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Abstract — A hardware fault tolerance scheme for large
multicomputers executing time-consuming non-interactive applications
is described. Error detection and recovery are done mostly by software
with little hardware support. The scheme is based on simultaneous
execution of identical copies of the application on two subnetworks of
the system. Normal system operation is periodically suspended and the
logical states of the two subnetworks are synchronized. Errors are
detected by comparing the ‘‘frozen’’ synchronized states of the two
subnetworks while they are being saved as ‘‘checkpoints’’ for possible
subsequent use for error recovery. Algorithms for error detection and
recovery using this scheme are discussed.

I. Introduction
� �������������������������

Due to advances in VLSI technology it is now feasible to
implement computer systems consisting of thousands of processors.
Such systems can achieve high performance by exploiting parallelism.
They also have the potential of achieving higher reliability than large
monolithic systems since the individual processors are sufficiently
powerful and independent so that they may cross-check each other and,
if some system components fail, the others can modify their operation to
adapt to this change and maintain correct system functionality [8].

One possible organization of systems consisting of a large
number of processors is a network of computation nodes interconnected
by high-speed dedicated communication links [5, 6]. Each node is a
complete ‘‘computer’’ consisting of a processor, memory, and several
communication ports. This type of system (henceforth called a
multicomputer) has the advantage that there is no single component,
such as a common bus or shared memory, whose correct operation is
critical for the entire system.

Multicomputers can be used for large noninteractive
applications, such as circuit simulation, weather forecasting, etc. A
system composed of tens of thousands of VLSI chips has a mean time
between component failure of, at most, a few hours [9]. Thus, one or
more component failures are likely to occur during a computation that
takes several hours to complete. Unless that system is able to detect
errors and prevent failed components from participating in the
computation, the results are likely to be incorrect. Hence,
multicomputers used for noninteractive applications must be fault
tolerant.

In systems used for non-interactive applications the major
requirements are a high probability that the results produced are correct
and high throughput. Unlike real-time systems, there are no strict
constraints on the delays introduced when error recovery is necessary.
This ‘‘flexibility’’ can be exploited by fault tolerance schemes which
involve lower average overhead but are subject to more severe
temporary service interruptions when errors occur.

Fault tolerance requires the ability to detect errors and identify
the faulty components. Ideally errors should be detected as soon as they
occur and before erroneous information spreads throughout the
system [8, 9]. This can be achieved if error detection is performed by
hardware. Specifically, each node should be self-checking, i.e., its
implementation should guarantee that it will produce an error indication
to the rest of the system if the results it produces are incorrect due to
�����������������������������������

This work is supported by TRW Corporation and the State of California MICRO
program. The second author is supported by NSF grant DCR-84-51396 and IBM

grant D840622.

hardware faults [8, 10].

Based on the use of self-checking nodes, Tamir and Séquin [9]
developed a low overhead fault tolerance scheme that takes advantage of
the ‘‘flexibility’’ of non-interactive applications. The basic idea is to
periodically checkpoint the state of the entire system and roll back to a
previous checkpoint if an error is detected. The frequency of
checkpointing is low (e.g. twice per hour) so the ‘‘cost’’ of recovering
from errors is relatively high. It is estimated that the total overheard for
fault tolerance and for dealing with faults in a multicomputer with one
thousand nodes will be only a few percent [9].

The main disadvantage of the scheme proposed in [9] is that it
relies on self-checking nodes. In this paper we examine the possibility
of implementing fault tolerance in a multicomputer without the use of
self-checking hardware in all the nodes. We present a software-based
error-detection scheme which is coupled with an error recovery
mechanism similar to the one proposed in [9]. The proposed scheme is
based on partitioning the system into two identical subsystems.
Identical copies of each task are executed on the two subsystems. Errors
are detected by comparing the states of the entire subsystems during
checkpointing.

The rest of the paper includes a discussion of the basic ideas in
the proposed scheme, including identification of some key problems and
their solutions. Some of the major advantages and disadvantages of the
scheme are presented. An outline of the protocols used for the error
detection and recovery phases of the scheme are shown. Due to lack of
space, many issues cannot be fully discussed and explained. Since some
of the ideas are closely related to those presented in [9], familiarity with
that paper is assumed.

