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Abstract

A multicomputer system consisting of hundreds of
processors interconnected by point-to-point links can
achieve high performance for many important
applications. We propose a hew application-transparent,
process-level, distributed error recovery scheme for
multicomputers. Checkpointing is initiated by timers at
intervals determined by the needs of the application.
Checkpointing and recovery involve only as much of the
system as is necessary: a set of interacting processes.
Processes which are not part of the interacting set do not
participate in checkpointing or recovery and continue to
do useful work. Several checkpoint and/or recovery
sessions may be active simultaneously. The scheme does
not require significant overhead during normal operation
since it is not necessary to make message transmission
atomic, acknowledge each message, or transmit check
bits with each packet. We discuss variations of our
technique using packet-switching or virtual circuits, and
compare our scheme to previously published techniques.

I. Introduction

Multicomputer systems, consisting of hundreds of
processors interconnected by high-speed links, are now
technologically and economically feasible[12, 20]. Such
systems can achieve high performance for many
applications at a relatively low cost. Even for *‘general-
purpose’’ applications, the reliability requirements of
large multicomputers, implemented with thousands of
VLSl chips, can only be met by using fault tolerance
techniques[17]. To this end we propose a new
application-transparent low-overhead fault tolerance
scheme for multicomputers based on process-level error
recovery. With this technique both the checkpointing
and recovery agorithms involve only as much of the
system as is necessary: a set of processes that have
interacted since their last checkpoint[1l]. Processes
which are not part of this interacting set need not
participate in checkpointing/recovery and may continue
to do useful work.
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Checkpointing is initiated by ‘‘timers’ associated
with each process[1]. The frequency of checkpointing
can thus be tuned to the specific needs of atask: a higher
frequency of checkpointing results in higher overhead
but in less work being lost when recovery is necessary.
Thus, different applications running on the same system
at the same time can be checkpointed at different
frequencies. Checkpointing involves saving a consistent
snapshot of the states of an interacting set of
processes[2, 17]. The state of each process can be saved
either in the memory of a neighboring node or on disks
which are connected to a subset of the nodes in the
system (henceforth called disk nodes[17]).

In the proposed scheme checkpointing and
recovery are done at the level of processes with no
system-wide central coordination. Many checkpointing
and recovery sessions may be active simultaneously.
Unrelated sessions do not interfere with each other, while
the actions of related ones are properly coordinated.

Performance and storage overhead during normal
operation is minimized at the cost of a potentialy
expensive recovery (rollback). Efficient use of the
communication network is ensured by using signature
registers[17] to avoid the need for message
acknowledgements or for sending check bits with each
message. Furthermore, there is no ‘‘book-keeping’’
information that must be sent with each message or
extensive logs that must be maintained in parallel with
normal operation. The scheme poses no restrictions on
the behavior of application software and is thus useful
for ‘‘genera purpose”’ environments where the
programmer is unaware of the fault tolerance
characteristics of the system.

In this paper we present a complete fault tolerance
scheme. We describe the use of the proposed error
recovery technique in conjunction with practica low
overhead error detection mechanisms. The effects of the
message transport mechanism (see Section V) on error
detection and recovery are also discussed. We begin, in
Section I1, with a brief description of the problem and the
requirements from the solution. Severa critical basic
concepts used in this work are described in Section 1V.



SectionV is a brief description of the error detection
techniques we employ. A high-level description of the
proposed algorithms is provided in Sections VI, VI, and
VIIl. A comparison with previous work on error
recovery in multicomputersis presented in Section I1X.

[I. Fault Tolerancefor Multicomputers

Our process-level error recovery scheme is
designed to work with multicomputers consisting of
hundreds or thousands of VLSl nodes which
communicate via messages over point-to-point links.
Each node includes a processor, local memory, and a
communication coprocessor. The nodes operate
asynchronously and messages may have to pass through
several intermediate nodes on their way to ther
destination. The system is used for ‘‘genera purpose’’
applications which have no hard rea-time constraints.
Errors can occur at any time as a result of hardware
faults in the nodes or in the communication links.

In order to achieve fault tolerance, the system must
include facilities for high-coverage error detection. Once
an error is detected, the system must be capable of
restoring a valid system state and continuing with normal
correct operation. Since programming and debugging
programs on alarge multicomputer is a difficult task, itis
highly desirable for the fault tolerance mechanism used
to be transparent to application programmers so as not to
further complicate their task.

