Computer Science Department Technical Report CSD-010040
University of California, Los Angeles, October 2001.

The Design and I mplementation of
a Fault-Tolerant Cluster Manager

Daniel Goldberg, Ming Li, Wenchao Tao, Yuval Tamir

Concurrent Systems Laboratory
Computer Science Department
UCLA
Los Angeles, California 90095
{ dangold,mli,wenchao,tamir} @cs.ucla.edu

Abstract

Cluster management middleware schedules tasks on a cluster, controls access to shared resources,
provides for task submission and monitoring, and coordinates the cluster’s fault tolerance mechanisms.
Thus, reliable continuous operation of the management middleware is a prerequisite to the reliable
operation of the cluster. Hence, the management middleware should tolerate a wide class of faults with
minimal interruptions to management operations. This paper describes design considerations and
implementation details of cluster mangement middleware for high performance computing in space,
where fault rates are significantly higher than for earth-bound systems. We describe key detection,
recovery, and reconfiguration mechanisms for different components of the system. The system is based
on centralized decision making. Unlike other systems, the decision making capability is protected by
active replication and the ability to restore the decision maker to full operational and fault tolerance
capabilities following node failure. The management middleware is used to provide the application tasks
with an out-of-band signaling capability that can be a key building block for application-level fault
tolerance mechanisms. The middleware described has been implemented as part of the UCLA Fault-
Tolerant Cluster Testbed (FTCT) project. Based on measurements of this implementation, we present
preliminary evaluation of the overheads incurred by the management middleware.

1. Introduction

Clusters of commercia off-the-shelf (COTS) processors interconnected by high-speed
SANSs or LANSs are increasingly used for cost-effective high-performance parallel computing.
Typicaly, in such systems, every node runs a local copy of an off-the-shelf operating system
that is not designed to manage a distributed cluster. Cluster management middleware (CMM)
runs between the applications and the operating system and provides resource allocation,
scheduling, coordination of fault tolerance actions, and coordination of the interaction between
the cluster and externa devices. The cluster management middleware is critical to overall
system reliability since if the cluster management middleware fails, the system islost.

Virtually all cluster management middleware is based on centralized decision making.
While distributed decision making is possible[2, 13], centralized managers are simpler to design,
implement, and debug[12,18]. A key problem with centralized management is that the failure
of the manager leads to the failure of the entire system. Surprisingly, many cluster management
systems fail to deal with this problem. Other systems, such as Sun’s Grid Engine Software[23],
use a cold spare approach, where a backup replica of the manager detects the failure of the
primary and takes over its tasks. In this case, the manager failure mode is assumed to be fail-
stop[22], i.e., the managers never generate incorrect results. Since the fail-stop assumption is

October 2001

-2-

often violated, this approach can result in poor system reliability. Furthermore, recovery of the
management functionality on the cold spare can take along time (for example, up to a minute on
Sun’s Grid Engine Software), resulting in unacceptably long service interruptions.

In order to be able to deal with more realistic fault models and minimize the interruptions
to management service, an active replication [8] approach must be used to implement the central
manager. The manager is replicated, and each replica performs the same management
operations independently. The commands produced by these manager replicas are compared
and voted on so that a majority of correct replicas can mask the failure of a minority of faulty
replicas. This is the basic approach used in the UCLA Fault-Tolerant Cluster Testbed (FTCT)
system.

The FTCT project is motivated by JPL/NASA’s Remote Exploration and Experimentation
(REE) project. The goa of REE is to use COTS hardware and software to deploy scalable
supercomputing technology in space. In this environment, fault tolerance is more critical than
for most earth-bound systems due to the much higher fault rate of COTS hardware in space. The
focus of the FTCT project is on developing and evaluating algorithms and implementations of
fault tolerant cluster managers. Some of the critical factors driving this work are the need to
deal with realistic fault models, the need to minimize the performance and power overheads of
the fault tolerant mechanisms, and the need to support soft real-time requirements. In addition,
the cluster management middleware must provide the mechanisms needed to support, as a
separate layer, application-level fault tolerance for critical applications.

