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Abstract

DERT (Distributed Error Recovery Testbed) is a
testbed for simulation and performance evaluation of
several classes of application-transparent distributed
error recovery schemes. DERT is built on top of an
event-driven, message-passing, object-oriented,
multithreaded simulation kernel. Actual compiled
distributed applications are instrumented for data
collection and executed on the simulated multicomputer.
Checkpointing is implemented in full detail, including
associated overhead per message, additional messages,
and changes to the memory system. DERT allows easy
modification of awide variety of system parameters, thus
offering a level of flexibility not easily achieved by
experimentation on a particular real machine. This paper
describes the design, functionality, and performance of
DERT. The main problems encountered in DERT’s
development are discussed, as well as examples of itsuse
in evaluating recovery schemes.

I. Introduction

For many important applications of distributed
systems and of multicomputers the rdiability
requirements can only be met using fault tolerance
techniques. The mechanism for recovering a valid
system state following error detection is key to
implementing fault tolerance. The main desirable
features of the error recovery mechanism are: 1) low
overhead during normal operation, even for
communication-intensive applications, and 2) application
transparency so as not to increase the complexity of the
application software. There are two main classes of
distributed error recovery schemes that are application
transparent and prevent unconstrained rollback
propagation: coordinated checkpointing[1, 25, 15, 26]
and message logging[21, 11,22, 7]. Our research[8] has
involved developing new recovery agorithms that fall
into both classes. An essential facet of this work has
been the performance analysis of these and other
distributed recovery schemes.

Redlistic performance evaluation of distributed
checkpointing and rollback techniques is difficult due to
the numerous factors that must be taken into account,
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involving detailed characterization of the target system
and of the applications. Thus, most performance
analyses of distributed recovery techniques have been
limited to greatly simplified analytical models. Realistic
experimental performance evaluations have appeared
only recently[12,3,28,6,14], but with amost no
analysis in the context of multicomputer systems —
where normal  communication latency is small
(microseconds) and many of the applications are
communication-intensive.

DERT was developed to measure the performance
impact of several different error recovery techniques for
multicomputers. We wanted to evaluate changes in the
overhead as a function of various system parameters and
application characteristics. To facilitate research on
error recovery schemes it was particularly important to
be able to evaluate a variety of related optimizations,
including low-level features, of the target architecture
and operating system. Thus, simulation accuracy and
flexibility were the primary design goals of DERT.

DERT is implemented on top of a multi-threaded
simulation kernel, called Smon[23]. It runs actual
distributed applications whose assembly code has been
instrumented to 1) count the number of assembly
instructions executed and 2) take checkpoints at precise
intervals. We have successfully used DERT to evaluate
a variety of recovery schemes with coarse-grained and
fine-grained applications. DERT has proven to be a
powerful and flexible tool for evaluating the overhead
and scalability of recovery schemes. This paper relays
our experiences in developing and using this simulator.

The target system is described in Sectionll.
Section Il  describes the testbed implementation,
Section IV the recovery schemes simulated on the
testbed, and SectionV the benchmarks. Section VI
relays experiences simulating the recovery schemes and
Section VII discusses simulator performance. Previous
work isthe topic of Section VIII.

II. TheTarget System

The target (smulated) system is a scaable
multicomputer consisting of nodes which communicate
via messages over point-to-point links. Each node
includes a processor, loca memory, and a
communication COProcessor. Nodes operate



asynchronously and messages may have to pass through
intermediate nodes on the way to their destinations. The
system is used for general-purpose applications with no
hard real-time constraints. Errors can occur at any time
due to hardware faultsin the nodes or links.

Error recovery schemes require ‘‘safe’’ storage of
some of the system state so that it can be accessed during
recovery despite component failures. The target system
is assumed to include such stable storage[17],
implemented on ‘‘reliable disks’ (e.g. mirrored disks),
where checkpoints can be safely maintained. Some of
the nodes in the system, which we call disk nodes, are
connected to such reliable disks. We assume that the
failure of a disk or a disk node causes a crash (i.e, an
unrecoverable error).

The state of a process is the contents of the
memory and registers used by the process. Thisincludes
some system tables (e.g. the list of virtual circuits
currently established to and from the process).

Since each node can be time-shared between
multiple processes, it may have to participate in multiple
simultaneous checkpointing and recovery sessions.
Hence, checkpointing and recovery are not implemented
as part of the kernel; instead, a handler process is
spawned to perform these functions. The handler can
suspend an application process, manipulate its state, and
alow it to resume normal operation.
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Figure 1: The simulation testbed.

