fixed(2, 2), the
extra overhead in the trap handling routine was greater than
the savings from the reduced memory traffic.

The two other methods attempt to determine the “optimal™
number of frames to be moved from the immediately preceding
pattern of calls/returns or overflows/underflows. These
methods appear ineffective since we could not find a single
mapping between either type of patterns and number frames
1o be moved, which reduces the cost for all three programs.
These results, while preliminary, raise serious doubts that a
mapping which reduces the cost of managing the register file
for a majority of programs could be found. Even in this context,
the simplest solution appears to also be the best,

APPENDIX
PROOF OF LEMMAS 3-6
Lemma 3: If K > | thenforall k, 1 £ k <K,
RFMg[l, my + 1] 2 k.

Proof: By induction on k.
Basis: k = 1. It is shown that RFMg[l,m, + 1] = |
From the algorithm,

max (Ey) —min(E)) <w
while

max (£ u ldu,+11) = min (Ey u ldy, 1) = w.

Hence, either
dyy 41 < min (E))
or
dyy+1 > max (£,).
By Definition 1, dy = land d; = 1 foralli,] €1 € n
Hence,

dy =min (E, u |dw,+1]) = min (E,)
and
A1 = max (Ey U ldn,+1}).
Thus,
doyi1 —d) 2w,

Since Qisavalid RFPSfor D, g, =d, < g, + wand g .,
Edm..;.; {Ej‘m.+l +'Hr'.d,..,,|4.:| = d|, + wandd| Eih bITI|.""1I| that
dm+1 = g1 + w. Bul gyy+1 + w > dpyy 4. Hence,

Guu+1 T W =g +w,

i€y Gy +1 > 1. The Fact that g, 41 # g, implies that at leas
one RFM occurs in the location range [2, my + 1]
RFMg[l,m + 1] 2 1.

Induction Srep: Assuming that this lemma holds for &
= — |, where 2 = o < K, it is now proven that it holds for &
= . In other words, assuming RFMg[l, m,—, + 1] =2 o -
1,itis proven that RFMp[l, m, + 1] 2 a:

If RFMg[1, ma— + 1] = @ = |, then either

RFMQ“..M,,-1+ 1l]lza

Mg

RFMg[l. ma—y + 1] =a = 1.

T he tormer case implies that RFMp[1, m, + 1] Z a (since
m_, + 1 =m,_,+ |)and the lemma is proved. Hence, we can
asume REMp [l m,_ + 1] =a— 1.

T he rest of the proof is similar to the proof of the basis:

b rom the algorithm,

max (E,) —min (E,) <w
while
mav ik, o !'dm.-."‘l” - min (E, u idmo+|il} = W,

Henve enher dy,, 5 <min (E.) or dy_ 4 > max (E,).
Assume d,, 41 < min (E.):
t rom the algorithm and the definition of ¥, dy, = d, 4
> w Since (2s a valid RFPS for D,

v, =dy, <gy +w
and
Qa1 = dmnn < Gorrpyt 1 + w
Heme,
e, tw>dy, Zdy 41+ W2 Ggm W,

LA }'llr-r..+|
Assume d,, 4+ > max (E,)
From the algorithm and the definition of &,

dma+1 —de, Z w.
Since 15 a valid RFPS for D,
4o, Sdp, <ge,+w
and
G+t = dugrt < Grge T W
Hence,
Gt T w > dy v Z2dg, +w 2 ge, +w,

L€ Gnt 1 > G,

The fact that gy, # Gm.+1 (§e, # Gu,+1) implies that
there is at least one RFM in the location range [¥, + 1. m,,
Hi P+ Lm, + 1. Bt ¥, 2 m,_; + 1 (P, 2 m,—,
+ 1). Hence. there is at least one RFM in the location range
Mo+ 2.m.+ 1] e RFMg[m,—; + 2,m, + 1] = 1. But
by assumption RFMg[1, m,—; + 1] = o — |. Hence,
RFMg[l.m,+ 1] = a.

| |
Lemmad: IfK > 1, thenforallk, 1 =k = K =1,

dy, —dop,=w—1
Proaf: From the algorithm,
max (£) —min (£) <w
while
max (E; u {dy, +11) = min (£ w ldmgeil) 2w
>man b

Henee either o, o < min i £) or da.+

IEEE TRANSACTIONS ON COMPUTERS. YOL C-32, 500 T SOVEMBER 1983

By Definition I, |dpy+1 = dmy| = 1. Since d,,, € Ei, either
dpy+1 = min (Ex) = 1 ord,,,, = max (E;) + 1. Hence,
max {EJ. %) Idmﬂ-l” = min {.Ei. w {duu+ll'1||'