II. Software-Based Error Detection in Multicomputers
� ���������������������������������������������������������������������������������������������

As mentioned earlier, one of the primary goals of this work was
to find a way to perform error detection with very high coverage without
relying on all the hardware to be self-checking. Given the complexity of
the hardware and the difficulties in predicting all possible system
behavior under faults, duplication and comparison is needed for error
detection. In the hardware-based approach [8, 9] the duplication and
comparison is accomplished by constructing each node using two
modules that perform the same operations synchronously and a
comparator for comparing their results.

With software, duplication and comparison implies that each
process is executed on two identical nodes and the results are somehow
compared. One possible approach is to allocate each process to two
nodes and, when a message is received by a node in the system, the
receiving node waits for the corresponding message from the sender’s
‘‘twin’’ and compares the two messages to verify their correctness. This
scheme involves significant overhead during normal system operation
and major complication in task allocation and message routing [11].

An alternative software-based error detection scheme involves
(logically) partitioning the multicomputer into two identical
multicomputers and executing identical copies of all system tasks on the
two subsystems. Instead of each node performing a comparison each
time a message and its duplicate are received, the states of the entire
subnetworks are periodically compared. Fault tolerance requires the
ability to recover from errors as well as detect them. Since the error
recovery scheme proposed in [9] involves periodic saving of the entire
system state, it is beneficial to combine the periodic state comparison
with the state saving.
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In order to detect errors by comparing system states, we must
ensure that when the system is operating correctly the states of the two
subsystems will, in fact, be identical. We are interested in
multicomputers where the nodes are asynchronous. Thus, even though
we have two identical systems executing identical tasks, there is no
instant in time in which we can stop both systems and be guaranteed that
their states will be identical. In order to synchronize system states, we
need some measure of the logical progress made by the node in
executing its processes. One such measure is a counter of machine
instructions that are executed for each process on the node. Thus, our
scheme requires that part of the process state will be a register with such
a count. We call this counter the process clock. For each node the
vector consisting of the process clocks for all processes on the node
defines the logical ‘‘progress’’ made by the node. The hardware and the
operating system must allow us to specify that a particular process
should execute until its clock reaches a specified value.

With the proposed scheme checkpointing is periodically initiated
in the two subsystems. As part of the checkpointing process, the states
of the two subsystems are ‘‘frozen.’’ The entire states of the two
subnetworks are then ‘‘synchronized’’ so that they can be compared.
This is done by each node exchanging its vector of process clocks with
that of its ‘‘twin’’ in the other subsystem. Each node then executes
those processes that are behind until the process clock vectors match.

Once the subsystem states are synchronized (see below), the
states of the two subsystems must be compared. The system state
includes the entire contents of the memories of all the nodes. Thus, a
simple comparison of subsystem states would involve too much
overhead (the time to transmit the states and then to perform the actual
comparison). However, as part of the checkpointing process, the entire
system state is saved on disk [9]. Thus the entire state must pass through
a small number of disk nodes [9]. Instead of comparing the subsystem
states, signatures of these states will be compared. The signature of the
state of each node can be calculated by adding a linear feedback shift
register (LFSR) to each disk node [4]. The LFSR accumulates the
signature of the state while it is being transmitted to the disk controller
with negligible overhead. After the node states are saved on disk, a
cumulative signature for all the node states saved by that disk node can
be calculated. Comparing the subsystem states is now reduced to
comparing the signatures calculated in the disk nodes of the two
subsystem. Since signatures of, say, 128 bits, can provide extremely
low probability that different states will lead to identical signatures [1],
the cost of comparison is now small.

Matching the process clock vectors is not sufficient to ensure
that the subsystem states are identical. Two other factors must be dealt
with: (1) The order in which messages are received and processed by a
node can affect its state. (2) Messages in transit between nodes when
the subsystem states are frozen (and synchronized) can be ‘‘stuck’’ in
different nodes in the two subsystems, leading to different subsystem
states. The first problem can be solved by forbidding applications from
using non-blocking receive. The non-blocking receive is inherently
non-deterministic and is thus incompatible with our scheme. While we
have not analyzed the cost of preventing non-blocking receive in
realistic benchmarks, analysis of some simple situation indicate that in
an extreme worst case, the cost may be as high as a factor of two slow
down. We expect the cost in real programs to be much lower.

The solution to the second problem discussed above, is to
‘‘flush’’ messages in transit to their final destination before saving and
comparing the subsystem states. This is a classic distributed termination
problem and the solution we use in the next section is derived from [7].

