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Abstract

Crossbars are key components of communication
switches used to construct multiprocessor interconnection
networks. For a fixed number of nodes, larger crossbars result
in reduced probability of conflicts and allows packets to
traverse the network in fewer hops. However, increasing the
size of the crossbar also increases the delay of the arbiter used
to resolve conflicting requests. The increased arbitration delay
can lead to overall poor network performance. The impact of
the increased arbitration delay can be mitigated by
decomposing the arbitration process into multiple steps, such
that some requests can be granted before the arbitration of the
entire crossbar is complete. This paper deals with the design of
such decomposed arbiters for large crossbars. The focus is on
crossbars with multi-queue buffers at their inputs. Such buffers
have been shown to provide significantly higher performance
than conventional FIFO buffers.

I. Introduction

Crossbar switches are commonly used in the
interconnection networks of multiprocessors and
multicomputers. Small networks can be implemented as a
single crossbar while large networks are composed of many
small crossbars [2, 1, 8]. Theoretically, throughput is
maximized and latency is minimized if the entire network is
one large crossbar. In general, given a choice between a small
number of large crossbars or a large number of small crossbars,
larger crossbar switches help lower the probability of conflicts
and allow packets to traverse the network in fewer hops. With
advances in VLSI fabrication and packaging technology, larger
crossbar are becoming practical (e.g. the Inmos C104 packet-
routing switch has 32 inputs and 32 outputs). A key factor in
determining the performance of crossbars for communication is
the mechanism used to arbitrate conflicting requests.

Several packets arriving at the switch simultaneously, to
different input ports may be destined to the same output port.
However, only one packet at a time may be forwarded through
each output port. Due to the resulting contention for output
ports, packets may have to be buffered at the inputs of the
crossbar while awaiting service. Recent communication switch
designs utilize multi-queue buffers, which maximize
performance by allowing packets at an input port to be
processed in non-FIFO order [9, 6, 10, 3]. Packets at each input
port, which are destined to different output ports, may be
forwarded through the switch in any order. Hence, each input
port contends for multiple output ports but needs only one for

full utilization. Similarly, each output port contends for
multiple input ports and needs one for full utilization. The
arbitration task is thus symmetrical with respect to inputs and
outputs [11]. Since the arbitration result for each port is
dependent on the arbitration for other ports, the crossbar
arbitration for switches with multi-queue buffers is more
complicated than for switches with FIFO buffers. We have
previously proposed two high-speed symmetric crossbar
arbiters, which efficiently solve the arbitration problem for
multi-queue buffers [11].

One of the major challenges with large crossbar design
is the long arbitration delay. Since the arbitration delay grows
with the crossbar size, the arbitration speed of a large crossbar
can become a performance bottleneck. The design of
symmetric arbiters for large crossbars is the topic of this paper.
It will be shown that high performance can be achieved by
decomposing the arbitration process so that the arbitration of a
large crossbar is performed using an array of smaller arbiters.
Furthermore, in a large crossbar it is not necessary for the
number of queues at each input port to be equal to the number
of output ports. A small number of queues reduces the cost of
buffer management and is sufficient for achieving high
performance.

The next section addresses the subject of designing the
crossbar arbiters for multi-queue buffers. Section III describes
how to decompose the arbitration for large crossbars.
Simulation results are presented and the logic and circuit design
are described. The impact of varying the number of queues per
input buffer is discussed in Section IV.

II. Crossbar Arbiters for Multi-Queue Buffers

Crossbar switches often include FIFO buffers at their
input ports for storing incoming packets that cannot be
forwarded immediately due to output port contention or
blocking [4]. Figure 1-a shows the organization of a crossbar
switch with FIFO buffers. The strict FIFO order of handling
packets at each input port unnecessarily reduces the throughput
of the switch [10]. When the packet at the head of the queue is
blocked, all other packets in the same buffer are also blocked,
even if they are destined to idle output ports.

Multi-queue buffers avoid the shortcomings of FIFO
buffers by partitioning each input buffer into several queues.
The packets at the head of the queues in a buffer may be
accessed in any order. Even if one of the queues of the buffer
is blocked, it may be possible to transmit a packet from the
head of another queue, which is destined to a different output
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(a ) FIFO Switch (b ) DAMQ Switch

Figure 1: Switches with FIFO buffers and DAMQ
buffers

port [9, 6, 10, 3]. A possible organization of a multi-queue
buffer is to maintain one FIFO queue for each output port. In
order to utilize buffer storage efficiently, it is desirable for all
the queues to share common storage. A multi-queue buffer
with this organization is called a dynamically-allocated multi-
queue (DAMQ) buffer [10]. Figure 1-b shows the organization
of a crossbar switch with DAMQ buffers. While the circuits
introduced in this paper apply to most multi-queue buffers, the
performance evaluation was done for DAMQ buffers.

