Proceedings of the Fourth Conference on Hypercubes, Concurrent Computers, and Applications
Monterey, California, pp. 103-108, March 1989.

APPLICATION-TRANSPARENT ERROR-RECOVERY TECHNIQUES FOR MULTICOMPUTERSY

Tiffany M. Frazier and Yuval Tamir

Computer Science Department
University of California
Los Angeles, California 90024

Abstract

We describe and compare error recovery techniques
for restoring a valid system statein large *‘ general-purpose’’
multicomputers following component failures. The
techniques discussed are application-transparent, i.e., they
do not require application processes to be aware of the fault
tolerance characteristics of the system. These techniques are
based on checkpointing and rollback: process states are
periodicaly saved to stable storage and are restored from
stable storage in the event of a hardware failure. We divide
existing recovery schemes into two classes: Message
Logging and Coordinated Checkpointing, describe severa
techniques in each class, and present the advantages and
limitations of the schemes when used to provide fault
tolerance for large multicomputers.

I. Introduction

Multicomputer systems, with hundreds of nodes
interconnected via point-to-point links, may consist of
thousands of large VLSl chips and hundreds of printed
circuit boards. If the entire system islikely to fail as aresult
of the failure of any of its components, the expected mean
time between system failures is only a few hours[11, 18].
Since there are many important applications that require
continuous correct operation for tens or hundreds of hours,
such a high system failure rate is unacceptable. Hence, the
system must be able to operate correctly despite the failure
of some of its components, i.e., it must be fault tolerant. In
order to ‘‘tolerate’’ hardware faults, the system must be able
to detect errors, locate the faulty component, restore a valid
system state, and (possibly) reconfigure the system so that it
does not continue to use the faulty components[13].

In this paper we describe and compare error recovery
techniques for restoring a valid system state in a
multicomputer following an error. We focus on schemes for
‘‘general-purpose’’ applications without hard real-time
congtraints. In this environment, the performance overhead
and redundant hardware dedicated to fault tolerance must be
minimized, even at the expense of increased recovery time
when an error does occur. Given the difficulty in writing
large distributed applications, the virtual machine visible to
the programmer must not be made more complex by the
fault tolerance scheme. Hence, we focus on application-
transparent techniques, where no restrictions are made on
the behavior and structure of the application software.

The recovery techniques discussed are based on
checkpointing and rollback. Process states are periodically

T This research is supported by TRW Corporation and the State of
CaliforniaMICRO program.

U.SA.

saved (checkpointed) to stable storage. When an error is
detected, a previously saved valid state is restored. The
overhead of these schemes includes the time and storage
overhead incurred during normal operation, and time lost
during recovery. Practical existing application-transparent
recovery schemes based on checkpointing and rollback can
be divided into two classes. Message Logging and
Coordinated Checkpointing. We describe the key features
of the two classes, highlight the differences between the
schemes within each class, and present the advantages and
limitations of each scheme when used to provide fault
tolerance for large multicomputers.

Il. System Modé and Assumptions

Our target system is a multicomputer which consists
of hundreds or thousands of VLSl nodes which
communicate via messages over point-to-point links. Each

node includes a processor, loca memory, and a
communication coprocessor. The nodes operate

asynchronously and messages may have to pass through
several intermediate nodes to reach their destinations. The
system is used for ‘‘general purpose’’ applications which
have no hard real-time constraints. Errors can occur at any
time as a result of hardware faults in the nodes or in the
communication links.

A fault-tolerant multicomputer must be able to detect
and recover from errors in interprocessor communication.
Many error recovery schemes[15, 9] are based on the use of
reliable FIFO communication channels between nodes.
These channels are implemented by underlying
communication protocols which typically involve sending
redundant bits for error detection, appending sequence
numbers to each message, and use of end-to-end
acknowledgements[20]. Alternatively [18,19], detection
and recovery from errors in communication may be an
integral part of the general error recovery mechanism. In
either case the overhead for dealing with the possibility of
lost or corrupted messages must be considered as part of the
system overhead for fault tolerance.

Most schemes assume that nodes are fail-stop[14] so
that they either generate the correct results or no results at
all. Such nodes can be implemented using self-checking
hardware which is guaranteed to signal an error to the
neighbors immediately when incorrect output is
generated[17]. Any node that generates an error signa is
assumed to be permanently faulty and no attempt is made to
continue to useiit.