I1l1. Thelmplementation of DERT

The key motivation for DERT was to allow
accurate evaluation of the performance impact of various
recovery schemes. Failures are assumed to be relatively
rare, hence the performance impact of the recovery
schemes is amost entirely due to the overhead during
normal operation. Thus, a key requirement from DERT

was the ability to accurately measure the impact of any
extra bookkeeping, logging, and state saving required for
recovery. These factors are dependent on system
characteristics, such as the relative costs of computation
versus communication, and application characteristics,
such as communication frequency and the rate at which
the application state changes. Our studies required the
ability to vay these system and application
characteristics in order to evauate the suitability of
different types of recovery schemes for different types of
systems and applications. The only way to meet these
reguirements was to use execution-driven simulation.

DERT isimplemented on top of an object-oriented
multi-threaded, event-driven simulator called Smon[23].
Smon manages each object as a separate thread,
implemented as a Modula-2 coroutine. The simulation
kernel, which manages the event queue, is aso a
Modula-2 coroutine. Simon provides routines for
creating objects, sending messages between objects, and
debugging. Messages are delivered to and from objects
through input and output ports. These ports are
interconnected via unidirectional ‘‘links’ at the
beginning of the simulation.

DERT has been run only on Sun SPARC systems
under SUnOS. It has executed distributed applications
written in C and Modula-2. DERT includes fully
functional implementations of two major application-
transparent error recovery schemes. asynchronous
message logging and asynchronous coordinated
checkpointing. It provides several optimizations of these
schemes. DERT aso includes an independent
checkpointing scheme, used to evaluate the cost of
periodic checkpointing of process states without the
additional overhead for maintaining the information
needed to recover consistent process states following
node failure. DERT consists of 20,000 lines of code
written in Modula-2, C, and assembly.

A. TheMulticomputer

As previously discussed, the target system being
simulated is a scalable multicomputer. We chose to
simulate a system with up to 256 nodes, interconnected
in a hypercube topology. Each of the nodes in the
hypercube is simulated as two Simon objects: the
application process and the operating system. The
operating system object (see subsection C) handles
checkpointing and recovery activities. The nodes being
simulated are not multitasking and there is no direct
context switching between the application and the
operating system. The testbed was greatly simplified by
simulating events in the application process and the OS
asexecuting ‘‘in parallel’’ on the two Simon objects.

Interprocessor communication in the simulated
multicomputer is performed via message exchanges.
Message send operations are nonblocking. Messages
become part of the receiving node state once they are
delivered by the network. The receiving application



process can access an arriving message only after
executing a blocking receive operation. It is assumed
that al application messages are anticipated, i.e, a
message is available to the receiving process only after it
executes a receive. The restriction to anticipated
application messages simplifies the simulation. As
described in the next subsection regarding checkpoint
messages, it is possible to relax this restriction.

The network operates with a store-and-forward
datagram protocol using dimension-order routing. When
link conflicts are encountered, messages are stored at that
node until the link is available. A link bandwidth of
20 Mbytes/sec is assumed.

B. Instrumentation of the Applications

Simulating application execution with fine-grain
accuracy requires extensive instrumentation of the
application code at the assembly code level. There are
two purposes for this instrumentation: A) account for
application execution time and B) provide a mechanism
for initiating checkpointing based on elapsed simulated
time. The application is compiled down to assembly
code and then passed through a parser that inserts at the
end of each basic block assembly instructions that count
the number of executed machine instructions. This
straightforward dynamic instruction count accumulation
is used in many other tools, such as PIXIE[24]. In the
simulations reported in this paper, most instructions are
assumed to execute in 100nsec, but floating point
instructions execute in 300nsec or 900nsec for
add/subtract or multiply/divide, respectively.

In many checkpointing schemes, checkpointing is
initiated when the time since the last checkpoint exceeds
apreset limit. To support this mechanism in DERT, the
application code is instrumented so that at the beginning
of each basic block it is determined whether it istime to
take a checkpoint. This is done by comparing the
accumulated running time since the previous checkpoint
of this process to the checkpoint interval, which is a
parameter to the simulator. If the running timeis greater
than or equal to the checkpointing interval, the
application process 1) sends a checkpoint message to the
operating system object and 2) executes a blocking
receive to wait for a message from the operating system
indicating that the application can resume execution.