In the error detection scheme discussed above we do not deal
with the issue of locating the faulty component(s). In fact, for this entire
discussion we will assume that all faults are transient. This is a

reasonable simplifying assumption since transient faults are at least an
order of magnitude more likely to occur than permanent faults [2].
Extension to this scheme that include fault location appear to be quite
possible and will be the subject of future work.

Even if we restrict ourselves to dealing with transient faults, we
must still be able to handle the problem that can occur when a transient
fault causes a node to change its internal state so (e.g. corrupt part of the
operating system) that it will no longer participate correctly in system
operation. When self-checking hardware is used, implementing nodes
which are self-resetting and can reestablish a ‘‘sane state’’ following a
transient fault, is relatively easy [8]. While we are not able to discuss
details of the solution here, a watchdog timer [3] can be used to
periodically ensure that the node is still in a ‘‘sane state.’’

Another potential problem with this scheme is that nodes can
send ‘‘misleading’’ information that will impede checkpointing or
recovery. For example, during the process of synchronizing the two
subsystems, incorrect process clock values may be exchanged. This can
result in deadlock. Our solution to this problem is for the checkpointing
coordinator to impose a loose time limit on the checkpointing session.
If checkpointing is not complete by a certain time limit, a fault is
declared and recovery is initiated.

Finally, as in [9], the problem of failure of disk nodes is
difficult to solve. Specifically, since a disk node ‘‘handles’’ the state of
other nodes, it has an opportunity to corrupt them. For this paper we
will assume that disk nodes do not fail. In a realy system, we would
have to implement the disk nodes as self-checking nodes and use
duplicate (mirrored) disks, as discussed in [9].

III. Details of the Proposed Fault Tolerance Scheme
�����������������������������������������������������������������������������������������

In this section we present some details of the proposed fault
tolerance scheme. Due to lack of space, not all issue are dealt with and
the algorithm specifications are incomplete. The purpose of this section
is to present some examples of the type of protocols that need to be used
rather than attempt to present complete solutions. Thus, only parts of
the checkpointing process is described and the recovery process, which
is very similar to the one describe in [9], is not presented.

As in [9] we assume that the system uses two basic types of
packets: normal packets and fail-safe packets. Normal packets are used
for normal computation and carry no redundant information for error
detection. During normal processing there is no acknowledgement of
normal packets. Fail-safe packets include error detection bit using a
code such CRC. The coordination of checkpointing and recovery is all
done using fail-safe packets. Fail-safe packets are always
acknowledged.

The ‘‘checkpointing-coordinator’’ is selected as in [9] except
that there is one checkpointing coordinator for each subsystem and one
of these is the ‘‘master checkpointing coordinator’’ that initiates the
checkpointing process for the entire system. We also distinguish
between a regular node and a disk node. A disk node is connected to a
disk drive and is used to save the states of several regular nodes on disk.

A. Types of Fail-Safe Packets
���������������������������������������������������

Any two nodes i and j are neighbors if, and only if, there is a
link between them. Two nodes i and j are twins if, and only if, they are
in different subsystems and are both assigned identical tasks. In the
entire system each node has exactly one twin.

For every pair of neighbor nodes, i and j , CKV (i ,j ) is the
correct CRC check vector of all the normal packets sent by i to j since
the last checkpoint. At any point in time CKVi (i ,j ) is the value of
CKV (i ,j ) generated and stored in the LFSR in node i . CKV j (i ,j ) is the
value of CKV (i ,j ) generated and stored in the LFSR in node j .