This paper focuses on the design and implementation of key mechanism for fault-tolerant
cluster management middleware. The overal system structure is presented in Section 2. The
central decision maker (manager) implemented using active replication is discussed in sections 3
and 4. Section 5 presents the fault detection mechanisms. Section 6 described how we utilize a
unique feature of this cluster — the limited availability of a‘*hard core’’ that can be used as a
recovery mechanism of last resort. Detection and recovery from agent failures is addressed in
section 7. An out-of-band signaling mechanism for supporting application-level fault tolerance
schemes is presented in Section 8. Section 9 discusses preliminary measurements of the
overheads incurred by the management system. Related work is presented in Section 10.

2. System Overview

The overall structure of the system is shown in Figure 1. The system consists of four
components. a group of managers, an agent process on each node, a library for user applications,
and the Space craft Control Computer (SCC). The manager group performs cluster-level
decision making. An agent process on each node sends node status information to the manager
group, performs commands at the node on behalf of the manager group, and provides an
interface between application processes and the cluster management middleware (CMM). A
library that islinked with every application process is an important part of the CMM. It provides
the mechanisms needed to set up intra-task communication using MPI as well as part of the
interface between the application process and the local agent.

The SCC controls the entire space craft, including communication between the cluster and
operators on Earth. The SCC interacts with the cluster through the manager group. Loss of the
SCC implies loss of the space craft. Hence, while the entire cluster is built using commercial-

Spacecraft
Control
Computer

agt agt O O O t

off-the-shelf technology, the SCC uses radiation-hard technology and other aggressive fault
tolerance techniques to ensure the survival of the space craft. The SCC has the ability to power
reset nodes within the cluster. The design of the CMM must take into account the need to
interact with the SCC and can take advantage of the existence of this ‘*hard core’”” However,
the SCC is not designed for high performance and must not be burdened with the routine
operation of the cluster. Furthermore, the CMM must not require complex software to run on
the SCC since that would increase the probability of software bugs on the SCC and thus reduce
the SCC's rdliability. Thus, on rare occasions, the SCC can participate in cluster recovery
action. However, this must be a measure of last resort and must be implemented with very
simple software on the SCC.

Figure 1: System Structure

As described earlier, our CMM uses centralized decison making. Furthermore, the
interactions of the cluster with the SCC are through the centra manager. Thus, correct
continuous operation of the manager is critical. The operation of the manager cannot depend on
any one node on an assumption that nodes always fail silent. Hence, the manager group is
implemented using active replication — a primary replica and two backup replicas. As
described later, the system ensures that messages are delivered to all the manager replicas in the
same order and that all manager activities are deterministic.

M essages exchanged among managers, and between managers and agents are authenticated
(signed[16]) to ensure that faulty nodes cannot forge messages from other nodes, even if the
message is forwarded by the faulty node. Manager replicas transmit commands to the agents.
Agents act only when receiving identical authenticated commands from at least two manager
replicas. Hence, a manager replica that stops or generates incorrect commands cannot corrupt
the system. If a manager replica fails, a new manager replica is restarted using the states of the
remaining two manager replicas.

-4-

Agents voting on outputs produced by the manager replicas is one error detection
mechanism. Another key detection mechanism is the transmission of hearbeats by the agents to
the manager group and the exchange of heartbeats among the members of the manager group.

Asin any fault-tolerant system, faults are either masked, as with TMR, or the errors caused
by the faults must be detected and then trigger recovery and reconfiguration. Even when faults
are masked, they must eventually be detected and ‘‘fixed.”” The CMM does not deal directly
with hardware faults that cause the application to behave incorrectly. Detection and recovery
from such faults is implemented above the CMM, possibly using some basic services from the
CMM. In addition, not all the components of the CMM are protected from faults at the same
level. For example, an agent process running on one of the nodes is not critical to the operation
of the entire system. Thus, while active replication is used to mask a large class of faults that
may affect manager operation, less aggressive mechanisms are used for the agents. The choices
made in the design of the FTCT CMM are described in detail in the following sections.

3. Active Replication for the Fault-Tolerant Central Manager

Detection of arbitrary (Byzantine) failures requires multiple active replicas and continuous
comparison of the results. In order to avoid a lengthy interruption for recovery when a
discrepancy is detected, more than two replicas are needed. With the classic TMR scheme that
is currently implemented in FTCT, any single failure can be tolerated since there will aways be
two manager replicas that agree on each result.