=max (Ei) —min(E;)} + L.
Thus, max (Ex) — min (E4) 2 w — 1. But from the algorithm,
max (Ep) — min{E;) = w = 1. Henee,
max(Eg)—min(E;)=w—1,
e, dy, —dg, =w—1.
n
Lemma 5:1f K> 1. forallk. 1 <k <K — 1, foralli,
g+l =2iz=m.p=dg, =dy, —w+ L.
For the last subsequence, i.e.. k = K:if Oy = &, then p; =
dg,.elsep, =dy, —w+ 1.
Proof: Foralli, | =i = n, the value of p, is set in step 5

or in step 7 of the algorithm.
If1 =& =K -1, then by Lemma 4,

dq-* _dﬂ =w-=1
Hence,
dg, = ffq,r,. -w+ 1

and the same value (dyg,) will be assigned to p; in step 5 or step
7 of the algorithm.

If k = K, then it may be the case that dy, — dg, <w — 1.
Hence, it may make a difference whether the value of p; is

assigned in step 5 or in step 7. This is controlled by the value
ﬂreg.

If €, = &, then, by the definition of 0,

dy, <da_,
Sincek — 1 <K,

Pmg—) = Py = dey
Hence,

min (£;} < Py

and the second clause in step 4 of the algorithm is satisfied.
Thus,p, (my—, + | <i < my)isassigned a value instep 5 of
the algorithm. So

= d"";.'
If 6, = W, then, by the definition of),

dy, Zdg,_,.
Since k = 1 <K,

Pag—y = Py = d'l'a—r
Hence,

min (Ey) 2 po_,.

m_1d the second clause in step 4 of the algorithm is nor satisfied.
SII'H..'L‘ k= K.m; = n_and the first clause in step 4 of the al-
gorithm is also mor satisfied. Thus. p, (me_ + 1 <7 < my)

I asseened o value of step 7 of the aleorithm, So

PANElE sy SO0 IS IS IS TR R GISTER FILE IS B

p=dy, —w+

Lemmad: ITK > . thenforall &, 1 =k = K,
MT{][], {};_] = N‘TPI_I. {)5] + Eq"* _Ff}kl'

Proof: By induction on k.
Basis: k = |. Itis shown that MTg[1,0] = MTg([1, 6]

+ Ir';“l - F“II'
By the delinition of €,), = 1. Hence,

."vTT.;_;[l,] = MT@IL 1] = |q;| - E}ql
and
MTp(1. 0] + [qo, = po,| = MTe[1, 1] + g1 = pil
=|pir = pol + |g1 = pil.
By Definitions 2 and 5, foralli, | =i = n,

l=sg =di<gi+w
and

l=p, =di<p+w

By Definition 1, d, =
rithm, pg = 1. Hence,

MTe[1. 0] + |go, = pol = IlPr = pol + l@1 = pi] = 0.
Since |g) — qo| = 0,
MTol1,0,] 2 0.

|. Hence, g, = py = |. From the algo-

Thus,
MTp[1. 0] = MTp[1. 0] + |q0, = po,|.

Induction Step: Assuming that this lemma holds for &
= =1, where 2 = & = K, i1 is now proven that it holds for
k = . In other words, assuming

MTp[1.0,-1] 2 MTe[1, 0,11 + |g0,-, = Po.-ils

it i1s proven that
MTp[1,0,] = MTg[1,0,] + |q0, = po,l|-

From Definition 8,

MTp[1.0,] = MTg[1, 0,211 + MTp[0,, + 1,8,)
and

MTp[l,0,] =MTe[1,8,-y] + MTpe[0,.-; +1,0,.].

Using the induction hyp-oﬁ'm'-la,
MTg[l1. 0,] =2 MTe[1, 0,211 + |g0,-, = Po.-|

+ MTp[B.- + 1,6,].

MTylO,- + 1, 8,] is the number of STACKI frames
transferred to/from memory in location range [0, + 1,6,].
A change by one in the RFP indicates that one STACK] frame
is transferred 1o or from memory. Hence, the memory traffic
in location range [€,-, + 1, 6,] is at least the difference be-
tween the RFP at the beginning of the range and the RFP at
the end of the range, i.e.,

MTy[0,- + 1,0,] = |g0, = g0,-.]-

Hence.