The error recovery schemes discussed in this paper are
based on the existence of stable storage where checkpoints
can be safely maintained[10]. Such stable storage may be

-104 -

approximated by ‘‘mirrored”’ disks with multiple access
ports[8] in conjunction with reconfiguration which takes
place in response to node or disk failure[18]. In this paper
we assume that some of the nodes in the system, called disk
nodes, are connected to these ‘‘reliable’” disks and the
failure of a disk or a disk node causes a crash (i.e., an
unrecoverable error)[18]. We further assume that the
system connectivity is sufficiently high that network
partitioning will never occur, i.e., there will always be a path
between every node and every disk node.

The state of a process consists of the contents of all of
the memory and registers used by the process. This can
include some system tables, such as the list of al processes
with whom communication is currently ‘“‘open’”” The
“unit’” of checkpointing and recovery may be a
process[9, 19], a set of processes[15] (recovery unit), or a
complete node[18].

Each node can be time-shared between multiple
processes. If checkpointing and recovery are done at the
level of processes, a node may thus have to participate in
multiple simultaneous checkpointing and recovery
sessions[19]. Whenever checkpointing or recovery of a
particular process is initiated, the kernel spawns a handler
process that performs the necessary operations. The handler
can suspend the process, manipulate its state, or allow it to
resume normal operation. In the rest of the paper we will
often discuss the actions of participants in checkpointing and
recovery sessions. However, the techniques described are
all application-transparent so the ‘‘participants’ are really
the handlers corresponding to the processes being
checkpointed or recovered.

I11. Checkpointing and Recovery

A. Checkpointing/Recovery of Independent Processes

In a system which supports only non-interacting
processes, checkpointing involves periodically suspending
each process, copying the process state to stable storage,
and then adlowing the process to resume normal
computation. When a node fails, all information on the node
is assumed to be lost. The checkpointed states of al the
processes that were on the failed node are restored from
stable storage to working nodes. The processes may then
resume computation from these older states[13]. In order to
be able to tolerate node failures that occur during
checkpointing, the old checkpoint of a process is erased only
after the new checkpoint has been completely written to
stable storage.

The overhead of a fault tolerance scheme is
determined by the frequency of checkpointing, the ‘‘cost’’
of saving each checkpoint, extra operations required during
normal computation for error detection and maintenance of
bookkeeping information, and the ‘‘cost’’ of recovery. The
rest of this subsection is a detailed description of the
different overhead components.

a) computation time lost during checkpointing: Without
the use of redundant hardware, a fraction of the processing
cycles on each node must be devoted to checkpointing.
Specifically, each node that has processes that are
participating in a checkpointing session, must suspend

normal operation in order to run the handlers that perform
the various functions necessary for checkpointing. If the
communication coprocessor can operate independently of
the application processor, normal execution of other
processes on the node may resume before the checkpointing
session is complete. The process being checkpointed may
need to be suspended until the checkpointing session is
complete and its state is stored in stable storage[19].

b) load on the communication network caused by sending
process checkpoints to disk: In the ‘‘worst case’’ the entire
process state has to be sent to disk. If virtual memory is
employed, part of the state is already on disk and the size of
the state in local memory, which has to be sent to disk, is
related to the process working set. With appropriate
hardware support for identifying modified pages, only the
process state which has been changed since the last
checkpoint is sent to disk.

c) disk bandwidth required for saving the checkpoints: A
significant fraction of the total disk bandwidth available on
the system may be needed for saving checkpoints, thus
limiting the performance of 1/0-intensive applications.

d) disk space for storing checkpoints: The minimum
storage requirement is one complete checkpoint state per
process plus additional space for storing a second copy of
the checkpoint of processes during checkpointing[9]. Many
error recovery techniques require storage of multiple
checkpoints per process as well as bookkeeping information
and message logs[15].

€) local memory usage: Part of local memory is needed for
storing program code for handlers, bookkeeping information
(e.g. alist of processes that have communicated with local
processes[19]), and, possibly, storage for volatile
checkpoints[1] or message logs[16]. Such use of local
memory can increase paging activity, load on
communication links and the average memory access time.

f) special processing during recovery: Each node
participating in a recovery session must suspend normal
operation so that it can run the recovery handlers.

g) computation time lost due to rollback: When a process
is rolled back, the computations it performed since its last
checkpoint are lost and have to be repeated. This overhead
isinversely proportional to the frequency of checkpointing.

