
Present..d •t the

/nt..rn•tion•I Conference on Comput..r Design

Port Chester. New York, November 1 !IBS.

SEIF-CHECKING VLSI BUILDING BLOCKS FOR FAULT-TOLERANT IIULTICOIIPUTERS

Yuval Tamir and Carlo H. Sl!quin

Computer Science Division
University of California, Berkeley, CA 94720

Abstract

The use of self-checking nodes and links for
implementing fault-tolerant VLSI multicomputers is
proposed. The system is composed of a large number of
VLSI computers interconnected by high-speed dedicated
links. Hardware that performs error detection is
combined with system-level protocols that handle error
recovery and fault treatment.

The self-checking nodes notify the rest of the
system when their output ls erroneous. In order to
achieve high fault coverage, error detection is
accomplished by duplication and matching. The critical
circuit in this scheme is a comparator which must not be
susceptible to faults that can remain undetected and
later mask the failure of the functional modules. With
both NMOS and CMOS technologies it is possible to
implement a self-tssti:ng comparator that will produce
an .error indication if it incurs any single physical defect.

Introduction

High reliability and high performance are primary
goals of most computer systems. There are fundamental
limits to the increases in reliability and performance
that are achievable by improvements in technology
alone. The limits on performance can be overcome by
exploiting parallelism while the limits on reliability can
be overcome by using fault tolerance techniques.

Parallelism can be exploited by a system that
consists of a large number of computation nodes, each
able to execute a subtask of the problem being solved. A
possible arc;hitecture for such a system, which is
compatible with the constraints of VLSI, is to
interconnect these computation nodes by high-speed
dedicated links and commu.nicatwn nodes that provide
hardware support for communication functions such as
message routing. Each computation node is connected
to one of the communication nodes. A communication
node has several ports through which it is connected to
computation nodes and other communication nodes!' We
call such a system a multicomputer. The nodes and
links are components (building blocks) that can be used
to construct multicomputers with a wide range of sizes
and topologies.

System fav.u.re occurs when the multicomputer
doesn't perform according to its speciftcations at its
interface with the "outside world!' System failure is
often the result of a failure of one of its components.
Fault tolerance techniques attempt to prevent
component failure from leading to system failure� A
multicomputer is especially well suited for reliability
enhancement using fault tolerance techniques since it is
partitioned into independent and "intelligent"
components (the computation and communication

CH I 935-6/83/0000/0561$01.00 © 1983 IEEE
561

nodes). Fault-free components can adapt to changes in
faulty components and continue their operation in a way
that leads to correct system output despite the fault.

A brief overview of techniques for implementing
fault tolerance in a multicomputer is presented and the
considerations that lead to the choice of an approach
based on self-checking components are discussed.
Du.plication and matching is shown to be an effective
practical technique for implementing nodes that are
self-checking with respect to any likely fault.

Implementation or Hi&bly Reliable 11ulticomputers

The reliability of any system can be enhanced by
increasing the reliability of its components through fa:ult
pravrm.non1 techniques such as specialized design
methodologies, stringent quality control, and extensive
validation and testing. These techniques typically result
in more complex designs, greater cost, and lower
performance. Furthermore, the effectiveness of these
techniques is limited by our inability to exhaustively test
complex VLSI chips�

Alternatively, the reliability of the components can
be increased by employing fault tolerance techniques.
These techniques attempt to ensure that each
component will continue to perform according to its
speciftcatiom1 despite faults. Unfortunately, no
component can tolerate an unbounded number of faults.
The contamination of the system by incorrect output
from a faulty component can be prevented only if, at
some stage, other system components ftnd out about the
failure of the component and physically or logically
isolate it from the rest of the system.

At the system level, software (protocols) can be
used to detect and recover from the failure of
components. For example, identical tasks may be
assigned to three nodes and a "majority vote" taken on
the results. One of the problems with this approach is
that if the results conflict, it may be very costly or
impossible to locate the cause of the discrepancy.
Additional problems are the high overhead in
computation resources and communication bandwidth
and difficulties in effectively handling transient faults.