Since multi-queue buffers may generate multiple
requests (one for each queue) to the crossbar arbiter, there is an
opportunity to connect more crosspoints than with FIFO
buffers, thus leading to higher throughput and lower latency.
Figure 2 shows an example of buffer contents and how requests
can be arbitrated for FIFO and DAMQ buffers [11]. The
numbers in the buffers indicate the destinations of the packets.
The crosspoints with single circles represent denied requests,
while those with double circles represent granted requests. The
job of the arbiter for this type of multi-queue buffers is to
arbitrate among up to n 2 requests in an n ×n crossbar so that
only one request is granted in a row and in a column.

FIFO Arbitration DAMQ ArbitrationBuffer Content

31

211

2

34

Figure 2: Example arbitrations for switches with
FIFO and DAMQ buffers. Double circles
indicate granted requests. Single circles
indicate denied requests.

Figure 3 shows a 4×4 symmetric crossbar arbiter design,
which is called a wave front arbiter (WFA) [11]. The arbiter is
composed of n 2 arbitration cells, and each cell corresponds to a
crosspoint. Double squares indicate that the corresponding
crosspoint has been requested. Shaded squares indicate that the
corresponding crosspoint has been granted. For each crosspoint
(i , j ), there is a request (Ri , j ) input and a grant (Gi , j ) output.
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Figure 3: Wave front symmetric crossbar
arbitration.

In addition, each cell has two inputs, north (Ni , j ) and west
(Wi , j ), and two outputs, south (Si , j ) and east (Ei , j ). Note that
Ni , j = Si −1, j and Wi , j = Ei , j −1. The Ni , j signal indicates that
the rows above did not request column j . The Wi ,j signal
indicates that there are no granted requests for the crosspoints
to the left in the same row. The G output is asserted if, and
only if, the crosspoint is requested and both the N and the W
inputs are asserted. Thus, Gi , j = Ri , j ∧ Ni , j ∧ Wi , j ,
Si , j = Ni , j ∧ Gi , j

hhhh
, and Ei , j = Wi , j ∧ Gi , j

hhhh
. For the highest

priority row and column, all the N and W inputs, respectively,
are set to 1.

The arbitration cell can be implemented as a simple
combinational circuit [11]. Arbitration starts with one top
priority cell and the arbitration cells reach their final
configuration in a ‘‘wave front’’ that moves diagonally from
the top left corner to the bottom right corner of the arbiter. In
order to maintain fairness, the top priority is given to a different
cell every cycle. Hence, every cell has the top priority every n 2

cycles. If the propagation delay for a cell is T time units, the
whole arbitration completes after (2n − 1)T time units [11].
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Figure 4: Wrapped wave front symmetric
crossbar arbitration.

A similar symmetric crossbar arbiter, called a wrapped
wave front arbiter (WWFA) is shown in Figure 4. The
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arbitration cells used in WWFA are exactly the same as in
WFA. The arbitration wave front in the WWFA passes through
n cells in each T time units. Hence, arbitration is faster than
with WFA, completing in only nT time units. To rotate the
priority, only one circular shift register is needed, which
indicates the top priority n cells. Our analytic and simulation
results show that WFA and WWFA achieve approximately the
same network throughput and latency [11]. Since the WWFA is
faster, it is the arbiter of choice, especially when the arbitration
delay is critical.

III. Decomposition of Arbitration

For interconnecting a fixed number of nodes, larger
crossbars lower the probability of conflicts and reduce the
number of hops for a packet to traverse the network. Hence,
theoretically, larger crossbars improve the performance of the
interconnection network. However, the crossbar arbitration
delay increases as the size of the crossbar increases. Thus, if
large crossbars are used, arbitration delays can become a
critical performance bottleneck. To study the speed of crossbar
arbitration, a CMOS implementation of a 4×4 crossbar and its
wave front arbiter have been laid out using the MOSIS scalable
design rules [11]. With 2 µ technology, circuit simulations
indicate that the worst case delay for reaching an arbitration
result is 15.5 ns. For 2×2 and 8×8 crossbars, the worst
arbitration delays are 7.2 ns and 32 ns, respectively. In general,
for the WFA and WWFA arbiters, the arbitration delay grows
linearly with the crossbar size.
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Figure 6: A 4×4 decomposed arbiter with 2×2
subarrays.