."'11—@[l. ﬂ“] > N'IT}![l. ':},,_|] + |qr||.u_, = Flr.__l:l
+ |q0, = 4o,

From Definition 8 and the algorithm,

i,
MTp[0._1 +1.0,]= %

A=+

|7 —Fu—t|

=1

= Z Ipd = F-‘J—ll + |Pm<,..|+| = Pm“_ll
d=il, i+l
i,
* ' IF.‘i = pa-il = Llnrrr..—l"'l B Fm..—ll'
d=miy— 142

Since o — | < K, by Lemma 5, p,,,_, = d,_,. From the al-
gorithm, ., _ 41 = pm,. Hence,

MTP[ﬂn-I + 1. {}lr] - Ipmu = d*#-"'l'
Thus,
MTp(1,0,] = MTe[1,0,4] + |pm, = d4..,]-

In the rest of the proof, the following four cases will be
handled separately:

Case A:O, =%, and O, =P, _,

Case B: 8, =9 and O,_, =¥,

Case C: 0, =V _and0,_, =&, _,

Case D: 0, =¥, and0,_, =V¥,_,.

Case 4:9, =%, and 6 -, =F,_:

190, = Po.-i| + |90, = q0,-,|
= 98, = Po.-i| + 190, = qo.|
= |Ptei = 0| + 19001 = F0.] = P2y — 9.
t 90,1 — 90, = Pai — 4,
=(ps._, = Pe) + (P2, = 4.

By Lemma 5, since O, = $,and o — | <K, py, = dy, and
Pe,-, = de,_,. Hence,

Hu‘.q = Pu.,-.' + |f.|fu,, = go..|
Z (dy,., —ds,) + (de, = qe.)
Since @ is a valid RFPS for D,
qa, = ds, < ge, + w.
Hence, (dg, — g4,) = 0. Thus,
|fh!,..|. = Pu,.-.] +]q‘uﬂ = ffu“_|1 z2dg, , —ds,

From the definition of ©, since O, = &, dy_, > Sy

Hence,
de,.,—de, = |ds,_, —ds,|.

Thus,

190, = Po,-i| + |90, = qo,-,| 2 |de,, = ds |
Therefore,

MTo[1.6,] 2 MTp[1,0,-1] + |de,_, — d4.]
By Lemma 5, since O, = ®,, p,, = dg,. Hence,

MTe[1,0,] = MTs[1, 00ey] + |de, — ds,_ |

9K

Thus,
MTg[1,8,] = MTg[1,6,].
Case 8.0, =%, andO__, =¥, _
|i1|'|r.,_| - .ﬂ'u,.-:| + |q0. = 90,1
= |qwaes = Pl + |92, = Gw.|
o |F‘rn-—l - Q*n-ll + lq+n—l - q“'ﬂ‘ z-p'*'vrr—l
= G¥as F Qo) ~ G0 = Py T G0

From the algorithm, pg__, = py,_,. Hence,

140,y = Pou-y| + |90, — G0,-i| Z Po,-i — G,

The rest of the proof for this case is identical to the proof of
Case A.

Case C:0,=V¥,and 0, = ¢,
[90.-1 = Pou-i| + |90, = q0.-1
= |q0u-1 = P + |39, — Go,-|
= q"’n"’l T F*,_| + QW.. - l'-i'*..—1 - q*n i p*n—l
={gy, — P*.} + ':Ph. T .ﬂ'h—l}'

By Lemma 5,since 0, =V anda -1 <K, py, =dy, —w
+ |and py,_, =dg,,. Hence,

=1
|96,-1 = Pa,- | + |90, — Go,-)| Z (g9, —dy, +w=1)
+(dy,—w+1—dq,._,).
Since ¢ is a valid RFPS for D,
g, S dy, < gy, +w.
Hence, g4, = dy,+ w > 0,50
o, —dy, +w—120
Thus,
|96.-1 = Po.-| + |90, — GOl Zdw,—w+ 1 —da,_,

From the definition of ©, since 8, = ¥ dy > d4,_,. From
the algorithm,
max E-El.'ll—i} = min {.Eu_ﬂ < w

while

max (Eq—y U {dm,_41}) = min (E ooy U ldp,_ 41 = w.

H:ncc,l either d,,,_ 41 < dg,_ 0rdy,_ 41> dy__,. Inthis
case, since dg, > dg,_, and d,_ 4, = dg,. it must be true

that dm,..1+l > di",...- B}* the dﬂ-ﬁniliﬂn er, d‘-- = qu_|+|.
Hence,

dq-“ = di'.,_p

By Lemma 4, since « — | < K, dy__, = ds
Hence.dy, > dy

+w =

g FW— 1,50 a

dy,—w+1=dy _, >0
Thus,

d‘i‘.. —w+ 1= d¢.n_1 = Iﬂrw" —w+ | = d*ﬂ,,l.
By Lemma 5, since ©, = ¥, p,,

1 ¥

=gy, —w+ 1. Hence,

-y |

—n | & |‘-|‘l] | = I

g = |1p,

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, RO, ||, NOVEMBER 1983

Therefore,
MTQII. 0, = MTp[1.0.-1] + |pw, = d'd,"_1|.

It has been shown above that MTe[1,0,] = MTp[1.0,_,]
+]Pﬂf.n- o d"'n-—ll' H’BI'I:CE.