With active replication, all replicas execute and generate outputs independently. In the
absence of failures, they must produce the same outputs in the same order. This requires all
inputs to be delivered to the replicas in the same order and processing to be deterministic[3].
Hence, a reliable group communication protocol must be used to transmit messages to the
manager replicas.

FTCT uses a group communication protocol developed for Amoeba[14], with the primary
manager replica serving as the sequencer [17]. This protocol was chosen due to its ssimplicity
and efficiency[9]. Senders from outside the manager group, in this case the agents,
communicate with the group by sending messages to the primary manager replica only. The
primary manager replica assigns a sequence number to the message and forwards it to al the
backup manager replicas. A reliable point-to-point communication protocol is used to transmit
the message to the primary replica and then to forward the message to the backup replicas.

In case the primary dies after sending a message to one backup replica but not the other,
each backup replica maintains a history buffer where it stores copies of al the messages it
received from the primary manager. When the primary replica fails, al the backup replicas
report to each other the highest sequence number that each has received from the primary
replica. The one with the highest sequence number becomes the new primary manager and send
copies of messages that were missed by the other backups managers to each of them. The last
receive sequence number (RSN) is piggybacked on heartbeat messages to garbage collect the
history buffer.

Pseudocode for Manager X

rsny, rsny, rsn, =the RSN of the last message delivered to X,Y,Z
Initially, rsn, =rsn, = NIL

Receive ErrorReportM essage from agent OR
Receive EnterSelfDiagnosi sM essage from a manager
Send CheckRSN(X,rsn,) to managersY,Z
Set timer event NORSNCheck for Y,Z
Receive CheckRSN(I,rsn;)
if [Received both rsn, and rsn,] then
Dismiss timer event NORSNCheck
if [rsn, >rsn,,rsn,] then
forward messages with RSN = (rsny,rsnx] toY, (rsn,, rsn,JtoZ
Take snap shot of state and calculate checksum(c) of the state
Send Checksum(X,c) to Y ,Z
Set timer event NoChecksum for Y ,Z
Receive Checksum(l,¢;)
If [not taken checksum yet] then
Take snap shot of state and calculate checksum(c) of the state
Send Checksum(X,c) to Y,Z
If [¢; !=c,] then
Send ProposeKill(l) to other manager J
Set timer event NoProposeKill Ack(J)
If [c, == ¢, for both Y,Z] then
Nothing wrong with states, continue operating
If [Second Checksum received] then
dismiss NoChecksum
Receive ProposeKill (1)
If [agree manager | isfaulty] then
send ProposeKill Ack(agree) back
else
send ProposeKill Ack(disagree) back
Receive ProposeKill Ack(response)
if [response == agree] then
kill manager
else
continue operating
Dismiss NoProposeKill Ack
Timer event: NORSNCheck(l), NoChecksum(l), NoProposeKill Ack(l) expired
send ProposeKill(l) to manager J
Set timer event NoProposeKill Ack(J)

Figure 2. The Manager Self Diagnosis Procedure
4. Manager Self-Diagnosis
With active triplication, if one replica is faulty the remaining working replicas still form a
majority and the group can continue to function correctly. However, the faulty replica must still
be identified and repaired or replaced. Otherwise, a future fault in some other component of the

system (such as another replica) may combine with the faulty replica and drive the system into a
state from which it cannot recover.

Faulty manager replicas can be detected by comparing all the replica outputs. With the
FTCT CMM, this is done by the agents. However, agents may be faulty and thus cannot be
trusted to correctly identify faulty manager replicas. Instead, an agent that detects an
inconsistency reports it by sending point-to-point messages to al the members of the group.
This causes the manager group to initiate a procedure to diagnose itself.

-6-

The manager self-diagnosis procedure is shown in Figure 2. When a manager receives a
self-diagnosis request from an agent it begins by finding out which manager has processed the
highest sequence number. If a manager has not yet received messages up to the highest
sequence number it will be sent the messages by the manager who is ahead. Each manager then
processes messages up to that sequence number, thus each working manager should have the
same state at this point. Then, a checksum is taken of the state and compared by each manager.
If two managers agree that a third manager’'s state is different, it is removed and another
manager is created.