If a node fails due to a transient fault, it should be
reset to a "sane state" and remain active rather than be
removed from the system. If neighboring nodes are
responsible for detecting such a failure, they must be
given the authority to initiate the reset. However, this
authority also allows a fa:iled node to reset operational
neighbors. In order to prevent this situation, each node
must be responsible for its own reset. Hence, the node
should include a mechanism to detect its own erroneous
:states1 and initiate the reset.

Some of the deficiencies with the aforementioned
techniques can be overcome. by implementing fault
tolerance in a VLSI multicomputer using hardware error

detection in conjunction with system level protocols
which perform error recovery and /a:ult trea.tment}
Errors caused by faults in the communication links are
detected through the use of error-detecting codes. All
nodes are self-checking and signal to the rest of the
system when their output is incorrect so that it will not
be accepted as correct. In addition, failed nodes
attempt to reset themselves and reestablish a sane
state. The immediate neighbors are informed whenever
a node fails. If the node doesn't reset itself or fails too
often, the neighbors can logically remove it from the
system by refusing to communicate with it. The
diagnostic status information is distributed throughout
the system so that, eventually, no fault-free node will
attempt to use the faulty component.

Self:CheckfN Nodes

For all likely faults, a self-checking component must
either produce the "correct" outputs or somehow
indicate that the outputs are incorrect. A component
that satisfies thi11 requirement is said to be fault
secure}O If the component is not guaranteed to produce
an error indication immediately following the flrst fault,
it is possible for several faults to exist in the component
simultaneously without any indication to the rest of the
system. Even if the component is fault secure with
respect to any single fault, several faults together may
lead to the failure of the self-check mechanism and,
eventually, to incorrect outputs from the col'!lponent
being accepted as correct by the rest of the system. In
order to prevent this situation, the component must be
self·testing}O In the presence of one or more faults, a
self-testing component produces an error indication
before additional faults can occur and lead to the failure
of the self-check mechanism. Components which are
fault-secure and self-testing are said to be totally set/·
checlcing10 (TSC).

Error detecting/correcting codes can be used to
implement TSC nodes. Redundant information is carried
by busses, memories, and registers in order to detect
{and possibly correct) errors}11 Unfortunately, different
coding schemes must be used for different parts of the
node. The resulting increase in the complexity of the
design and of design verification and testing may lead to
a circuit in which failure modes that are more difficult to
predict and "tolerate" are more likely to occur.

An alternative is to construct the TSC computation
or communication node using two identical, indepenclsnt
modules, each performing the function of the node.
Inputs from neighbor nodes are fed to both modules. If

the modules operate synchronously, their outputs should
always be identical. Except for the nearly-impossible
case where both modules produce identical incorrect
output, an error can be detected by a comparator which
is part of the node. The output of the comparator is
connected to neighboring nodes through dedicated
wires. The output from one of the two modules is the
"functional" output from the node {Fig. 1). A "no·
match" signal from the comparator is used locally as a
reset signal and is also sent to all neighbors as a failure
indicator. Similar failure indicators from the neighbors
cause an interrupt and invoke system-level routines that
handle the node failure.

Implementing the TSC property in a component
using duplication and matching may appear wasteful
since it more than doubles the required hardware.
However, this scheme becomes more attractive when
issues such as design complexity, fault coverage,

562

ProceHor !nla----<10---/nl Processor
+ llemory + llernory

n

Raset sit

n

"Functional" Failure Nei&hbor'a "Functional"
Output · Indicator Statua Input

ng. 1: A SeLf•CJl.eclcing Computa.tion Noels
reliability prediction, and the ability to recover from
transient faults are taken into account. Traditional fault
models are not valid for VLSI!I, 12 As a result, low-cost
error detection schemes, which are based on these
models, may no longer be adequate. With duplication
and matching, errors are detected as long a.s the
comparator remains functional and the two modules
produce different outputs the first time one or both of
them fail. Since a faulty comparator can mask faulty
functional module11, faults in the comparator must not go
undetected, i.e., the comparator must be self-testing.
Thus a detailed analysis of the effects of all likely faults
on the comparator is required.

Physical Defects and Lo1ical Faults in VLSI

The design of self-checking circuits requires an
understanding of the physical defects which commonly
occur in VLSI and of the resulting logical faults. In the
past the stuck-at fault model bas been widely used to
model. at the logical level, the effects of physical defects
in circuits. This model does not cover many of the
possible defects in VLSJ�, 5, 12 The fabrication ftaws and
physical processes that can cause malfunction of NMOS
and CMOS VLSI circuits are summarized in this section.