In principle, it is possible to construct arbiters whose
delay increases logarithmically with the size of the crossbar [7].
However, these arbiters are much more complex than the WFA
or WWFA and will therefore lead to increased implementation
cost (chip area). Furthermore, in practice, due to the increased
complexity, logarithmic arbiters are expected to result in lower
performance for medium-size crossbars (e.g. 32 × 32). For

much larger crossbars, use of logarithmic arbiters may be
considered (more on this in Subsection III.A).

If the arbitration must complete in one clock cycle, long
arbitration delays for large crossbars may force the use of a
slower clock. In order to overcome this problem, the arbiter
may be allowed several clock cycles to complete the arbitration.
However, during the arbitration new requests are blocked.
Hence, the multi-cycle arbitration will reduce throughput and
increases latency. In order to improve the performance, the
crossbar can be logically partitioned into subarrays, and each
subarray is arbitrated in one cycle. Requests can be granted as
soon as the arbitration of the relevant subarray is completed.
This leads to a significant reduction in the average delay to
granting a request. We call this scheme decomposed
arbitration.

Figure 6 shows the organization of a decomposed arbiter
for a 4×4 crossbar. In the figure the whole arbitration array is
partitioned into four subarrays, where each subarray is a 2×2
WWFA. With the simple WFA and WWFA, conflicting
requests are guaranteed to be on different ‘‘wave fronts’’ [11].
The same principle is the key to the operation of the
decomposed arbiter. Subarrays which are arbitrated in parallel,
in the same clock cycle, have no inputs or outputs in common.
Hence, it is guaranteed that requests which are arbitrated in
different subarrays during each cycle cannot conflict. In the
arbiter shown in Figure 6, two subarrays can be arbitrated
during each cycle. For example, subarrays <1,1> and <2,2>
may be arbitrated in the first cycle and subarrays <1,2> and
<2,1> can then be arbitrated in the second cycle. This allows
requests to <1,1> and <2,2> to be granted in the first cycle so
that transmission can begin without waiting for the second
cycle. A local circular shift register, which shifts every two
cycles, is used for priority rotation within each subarray.
Subarray arbitration is controlled by a global circular shift
register which shifts every cycle.

A. Performance Evaluation

Event-driven simulations were used to evaluate
decomposed arbitration. Simulations were performed for a
16×16 and for a 32×32 crossbar using three arbitration
schemes: (I) ‘‘ideal’’ single cycle arbitration using a WWFA,
(II) ‘‘nondecomposed’’ multi-cycle arbitration using a WWFA
where the number of cycles to complete the arbitration is
proportional to the size of the crossbar, and
(III) ‘‘decomposed’’ arbitration using 4×4 WWFA subarrays.
We assume that a 4×4 WWFA completes an arbitration in one
cycle. Hence, a subarray in the decomposed arbiter operates in
one cycle. With nondecomposed arbitration, it takes four
cycles to arbitrate a 16×16 crossbar and eight cycles to arbitrate
a 32×32 crossbar. The links and buffers are byte-wide and
every cycle one byte can be read from a buffer, written to a
buffer, or transferred through a link.

The simulations are based on traffic with the following
properties: 1) packet size is evenly distributed between 8 and 32
bytes. 2) during each cycle there is an equal probability of
generating a packet at each of the inputs. 3) packet destinations
are uniformly distributed over the outputs. The size of the
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buffer at each input is 96 bytes. We assume that a packet
requests the use of the crossbar two cycles after arriving at the
switch. After the arbitration, one cycle is spent before the
packet starts to leave the switch [10, 5].

The performance measures used are the average latency,
the normalized throughput, and the 99th percentile latency. The
latency of a packet is the number of cycles that elapse from
when the first byte of a packet arrives at a switch to when it
leaves the switch. With ideal arbitration, the minimum latency
through a switch is four cycles. The normalized throughput is
the average number of bytes received by each output per clock
cycle. The 99th percentile latency is the minimum of the
latencies of the 1% of the packets that received the poorest
service (longest latencies). It is reported here as a measure of
the fairness of the arbitration. Lack of fairness in the
arbitration results in increasing the 99th percentile latency and
increasing the differenceiiiiiiiii between the 99th percentile and
average latencies [11]. All the simulations were run for 48,000
cycles. Statistics were gathered only after 16,000 cycles in
order to remove start-up effects.
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Figure 7: Average latency and 99th percentile
latency vs. normalized throughput of a 16×16
switch for three arbitration schemes.