B. Checkpointing/Recovery of Interacting Processes

Checkpointing and recovery are more complex when
processes are allowed to interact via messages. When one
or more processes are rolled back care must be taken to
ensure that each pair of processes are consistent with each
other and hence that the entire system state is valid[13].
Specifically, every pair of processes must agree which
messages have been sent and which have not [3] — such that
no messages are lost or duplicated (see Figure 1).

A set of checkpoints, one per process being rolled
back, which are consistent with each other is caled a
recovery line[13]. Graphicaly, a recovery line can be
represented as a line which connects a set of checkpoints
and intersects no communication lines (see Figure 1b). If
processes are checkpointed independently, ignoring
interactions with other processes, the recovery agorithm

Process B—~

b) A consistent checkpoint

Figure 1. In &), if A and B roll back to their latest
checkpoints their states will be inconsistent. In the first
case B expects a message from A which A’srolled back
state has already sent (lost message). In the second case
B will resend a message which A has aready received
(duplicate message). In b), the latest checkpoints of A
and B are consistent with each other.

must find a recovery line amongst the available checkpoints.
The major problem with this method is the fact that there is
no guarantee that a recovery line exists and domino
effect[13] can occur, where, in the worst case, the entire
system must be rolled back to its initial state (see Figure 2).
Furthermore, many generations of checkpoints for each
process have to be maintained on disk. This is necessary
since, in the best case, it is desirable to roll back to a recent
checkpoint (to minimize lost computations) while in the
worst case it may be necessary to roll back to the initial

process stete.
ProcessAC €
ProcessBC / \ |£fajlure
C
time —> — checkpoint

Figure 2: Process B fails and is rolled back to its latest
checkpoint. Since B will later expect a message from
A, A must also be rolled back, requiring B to roll back
to a previous checkpoint. In this case, the entire system
must roll back toitsinitial state.

One way to avoid the worst-case domino effect is for
the application programmer to specify sequences of sets of
recovery points that form recovery lines. If an eror is
detected, the system rolls back to the last programmer-
specified recovery line. This approach isnot an option if the
fault tolerant characteristics of the systems are to be kept
hidden from the programmer. In a large general-purpose
system, keeping many generations of checkpoints for each
process is not a viable option due to required disk space.
Hence, recovery schemes that may require indefinite storage
of al checkpoints (until the task terminates) are not a
practical aternative for our target systems.

- 105 -

IV. Application-Transparent Recovery

Application-transparent recovery techniques have the
advantage that they can be used without the programmer
having any knowledge of the fault tolerance characteristics
of the system. There are two fundamental ways to avoid
domino effect in transparent distributed checkpointing and
rollback schemes. Message Logging[12,2,15,6,16,7] and
Coordinated Checkpointing[1, 18,9, 19]

Message logging techniques checkpoint both process
states and (log) interprocess messages onto stable storage.
When a process is rolled back, its message log is played
back to it, such that when the message log has been
depleted, the process is in a state consistent with the rest of
the non-failed processes in the system. In order for message
logging to work correctly, application processes must be
deterministic: given a process state and a sequence of inputs
(message log), the process will generate the same outputs.
Processes can be checkpointed independently, thus
minimizing disruptions to the entire system, and a single
process can be recovered without interfering with the
operation of other processes.

Coordinated checkpointing techniques checkpoint a
set of processes together (the entire system or a subset
thereof) in such a way that each pair of process states on
disk are consistent with each other. [3] The recovery
algorithm is guaranteed to be able to find arecovery line and
hence be able to recover avalid system state. Recovery and
checkpointing are likely to disrupt more of the system with
coordinated checkpointing as opposed to messages logging,
since more than one process is involved. However, there is
no need to store message logs and very little bookkeeping
information is required.

Several, previously published, recovery techniques are
described in the rest of the paper. They are judged based on
a set of either highly desirable or necessary attributes for a
recovery scheme to be appropriate for use in large
multicomputers (Section 11):

application-transparent
minimal restrictions on application behavior
low-overhead: as enumerated in Section Il1a

n-fault-tolerant: since nodes may be multitasking, it is
desirable for the recovery scheme to be n-fault-tolerant, i.e.,
be able to handle the case where n processes in the system
fail simultaneously. Such a recovery technique can
consegquently aso handle multiple simultaneous node
failures.

distributed: the recovery scheme must not have a single
point of failure, i.e., it cannot depend on any single resource.

suitable for a variety of applications: computation-intensive
and communi cation-intensive applications.