VLSI chip failures may be caused by design or
fabrication ftaws, may be due entirely to environmental
factors, or are the end result of a degenerative process
due to operational and environmental stresses but
partially attributable to design or manufacturing
defects�• 10 Fabrication defects in MOS chips consist
mainly of shorts and opens in each interconnection level,
shorts between different levels, and large imperfections
such as scratches across the chip!i Other fabrication
defects include incorrect dosage of ion implants, contact
windows that fail to open, misplaced or defective bonds,
and penetration of the package by contaminants�
During the operation of the chip, faults may be caused
by electromigration, corrosion, electrical breakdown of
oxide, cracks due to thermal expansion, power supply
fluctuation, and ionizing or electromagnetic radiation�

At the logical level, most of the faults can be
represented in a circuit model that consists of a network
of switches, loads {for NMOS), and interconnection lines
which directly correspond to the transistors and
interconnections in the actual circuit!! Most of the
physical defects, such as opens and shorts, can be
represented in this model in an obvious war. A "switch"
may be permanently on or permanently off,
corresponding to a gate input stuck-at-1 or 0,
respectively. Shorted NMOS loads {pullups) are
equivalent to an output line s·a-1. Disconnected gate
inputs are usually equivalent to s·a·O or s-a-1 faults.

Some pby11ical defects have a more complex effect
on the circuit. In NMOS, incorrect dosage of ion implants
may cause a threshold shift in a load transistor. This
can result in an output voltage that lies between the
voltages assigned to logic 0 and logic 1. If the fanout
from the gate is greater than one, some of the gates
connected to its output may "interpret" it as logic 1
while others will interpret it as logic 0. If, at some point
In time (clock cycle), the line is supposed to be a logic 1
but is interpreted by some of the gates as logic 0, we call
it a weak 1 fault. Conversely, if the line is supposed to
be a logic 0 but is interpreted by some of the gates as
logic 1, we call it a weak O fault. A single physical defect,
resulting in a single weak 0 or weak 1 fault, has the same
effect as multiple s-a-1 or s-a-0 faults, respectively.

In CMOS, a transistor which is permanently off or a
break in a line can result in a high impedance state
where the output of a combinational logic gate is
dependent on the previous output rather than the
current inpuO2 Such a fault {called a stuck-open fault)
may escape detection even if all possible input vectors
are used to test the circuiO2

Implementation of Self-test;ne Comparators in VISI

The duplication and matching scheme relies entirely
on a self-testing comparator to detect faults in the
functional modules. Implementing such a comparator
requires knowledge of how different faults will affect the
circuit. Fortunately, a comparator is a simple circuit
that can be implemented with a regular structure and is
therefore amenable to thorough analysis. Hence, we can
have confidence in our ability to predict the likely
physical defects, develop a valid fault model, and prove
that the implementation we propose is indeed self­
testing.

We assume that physical defects in the node occur
one at a time. A fault that is the result of a single
physical defect is called a single /a.ult. It is assumed
that there is a negligible probability that the time
interval between the occurrence of successive single
defects in the comparator or between a single defect in
the comparator and an arbitrary collection of defects in
the functional modules, is less then some value T. In
order to ensure that faults in the comparator will not
mask future faults in the functional units, during normal
operation, the comparator must "test itself" for any
single fault in less than lime T.

Single Stuck-At Faults

As a first step to constructing a comparator which is
self-testing with respect to any single fault, we will
discuss the implementation of a comparator which -is
self-testing with respect to any single stuck-at fault.