Figure 7 and Figure 8 show the simulation results for a
16×16 crossbar and a 32×32 crossbar. For both switches the
decomposed scheme outperforms the nondecomposed scheme
by achieving higher maximum throughput, as well as lower
average latency and 99th percentile latency. The difference
between the decomposed and nondecomposed arbiters increases
with increasing crossbar sizes. To understand the reason for
this, we consider a crossbar where the nondecomposed
arbitration takes m cycles. With the nondecomposed scheme,
under very light load, an arriving packet first has to wait, on the
average, m /2 cycles in order to enter into arbitration and then
has to wait for another m cycles for the arbitration to complete.
Under heavy traffic load, once a packet leaves an input port
buffer, the port has to wait, on the average, m /2 cycles before
entering arbitration and then wait for another m cycles for
arbitration to complete. On the other hand, with the
decomposed scheme, under light load the average wait is m /2
cycles to enter arbitration and then one cycle for arbitration to
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Figure 8: Average latency and 99th percentile
latency vs. normalized throughput of a 32×32
switch for three arbitration schemes.

complete. Under heavy load, once a packet leaves an input port
buffer, some of the queues at the buffer may enter arbitration
immediately in the following cycle and may begin transmission
after the one cycle arbitration of their subarray is complete.

It should be noted that for both the decomposed and
nondecomposed schemes, performance under heavy load may
be improved by using the length of the packet currently being
forwarded from an input port to predict when the input port will
be free and begin arbitration while the current transmission is
still in progress. This technique will involve significant
increase in hardware complexity and will not improve
performance under light loads. As mentioned earlier, another
approach to improving performance is to use tree structured
arbiters whose delay increases logarithmically with the size of
the crossbar [7]. Based on our simulation results, even the
theoretical performance advantage of such arbiters over the
decomposed scheme is quite small.

B. Design of Decomposed Arbiters

The decomposed arbiter is composed of several
subarrays. Each subarray is implemented as a WWFA.
Figure 9 shows the organization of a 2×2 wrapped wave front
arbiter [11]. For each arbitration cell, the P (priority) input
indicates whether the cell has the top priority. The XI, XO , YI ,
and YO signals correspond to the W , E , N , and S signals,
respectively, of Figure 3. The circular shift register (token ring)
is used to rotate top priority among the wrapped diagonals of
arbitration cells.

The detailed design of an arbitration cell is shown in
Figure 10 and Figure 11. The OPB

hhhh
(Output Port Blocked) line

is 0 when the output port is blocked. SAE (Subarray Enable) is
1 when the associated subarray is enabled by a signal from the
global circular shift register for subarray arbitration (Figure 6).
R is the request line from a queue of the buffer and G is the
grant line. P (Priority) indicates if the cell gets the top priority.
BT (Buffer Transmitting) signal is asserted by the buffer in
order to reserve the crosspoint it is using while the packet is
being transmitted. When BT is 1, only one R line from the
buffer is asserted. CB

hhh
(Column Busy) is a wired OR line
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Figure 11: Logic design of the arbitration cell for
subarrays of decomposed arbiters.

which connects all the cells in a column, indicating whether
some buffer is using the column for an ongoing transmission
and it should not be interrupted by other buffer requests.

The circuitry in the right part of Figure 11 is identical to
the circuitry of the arbitration cell in a nondecomposed
arbiter [11] and implements the following Boolean equations:

G = (RR ∧ OPB
hhhh

) ∧ (YI ∨ P ) ∧ (XI ∨ P )
YO = (YI ∨ P ) ∧ G

hh

XO = (XI ∨ P ) ∧ G
hh

The left part of the circuit is unique to the decomposed arbiter.
The RR line is asserted when either the particular queue is
currently forwarding a packet (R and BT are asserted and CB

hhh

is pulled down), or when the column is idle, the subarray is
enabled, and the queue has a packet ready for transmission to
the column.