5. Fault Detection

As mentioned earlier, the long-term survival of the system requires faults to be detected and
repaired. FTCT employs three key mechanisms for fault detection: inconsistent outputs from the
manager replicas, missing heartbeats, and identification of corrupt, forged, or missing messages.
The first mechanism is described in previous sections. Members of the manager group send
periodic heartbeats to each other and agents send periodic heartbeats to the manager group.
Missing heartbeats indicate a likely faults.

Coding is used to detect message corruption. In addition, as mentioned earlier, al the
messages transmitted by members of the CMM are authenticated. The use of authenticated
messages is critical to detecting any attempt by the primary manager replica to modify messages
to the manager group. All messages to the manager group are acknowledged independently by
the replicas. Hence, if the primary manager replica modifies, discards or reorders messages
before sending them to the backup manager replicas, the agents will detect the problem as
inconsistent or missing acknowledgements from members of the manager group.

Exchange of heartbeats is a key mechanism for fault detection. The design of the heartbeat
mechanism is driven by two key considerations: minimizing false alarms and minimizing the
overhead of heartbeats. The frequency of the heartbeats is determined by a tradeoff between the
ability to tolerate faults with minimum disruption and the overhead during normal operation.
Frequent heartbeats reduce fault detection latency and thus reduce possible disruption/delay that
may be caused by a fault. However, the overhead of heartbeats during normal operation
increases with increasing heartbeat frequency.

The frequency of heartbeats is determined based on the experimental overhead
measurements (Section 9) and the needs of the application. Except for heartbeat messages, all
other messages transmitted among the CMM components use a reliable communication with
explicit acknowledgements. In order to minimize the overhead of heartbeats, they are
transmitted without any delivery guarantees. This can clearly lead to false alarms. This
possibility is dealt with by requiring explicit ‘‘probing’”’ to be initiated once a heartbeat is
missed.

6. Use of the Space Craft Control Computer for Recovery

As described so far, the system is not capable of tolerating al faults even in the manager
replicas. For example, if the primary manager replica forwards a message to one backup and not
the other, the agents will detect inconsistent acknowledgements from the manager replicas.
However, there is no way to tell whether the the primary failed to forward the message to the

-7-

backup (i.e. the primary is faulty) or the backup is faulty and simply dropped the message that
was forwarded by the primary. The self-diagnosis procedure (Section 4) in this case will result
in the fault-free backup being killed since the primary replica and the other backup will have
consistent states. Since this situation is a result of the faulty primary replica, the problem could
persist once a new backup replicaisinstantiated. Hence, the system could enter an endless cycle
of detection of inconsistencies among the replicas, self-diagnosis, manager replica termination,
and initialization of a new manager replica.

The problem described above could be avoided with a more complex protocol that may
involve additional replicas and/or additional message exchanges among the replicas for each
message received by the manager group[6]. However, this additional overhead for each
message during normal operation need not be incurred if the problem is extremely unlikely to
occur and, in the worst case, there is some other way to resolve it. For the example above, the
problem will occur only if the primary will persist in dropping messages to one of the backups
for multiple ‘‘reincarnations’’ of the backups but will otherwise continue to operate normally —
generating heartbeats and passing the self-diagnosis procedure. Hence, this is an unlikely
situation. However, if it does occur, we can take advantage of the SCC to resolveit.

As described in Section 2, the SCC can be assumed to be fault free but cannot take part in
frequent or complex cluster operations. The ability of the SCC to power reset the system can be
extremely useful for recovery from catastrophic failure, such as multiple nodes failing
simultaneously due to a radiation burst. In order to facilitate this, the cluster manager group
send periodic heartbeats to the SCC. If the SCC detects multiple missing heartbeats, the entire
cluster isreset. This functionality requires a‘‘hard core’’ cannot be replaced by more complex
algorithms (e.g., in [7] hard core watchdog timers are used).