There are fifteen types of fail-safe packets:
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freeze: Suspend normal processes.
synch(src,dest): Transmit the process clock vector from one node to its
twin.
synch-done(node,coord): Inform the subsystem’s checkpointing
coordinator that process clock synchronization is complete.
flush : Signal the neighbors to begin ‘‘flushing’’ any packets in transit by
forwarding them to the appropriate destination.
flush-ack(child-flag): Node i sends this packet to neighbor j to
acknowledge the flush packet previously sent from j to i and to inform
j whether i is now a child of j in the flushing spanning tree.
normal-ack: Acknowledge normal packets while in the flushing l-state.
flushed: Inform the parent in the flushing spanning tree that the sender
and the subtree below it are flushed.
checkp(CKV): Initiate the saving of a new checkpoint. When sent by
some node i to its neighbor node j it contains CKVi (i ,j ).
state(dest,node,seq,size): Used to transmit the state of node node to node
dest using fixed length packets.
check-sig(src,dest,sig): Used by a disk node src to inform its twin dest
of the signature sig for all the node states that it has saved.
match-ok(src,coord): Disk node src informs the subsystem’s
checkpointing coordinator coord that the state that it saved matched the
state saved by its twin.
resume: Signals the end of a checkpointing ‘‘session’’ or the end of a
recovery session.
fault : Broadcasts the fact that a fault has occurred and initiates recovery.
In most cases the originator of this packet is a disk node that has
discovered a mismatch in signature with its twin.
recover(version): Used to let the disk nodes know which version of the
node states stored on their disks they should recover. Version may be 0
or 1.
restored(coord,node): Used by the node node to inform the current
checkpointing coordinator that node has received its complete state (as
part of the recovery process) and is ready to resume normal operation.

B. The Logical States of a Node
� �����������������������������������������������������

At any point in time, a node in the system may be engaged in
normal operation, freezing processing of application processes,
synchronizing it process clocks with those of its twin, flushing messages
in transit, checkpointing, or error recovery. The node’s response to
various packet types depends on its current activity. Hence, we can
define several logical-states (henceforth l-states) that are simply labels
for the current activity of the node:

normal: Normal operation. Normal packets are accepted and processed.
A freeze packet causes an l-state transition to frozen . A resume packet
is ignored. Other fail-safe packets cause transition to the error l-state.
frozen: The l-state of the node after it has received the first freeze
packet. Processing of application processes is suspended. Normal
packets continue to be received and forwarded.
synching: The l-state of the node while it is catching up its process
clocks with those of its twin. There is selective processing of
application processes. Normal packets are received and forwarded. The
l-state changes to synched when the catching up is complete.
synched: The node is waiting for all the other nodes in the subsystem to
catch up with their twins. Normal packets are received and forwarded.
Fail-safe packets of type synch and synch −done are forwarded.
flushing : The node is receiving and forwarding normal packets so that
all messages in transit will be delivered to their final destination. One of
the neighbors is known to be the parent in the flushing spanning tree.
Normal packets from all neighbors are acknowledged. Neighbors must
acknowledge all normal packets. Processing of application processes is
suspended. When flushed packets are received from all the neighbors
except the parent, the l-state is changed to flushed .
flushed: Node i is in this l-state when i , and all the nodes in the subtree
rooted in i are free of messages in transit. If a normal packet is
received, the l-state changes back to flushing and the sender of the

packet becomes the parent. A checkp packet causes transition to the
checkpointing l-state. Other fail-safe packets cause transition to the
error l-state.
checkpointing: The node is sending its state to a disk node. Normal
packets and any fail-safe packet other then state, check-sig, and
match-ok, cause transition to the error l-state. Once the node sends its
entire state to a disk node, it changes its l-state to checkpointed .
checkpointed: The node has completed sending its state to a disk node
but has not received the resume packet. A resume packet causes an
l-state transition to normal .
error: The node has detected (or has been informed of) an error but it is
not ready to accept its recovered state. A disk node enters this l-state if
it is in the checkpointed l-state and it discovers that the signature for the
node states that it just saved on disk does not match the signature
computed by its twin. Other nodes can enter this l-state upon receiving a
fault packet, an unexpected normal packet, an invalid or unexpected
fail-safe packet, or if a neighbor fails to acknowledge a packet when it
should. The recover packet causes transition to the recovering l-state.
recovering: The node has received recover packet but it is not ready to
resume normal operation with its recovered state. The arrival of the
node’s complete state via state packets causes a transition to the
recovered l-state.
recovered: The node has received its complete recovered state but has
not resumed normal operation. The resume packet causes a transition to
the normal l-state.

Each node includes the ‘‘state variable’’ version that determines
what is the most recent valid version of the node’s state that is stored on
disk. This variable may have the values 0, 1, or unknown. When the
system is initialized, the value of version in all the nodes is set to 0[9].

C. Saving the Global Checkpoints
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As in [9], every node has a ‘‘timer’’ that can interrupt the node
periodically. Checkpointing is initiated by the coordinator when it is
interrupted by its timer (while in the normal l-state). Checkpointing is
also initiated when a task is complete since before the system can
commit to the result of a task, it should attempt to detect errors in the
results and error detection is performed as part of the checkpointing
process. It is, of course, possible for a fault in the designated
coordinator to prevent it from initiating checkpointing. The solution to
this problem is based on the fact that all the other nodes also have
timers [9].