The design of any fault tolerance mechanism
involves a tradeoff of coverage, worst-case duration of
interruption of service, hardware overhead, and
performance overhead during norma computation.
Many of the applications executed on large
multicomputers are simulations and numerical
computations that are ‘‘batch’’ in nature and do not have
strict real-time constraints. For these applications, loss
of many minutes of computation when an error occurs
may not be important as long as average system
performance remains high[17]. For more interactive
applications additional performance overhead may be
justified in order to prevent the possibility of losing the
results of the last few minutes of interactions with the
user (or external device). The fault tolerance scheme
should thus be ‘‘configurable’’ to meet the requirements
of each application while not penalizing all applications
equally in order to satisfy the requirements of the most
demanding application.

I11. Assumptions

The protocols described in this paper are based on
several  simplifying assumptions. Many of these
assumptions are similar to those discussed in [17] and
can be relaxed in similar ways to those discussed there.

We assume a closed system that consists of nodes,
links, and disks. Input is stored on disk before operation
begins. Output is stored on disk when the job ends.

The nodes are self-checking and are guaranteed to
signal an error to their neighbors immediately when they
send incorrect output[16]. Any node that generates an
error signal is assumed to be permanently faulty and no
attempt is made to continue to use it.

Hardware faults either cause a node to generate an
error signal or cause an error in transmission.

In order to minimize network traffic, the average
number of ‘‘hops’ from each node to the nearest disk
should be small. Hence, disks are connected to severa
nodes throughout the system. We will assume that a
failure in disks themselves or in the disk nodes causes a
crash (i.e., an unrecoverable error).

Each node has a unique identifier and there is a
total ordering of these identifiers. Each process on a
node has a unique identifier and there is a total ordering
of process identifiers within a node.

The connectivity of the system is high so that the
probability of the system partitioning due to the failure of
a node(s) is low enough so that it is reasonable for
partitioning to cause a crash.

V. Basic Concepts

The message delivery mechanism has a strong
effect on the performance of our checkpointing and
recovery schemes. Two mechanisms will be considered:
virtual circuits and simple packet switching. With virtual
circuits, alogical circuit is set up from the source to the
destination by placing appropriate entries in the routing
tables of each node[13,11]. Once the path is set up,
there is minimal routing overhead for packets sent
through the circuit and FIFO ordering of these messages
ismaintained. With message/packet switching no path is
established in advance between the sender and the
receiver. Every packet is routed independently at each
hop and packets (messages) may arrive at their
destination out of order.

A key ideain this paper is the use of checkpointing
and recovery of sets of interacting processes rather than
individual processes, individual nodes, or the system asa
whole[1]. An interacting set of processes is a set of
processes that have communicated with each other
directly or indirectly since their last checkpoint. The
system is composed of a collection of disjoint interacting
sets of processes. Since there has been no
communication between processes in different sets since
their last checkpoint, a new checkpoint of a process in
one interacting set is consistent with both the old and a
new checkpoint of another process which is in some



other interacting set. Hence, different interacting sets
may be checkpointed and recovered independently.

The state of a process, which gets checkpointed
periodically and recovered once an error is detected, is
the contents of al of the memory and registers used by
the process. This includes some system tables, such as
the list of al the virtual circuits currently established to
and from the process.

Since each node can be time-shared between
multiple processes, it may have to participate in multiple
simultaneous checkpointing and recovery sessions.
Hence, it is not advisable to implement checkpointing
and recovery as part of the kernel. Instead, whenever
checkpointing and recovery of a particular process is
initiated, the process is prevented from further execution
and the kernel spawns a special handler process that
effectively replaces the application process for the
duration of the checkpointing or recovery sessions. The
handler can manipulate the state of the process and can,
as its final action, cause the process to become
“‘executable’’ again. In the rest of the paper we will
often discuss the actions of participants in checkpointing
and recovery sessions. These ‘‘participants’ are really
the handlers corresponding to the processes being
checkpointed or recovered.

V. Error Detection

As previously discussed, errors in the system may
be a result of node failures or failures in the
communication links. We assume that the nodes are
self-checking and produce an error indication whenever
their outputs are incorrect[16].

In most systems, errors in message transmission
are detected by including with each message check bits,
which the receiver uses to determine whether the
contents of a message has been corrupted. Lost
messages are detected by protocols that involve
acknowledging each messages as well as transmission of
sequence numbers with each message[19]. The
disadvantage of these techniques is that they involve
transmission of redundant bits and thus ‘‘waste”
communication bandwidth. Since the probability of an
error in transmission is low, it is wasteful to check the
validity of each message or packet independently.
Instead, as proposed in [17], each node has two special
purpose registers for error detection associated with each
of its ports. One of these registers contains the CRC
(Cyclic Redundancy Check) check bitsfor al the packets
that have been sent from the port. The other register
contains the CRC check bits for all packets received.
These special purpose registers are linear feedback shift
registers (LFSRs) and their contents are updated in
parallel with the transmission of each packet [4].