MTg[1.8,] =2 MTg[1, 6,].
Case D:O, =¥, andO,_, =V _:

|g64-1 = Po-i| + 190, = G0,
= |qwoms = P¥auil T |99, = Gu-il
Z G = P¥amr T 9%~ Q0o = %, — Poe:
From the algorithm, py,_, = ps,-,- Hence,

IQQ,._| = .F‘u.--.l + |¢.|Tu,‘ - qt‘l,.-Ll = 09, = Poo—r

The rest of the proof for this case is identical 1o the proof of
Case C.

ACKNOWLEDGMENT

We would like to thank P. Denning, D. Ferrari, M. Katev-
enis, J. Ousterhout, R. Sherburne, and A. Smith for their
useful suggestions on improving this paper and D. Patterson
for his help with the development of some of the initial RISC
analysis tools,

REFERENCES

[1] L.A. Belady, ™A study of replacement algorithms for o virtual storage
computer,” ITBM Sysr. J., vol. 5. no. 2, pp. TE-101, 1966,

R. Campbell, *A C compiler for RISC.” M.5. rep., Univ. California,
Berkeley, Dec. 1980,
P. 1. Denning, private communication, May 1982

VAXT] Architecture Handbook . Digital Equipment Corp., 1979
D. Halbert and P, Kessler, “Windows of overlapping register frames,”
in CS292R Final Project Reports (unpublished), Univ. California,
Berkeley, June 1980, pp. 82-100
5.C. Johnson, " A portable compiler: Theory and practice.” in Prov. Sth
ACM Symp. Principles of Programming Languages, Jan. 1978, pp.
97- 104
B. W. Kernighan and D). M. Ritchie, The C Programming Language
Englewood Cliffs, NJ: Prentice-Hall, 1978
D. A. Patterson and €. H. Séquin, “RISC 1: A reduced instruction sel
YLSI computer,” in Proc. 8th Anmu. Symp. Comput. Architecture,
Minneapolis, MN, May 1981, pp. 441-457

(9] LA VLSI RISC.” Computer. vol, 15, pp. B-21, Sept. 1982,
[10] A1 Smith, “Cache memories.” Compul. Survers, vol, 14, pp. 473-530,

Sept, 1982,

[11] ¥. Tamir, “Simulation and performance evaluation of the R1SC ar-
chitecture.” Electron. Res. Lab,, Univ. California, Berkeley, Memo
LUCB/ERL . M81/17, Mar. 1981

[2

(3
[4]
(5]

16]

17
18]

Yuval Tamir (578} recewved the BS EE. degree
{“with highest distinction™) from the University of
lowa, lowa City, in 1979 and the M5, degree in
clectrical engineering and computer science from
the Universsty of California, Berkeley, in 1981
Since 1979 he has been o Research Assistant in
the Electronics Rescarch Laborotory st U.C
\ Berkeley where he is currently working on his
\ Ph.D. dissertation. His research interests are
. fault-tolerant compuling, compuler architecture,
and distributed systems
Mr. Tamir is 3 student member of the IFEE Computer Soclety and the

IEEE TRASSALD THOSNS obs @ D% 110 K=, Sl Y Wiy Wi

Carlo H. Séquin (M 71 -5M50-F'82) received the
Ph.D. degree wn experimental physics from the
Lmiversity of Basel, Basel, Switzerland, in 1969
In 1969- 1970 he performed postdoctoral work
at the Institute of Applied Physics, University of
Basel, which concerned interface physics of MOS
trunsistors and problems of applied electronics in
the field of cybernetic models. From 1970 10 1976
he worked at Bell Laboratories, Murray Hill, M),
in the MOS Integrated Circuit Laboratory on the
design and investigation of charge-coupled devices for imaging and signal
processing applications. He spent 1976-1977 on leave of absence with the
University of California, Berkeley, where he lectured on integrated circuits,

I “THER ¥R L

togee design, and microprocessars. In 1977 he joined the faculty in the De-
partment of Electrical Engineering and Computer Sciences, where he is
Professor of Computer Science. Since 1980 he has headed the C5 Division
as Associate Chairman for Computer Sciences. His research interests lie in
the field of computer architecture and design tools for very large scale inte-
grated systems. In particular, his research concerns multimicroprocessor
compuier netwarks, the mutual influence of advanced computer architectures
and modern VLS technology, and the implementation of special functions
in silicon. Since 1977 he has been teaching courses in structured MOS-LSI
design. He is an author of the first book on charge-transfer devices, and has
writlen many papers in that field.

Dr. Séquin is a member of the Association for Computing Machinery and
the Swiss Physical Society.

0018-9340/83/1100-0989501.00 @© 1983 IEEE