A. Message Logging

Several papers on message logging have been
published[12, 2, 15, 6,16]. The basic idea behind message
logging is to record all messages that a process sends along
with their send and receive order, so that they can be

“‘played back’’ to a failed, rolled-back process in order to
bring that process back to a state consistent with that of the

- 106 -

rest of the system. The send and receive order is needed to
ensure that the repeated computation following a rollback
will be identical to the computation performed prior to the
error. As previously mentioned this requires processes to be
deterministic in their actions.

Two methods, Publishing[12] and Auragen[2], assume
the use of a common-bus multiprocessor instead of a
multicomputer architecture. In Publishing a ‘‘recorder’’ is
attached to the shared-bus which can snoop and write to disk
all messages which travel over it. Auragen, while not
strictly a single bus architecture still requires the use of an
atomic broadcast. In alarge multicomputer architecture it is
not practical to implement message transmission as an
atomic broadcast and hence ‘‘snooping’’ is not a viable
method. Auragen’s method of error recovery can be called
pessimistic (incurs synchronization delays) because both
sender and receiver process must be suspended at each
communication in order to log information equivalent to
send and receive order[15].

In [15] Strom and Yemini proposed an optimistic
message logging technique for non-shared-bus architectures
where logging proceeds asynchronous of process
computation. A process current state depends on its latest
checkpoint and on the disk’s log of the messages which the
process has received since that checkpoint. Since messages
are logged to disk asynchronous of process computation,
some messages might not yet be logged to disk when a
process fails. In order to solve this problem sending a
message involves the following steps (simplified for clarity):

1) A message M from sender S to receiver R is sent along
with S’s current dependency vector and a SSN (send
sequence number). The dependency vector (composed of
process ID and message number pairs) indicates which
messages S's current state depends on that S does not yet
know to be logged. S savesacopy of M until the R notifies
S that the message has been logged.

2) R updates its own dependency vector with the
dependency vector sent along with the message since R’s
state now depends on S’s ability to resend M in the event of
R failing.

3) R sends the message to disk along with the message's
dependency vector and an RSN (receive sequence number).

4) R ‘“‘eventudly’’ receives notice that the message has
been logged and then ‘‘eventualy’’ notifies S the message
has been logged. R updates its dependency vector to reflect
the fact that it no longer depends on S’ s ability to resend M.

When a process(es) fails some of the messages upon
which it depends may not be fully logged. In Figure3
process S has received two messages mO and m1 both of
which are not fully logged to disk when S fails. First S is
rolled back to its checkpoint. When U and T learn (via a
recovery message and local bookkeeping information) that S
has rolled back and needs m0 and m1, the messages will be
resent. However, no ordering information exists because the
messages were not fully logged, hence S might process m0
and m1l in a different order and, as a result might not send
m2 (or the message’'s contents may be different) to process
R. This is an inconsistent system state. Hence process R,
called an orphan, must roll back and undo the effects of m2.

U €
m1l

T—<€

\mO
S

m2
R €
time —
Figure 3: An example of an orphan in message logging
techniques.

R learns that it must roll back when it receives the recovery
message and, upon examining it's dependency vector, sees
that its current state depends on S through message m2.

The overhead incurred in a system using message
logging can be generally characterized as follows:

a) computation time lost during checkpointing: This
overhead is‘‘minimized’’ — checkpointing is asynchronous
of process execution (uses volatile checkpoints) and
involves only one process at atime.

b) load on the communication network: Includes
checkpoints and the amount of data (messages) being sent
between processes — this overhead is examined in the next
subsection.

c) disk bandwidth required: Same arguments as (b).

d) disk storage required: Generaly, the storage
requirement would be one checkpoint state per process.
Older checkpoints are discarded as soon as it can be
determined that they will not be needed for either state
backout (undoing the effects of messages) or for resending
messages lost by afailed process.

€) storage required in local memory: Loca storage
requirements include volatile checkpoints, messages being
held until they have been logged, dependency vectors, SSNs
and RSN, etc[15].

f) Special processing during recovery: the message log
must be restored and played back to the recovering
processes until they are brought up-to-date.

0) lost computation time due to rollback: All processes
directly affected by a hardware failure must be rolled back,
along with orphans, if any.

Optimistic recovery is a distributed, n-fault-tolerant,
application-transparent scheme. The only restriction made
on application processes isthat they be deterministic.