In order to check the validity of all the packets
transmitted through a particular link, each node sends to
its neighbor the contents of the LFSR used for outgoing
packets. The neighbor can then compare the value it
receives with the value in its LFSR for incoming packets
and signa an error if it finds a mismatch. If packet
switching is used, al the links in the system must be
checked in this way before committing to a new
checkpoint. Otherwise, the state of a node corrupted by
an erroneous message may be checkpointed and later
used for recovery. With virtual circuits, LFSRs at each
node are used to accumulate signatures of the packets
transmitted through each incoming and outgoing virtual
circuit. Communication between processes in the
interacting set can be checked, without checking all the
links in the system, by performing ‘‘end-to-end’’ checks
on all the virtual circuits between processesin that set.

The packets used to coordinate the creation of
checkpoints and for error recovery must be verified
before they are used. Hence, for these packets, an error
detecting code is used and redundant bits are transmitted
with the packet. Thus, there are two types of packets in
the system: normal packets that do not include any
information for error detection, and specia control
packets, called fail-safe packets, that are used only for
transmitting information between handlers and which
include a sufficient number of redundant bits to detect
likely errors in transmission. The fail-safe packets are
either error-free or the error is easily detectable by the
receiving node.

When a node fails, recovery involves rolling back
the union of the interacting sets of al the processes that
were running on that node and requires eventua roll
back of al interacting sets of processes which had any
messages in transit on that node at the time of its failure.
When an error is detected by a mismatch of the LFSRs
on two ends of a physical link and packet switching is
used, the entire system must be rolled back since there is
no way to determine which processes were affected by
corrupt messages. If virtual circuits are used, the error is
detected by a mismatch of signatures on the two ends of
a virtual circuit and only the interacting set which
includes the two processes connected by that virtual
circuit need to be rolled back.

VI.

The proposed error recovery scheme is based on
checkpointing consistent states of interacting sets of
processes. When an error is detected, all the processes
that could have been affected by the error are identified.
The sets of processes that have interacted with the
affected processes since their last checkpoint are
determined, and the states of all the processes that were
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members of those interacting sets are rolled back to that
last checkpoint.

Checkpointing and recovery sessions require
coordination. This is accomplished by a coordinator
handler that is dynamically determined as part of each
session. The mechanism for identifying the participants
in checkpointing and recovery sessions and for selecting
coordinators will be described in this section.

An interacting set of processes forms a
communication graph where there is a vertex for each
process and each arc indicates that communication has
taken place between the two processes it connects. The
communication graph can be transformed into a
communication tree by designating one of the vertices as
the ‘‘root process’ or coordinator. All vertices which
have arcs connected to the root (*‘children’” of the root)
are called first-level processes. Processes/vertices which
have no children are called leaves. The communication
tree is the fundamental unit around which our algorithms
are structured.

When checkpointing or recovery is initiated, the
kernel spawns a handler process that performs the
necessary operations. A handler initiated as a direct
result of a ‘‘checkpointing timer'’ triggering or an error
being detected begins its operation assuming that it will
be the coordinator of a checkpointing or recovery
session. In order to enable such a handler to form a
communication tree, the system (hardware and/or
software) must maintain, for each process, dynamic
communication information which is the list of processes
with whom there has been direct communication since
the last checkpointing session[1]. This list is called a
first-level list since, if the process becomes a coordinator
(and root of a communication tree), the processes on this
list are the first-level processes mentioned above.

The coordinator initiates formation of a
communication tree by sending CHECKPOINT or
ROLLBACK messages to al the processes on its first-
level list. These processes are then placed in either a
‘“‘checkpointing’” or ‘‘recovering’’ state, handler
processes are spawned for them, the handlers send
CHECKPOINT/ROLLBACK messages to al their first-
level processes (except for the parent process), and so
on. A process that is aready part of the tree informs the
sender that it will not be its child. A process is a leaf
process of a communication tree if it has communicated
only with the process that sent it a
CHECKPOINT/ROLLBACK message, or processes that
are already part of the communication tree. Each ledf
process informsits parent that it isits child and that it isa
leaf. Each non-leaf process  waits  for
confirmationg/denials from the roots of al its subtrees

and then sends a confirmation acknowledgement to its
parent. This level-by-level process continues back up to
the root process. When the final acknowledgement is
received by the root process, the communication tree is
complete - the interacting set has been found.