The design presented in this section is amenable for
modular implementation where each arbiter subarray is
implemented on a single chip and multiple copies of this chip
can be used to construct a large arbiter. A single chip with an
arbiter subarray as well as a subarray of the data part of the
crossbar can be used as a flexible building block for crossbar
switches. For example, a 4×4 crossbar switch with byte-wide
ports and buffers can use the following pin allocation: 32 (8×4)
for input data, 32 (8×4) for output data, 16 for request lines, 4
for BT lines, 16 for grant lines, 16 for XI, XO , YI and YO on
the periphery of the subarray, 4 for OPB

hhhh
, 4 for CB

hhh
, 1 for SAE ,

2 for the input and output of the local shift register, and some
power and clock lines.

To construct a nondecomposed crossbar switch whose
size is multiple of the building block chip size, several chips
can be connected in an array. The SAE of each chip is set to 1.
A decomposed arbiter can be constructed similarly but with the
SAE input of each chip is connected to a state latch of the
global circular shift register. To provide a decomposed
crossbar with the global circular shift register, a latch is
included in each chip. Several latches in different chips are
linked together to form the global circular shift register. The
state of a latch is fed to the associated group of subarrays to
indicate ‘‘the turn’’ of the group. This latch adds two more
pins to the chip: latch input and latch output (the latch output is
also used as the latch state). Since the local circular shift
register shifts every n /m cycles for an n ×n crossbar consisting
of m ×m subarrays, the clock signal for the local circular shift
register can be obtained from the latch output of one latch of
the global circular shift register.

IV. Reducing Number of Queues

For a large crossbar, the cost of managing, at each input
port, a separate queue for each output port may be prohibitive.
The control registers can require significant chip area and the
large number of these register will reduce circuit performance
(larger decoders, longer buses, additional loads on buses,
etc) [5]. This problem can be alleviated by reducing the
number of queues in each buffer. The output ports are
partitioned into several groups, and all the packets destined to
output ports in the same group share the same queue. For
example, consider an n ×n switch, with l queues in each input
buffer. The output ports are partitioned into l groups. A packet
destined to output port k is stored in queue Q(k l )/n P. The
crossbar arbiter design described in Section III can still be used
here even though fewer queues are implemented in each buffer.

Reducing the number of queues in a buffer allows a
reduction in the number of wires for request and grant signals
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between the buffers and the arbiter. For example, if there are
eight queues in a buffer for a 32×32 crossbar, then we need
only three wires for the requests from each queue. One wire is
used to indicate if there is a request from this queue, and the
other two specify which crosspoint is requested. Only one
grant wire is needed per a queue. Hence, the total number of
wires for request and grant signals between each buffer and
the arbiter is 32. This is a significant reduction compared to the
64 wires that would be required if 32 queues were maintained
in each buffer. With this scheme there is additional hardware
required in the arbiter for decoding the lines carrying the
number of the output port requested by each queue.
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Figure 12: The impact of varying the number of
queues per input. A 32×32 switch with 96 byte
input buffers.

In order to determine the impact of varying the number
of queues per input port, we have simulated a 32×32 switch
with 96 byte input buffers. The arbitration is performed by a
decomposed arbiter with 4×4 subarrays. The simulation
parameters and performance measures are as described in
Subsection III.A. Figure 12 shows the results of these
simulations. When there are only 16 or even 8 queues, the
performance is almost identical to the performance with 32
queues. Since even the performance with only 4 queues is
close to the performance with 32 queues, if chip area for buffer
management is limited, 4 queues may be a good design choice.
Note that for the one queue case, the buffer degenerates into a
FIFO buffer.

V. Summary and Conclusions

The time required to arbitrate conflicting requests to
crossbar switches increases with the size of the crossbar. We
have shown that by decomposing the arbitration process, the
crossbar bandwidth can be increased while the average latency
is reduced. The additional implementation cost compared to a
nondecomposed scheme is minimal. This design lends itself to
efficient modular implementation of large crossbars using small
crossbar building blocks.

As originally designed, switches based on DAMQ
buffers manage, at each input port, a separate queue for each
output port. The circuit complexity for managing multiple
queues in an input buffer increases as the number of queues is

increased. Furthermore, with the original DAMQ design, the
number of request and grant lines between each buffer and the
arbiter increases linearly with the size of the switch. Based on
these considerations, for a large crossbar, it is undesirable to
have at each input port a separate queue for each output port.
We have shown that this problem can be alleviated by reducing
the number of queues per input buffer. For large switches with
limited input buffer size, even if the number of queues is
reduced significantly, there is only a small reduction in
performance compared to switches that use full DAMQ buffers.
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