The Cost of L ogging M essagesto Disk. Some
application programs for multicomputers may require each
process to send a short message (say, eight bytes) every 100
instructions|5, 4]. Such communication-intensive
applications may be incompatible with message logging
techniques since very large amounts of data may have to be
logged. For example, consider a multicomputer with 512
10MIPS processors running such an application. In this
system a total of approximately 400Mbytes are sent as
messages every second. Logging this much information is a
major problem. Specificaly, high-performance disk drives

- 107 -

have a maximum bandwidth of 3Mbytes per second. Thus,
if all messages are to be logged to disk, as required by Strom
and Yemini’s origina scheme[15], more than 130 disk
drives will have to be dedicated to logging messages.

As discussed above, message logging techniques also
require bookkeeping information (dependency vectors,
seguence numbers, etc) to be transmitted with each message.
As aresult, the load on the communication network and the
complexity of send and receive operations, which have to
manipulate this bookkeeping information, is increased.
Some of thisinformation must also be logged to disk, further
increasing the number of disks required to support message
logging techniques.

Other Message L ogging Techniques. In sender-
based message logging[6] messages are logged in local,
volatile store and correct operation can be ensured only
when a single process can fail a atime. In n-fault-tolerant
logging[16] messages are logged in volatile store until it is
determined that they can be discarded or spooled (logged to
disk). Using the above example, volatlely logging
messages in local memory involves storing an average of
686 Kbytes/sec (171 4K pages every sec) on every node. In
both cases performance will be affected by having to copy
messages to memory and because some fraction of main
memory is needed to maintain message logs.

To reduce the local memory usage with sender-based
message logging[6], processes may have to checkpoint
frequently in order to limit the size of the message logs. In
the case of n-fault-tolerant logging[16], the amount of
information to be logged to disk is reduced by discarding
some messages and predicting the arrival order of messages
(using a deterministic heuristic). Performance will depend
on how well the heuristic performs, on how many messages
can be discarded, and on how much compute time and how
many extra messages are required to run the heuristic.

B. Coordinated Checkpointing

The critical feature of coordinated checkpointing is
that all interacting processes are checkpointed together, so
that their checkpointed states can be guaranteed to be
consistent with each other. Therefore, domino effect can not
occur and it is sufficient to store only one ‘‘ generation’’ of
checkpoints on disk. Coordinated checkpointing techniques
can be separated into Global Checkpointing and Process-
Level Checkpointing.

Global Checkpointing. In[18] the entire system is
checkpointed and recovered (global checkpoints).
Checkpointing involves taking a snapshot of the entire
system state, while recovery restores all nodes to their last
checkpoint. The problem with the global checkpoints
technique is that checkpointing is expensive since it requires
saving the state of the entire system. Thus, for performance
reasons, the time between checkpointsisrelatively long (e.g.
on the order of thirty minutes[18]). Hence, the system can
only be used for batch applications, such as large numerical
computations, where the possibility of losing thirty minutes
of computation during recovery is an acceptable price for
the resulting low overhead (a few percent [18]).

Process-L evel Checkpointing. The global
checkpointing technique has been extended to perform
checkpointing and recovery of sets of interacting processes
rather than of the entire system[19,9]. An interacting set of
processes is defined as the set of processes which have
communicated directly or indirectly since their last
checkpointg[1]. Checkpointing results in the saving of a
consistent snapshot of the states of an interacting set of
processes in such away that avalid global checkpoint of the
system state is maintained in stable storage. When a node
fails, the interacting set(s) of al failed process(es) are rolled
back to their checkpoints on disk.

In order to support process-level checkpointing, the
system must maintain, for each process, dynamic
communication information, which isthe list of all processes
with whom there has been direct communication since that
process last checkpoint session. With this information a
communication tree can be dynamically formed during
checkpoint/recovery sessions where the *‘root’” of thetreeis
the initiator and coordinator of the session.

To ensure that the checkpoints of all processes in the
interacting set are consistent, all messages in transit between
those processes must be flushed to their destinations and
saved with the checkpoints. The checkpoints of all other
processes in the system (on disk or ‘*concurrently’’ being
taken) are ‘‘automatically’’ consistent with the checkpoints
of the processes within the interacting set. This is because
no messages have been sent to/from processes within the
interacting set to/from processes outside of it (by definition).
During a checkpoint session the interacting set of processes
are suspended from normal operation until the
communication tree has been formed, all messages have
been flushed to their destinations, and all process states have
been copied in local memory. Processes may then continue
normal operation while their checkpoints are sent to the
remote disks. Recovery proceeds in a similar fashion except
that messages are discarded after they are flushed and
process state(s) are restored from disk.