It is possible for several processes within an
interacting set to initiate checkpointing and/or recovery
sessions simultaneously. Due to the stepwise
confirmation/denial process it is possible to create a
correct and consistent communication tree by
“‘disassembling’’ all but one of the subtrees and
incorporating their members in the single ‘‘winning’’
tree. To this end, CHECKPOINT and ROLLBACK
messages include the identifier of the coordinator, which
consists of a node and process ID. Since there is a total
ordering of node and process identifiers, a process
receiving CHECKPOINT or ROLLBACK messages
originating from different coordinators can pick the
coordinator with the ‘‘largest’” ID. If a process receives
one CHECKPOINT and one ROLLBACK message, the
ROLLBACK message ‘‘wins’ regardless of the
coordinator ID. The process propagates the winning
CHECKPOINT or ROLLBACK messages to all its first-
level processes, even if it has previously propagated the
losing CHECKPOINT or ROLLBACK messages.
Eventually, the step-by-step propagation of the winning
session ‘‘flushes out’’ al remnants of the losing session
and a consistent communication tree for checkpointing or
rollback is established.

As discussed in the next section, during a
checkpointing session messages in transit between
members of the interacting set are ‘‘flushed’’ to their
fina destinations and are checkpointed together with
these destination processes. Similarly, during a recovery
session, messages in transit between members of the
interacting set must be discarded from the system
together with the processes that are replaced by a
previously saved checkpoint. Since the formation of the
communication tree is not instantaneous, it is possible for
new messages to be sent to or from members of the
interacting set during this process. During the formation
of the communication tree, a process (X), which is part
of the interacting set but not yet part of the
communication tree, may initiate communication for the
first time with another process (Y), which is already part
of the communication tree. The checkpoint generated by
this session must include, as part of the state of Y, any
messages sent from X to Y before X was incorporated
into the communication tree. This implies that the state
of Y to be checkpointed is not defined until the
communication tree is complete (until the root receives
acknowledgements from all its children). The other
potential problem occurs if a process (X) which is not



part of the interacting set initiates communication with a
process (Y) which is aready part of the communication
tree. In this case any messages sent must not be
delivered to Y and are held until the checkpointing
session is complete.

VIIl. Checkpointing

A checkpointing session for a task (set of
processes) is usualy initiated by the triggering of a
““timer’’ associated with one of the processes. When this
timer goes off, a checkpoint coordinator (CCy, where X
is the process who is initiating the checkpoint) starts up.
CCy aftempts to create a communication tree
(checkpoint tree), of which it isthe root, and coordinate a
checkpointing session. The man tasks of the
checkpointing algorithm are to: identify the interacting
set; make sure the process states are complete by
flushing any messages in transit to their destination
processes in the interacting set; detect any errors that
may exist in any of the process states and, if any, initiate
a recovery session; otherwise, save the process states,
and resume normal processing. As discussed above,
several checkpointing sessions for the same interacting
set may be initiated ‘‘simultaneously’’ but they will be
appropriately merged into a single checkpoint tree.

Immediately after process X initiates a
checkpointing session, its state is changed to
‘“‘checkpointing’” and it does not get any further
opportunity to execute until normal operation is resumed.
The checkpointing coordinator, CCy, takes the place of
X in receiving (application-level) messages destined for
X. Messages for X are accumulated (by CCy) in a
message queue which is checkpointed with X at a later
stage of the checkpointing session. CCyx aso begins
sending X's state to the disk node in charge of
maintaining X's checkpoint. As discussed in the
previous section, CCy initiates the construction of the
checkpoint tree by sending CHECKPOINT messages to
all of process X’'sfirst-level processes. If communication
in the system is based on virtual circuits (Section V), the
CHECKPOINT messages are sent down virtual circuits,
if they dtill exist. Since all communication aong a
virtual circuit is FIFO, any messages in transit will be
flushed to their destinations. The *‘source’’ signature of
the circuit, which is sent as part of the CHECKPOINT
message, is then compared to the ‘‘destination’’
signature. If there is a mismatch a recovery handler will
be started and the checkpoint handler will terminate. For
circuits that have been ‘‘torn down,’, at which time the
signature comparison would have been made,
CHECKPOINT messages are simple routed ‘‘hop-by-
hop'’ and carry no signature.

As discussed earlier, the receipt of a

CHECKPOINT message by process Y causes an
operating system to spawn a handler process that will
take care of all checkpointing duties for that process
(CHy - checkpoint handler for process Y). First, CHy
flags Y as ‘‘checkpointing’’ and sends CHECKPOINT
messages to all the processes with which Y has
communicated except for Y’s parent, and so on until the
tree is complete, i.e., until the leaf nodes are reached.
CHy then beginsto send Y's state to the appropriate disk
node and takes over receiving messages destined for Y
and accumulating them in the message queue that may be
included as part of Y’s checkpoint state later in the
session. After sending CHECKPOINT messages, all the
handlers (CHs and CC) wait for CH_ACK (checkpoint
acknowledgement) messages from the processes to
whom CHECKPOINT messages were sent.