Node Actions During a Checkpointing Session
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The master checkpointing coordinator, node m , initiates
checkpointing. The checkpointing coordinator for a particular
subsystem (one of the two) is node c .

The checkpointing session begins when node m is interrupted by
its timer. Node m stops all work on application processes. It stops
transmitting normal packets whose origin is node m but continues
receiving normal packets and forwarding normal packets originating
elsewhere. The node’s l-state is changed to frozen . Node m then sends
to every neighbor node the freeze packet.

The actions of each node j that receives the freeze fail-safe
packet are described below.

[1] Node j stops all work on application processes. It stops transmitting
‘‘original’’ normal packets but continues receiving and forwarding
normal packets. The node’s l-state is changed to frozen .
[2] Node j sends freeze packets to all its neighbors. Node j sends a
synch packet to its twin and then waits for a synch packets from its
twin. The node’s l-state is changed to synching .
[3] Node j begins ‘‘catching up’’ with its twin. When all the processes
are caught up, the node’s l-state is changed to synched .
[4] Node j sends a synch-done packet to the checkpointing coordinator
and waits for a flush packet.
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[5] When a flush packet arrives from neighbor node i , node j changes
l-state to flushing and sends a flush-ack(true) packet to node i . From
that point on, node j acknowledges every normal packet sent by node i
and expects node i to acknowledge every normal packet sent from j to
i . Node j sends flush packets to all its other neighbors and, after
getting flush-ack back begins to acknowledge every normal packet sent
by a neighbor and expects those neighbors to acknowledge every normal
packet sent from j to them. If all the flush-ack packets the node receive
are flush-ack(false), the node considers itself a leaf node.
[6] If node j is a leaf node and contains no messages in transit and has
no outstanding unacknowledged messages, it changes its l-state to
flushed and sends a flushed packet to its parent. When a node receives
a flushed packet from all its children, it becomes a leaf node. When
node j is in l-state flushed and receives a normal packet from its
neighbor node i , it changes its l-state back to flushing and becomes the
child of node i .
[7] When the checkpointing coordinator changes l-state to flushed , it
immediately changes l-state to checkpointing and send checkp (CKV )
packets to all its neighbors. As in [9], when the checkp packets are
distributed every pair of nodes exchanges CRC check vectors in order to
determine if there were any transmission errors during normal
computation. If a mismatch is found, recovery is initiated.
[8] After verifying the CRC check vectors, the node begins sending its
state to its assigned disk node.
[9] The disk node accumulates the signatures for the states of all the
nodes it saves. After receiving the states of all the nodes assigned to it,
the disk node calculates an overall signature and exchanges signatures
with its twin. If the signature matches, the checkpointing coordinator is
informed using the match-ok packet. If they do not match, recovery is
initiated.

IV. Summary and Conclusions
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We have presented a new software-based fault tolerance scheme
for multicomputers. The scheme provides a very high probability of
detecting errors caused by hardware faults without requiring all the
hardware to be self-checking. It should be noticed that there are
situations where recovery is possible but this scheme will not be able to
recover. However, this is a ‘‘fail-safe’’ mode. Our main goal is to
prevent a situation where incorrect results will be accepted as correct.
Such a situation is very unlikely to occur with this scheme. While we
have not presented estimates of overhead and performance, such rough
estimates, based on the current state of technology, indicate the the total
overhead for fault tolerance with this scheme can be expected to be on
the order of a few percent.

One of the main advantages of this scheme is that it presents an
opportunity for a system to operate in both safe and unsafe modes. In
the unsafe mode, all the nodes are used for achieving higher
performance but there is not error detection. In the safe mode, the
scheme described in this paper is used so that half the hardware
resources are ‘‘wasted’’ for error detection. The sensitivity of the results
to transient faults is different from one application to another (some
applications will converge to the correct results despite an incorrect
intermediate result at some point in the computation). Furthermore,
depending on how the results of a computation is used, in some cases
there is no significant damage if the results are incorrect. Given the fact
that different applications have different fault tolerance requirements,
the flexibility of scheme presented here is a very attractive and makes
this approach worthy of further study and eventual implementation.
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