Unlike other error recovery schemes, this method and
global checkpointing[18] do not assume that the message
delivery system is made reliable via sliding windows (or
two-phase commit protocols) and error detection bits for two
reasons. First, the use of sliding windows has the stringent
requirement that message transmission delays must be
bounded while the use of two-phase commit protocols
imposes a high level overhead on every message. Secondly,
communication errors occur very infrequently relative to the
frequency at which messages are sent. Hence, it is not
desirable to penalize the system continuously by checking
for errors on every message. Instead, detection of
communication errors (and recovery from) is incorporated
into the checkpointing/recovery algorithmg[18, 19].

IN[19] ‘*normal’’ interprocess messages have no error
detection bits, no bookkeeping information, and require no
acknowledgements. Instead signatures (accumulated by
Linear Feedback Shift Registers), which are updated in
parallel with message transmission, are maintained for each
pair of communicating processes. For example, if virtual
circuits are used for interprocess communication then
signatures are accumulated for each incoming and outgoing

- 108 -

virtual circuit. Communication between processes in the
interacting set can be checked during a checkpoint session
by performing ‘‘end-to-end’”’ checks on all the virtual
circuits between processes in that set. If a ‘‘mismatch’’ is
detected then the interacting set containing the processes on
both ends of the virtual circuit are rolled back. Messages
which are used to coordinate the creation of checkpoints and
for error recovery must be verified before they are used and
hence carry error detection bits. This reduces the total
overhead incurred by the error recovery scheme during
normal operation.

The overhead of process-level recovery can be
generaly characterized as follows:

a) computation time lost when checkpointing is performed:
The interacting set is suspended until the checkpointing is
terminated. If the nodes are time-shared, they may continue
to execute other processes.

b) load on the communication network for checkpointing:
This overhead is minimized since i) no additional check bits
are added to normal messages, and ii) there is no need to
send message logs to stable storage.

¢) disk bandwidth required: Only process checkpoints are
sent to disk. Timers can be used to fine tune this overhead
on a ‘‘per application’”” basis. This bandwidth is thus
entirely dependent on application size and checkpoint
frequency.

d) storagerequired on disk: Less than two checkpoints per
process|[9].

e) local memory usage: ‘‘Minimal’’: only dynamic
communication information needs to be stored.

f) special processing during recovery: Loading the state of
the interacting set of processes from stable storage.

g) computations lost due to recovery: All processes
directly affected by an error and their interacting set must be
rolled back.

All coordinated checkpointing schemes [19,9,18,3,1] are
distributed, application-transparent, n-fault-tolerant (except
for [1]), and make no restrictions on application behavior.

V. Summary and Conclusions

We have described severa application-transparent
error-recovery techniques which can be used to provide fault
tolerance for large genera-purpose multicomputers.
Message Logging techniques have the advantage of fast
checkpoint and recovery sessions but may be inappropriate
for high-performance multicomputer systems running
communication-intensive applications due to the overhead
of logging messages and bookkeeping information to disk
(or local memory). Furthermore, Message Logging can only
support processes which are deterministic in their actions.
Globa Checkpointing techniques are likely to incur the
lowest level of overhead during normal operation but are
only appropriate for use with applications that can tolerate
the possible loss of many minutes of computation during
recovery (e.g. batch applications). Coordinated Process-
Level Checkpointing techniques are a ‘‘compromise’
between Message Logging and Global Checkpointing and
therefore show the most promise in providing error recovery
for high-performance multicomputers that run both

communication- and computation-intensive applications.
Process-Level Checkpointing techniques minimize the
overhead incurred during normal operation at the cost of a
potentially expensive recovery. In the worst case, the entire
system may need to be rolled back as a result of the failure
of one node. However, the overhead incurred during
checkpointing is dependent amost entirely on the
checkpoint frequency which can be tuned to the specific
needs of each application process.

References

1. G. Barigazzi and L. Strigini, ‘‘Application-Transparent Setting of
Recovery Points,’’ 13th Fault-Tolerant Computing Symposium,
Milano, Italy, pp. 48-55 (June 1983).