Upon recelving a CHECKPOINT message,
processes which are already part of the tree respond with
a CH_ACK(NOT_CHILD) message to the sender while
other processes respond with a CH_ACK(CHILD)
message. Once a process has received CH_ACK
messages for all the CHECKPOINT messages it sent, it
sends a CH_ACK(CHILD) message to the sender of the
first CHECKPOINT message it received (its parent).

As discussed in the previous section, the
checkpoint tree is complete only after the coordinator has
received CH_ACK messages from al its children. It is
only at this point that the message queues being
accumulated by the handlers are guaranteed to contain all
the messages which were in transit between processes in
the interacting set and all the signature cross-checks are
complete. Once the coordinator CCy receives CH_ACK
messages from all its children, it begins sending X’'s
message queue to the disk node where it is included with
X's saved state. CCy aso sends CH_COMMIT
messages to al its children, thus informing them that the
tree is complete and that message queues may now be
sent to disk. CCy then waits for an acknowledgement
from disk, signifying the correct transfer of process X's
state and message queue, and for CH_DONE messages
from all its children.

When CHy receives the CH_COMMIT message, it
forwards the CH_COMMIT to its children, sends Y’s
message queue to disk, and waits for the
acknowledgement from the disk node (for the message
queues and for Y's state) and for CH_DONE messages
from al it's children. CHy then sends a CH_DONE
message to it's parent and waits for a CH_RESUME
message. When the CCy receives CH_DONE messages
from al its children, it sends a resume message to the
disk node where its state is being stored, causing the disk
server process (see next subsection) to commit to the



new state. Once CCy receives an acknowledgement
from the disk, it sends CH_RESUME messages to all its
children. Each of the checkpoint handlers in turn
commits the new states and forwards the CH_RESUME
message to its children.

Normal operation cannot be resumed while the
CH_RESUME messages are still being propagated down
the tree. If processes are alowed to resume normal
operation in the middle of the CH_RESUME ‘‘phase,”
then it is possible for part of the checkpointing tree to be
resuming normal operation and be committed to the new
checkpoint while another part of the tree is till not
committed to the new  checkpoint (see
subsection VIII.B). If a node containing two or more
processes that are members of the interacting set fails at
this time, the tree may be partitioned into two or more
digoint subtrees. a subtree in norma operation
committed to the ‘‘new’’ checkpoint and a subtree that
may decide to roll back to the ‘“‘old’’ checkpoint. Thus,
these subtrees may end up being rolled back to
inconsistent states. Hence, normal operation does not
resume until the new state has been committed to by all
members of the checkpoint tree. To this end,
CH_RES ACK messages are sent back up the tree by
each leaf process after its resume has been acknowledged
by the appropriate disk node. At this point, the
checkpoint handler moves its process into the ‘‘ready-
to-run’’ queue and terminates, thus resuming normal
operation. In this way, the CH_RES ACK messages
proceed up the tree to the coordinator, which is the last
handler to terminate.

A. Disk Nodes

On each disk node there is a disk server process
that saves and restores checkpoints from the disk. The
server process maintains a table with information
regarding the status of the checkpoint of each application
process whose state is stored on the disk (see Figure 1).
Normally, a process using the disk for checkpoint storage
has a most one entry, or checkpoint. During a
checkpoint session, a second entry is made as the new
checkpoint state begins to arrive at the disk node. This
entry in the process table is invalid until the last state
packet is received.

For each process in the system there is a version
variable stored on the node where the process is
executing[17]. If an error is detected and recovery is
necessary, this variable is used to determine which
version of the process checkpoint on disk should be used.
The version variable has three possible values: known,
old, and unknown. During normal operation, the version
is always ‘*known,’ meaning that there is only one valid
checkpoint saved on disk. Just before a handler begins

Disk Server Process Table
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Figure 1: The process table maintained by the disk-
server process running on the disk node. A) shows
an entry for process F between checkpoint sessions.
Process B was F's previous checkpoint coordinator
and the disk address field points to the location on
disk where F's state is stored. B) shows process F
in the midst of a checkpoint session which is
coordinated by process A. In C) F has two valid
process states on disk and, in D), the newest state
has been committed to.

sending the new checkpoint state of a process to disk, the
value of the version variable changesto ‘‘old.” When the
message queue is sent to disk, the handler changes the
version to ‘‘unknown’’ and waits for a CH_RESUME
message. When the CH_RESUME message is later
received the handler sends a RESUME message to the
disk node and waits for an acknowledgement. When the
acknowledgement is received, the version is changed
back to ‘*known.’

