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Abstract 

The use of self-checking nodes and links for 
implementing fault-tolerant VLSI multicomputers is 
proposed. The system is composed of a large number of 
VLSI computers interconnected by high-speed dedicated 
links. Hardware that performs error detection is 
combined with system-level protocols that handle error 
recovery and fault treatment. 

The self-checking nodes notify the rest of the 
system when their output ls erroneous. In order to 
achieve high fault coverage, error detection is 
accomplished by duplication and matching. The critical 
circuit in this scheme is a comparator which must not be 
susceptible to faults that can remain undetected and 
later mask the failure of the functional modules. With 
both NMOS and CMOS technologies it is possible to 
implement a self-tssti:ng comparator that will produce 
an .error indication if it incurs any single physical defect. 

Introduction 

High reliability and high performance are primary 
goals of most computer systems. There are fundamental 
limits to the increases in reliability and performance 
that are achievable by improvements in technology 
alone. The limits on performance can be overcome by 
exploiting parallelism while the limits on reliability can 
be overcome by using fault tolerance techniques. 

Parallelism can be exploited by a system that 
consists of a large number of computation nodes, each 
able to execute a subtask of the problem being solved. A 
possible arc;hitecture for such a system, which is 
compatible with the constraints of VLSI, is to 
interconnect these computation nodes by high-speed 
dedicated links and commu.nicatwn nodes that provide 
hardware support for communication functions such as 
message routing. Each computation node is connected 
to one of the communication nodes. A communication 
node has several ports through which it is connected to 
computation nodes and other communication nodes!' We 
call such a system a multicomputer. The nodes and 
links are components (building blocks) that can be used 
to construct multicomputers with a wide range of sizes 
and topologies. 

System fav.u.re occurs when the multicomputer 
doesn't perform according to its speciftcations at its 
interface with the "outside world!' System failure is 
often the result of a failure of one of its components. 
Fault tolerance techniques attempt to prevent 
component failure from leading to system failure� A 
multicomputer is especially well suited for reliability 
enhancement using fault tolerance techniques since it is 
partitioned into independent and "intelligent" 
components (the computation and communication 
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nodes). Fault-free components can adapt to changes in 
faulty components and continue their operation in a way 
that leads to correct system output despite the fault. 

A brief overview of techniques for implementing 
fault tolerance in a multicomputer is presented and the 
considerations that lead to the choice of an approach 
based on self-checking components are discussed. 
Du.plication and matching is shown to be an effective 
practical technique for implementing nodes that are 
self-checking with respect to any likely fault. 

Implementation or Hi&bly Reliable 11ulticomputers 

The reliability of any system can be enhanced by 
increasing the reliability of its components through fa:ult 
pravrm.non1 techniques such as specialized design 
methodologies, stringent quality control, and extensive 
validation and testing. These techniques typically result 
in more complex designs, greater cost, and lower 
performance. Furthermore, the effectiveness of these 
techniques is limited by our inability to exhaustively test 
complex VLSI chips� 

Alternatively, the reliability of the components can 
be increased by employing fault tolerance techniques. 
These techniques attempt to ensure that each 
component will continue to perform according to its 
speciftcatiom1 despite faults. Unfortunately, no 
component can tolerate an unbounded number of faults. 
The contamination of the system by incorrect output 
from a faulty component can be prevented only if, at 
some stage, other system components ftnd out about the 
failure of the component and physically or logically 
isolate it from the rest of the system. 

At the system level, software (protocols) can be 
used to detect and recover from the failure of 
components. For example, identical tasks may be 
assigned to three nodes and a "majority vote" taken on 
the results. One of the problems with this approach is 
that if the results conflict, it may be very costly or 
impossible to locate the cause of the discrepancy. 
Additional problems are the high overhead in 
computation resources and communication bandwidth 
and difficulties in effectively handling transient faults. 

If a node fails due to a transient fault, it should be 
reset to a "sane state" and remain active rather than be 
removed from the system. If neighboring nodes are 
responsible for detecting such a failure, they must be 
given the authority to initiate the reset. However, this 
authority also allows a fa:iled node to reset operational 
neighbors. In order to prevent this situation, each node 
must be responsible for its own reset. Hence, the node 
should include a mechanism to detect its own erroneous 
:states1 and initiate the reset. 

Some of the deficiencies with the aforementioned 
techniques can be overcome. by implementing fault 
tolerance in a VLSI multicomputer using hardware error 



detection in conjunction with system level protocols 
which perform error recovery and /a:ult trea.tment} 
Errors caused by faults in the communication links are 
detected through the use of error-detecting codes. All 
nodes are self-checking and signal to the rest of the 
system when their output is incorrect so that it will not 
be accepted as correct. In addition, failed nodes 
attempt to reset themselves and reestablish a sane 
state. The immediate neighbors are informed whenever 
a node fails. If the node doesn't reset itself or fails too 
often, the neighbors can logically remove it from the 
system by refusing to communicate with it. The 
diagnostic status information is distributed throughout 
the system so that, eventually, no fault-free node will 
attempt to use the faulty component. 