Since the *‘hard core’’ is needed anyway and actually exists for our application, we useit to
resolve the problematic example describe above and other similar scenarios. Specifically,
whenever the manager replicas enter self-diagnosis, they individually report this fact to the SCC.
Since we use authenticated messages, this report cannot be forged. The SCC will reset the
system if it detects that the rate of multiple manager replicas entering self-diagnosis exceeds
some threshold. All the problematic (Byzantine) cases that can occur with our simple replication
scheme are detected and resolved by the SCC in thisway. It should be noted that manager self-
diagnosis is rare and the SCC software required to perform the additional monitoring is very
simple, thus meeting the limitations on the use of the SCC explained in Section 2.

7. Recovery from Agent Crashesand Hangs

If an agent crashes or hangs, the management system loses its ability to interact with the
node, i.e., to schedule new tasks on the node, terminate or suspend existing tasks, etc. Using the
SCC, this situation can be easily resolved. Specificaly, when the manager group detects the
missing heartbeats from the agent, it requests from the SCC to power reset (reboot) the node.
While this does make the node usable again, all application processes running on the node at the
time are lost. The purpose of the mechanism described in this section is to reduce the
probability of losing the application processes simply because the agent processfails.

In order to avoid losing all running application processes when the agent process crashes, a
mechanism is needed for a new agent process to take over. This can be done using active

-8-

replication or even a warm spare scheme. Active replication is not used due to the associated
performance overhead and complexity. As discussed earlier (Section 2), such an aggressive
mechanism is not justified for the agent. A warm space scheme, involves significant storage
overhead — the agent process is a complex program (with associate libraries — over 15,000
lines of C++ code) that occupies 4MB of memory (Table 1).

The scheme used in FTCT achieves the benefits of a warm spare with far less overhead and
higher reliability. The scheme is based on a simple agent keeper process running on each node
whose sole function is to monitor the agent process and initiate a replacement when failure is
detected. The agent keeper process is simpler (270 lines of C code) and smaller (Table 1).
Hence, it isless likely to crash than a running agent and less likely to be corrupted than a warm
spare agent.

Agent (KB) | Agent Keeper (KB)
Binary Size: 1200 230
Runtime Size: 4000 360

Table 1. Comparison in size between agent and agent keeper.

During normal operation, each agent sends to the manager group key information about the
state of the node. In particular, thisincludes the identifiers of local processes and corresponding
system-wide task IDs of al the application processes on the node. In order to minimize the
complexity of the agent keeper, the agent and agent keeper communicate using shared memory.
During normal operation the agent increments a variable in this shared memory that the agent
keeper reads. This variable serves as a heartbeat between the two processes. If the agent failsto
increment the variable then the agent keeper concludes that the agent has failed and starts a new
agent. When the new agent is started, it obtains the node state information from the manager
group and takes over control of the local node. It should be noted that the SCC-based reboot
scheme are still used if both the agent and agent keeper fail.

8. An Out-of-Band Signaling M echanism for Applications

Application-level fault tolerance schemes can be facilitated by a mechanism that allows the
application processes to exchange messages out-of-band from the normal application MPI
interprocess communication. For example, an acceptance test in an application process may fail
and the desired roll-forward recovery mechanism may require informing all the processes of the
task, which are running on other nodes. At this point, the processes on the other node may not
be receiving messages (e.g., a process may be stuck in an infinite loop). The out-of-band
communication mechanism implemented in FTCT alows a process of a task to cause an
asynchronous message to be delivered to al other members of the task.

In order to implement the out-of-band signaling feature, the FTCT CMM provides
application processes with the ability to *‘signal’’ the local agent. The agent propagates the
asynchronous message by sending it to the manager group, which forwards it to the agents on all
the nodes running processes of the same parallel task. Each agent at such a nodes uses UNIX
signals to interrupt the application process and then deliver the message.

-9-

In order to maintain system integrity in the face of application code bugs, the FTCT CMM
can run the processes of different tasks as different users. Application processes are protected
from each other and CMM processes are protected from application processes. The CMM
agents can obtain UNIX root privilege and initiate application processes under any user. The
key challenge in implementing the out-of-band signaling mechanism is to provide away for user
applications to signal the agent without violating the integrity of the system. UNIX signals
cannot be used since they require that the sender and receiver processes have the same used ID.
This cannot be done while providing protection to the agent process from errant application
processes.