The version variable associated with the
checkpoint coordinator process never changes since the
version is aways ‘‘known,’”’ i.e., there is never more than
one valid checkpoint state on disk. This means that the
entry in the process table associated with the checkpoint
coordinator never passes through step C in Figure 1, but
moves directly from B to D. Thus the entire interacting
set is actually committed to the new checkpoint when the
checkpoint coordinator’'s entry in the disk server's
process table changes from B to D. As discussed in the
next section, this is crucial for recovery from node
failure which occurs during a checkpointing session.

B. Checkpointing with Packet-Switching

In a packet-switching environment messages are
routed on a hop-by-hop basis over virtually any path in
the system. Flushing of messages in transit during
checkpointing is more complex since the entire system
must be flushed. This requires temporarily stopping all



the processes in the system from generating new
messages while existing messages in transit are flushed
to their final destinations and checks are performed on
every communication link. As described by Tamir and
Gafni [18], this is a classic distributed termination
problem and the solution we use here is the same one
used in [18], which is derived from [14, 3].

VIII. Recovery

Recovery sessions are initiated when an error is
detected. There are two basic types of recovery sessions:
recovery of a single interacting set, and node-level
recovery, which may involve multiple interacting sets.
The type of recovery required depends on the nature of
the error detected by the system. When the two
signatures on the ends of a virtual circuit do not match, a
single interacting set needs to be rolled back - that set
which contains the two processes on either end of the
virtual circuit. Node-level recovery is required when an
error in anode's outputs is detected by its neighbors[16].
In this case, recovery may involve more than one
interacting set since we assume that no information is
available from the node itself and we must also worry
about any messages which were being routed through the
node when it failed.

A. Recovering From Communication Errors

The agorithm for recovery from an error in
communication is very similar to the checkpointing
algorithm, where recovery coordinators and handlers
replace their checkpointing counterparts. When an error
in communication is detected (by a mismatch in
signatures), the kernel on the node where the error is
detected initiates a rollback by spawning a recovery
coordinator process (handler) that ‘‘replaces’ the
application process associated with the detected error. A
“‘recovery tree’’ is created by propagating ROLLBACK
messages which are acknowledged by RE_ACK(CHILD
or NOT_CHILD) messages in exactly the same way as
CHECKPOINT and CH_ACK messages are used.
Unlike checkpointing, no signature comparisons are
made, and all messages which are flushed to their
destinations are discarded. For each process (Y) in the
interacting set, the associated recovery handler (RHy)
requests the process' state from the appropriate disk node
after all expected RE_ACK messages have arrived.
When a node receives its entire process state and
associated message queue as well as RE_DONE
messages from al its children, it sends a RE_DONE
message to its parent. When the recovery coordinator
receives its checkpointed state and RE_DONE messages
from all its children, it sends RE_RESUME messages to
it's children, marks its associated process ‘‘runnable,’”
and terminates. Upon receipt of a RE_RESUME, RHy

terminates and process Y resumes normal processing.
No ‘‘commit’” or ‘‘resume acknowledgement’’ phases
are needed.

B. Node-Level Recovery

Node-level recovery is initiated when a node
indicates to its neighbors that it is faulty (as discussed in
sections |1l and V, we assume the nodes are self-
checking). Under these conditions it is assumed that the
entire node has failed and all information that was stored
in it is lost. This node resets itself [16] and, if it is
usable, processes may be restored back onto it, otherwise
they need to be restored onto other nodes in the system.
We assume that there is some reconfiguration algorithm
that supplies the recovery agorithm with destination
node(s) to which the processes are to be restored.

Since no information is available from the failed
node, the obvious ‘‘roots’ of the relevant recovery trees
do not exist. Recovery trees must be constructed based
on information available outside the failed node. An
additional phase is added to the general structure of the
algorithms to collect the missing information. In this
phase, each neighbor which has detected the node failure
starts up a Recovery Initiator Process (RIPy where Y is
the node ID on which RIPy isrunning). The main tasks
performed by this process are: determining which
processes were on the failed node; determining the first-
level list for each failed process, and starting up
Recovery Coordinators (phase two) for each failed
process. Phase two is amost identical to recovery from
communication errors. Due to lack of space, the entire
node-failure algorithm will not be presented here but
critical problems will be discussed.

It should be noted that when a node fails, messages
in transit that happened to be in the node at the time of
failure will be lost. While it is possible to detect the fact
that messages have been lost as part of the recovery
process, there would usually be no real need to do so.
The loss of messages due to node failure is equivalent to
any other error in communication and is aready dealt
with by the checkpointing and recovery algorithms.