Self:CheckfN Nodes 

For all likely faults, a self-checking component must 
either produce the "correct" outputs or somehow 
indicate that the outputs are incorrect. A component 
that satisfies thi11 requirement is said to be fault 
secure}O If the component is not guaranteed to produce 
an error indication immediately following the flrst fault, 
it is possible for several faults to exist in the component 
simultaneously without any indication to the rest of the 
system. Even if the component is fault secure with 
respect to any single fault, several faults together may 
lead to the failure of the self-check mechanism and, 
eventually, to incorrect outputs from the col'!lponent 
being accepted as correct by the rest of the system. In 
order to prevent this situation, the component must be 
self·testing}O In the presence of one or more faults, a 
self-testing component produces an error indication 
before additional faults can occur and lead to the failure 
of the self-check mechanism. Components which are 
fault-secure and self-testing are said to be totally set/· 
checlcing10 (TSC). 

Error detecting/correcting codes can be used to 
implement TSC nodes. Redundant information is carried 
by busses, memories, and registers in order to detect 
{and possibly correct) errors}11 Unfortunately, different 
coding schemes must be used for different parts of the 
node. The resulting increase in the complexity of the 
design and of design verification and testing may lead to 
a circuit in which failure modes that are more difficult to 
predict and "tolerate" are more likely to occur. 

An alternative is to construct the TSC computation 
or communication node using two identical, indepenclsnt 
modules, each performing the function of the node. 
Inputs from neighbor nodes are fed to both modules. If 

the modules operate synchronously, their outputs should 
always be identical. Except for the nearly-impossible 
case where both modules produce identical incorrect 
output, an error can be detected by a comparator which 
is part of the node. The output of the comparator is 
connected to neighboring nodes through dedicated 
wires. The output from one of the two modules is the 
"functional" output from the node {Fig. 1). A "no· 
match" signal from the comparator is used locally as a 
reset signal and is also sent to all neighbors as a failure 
indicator. Similar failure indicators from the neighbors 
cause an interrupt and invoke system-level routines that 
handle the node failure. 

Implementing the TSC property in a component 
using duplication and matching may appear wasteful 
since it more than doubles the required hardware. 
However, this scheme becomes more attractive when 
issues such as design complexity, fault coverage, 
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ng. 1: A SeLf•CJl.eclcing Computa.tion Noels 
reliability prediction, and the ability to recover from 
transient faults are taken into account. Traditional fault 
models are not valid for VLSI!I, 12 As a result, low-cost 
error detection schemes, which are based on these 
models, may no longer be adequate. With duplication 
and matching, errors are detected as long a.s the 
comparator remains functional and the two modules 
produce different outputs the first time one or both of 
them fail. Since a faulty comparator can mask faulty 
functional module11, faults in the comparator must not go 
undetected, i.e., the comparator must be self-testing. 
Thus a detailed analysis of the effects of all likely faults 
on the comparator is required. 

Physical Defects and Lo1ical Faults in VLSI 

The design of self-checking circuits requires an 
understanding of the physical defects which commonly 
occur in VLSI and of the resulting logical faults. In the 
past the stuck-at fault model bas been widely used to 
model. at the logical level, the effects of physical defects 
in circuits. This model does not cover many of the 
possible defects in VLSJ�, 5, 12 The fabrication ftaws and 
physical processes that can cause malfunction of NMOS 
and CMOS VLSI circuits are summarized in this section. 

VLSI chip failures may be caused by design or 
fabrication ftaws, may be due entirely to environmental 
factors, or are the end result of a degenerative process 
due to operational and environmental stresses but 
partially attributable to design or manufacturing 
defects�• 10 Fabrication defects in MOS chips consist 
mainly of shorts and opens in each interconnection level, 
shorts between different levels, and large imperfections 
such as scratches across the chip!i Other fabrication 
defects include incorrect dosage of ion implants, contact 
windows that fail to open, misplaced or defective bonds, 
and penetration of the package by contaminants� 
During the operation of the chip, faults may be caused 
by electromigration, corrosion, electrical breakdown of 
oxide, cracks due to thermal expansion, power supply 
fluctuation, and ionizing or electromagnetic radiation� 

At the logical level, most of the faults can be 
represented in a circuit model that consists of a network 
of switches, loads {for NMOS), and interconnection lines 
which directly correspond to the transistors and 
interconnections in the actual circuit!! Most of the 
physical defects, such as opens and shorts, can be 
represented in this model in an obvious war. A "switch" 
may be permanently on or permanently off, 
corresponding to a gate input stuck-at-1 or 0, 
respectively. Shorted NMOS loads {pullups) are 
equivalent to an output line s·a-1. Disconnected gate 
inputs are usually equivalent to s·a·O or s-a-1 faults. 