In addition to the protection issue above, another difficulty that must be faced by the
application-agent communication mechanism is that is must be possible to reestablish
application-agent communication following the agent recovery procedure described in the
previous section. The FTCT CMM solves this problem using UNIX named FIFOs. When the
agent forks a process, it creates a named FIFO with a name based on the process ID of the
application process. The agent and application process can communicate through these FIFOs.
Following agent recovery (Section7), the recovered agent process obtains the application
process |Ds from the manager group and is able to reopen the named FIFOs to those processes.
The agent process includes a special thread whose sole function is to monitor the state of the
FIFOs using select.

In our implementation (see Section 9), The latency of an asynchronous message originating
from an application process until it reaches another application process is 2.5-4ms. This
involves writing data through one fifo, a message being sent to the primary manager, the
message being forwarded to the backups, an agent receiving two consistent copies, and finally
writing the data into the fifo and signaling the user application.

9. Experiments and Results

The FTCT currently consists of eight PCs, each with dual 350MHz Pentium-I1 processors,
interconnected by a high-speed Myrinet[5] LAN. For these experiments, the nodes operating
system is Solaris x86. Interprocessor communication for the CMM is implemented on top of a
portable communication layer that isimplemented on top of Myricom’s GM library. Altogether,
the FTCT CMM currently consists of over 30,000 lines of C++ code — the communication
layer, the agents, the managers, the CMM reliable message package, and the interface between
MPI-CH and the communication layer. The system executes MPI applications and implements
the mechanisms described in the previous sections.

A simple way to measure the overhead incurred by running the manager replica is to
evaluate the fraction of ‘‘processing’’ that becomes unavailable to the application when it is
executing on the same node. The manager replica overhead is largely dependent on the rate of
status report messages (heartbeats) that it must handle. Figure 3 shows the percentage of
processor time used by the manager replicas given different event processing rate.

Much of the manager replica overhead described above is simply the overhead for the
context switches and receiving a message. Figure 4 shows the overhead of processing incoming
messages using Myricom's GM API. The top line shows the overhead including context
switches while the bottom line excludes context switches. In general, context switches will take

-10-

100%
50% —

—— primar
- - ackup;/

10% —
CPU

Usage
1%

0.1%—

\ \ \ \ \
1 10 100 1000 10000

Number of Events Processed Per Second

Figure 3: The overhead of a manager.

50% — _]
—— includes context switch

0%l "~ excludes context switch 7
07

CPU1% -
Usage

0.1%—

\ \ \ \ \
1 10 100 1000 10000

Message Arrivals Per Second

Figure 4: The overhead for receiving small messages

place for every message received since the node is almost always executing an application
process with the manager replica or agent process blocked waiting for a message.

Timer events are another source of overhead for the agents and managers[17]. Figure 5
shows the overhead to handle timer events. This includes the operating system’'s timer
management code and invoking the program’s alarm handler.

When a manager replica fails the system loses its ability to mask a failure of another
manager replica. Hence, a new replica must be instantiated as quickly as possible. We
measured the recovery time from a manager replica failures — the time from when a manager
replica failure is detected until a new manager starts and restores a complete (triplicated)
manager group to normal operation. The results are shown in Table 2 and exclude the operating
system time to load the executable from disk. Out of the time reported in the table, about 40
millseconds are spent initializing the communication system (GM) on Myrinet. Hence, the
recovery time can be reduced significantly by maintaining an initialized ‘‘cold”’ manager

-11-

4%

3% |— — timer events

CPU
Usag(.g% |

1%

0.1%|— \ \
1 10 100 500
Timer Events Per Second

Figure 5: The overhead for handling timer events

replica, ready to accept the state from other manager replicas and become active.

Failed Manager Recovery Time (msec)

primary 63
backup 60

Table 2. Manager recovery time (excluding the time to load the executable from
disk).

During recovery from a manager replica failure, the functionality of the manager group is
maintained by the remaining replicas. However, if the failed replica is the primary,
communication from the agents will fail for a short period since the agents will continue to send
messages to the primary until the agents are informed of the identify of the new primary replica.
Our preliminary measurements show that, once the failure of the primary replica is detected, the
time to identify and advertise the identity of the former backup replica that is now the primary
replicais approximately 3.7 milliseconds.