In this context "two-rail" codes prove useful. They
consist of all words {bit vectors) such that a specified
half of the word is the complement of the other half. If
the output of one of the modules in a self-checking node
is complemented, a two-rail code checker can serve as a
"comparator" that checks the validity of the output.
Such a checker, which is self-testing with respect to any
single stuck-at fault, can be implemented as a two level
NOR-NOR PLA {Fig. 2)}3,2 The output from the checker is
a two-bit two-rail code that is 01 or 10 (code output) if
the input is a two-rail code word {code input), and 00 or
11 {noncode output) otherwise {noncode input). It can
be shown that. if any single stuck-al fault exists in the
checker, there is an input two-rail code word that results
in a 00 or 11 out.put, thereby "detecting" the fawU3

563

f1c. 2: An NMOS Self-Testing Two-Rail Code Checker

The requirement that the checker must be self·
testing with respect to any single stuck-at fault poses
severe constraints on its implementation. It can be
shown that any two level AND-OR {or NOR-NOR)
implementation for an input of 2n bits (n bits from each
module) must use 2" product terms, one for each code
inpuO1 If the output from each module is, say, 16 bits,
this implementation is impractical since it requires
2u1 = 65536 product terms. Furthermore, all possible
{2") code words must appear at the checker's inputs for
it to perform a complete self-test.

Several small self-testing two-rail code checkers can
be used as "cells" for constructing a self-testing checker
for a wide input word {Fig. 3)}0,e While the self-testing
property is preserved, the number of input patterns
required for a complete self-test is dependent only on
the size of the largest "cell:•&

c1 co

ftg. S: A Sel/-Testi-ng Two-Rail Code Checker 7'ree

Other Single Faults
The faults that commonly occur in a MOS PLA are

stuck-at faults, shorts between adjacent lines, bre"'ks in
lines, and contact faults which include missing or extra
devices at crosspoints}3, 7 In addition, weak 0/1 faults
can occur on the input or product term lines.
Fortunately, it turns out that a straightforward NOR-NOR
PLA implementation of the checker discussed above is
self-testing with respect to any one of the
aforementioned single faults. The rest of this section
contains an informal "proof" of this claim; a more
formal proof will be presented elsewhereP Faults in the
input lines, product term lines, output lines, AND array
crosspoint.s, and OR array crosspoints, are considered
11eparately.

Any single stuck-at fault or short in the input lines
will cause one or more O's to change to 1 's or one or
more l's to change to O's {but not both) for some code
input. It can be shown that such an error {called a

unidirtctionlll an-or?) on the input lines results in
noncode outpuL13 A break in the input line outside the
AND array is equivalent to the line stuck-at-0 or stuck­
at- 1. A break in the middle of the AND array affects only
some product terms. For an affected product term, if
the break is equivalent to a stuck-at-1, the one code
input that is supposed to select this product term won't,
and a noncode output will result. If the break is
equivalent to a stuck-at-0, there exists a code input that
results in a noncode output since it selects two product
term lines each of which is connected to a different
output lineP

An extra device in the AND array is equivalent to the
corresponding product term stuck-at-0. The code input
that is supposed to select that product term results in a
noncode output. If there is a missing device in the AND
array, there exists a code input that produces a noncode
output since it selects two product term lines, each of
which is connected to a different output lineP

An extra device in the OR array means that one of
the product terms is connected to both outputs. A
missing device in the OR array is equivalent to the
corresponding product term stuck -at-0. In either case,
the code input that" selects the relevant product term
will result in a noncode output ..

If the output lines are shorted, their values are
equal and that is a noncode output. If one of the lines
has a stuck-at fault, there exists a code input that
causes the other line to have the same value so the
output is noncode. For some code input, a break in one
of the output lines is equivalent to a stuck-at- 1 or stuck­
at-0 fault on that line.

A stuck-at-0 fault on a product term line will result
in a noncode output if the input is the code word that is
supposed to select that product term line. A stuck-at-1
fault on a product term line will result in a noncode
output to any input that selects a product term line that
is connected to the other output line. A break in a
product term line is equivalent to a stuck-at fault on that
line since each product term line is connected to only
one output line. A short between two product term lines
will result in a noncode output if the input selects either
one of these linesP

Product term lines are not susceptible to weak 0/1
faults since each product term line is connected to only
one output line {fanout of one) so that a weak 0/1 fault is
equivalent to a single stuck-at fault. Input lines have a
fanout greater than one and are thus susceptible to
weak 0/1 faults. A weak 1 fault on an input line is
equivalent to one or more missing devices in the AND
array. Each product term that is connected to a
"missing device" will be selected by an input code word
that also selects a product term line that is connected to
the other output lineP Thus, a noncode output will
result. A weak O fault on an input line is equivalent to
one or more product term lines which are stuck-at-0.
Any code input that is supposed to select one of these
product terms will result in a noncode output.