2. A. Borg, J Baumbach, and S. Glazer, ‘A Message System
Supporting Fault Tolerance,’” 9th Symposium on Operating Systems
Principles, Bretton Woods, NH, pp. 90-99 (October 1983).

3. K. Mani Chandy and Leslie Lamport, ‘‘Distributed Snapshots:
Determining Global States of Distributed Systems’” ACM
Transactions on Computer Systems 3(1), pp. 63-75 (February 1985).

4. W.J. Daly, L. Chao, A. Chien, S. Hassoun, W. Horwat, J. Kaplan, P.
Song, B. Totty, and S. Wills, ‘‘Architecture of a Message-Driven
Processor,’”” 14th Annual Symposium on Computer Architecture,
Pittsburgh, PA, pp. 189-196 (June 1987).

5. W. J Jager and W. M. Loucks, ‘‘The P-MACHine: A Hardware
Message Accelerator for a Multiprocessor System,”” 1987
International Conference on Parallel Processing, St. Charles, IL,
pp. 600-609 (August 1987).

6. David B. Johnson and Willy Zwaenepoel, ** Sender-Based Message
Logging,’”” 17th Fault-Tolerant Computing Symposium, Pittsburgh,
PA, pp. 14-19 (July 1987).

7. David B. Johnson and Willy Zwaenepoel, ‘‘Recovery in Distributed
Systems Using Optimistic Message Logging and Checkpointing,’’
7th Annual ACM Symposium on Principles of Distributed Computing,
Toronto, Canada, pp. 171-181 (August 1988).

8. J A. Kaizman, ‘‘“The Tandem 16: A Fault-Tolerant Computing
System,”” pp. 470-480 in Computer Structures. Principles and
Examples, ed. D. P. Siewiorek, C. G. Bell, and A. Newell, McGraw-
Hill (1982).

9. Richard Koo and Sam Toueg, ‘‘Checkpointing and Rollback-
Recovery for Distributed Systems,”” |EEE Transactions on Software
Engineering SE-13(1), pp. 23-31 (January 1987).

10. B. W. Lampson and H. E. Sturgis, ‘* Crash Recovery in a Distributed
Storage System,”” Technical Report, Xerox PARC, Pao Alto, CA
(April 1979).

11. G. Peattie, ‘‘Quality Control for ICs’’ |IEEE Spectrum 18(10),
pp. 93-97 (October 1981).

12. M. L. Powell and D. L. Presotto, ‘‘Publishing: A Reliable Broadcast
Communication Mechanism,”’ Proc. 9th Symp. on Operating Systems
Principles, Bretton Woods, NH, pp. 100-109 (October 1983).

13. B. Randell, P. A. Lee, and P. C. Treleaven, ‘‘Reliability Issues in
Computing System Design,”’ Computing Surveys 10(2), pp. 123-165
(June 1978).

14. F. B. Schneider, ‘‘Byzantine Generals in Action: Implementing Fail-
Stop Processors,”” ACM Transactions on Computer Systems 2(2),
pp. 145-154 (May 1984).

15. R. E. Strom and S. Yemini, ‘‘Optimistic Recovery in Distributed
Systems,”” ACM Transactions on Computer Systems 3(3), pp. 204-
226 (August 1985).

16. R.E. Strom, D. F. Bacon, and S. A. Yemini, ‘‘Volatile Logging in n-
Fault-Tolerant Distributed Systems,”” 18th Fault-Tolerant Computing
Symposium, Tokyo, Japan, pp. 44-49 (June 1988).

17. Yuval Tamir and Carlo H. Séquin, ‘*Self-Checking VLS| Building
Blocks for Fault-Tolerant Multicomputers,’” International
Conference on Computer Design, Port Chester, NY, pp. 561-564
(November 1983).

18. Yuval Tamir and Carlo H. Séquin, ‘‘Error Recovery in
Multicomputers Using Global Checkpoints,’”” 13th International
Conference on Parallel Processing, Bellaire, MI, pp. 32-41 (August
1984).

19. Yuval Tamir and Tiffany M. Frazier, ‘‘Application-Transparent
Process-Level Error Recovery for Multicomputers’’ Hawalii
International Conference on System Sciences-22, Kailua-Kona,
Hawaii, pp. 296-305, Vol | (January 1989).

20. A.S. Tanenbaum, Computer Networks, Prentice Hall (1981).