10. Related Work

Over the past decade, a number of resource management systems for cluster computing
have been implemented[12,21,23,25]. A survey of 20 research and commercia cluster
management systems can be found in[1]. Excluding the management fault tolerance features,
the basic functionality of the FTCT is currently similar to the functionality of the GLUnix
system[12]. While various projects mention the possibility of active replication of the managers
for fault tolerance, none that we have seen report actually implementing and evaluating an
actively replicated manager.

The Delta-4[3] project designed an open architecture for dependable distributed systems
through the use of atomic multicast protocol and specialized hardware. Active, passive and
semi-active replication techniques can be used to achieve fault tolerance. Chameleon[15]
provides an adaptive software infrastructure to satisfy different levels of availability

-12 -

requirements for user applications. Chameleon has a centralized manager, and passive
replication is used to tolerate the failures of this manager.

Reliable group communication has served as the basis for many fault-tolerant distributed
systems, such as 1SIS[4], Horus[24], Totem[19], and Transis[11]. Several systems, such as
AQUA [10] and Eternal [20] provide fault tolerance for distributed CORBA applications by using
replicated objects.

11. Conclusion and Future Work

We have designed and implemented fault-tolerant cluster management middleware based
on an actively-replicated central manager. The system uses simplex agent processes running on
each node and supports parallel applications that communicate using MPI. A combination of
heartbeats, voting, and reliable communication protocols are used for fault detection. A simple
“*agent keeper’’ mechanism is used to reduce the potential impact of agent crashes. The system
supports an out-of-band signaling mechanism for parallel application tasks as a building block
for application-level fault tolerance mechanisms.

Based on this approach, the management layer can survive a much larger class of failures
than most other cluster management systems implemented on COTS hardware and software.
The system takes advantage of the limited availability of a‘‘hard core’’ to achieve these fault
tolerance capabilities using simple and efficient replication agorithms. The middleware
developed is critical enabling technology for the deployment of cost-effective supercomputing in
space applications. Our preliminary overhead measurements indicate that if error detection
latency of a few hundred milliseconds is acceptable, a central manager running on a relatively
slow CPU can handle a cluster with a few tens of nodes with processing overhead of only afew
percent. Lower detection latencies and/or larger clusters will require a hierarchical mechanism
for collecting status reports.

The system is still in development. Future work will include fault injection experiments,
checkpointing and rollback, reliable communication for user applications, and the
characterization and optimization of the (soft) real-time performance of the system.

Acknowledgements

This work is supported by the Remote Exploration and Experimentation (REE) program of
the Jet Propulsion Laboratory.

References

1. M.A.Baker, G. C. Fox,and H. W. Yau, ‘**A Review of Commercial and Research Cluster
Management Software,’” Technical Report, Northeast Parallel Architectures Center,
Syracuse University (June 1996).

2. A. Baak and O. Laadan, ‘“The MOSIX Multicomputer Operating System for High
Performance Cluster Computing,”” Journal of Future Generation Computer Systems
13(4-5), pp. 361-372 (March 1998).

3. P.A.Barett, ‘“‘Delta-4: An Open Architecture for Dependable Systems,”” 1EE Colloguium
on Safety Critical Distributed Systems, London, UK, pp. 2/1-7 (October 1993).

4, K. P. Birman, ‘“The Process Group Approach to Reliable Distributed Computing,”’
Communications of the ACM 36(12), pp. 36-53 (December 1993).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

-13-

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and
W.-K. Su, ‘““Myrinet: A Gigabit-per-Second Local Area Network,”” IEEE Micro 15,
pp. 29-36 (February 1995).

M. Castro and B. Liskov, ‘‘Practical Byzantine Fault Tolerance,”” Third Symposium on
Operating Systems Design and Implementation, New Orleans, LA, pp. 173-186 (February
1999).

M. Castro and B. Liskov, ‘‘Proactive Recovery in a Byzantine-Fault-Tolerant System,”’
Fourth Symposium on Operating Systems Design and Implementation, San Diego, CA,
pp. 273-287 (October 2000).