The simulated time of a process is synchronized
with the global simulated time before a message is sent
or received and before a checkpoint is taken. If the
simulation only had to deal with anticipated messages,
this would be sufficient to ensure accurate simulations.
However, while the simulator supports only anticipated
application messages, the restriction to anticipated
messages is violated by system messages that are
supposed to initiate checkpointing or recovery and
cannot be anticipated by the application. Thiscan lead to
a problem with processes that may execute for an
extended period of time without sending or receiving a

message. Specificaly, in the simulation such a process
may execute to a point far ahead of when in the red
system an unanticipated *‘initiate checkpoint’® message
would have been received. This simulation inaccuracy
may affect the number of checkpoints taken, the size of
the checkpoints, and the application execution time. We
solve this problem by not allowing any process to get
ahead of the global simulation time by more than a fixed
TIME_SLICE. At the beginning of every basic block, in
addition to checking whether the checkpoint timer has
expired, the augmented code also checks that no more
than TIME_SLICE time units have elapsed since the
process was last suspended. If the test fails, the process
is forced to resynchronize with the global simulation
clock (control is passed to the ssimulator kernel).

C. TheOperating System

On each node there is an application process and
an operating system process, Wwhich execute
concurrently. The simulator does not support multiple
application processes on a node. The application
interface between the application process (object) and
the operating system process (object) is through three
routines: Send, Receive, and Checkpoint. The operating
system handles the network interface, checkpointing and
recovery tasks, and the maintenance of bookkeeping
information. An execution time (cost), expressed in
terms of an approximate machine instruction count, is
associated with every operating system routine (e.g.
send, receive, memory-to-memory copy, table lookup).
This allows the execution time of operating system tasks
to be taken into account in the simulation.

Each application process is checkpointed prior to
execution. After this initia checkpoint, only the
modified state of the process is checkpointed. The
checkpoint-detection code in each basic block checks the
checkpoint timer. If it has expired, a message is sent to
the operating system. Upon receipt of this message the
operating system enters checkpoint mode and initiates a
checkpoint session on behalf of the application process.
The operating system 1) takes a volatile checkpoint of
the process in local memory 2) wakes up the process as
soon as possible considering the size of the checkpoint
and the specific checkpointing algorithm and 3) sends the
volatile checkpoint to stable storage. With message
logging, the application resumes execution immediately
after the volatile checkpoint has completed. The
checkpoint state consists of: the stack, statically allocated
memory containing the process global variables, and
heap from which memory is allocated on demand. Some
bookkeeping information is also checkpointed.

The size of the checkpoint state significantly
impacts the overhead of the checkpointing algorithms.
Thus, for al techniques, only the pages modified since
the previous checkpoint are copied during a volatile
checkpoint. In a real system, hardware support may be
used to keep track of which pages are ‘‘dirty-since-



checkpoint.’” In the simulation, the operating system
object computes the checksum of every page when a
checkpoint is taken. At the beginning of checkpointing,
the operating system object identifies modified pages by
comparing the current checksum of every page to its
checksum from the previous checkpoint.

Recovery sessions are initiated by a simulation
message whose receipt signifies that a hardware (node)
failure has occurred. The application state and al
volatile memory is assumed to be lost and the operating
system enters recovery mode to initiate a recovery
session and restore the application’s state. At some point
during the recovery session the operating system wakes
up the application process to complete the recovery or to
begin re-execution from its consistent restored stete.

D. TheHost Processor (1/0 Object) and Stable

Applications must be structured as an 1/0O object
and some number of application processes. The 1/0
object is responsible for initializing the hypercube and
calling the testbed procedures that create all the required
objects. The I/O object then acts as the ** outside world’”’
(host processor) by generating all inputs and collecting
al outputs. Thereis no restriction asto how thisis done.

Our simulations assume that disks and disk nodes
are reliable and can thus be used directly to implement
stable storage[17]. By default there is one disk per
application process. Each disk has a bandwidth of three
megabytes per second. A single disk object is used to
simulate m disks. The disk object’s key function is to
log messages and checkpoints. Traffic to the disks does
not use the network used for internode communication.

V. TheRecovery Schemes Simulated

When one or more processes are rolled back care
must be taken to ensure that each pair of processes are
consistent and hence that the system state is valid; every
pair of processes must agree which messages have been
sent and which have not[5], such that no messages are
lost or duplicated. A set of checkpoints, one per process
being rolled back, which are consistent with each other is
called a recovery line[19]. If processes checkpoint
independently, ignoring interactions with one another,
the recovery algorithm must find a recovery line amongst
the available checkpoints[29]. The problem with
“‘independent checkpointing’” is that there is no
guarantee a recovery line exists and domino effect [19]
can occur, causing the system to roll back to its initia
State.