Constructing First-Level Lists. The immediate
neighbors of each node keep track (alist) of all processes
currently running on the node. Whenever a process is
initiated during normal operation, a fail-safe message
relaying this fact is sent to the neighboring nodes. When
a process terminates, it initiates a checkpoint session at
which time the process's ID is removed from the
neighboring nodes' lists. After retrieving this list, RIPy
needs to get information equivalent to first-level process
lists, for each failed process, before tree construction can
begin. This is done by broadcasting RECOVERY
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Figure 2. A) An example of an interacting set. Horizontal arrows indicate communication between two processes while time
flows from top to bottom. A checkpointing session is initiated by process A and afailure of the node on which process A
and D are running occurs during the checkpoint session. B) The corresponding checkpointing communication tree and the
flow of messages during checkpointing until the error is detected.

messages (containing the failed process list) to al nodes
in the system. Each node returns a ‘‘FIRST-LEVEL
message’’ which contains a list of processes on that node
who have communicated directly with processes on the
failed node. With this information al the required
recovery trees can be constructed.

Recovery During a Checkpoint Session. In order
to be able to recover from errors that occur, or are
detected, during a checkpoint session, it must be possible
to determine which process state to roll back to: the state
being saved or the state saved previously. As described
earlier, with each process in the system there is an
associated version variable which is stored locally on the
node on which the process is executing[17]. During
recovery sessions this variable is examined in order to
determine which checkpoint to use.

The problem with a recovery session being
initiated in the middle of a checkpointing session is
complicated by the fact that parts of the interacting set
can be lost when a node fails (see Section VII). This
problem is illustrated in Figure 2 where processes A and
D were running on the same node when that node failed.
Since all communication information (first-level lists) are
lost, there is no way to know that processes A and D had
communicated with each other. Hence, RC, and RCp
will each have their own recovery tree when, in fact, they
belong to the same interacting set. Depending on the
states of the processes’ version variables within these
trees, the recovery coordinators may independently
decide to roll back to opposite versions - leading to an
incorrect system state.

During recovery, if any of the processes in a
recovery tree have ‘‘old’ version variables, then the
entire tree rolls back to the oldest (or only) version. If
any of the processes in the tree have ‘‘known’’ version
variables, then the entire tree rolls back to the newest
version. The checkpointing process described in

Section VII guarantees that within an interacting set it is
not possible for one process's version variable to be
“‘old”’ while another process's isin the ‘‘known’’ state.
Hence, there is a problem only if ALL processes in the
recovery tree are in the ‘‘unknown’ state. In this case
the Recovery Coordinator accesses the disk information
associated with the checkpoint coordinator, see Figure 1,
and determines which version it’s recovery tree must roll
back to. Thiswill aways work no matter how much of
the interacting set is on the failed node. Once the disk
node commits to the newest process state for the
checkpoint coordinator, the entire interacting set has
committed to the newest state.

C. Recovery in a Packet Switching Environment

If communication is based on packet switching
rather than virtual circuits, rollback may be slightly more
complex. Specificaly, before rollback can occur all
messages in transit in the system must be flushed to their
find degtinations. Those messages whose final
destinations are processes that are being rolled back are
then discarded. If each process keeps a separate
signature of its communication with every other process,
errors in communication can be detected by comparing
corresponding signatures.

Without maintaining separate signatures of
communication with every other process, the entire
system must be rolled back whenever an error is
detected. In such and environment LFSRS can be used at
the link level to detect errors in communication between
neighboring nodes. As part of the process of flushing
messages in transit, the signatures in these LFSRs are
compared. If a mismatch of signatures is found, there is
no way to pinpoint when the error occurred or which
processes were affected by it. If it is impossible to
determine which processes were affected by the error,
the entire system must be rolled back. Similarly, if a
node fails, messages in transit may be lost and it is not



possible to determine the source or destination of these
messages. Here again, the only solution (assuming our
environment where messages are not acknowledged by
the destination process) isto roll back the entire system.

IX. PreviousWork

Many  fault tolerance  techniques  for
multicomputers have been presented in the literature.
These techniques can be evaluated in terms of the time
and storage overhead during normal operation, the time
lost when recovery occurs, and the degree to which the
scheme restricts the actions of the application or requires
the application to contain special features (such as
recovery blocks[10]) for fault tolerance.

Some existing schemes require maintaining
multiple checkpoints of each process[21] which may, in
the worst case, lead to the rolling back of processes to
their initial state due to domino effect[10]. Other
techniques require that the system be structured out of
atomic actions[9] or are based on application software
using recovery blocks for error detection[8,21].
Systems where fault tolerance is based on
transactions[9] require serializability which can
significantly degrade the level of concurrency achievable
in a system[15]. Existing schemes often restrict the
patterns of communication between processes[5] and
require significant overhead during normal operation for
maintaining the information necessary for recovery. The
problems of errors in communication are often ignored
by explicitly stated assumptions[8]. In other cases
message sending and receiving must be atomic[1], so
that communicating processes always appear as either
having completed a communication or as having not yet
initiated it. This requires overhead during normal
operation due to the use of a two-phase commit protocol
for inter-node messages.