In CMOS chips PI.As are usually implemented in
dynamic "pseudo NMos:· 12 All product term and output
lines are precharged during every clock cycle before
being selectively discharged according to the input.
Therefore no state is preserved from one cycle to the
next and the circuit is combinational despite any opens
in the precharge or discharge pathsP Hence the PLA
used in CMOS chips is only susceptible to the same faults
as the traditional static PLA used in NMOS chips.

564

This analysis shows that for all single faults in our
fault model, there exists a code input that results in a
noncode output from the proposed two-rail code checker
Pl.A. Thus, the checker is self-testing with respect to
any likely single fault. Based on this result, it can be
shown that the checker constructed as a tree of smaller
self-testing checkers {Fig. 3) is also self-testing with
respect to any likely single faultP

Summary and conchqiona

We have presented an approach to increasing the
reliability of future high-end systems beyond what is
po11ible with technological solutions alone. The system
consists of computation nodes and communication
nodes, interconnected by high-speed dedicated llnks.
These components are relied upon to detect errors while
system level protocols are used for error recovery and
reconftguration.

The use of duplication and matching for
implementing the self-checking nodes allows us to
restrict a detailed analysis of the impact of all possible
faults to the comparator, which is a relatively simple
circuit. We have shown that the self-testing comparator,
which is the backbone of our approach, can be
implemented with NMOS and CMOS technologies.

Aclmol[led&oment,

We would like to thank Richard Fujimoto, Manolis
Katevenis, and Robert Sherburne for reviewing a draft of
this paper.

This research was supported by the State of
California MICRO program and the Defense Advance
Research Projects Agency {DoD), ARPA Order No. 3803,
monitored by Naval Electronic System Command under
Contract No. N00039-Bl-K-0251.

BPCerence■

1. T. Anderson and P. A. Lee, "Fault Tolerance Terminolo1y
Proposals," FTCS12, pp. 29-33 (June 1982).

2. 'If. C. Carter and P. R. Schneider , "Desi&n of Dynamically
Checked Computera," IF/PS Proc., pp. 878-883 (August
1988).

3. B. Courtoi■, "Failure Mechanism■, Fault Hypothe■e■ and
Analytical Te■tin& of LSI-NMOS (HMOS) Circuits," pp. 341-
350 in VLSI 81, ed. J. Gray, Academic Preu (1981).

4. E. A. Doyle, "How Part■ Fail," IEEE SpectNm 18(10) pp.
38-43 (October 1981).

5. J. Galiay, Y. CroU2et, and M. Ver11niault, "Physical Versus
Lo1lcal Fault Models MOS LSI Circuits: Impact on Their
Te■tability," IEEE-TC C-6) pp. 627-631 (June 1980).

8. J. Khakbaz and E. J. McCluskey, "Concurrent Error
Detection and Te■tin& for Large PLA'■," IEEE JSSC SC-
17(2) pp. 388-394 (April 1982).

7. G. P. Mak, J. A. Abraham, and E. S. Davidson, "The De■i1n
of PLAs with Concurrent Error Detection," FTCS12, pp.
303-3 10 (June 1982).

8. R. A. Rasmunen, "Automated Testina of LSI," Cbmputer
16(3) pp. 89-78 (March 1982).

9. C. H. St!quln and R. M. Fujimoto, "X-Tree and Y­
Component■," in Proc. Ad1,111n.ced Course on. VLSI
ArcMlecNn, Univ. of Bri■tol, England, ed. P.C. Treleaven,
Prentice Hall (1982).

10. D. P. Siewiorek and R. S. Swarz, 'I1wl Th.■ory CIM Prue&•
of Reliabt. Syd•m Design, Digital PreH (1982).

11. Y. Tamlr, "Fault Tolerance for VLSI Multicomputers," Ph.D.
D1■11ertation (ln preparation).

12. R. L. Wad■ack, "Fault Madeline and Loaic Simulation of
CMOS and MOS Integrated Circuit■," BST J 67(5) pp. 1449-
1474 (May-June 1978).

13. S. L. Wan, and A. Avizlenl■, "The De■lan of Totally Self
Checking Circuit■ U■lng Programmable Logic Array■,"
FTCS9, pp. 173-180 (June 1979).