Some pby11ical defects have a more complex effect 
on the circuit. In NMOS, incorrect dosage of ion implants 
may cause a threshold shift in a load transistor. This 
can result in an output voltage that lies between the 
voltages assigned to logic 0 and logic 1. If the fanout 
from the gate is greater than one, some of the gates 
connected to its output may "interpret" it as logic 1 
while others will interpret it as logic 0. If, at some point 
In time (clock cycle), the line is supposed to be a logic 1 
but is interpreted by some of the gates as logic 0, we call 
it a weak 1 fault. Conversely, if the line is supposed to 
be a logic 0 but is interpreted by some of the gates as 
logic 1, we call it a weak O fault. A single physical defect, 
resulting in a single weak 0 or weak 1 fault, has the same 
effect as multiple s-a-1 or s-a-0 faults, respectively. 

In CMOS, a transistor which is permanently off or a 
break in a line can result in a high impedance state 
where the output of a combinational logic gate is 
dependent on the previous output rather than the 
current inpuO2 Such a fault {called a stuck-open fault) 
may escape detection even if all possible input vectors 
are used to test the circuiO2 

Implementation of Self-test;ne Comparators in VISI 

The duplication and matching scheme relies entirely 
on a self-testing comparator to detect faults in the 
functional modules. Implementing such a comparator 
requires knowledge of how different faults will affect the 
circuit. Fortunately, a comparator is a simple circuit 
that can be implemented with a regular structure and is 
therefore amenable to thorough analysis. Hence, we can 
have confidence in our ability to predict the likely 
physical defects, develop a valid fault model, and prove 
that the implementation we propose is indeed self­
testing. 

We assume that physical defects in the node occur 
one at a time. A fault that is the result of a single 
physical defect is called a single /a.ult. It is assumed 
that there is a negligible probability that the time 
interval between the occurrence of successive single 
defects in the comparator or between a single defect in 
the comparator and an arbitrary collection of defects in 
the functional modules, is less then some value T. In 
order to ensure that faults in the comparator will not 
mask future faults in the functional units, during normal 
operation, the comparator must "test itself" for any 
single fault in less than lime T. 

Single Stuck-At Faults 

As a first step to constructing a comparator which is 
self-testing with respect to any single fault, we will 
discuss the implementation of a comparator which -is 
self-testing with respect to any single stuck-at fault. 

In this context "two-rail" codes prove useful. They 
consist of all words {bit vectors) such that a specified 
half of the word is the complement of the other half. If 
the output of one of the modules in a self-checking node 
is complemented, a two-rail code checker can serve as a 
"comparator" that checks the validity of the output. 
Such a checker, which is self-testing with respect to any 
single stuck-at fault, can be implemented as a two level 
NOR-NOR PLA {Fig. 2)}3,2 The output from the checker is 
a two-bit two-rail code that is 01 or 10 (code output) if 
the input is a two-rail code word {code input), and 00 or 
11 {noncode output) otherwise {noncode input). It can 
be shown that. if any single stuck-al fault exists in the 
checker, there is an input two-rail code word that results 
in a 00 or 11 out.put, thereby "detecting" the fawU3 
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f1c. 2: An NMOS Self-Testing Two-Rail Code Checker 

The requirement that the checker must be self· 
testing with respect to any single stuck-at fault poses 
severe constraints on its implementation. It can be 
shown that any two level AND-OR {or NOR-NOR) 
implementation for an input of 2n bits (n bits from each 
module) must use 2" product terms, one for each code 
inpuO1 If the output from each module is, say, 16 bits, 
this implementation is impractical since it requires 
2u1 = 65536 product terms. Furthermore, all possible 
{2") code words must appear at the checker's inputs for 
it to perform a complete self-test. 