Barigazzi and Strigini proposed an error recovery
procedure for multicomputers that involves periodic
saving of the state of each process by storing it both on
the node where it is executing and on another backup
node[1]. The critical feature of this procedure is that all
interacting processes are checkpointed together, so that
their checkpointed states can be guaranteed to be
consistent with each other. Therefore, the domino effect
can not occur and it is sufficient to store only one
‘“‘generation’’ of checkpoints. The scheme presented in
this paper uses thisidea of checkpointing and recovering
dynamically changing sets of interacting processes.

With the recovery scheme described in [1] alarge
percentage of the memory is used for backups rather than
for active processes. The resulting increased paging
activity leads to increases in the average memory access
time and the load on the communication links. This load

is also increased by the required acknowledgement of
each message and transmission of redundant bits for
error detection. The communication protocols, which are
used to assure that the message ‘‘send’’ and *‘receive’’
operations are atomic, require additional memory and
processing resources for the kernel. Thus, performance
is significantly reduced relative to an identical system
where no error recovery is implemented. The scheme
proposed in this paper eliminates the requirements for
atomic message transmission and provides the ability to
save the checkpoints on disk, where they need not have a
detrimental effect on system performance.

The idea of checkpointing and recovering
interacting sets of processes is extended in [17] to
checkpointing and recovering the entire system (global
checkpoints). That scheme does not have the
disadvantages discussed above of the schemein[1]. The
problem with the global checkpoints technique is that
checkpointing is expensive since it requires saving the
state of the entire system. Thus, for performance
reasons, the time between checkpoints is relatively long
(on the order of thirty minutes). Hence, the system can
only be used for batch applications, such as large
numerical computations, where the possibility of losing
thirty minutes of computation during recovery is an
acceptable price for the resulting low overhead (a few
percent[17]). In this paper we extend the scheme in [17]
to perform checkpointing and recovery of sets of
interacting processes rather than of the entire system.
This extension results in a scheme that is useful for a
system running a variety of tasks, including batch tasks
and tasks which require more frequent checkpointing.

A new technique for distributed error recovery
caled ‘‘sender-based message logging’ has been
proposed recently [6]. This scheme is based on recording
all messages a process sends, so that they can be *‘ played
back’ to a failed, rolled-back process in order to bring
that process back to a state consistent with that of the rest
of the processes in the system. This technique resultsin
a very fast recovery since only the failed process needs
to repeat the computation since its last checkpoint.

A major disadvantage of the origina version of
sender-based message logging is that it limits
concurrency by prohibiting a process from sending any
messages until it has been notified that the senders of all
previous messages to it have logged the messages they
sent[6]. An aternative optimistic protocol for sender-
based logging eliminates the concurrency loss at the
expense of requiring the broadcast, before each
checkpoint, of a message whose size is proportiona to
the number of processes with which the checkpointing
process has communicated. The double



acknowledgement of each message in either protocol
significantly increases message traffic. In addition, since
all messages sent are logged by the sender, there is a
performance and space overhead incurred during normal
operation associated with the logging process.

Since the valid recovery of a process is dependent
on the message logs of the processes within it's
interacing set, sender-based logging is not easly
extendible to handle the failure of more than one process
at atime. If, asis the case with our technique, the only
information needed for recovery is stored during
checkpointing, it is possible to save this information in
multiple locations (e.g. ‘‘mirrored’’ disk drives[17,7]),
thus supporting recovery from multiple node failures.
Since message-logging requires the saving of messages
during every send, saving messages on non-local and/or
slower devices would degrade performance significantly.

X. Summary and Conclusions

A general-purpose recovery scheme, integrating
error detection facilities with checkpoint and recovery
algorithms, has been presented. This scheme takes into
account the difficulties which arise when attempting to
ensure the correct transmission of messages in a
multicomputer system. The proposed technique handles
total node failures where several processes and messages
in transit may be lost simultaneously. The agorithms
presented are most effective in conjunction with virtual
circuits, but can aso be used in other environments, such
as packet-switching, with a significant degradation in the
speed of checkpointing and recovery.

By not performing checkpoints at a level lower
than an interacting set of processes, our scheme incurs
little overhead during normal operation, is free of
domino effect, and is completely application transparent.
Since checkpointing and recovery are performed on
interacting sets, and do not involve the rest of the system,
several checkpointing and recovery sessions can he
active at the same time, while other parts of the system
are peforming their normal operation, without
compromising correctness. Using the proposed
techniques, it is possible to implement a highly reliable,
general-purpose, large multicomputer system in which
the fault tolerance characteristics are completely
transparent to the user.
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