M. Chéréque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron, ‘*Active Replication in
Delta-4,”” Proceedings of the 22nd International Symposium on Fault-Tolerant Computing
Systems, Boston, MA, pp. 28-37 (July 1992).

F. Crigtian, R. de Beijer, and S. Mishra, ** A Performance Comparison of Asynchronous
Atomic Broadcast Protocols,”” Distributed Systems Engineering 1(4), pp. 177-201 (June
1994).

M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W. H. Sanders, D. E. Bakken, M. E.
Berman, D. A. Karr, and R. E. Schantz, ‘* AQUA: An Adaptive Architecture that Provides
Dependable Distributed Objects,”” Proceedings of the 17th IEEE symposium on Reliable
Distributed Systems, West Lafayette, IN, pp. 245-253 (October 1998).

D. Dolev and D. Mdki, ‘“The Transis Approach to High Availability Cluster
Communication,”” Communications of the ACM 39(4), pp. 64-70 (April 1996).

D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat, and T. E. Anderson,
““*GLUnix: A Global Layer Unix for a Network of Workstations,”” Software - Practice and
Experience 28(9), pp. 929-961 (July 1998).

T. P. Graf, R. G. Assini, J. M. Lewis, E. J. Sharpe, J. J. Turner, and M. C. Ward, ‘‘HP
Task Broker: A Tool for Distributing Computational Tasks,”” Hewlett-Packard Journal
44(4) (August, 1993).

M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal, **An Efficient Reliable
Broadcast protocol,”” ACM Operating Systems Review 23(4), pp. 5-19 (October 1989).

Z. Kabarczyk, R. K.lyer, S. Bagchi, and K. Whisnant, ‘‘Chameleon: A Software
Infrastructure for Adaptive Fault Tolerance,” IEEE Transactions on Parallel and
Distributed Systems 10(6), pp. 560-579 (June 1999).

L. Lamport, R. Shostak, and M. Pease, ‘‘Byzantine Generals Problem,” ACM
Transactions on Programming Languages and Systems 4(3), pp. 382-401 (July 1982).

M. Li, D. Goldberg, W. Tao, and Y. Tamir, ‘‘Fault-Tolerant Cluster Management for
Reliable High-Performance Computing,”” International Conference on Parallel and
Distributed Computing and Systems, Anaheim, CA, pp. 480-485 (August 2001).

M. J. Litzkow, M. Livny, and M. W. Mutka, ‘*Condor - A Hunter of Idle Workstations,”’
8th International Conference on Distributed Computing Systems, Washington DC,
pp. 104-111 (June 1988).

L. E. Moser, P. M. Mdliar-Smith, D. A. Agarwal, R. K. Budhia, C. A. Lingley-
Papadopoulos, and T. P. Archambault, ‘‘The Totem system,”” Proceedings of the 25th
International Symposium on Fault-Tolerant Computing, Pasadena, CA, pp. 61-66 (June
1995).

L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, L. A. Tewksbury, and V. Kalogeraki,
““The Eternal System: An Architecture for Enterprise Applications,”” Proceedings of the
3rd International Conference on Enterprise Distributed Object Computing, Mannheim,
Germany, pp. 214-222 (September 1999).

S. H. Russ, K. Reece, J. Robinson, B. Meyers, R. Rgjan, L. Rgjagopalan, and C.-H. Tan,
“‘Hector: An Agent-Based Architecture for Dynamic Resource Management,”” |EEE
Concurrency 7(2), pp. 47-55 (April-June 1999).

F. B. Schneider, ‘‘Byzantine Generals in Action: Implementing Fail-Stop Processors,”’

23.
24,

25.

-14 -

ACM Transactions on Computer Systems 2(2), pp. 145-154 (May 1984).

Sun Microsystems, ‘*Sun Grid Engine Software,’”’
http://www.sun.com/software/gridware/.

R. van Renesse, K. P. Birman, and S. Maffeis, ‘*Horus: A Flexible Group Communication
System,”” Communications of the ACM 39(4), pp. 76-83 (April 1996).

S. Zhou, X. Zheng, J. Wang, and P. Delisle, “*Utopia: A Load Sharing Facility for Large,

Heterogeneous Distributed Computer Systems,”” Software - Practice and Experience
23(12), pp. 1305-1336 (December 1993).