Several small self-testing two-rail code checkers can 
be used as "cells" for constructing a self-testing checker 
for a wide input word {Fig. 3)}0,e While the self-testing 
property is preserved, the number of input patterns 
required for a complete self-test is dependent only on 
the size of the largest "cell:•& 

c1 co 

ftg. S: A Sel/-Testi-ng Two-Rail Code Checker 7'ree 

Other Single Faults 
The faults that commonly occur in a MOS PLA are 

stuck-at faults, shorts between adjacent lines, bre"'ks in 
lines, and contact faults which include missing or extra 
devices at crosspoints}3, 7 In addition, weak 0/1 faults 
can occur on the input or product term lines. 
Fortunately, it turns out that a straightforward NOR-NOR 
PLA implementation of the checker discussed above is 
self-testing with respect to any one of the 
aforementioned single faults. The rest of this section 
contains an informal "proof" of this claim; a more 
formal proof will be presented elsewhereP Faults in the 
input lines, product term lines, output lines, AND array 
crosspoint.s, and OR array crosspoints, are considered 
11eparately. 

Any single stuck-at fault or short in the input lines 
will cause one or more O's to change to 1 's or one or 
more l's to change to O's {but not both) for some code 
input. It can be shown that such an error {called a 



unidirtctionlll an-or?) on the input lines results in 
noncode outpuL13 A break in the input line outside the 
AND array is equivalent to the line stuck-at-0 or stuck­
at- 1. A break in the middle of the AND array affects only 
some product terms. For an affected product term, if 
the break is equivalent to a stuck-at-1, the one code 
input that is supposed to select this product term won't, 
and a noncode output will result. If the break is 
equivalent to a stuck-at-0, there exists a code input that 
results in a noncode output since it selects two product 
term lines each of which is connected to a different 
output lineP 

An extra device in the AND array is equivalent to the 
corresponding product term stuck-at-0. The code input 
that is supposed to select that product term results in a 
noncode output. If there is a missing device in the AND 
array, there exists a code input that produces a noncode 
output since it selects two product term lines, each of 
which is connected to a different output lineP 

An extra device in the OR array means that one of 
the product terms is connected to both outputs. A 
missing device in the OR array is equivalent to the 
corresponding product term stuck -at-0. In either case, 
the code input that" selects the relevant product term 
will result in a noncode output .. 

If the output lines are shorted, their values are 
equal and that is a noncode output. If one of the lines 
has a stuck-at fault, there exists a code input that 
causes the other line to have the same value so the 
output is noncode. For some code input, a break in one 
of the output lines is equivalent to a stuck-at- 1 or stuck­
at-0 fault on that line. 

A stuck-at-0 fault on a product term line will result 
in a noncode output if the input is the code word that is 
supposed to select that product term line. A stuck-at-1 
fault on a product term line will result in a noncode 
output to any input that selects a product term line that 
is connected to the other output line. A break in a 
product term line is equivalent to a stuck-at fault on that 
line since each product term line is connected to only 
one output line. A short between two product term lines 
will result in a noncode output if the input selects either 
one of these linesP 

Product term lines are not susceptible to weak 0/1 
faults since each product term line is connected to only 
one output line {fanout of one) so that a weak 0/1 fault is 
equivalent to a single stuck-at fault. Input lines have a 
fanout greater than one and are thus susceptible to 
weak 0/1 faults. A weak 1 fault on an input line is 
equivalent to one or more missing devices in the AND 
array. Each product term that is connected to a 
"missing device" will be selected by an input code word 
that also selects a product term line that is connected to 
the other output lineP Thus, a noncode output will 
result. A weak O fault on an input line is equivalent to 
one or more product term lines which are stuck-at-0. 
Any code input that is supposed to select one of these 
product terms will result in a noncode output. 

In CMOS chips PI.As are usually implemented in 
dynamic "pseudo NMos:· 12 All product term and output 
lines are precharged during every clock cycle before 
being selectively discharged according to the input. 
Therefore no state is preserved from one cycle to the 
next and the circuit is combinational despite any opens 
in the precharge or discharge pathsP Hence the PLA 
used in CMOS chips is only susceptible to the same faults 
as the traditional static PLA used in NMOS chips. 
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This analysis shows that for all single faults in our 
fault model, there exists a code input that results in a 
noncode output from the proposed two-rail code checker 
Pl.A. Thus, the checker is self-testing with respect to 
any likely single fault. Based on this result, it can be 
shown that the checker constructed as a tree of smaller 
self-testing checkers {Fig. 3) is also self-testing with 
respect to any likely single faultP 

Summary and conchqiona 

We have presented an approach to increasing the 
reliability of future high-end systems beyond what is 
po11ible with technological solutions alone. The system 
consists of computation nodes and communication 
nodes, interconnected by high-speed dedicated llnks. 
These components are relied upon to detect errors while 
system level protocols are used for error recovery and 
reconftguration. 

The use of duplication and matching for 
implementing the self-checking nodes allows us to 
restrict a detailed analysis of the impact of all possible 
faults to the comparator, which is a relatively simple 
circuit. We have shown that the self-testing comparator, 
which is the backbone of our approach, can be 
implemented with NMOS and CMOS technologies. 
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