Two major application-transparent  distributed
checkpointing and rollback schemes avoid domino
effect: message logging[21,11,22,13,20,10,7] and
coordinated checkpointing[1, 25, 15, 26].

A. Message Logging

Message logging techniques checkpoint process
states and (log) interprocess messages. When a process

fails and is rolled back, its message log is played back to
it, so that when the log has been depleted, the process is
in a state consistent with the non-failed processes in the
system. Application processes are required to be
deterministic: given a process state and an ordered
message log, the process will generate the same outputs.
Processes are checkpointed independently and a single
failed process can be recovered, potentially without
interfering with the operation of other processes.

With optimistic (or asynchronous) message
logging techniques[21] logging proceeds asynchronous
of process execution. Thus, when a process fails some
messages might not yet be logged. To achieve a
consistent system state other processes (orphans) may
have to roll back. This approach is ‘‘optimistic”’
because it does not incur synchronization overhead
during normal operation in order to avoid orphans.

Ensuring correctness despite the loss of
interprocess messages requires dependency tracking.
Each process maintains an RSN (receive sequence
number), incremented each time a message is received,
which indicates the start of the next state interval in that
process. Each process x aso maintains an O(n)
dependency vector indicating the most recent state
interval of every process y upon which X
depends[16, 21]. The dependency vector is appended to
outgoing messages which receivers use to update their
dependency vectors. A process, or message, is an orphan
if it depends on a state intervals that is known to be lost
(rolled back). Each process maintains an incarnation
start table (IST) which contains information identifying
which state intervals are thought to be live (not lost).

When a process q fails its earliest checkpoint is
restored and the message log is replayed until an orphan
message or the end of the log is reached. q then
broadcasts its current state interval number to all
processes in the system — informing them that any
larger (later) state intervals have been lost. Upon
receiving this broadcast a process updates its IST and
determines if it is an orphan. Orphan processes are
rolled back and orphan messages are discarded. For
details see[21].

In addition to asynchronous message logging, an
“‘optimal’’ independent checkpointing algorithm has also
been implemented. In this agorithm processes are
checkpointed independently but no additional overhead
(e.g. dependency tracking) is simulated.

B. Coordinated Checkpointing

Coordinated checkpointing techniques checkpoint
a set of processes together (the entire system or a subset)
such that each pair of process states on stable storage are
consistent with each other [5]. The recovery agorithmis
therefore guaranteed to be able to find a recovery line.
There is no need to store message logs and little
bookkeeping information is required.



Globa  checkpointing[25] checkpoints and
recovers the entire system. With coordinated
checkpointing of interacting sets[1, 15, 26] a consistent
set of one or more processes are checkpointed or rolled
back together. An interacting set of processes is defined
to be the set of processes which have communicated
directly or indirectly since their last checkpoint; if p isa
member of an interacting set, then any process q that has
communicated with p since q’s last checkpoint is aso a
member. Each process maintains a Buddies list of the
processes with whom direct communication has taken
place since its last checkpoint. Checkpointing overhead
is reduced compared to global checkpointing and
overhead during normal operation is reduced compared
to message logging. During recovery all processesin the
interacting set(s) containing the failed process(es) must
be rolled back. These algorithms are synchronous —
process execution is not resumed until the checkpointing
session has completed.

Asynchronous coordinated checkpointing[27, 8],
achieves the benefits of checkpointing processes
independently, but avoids the domino effect.
Checkpointing a process begins by taking a volatile
checkpoint (copying the changed state of a process to
local volatile storage), after which the process resumes
execution. The rest of the checkpointing session
involves identifying the interacting set and transfering
the volatile checkpoints to stable storage. As with
independent checkpointing, the length of time a process
is suspended is independent of network delays and the
number of processes that constitute the application. The
cost is an increase in the complexity of the checkpointing
agorithm which must ensure that the voldtile
checkpoints are saved as part of a consistent global state
even though the processes being checkpointed have
resumed execution.

C. Overhead Breakdown

The performance overhead of the error recovery
schemes can be broken into three parts: 1) overhead
incurred during normal operation; 2) the cost of
checkpointing process states; and 3) the cost of recovery
when failures occur. In the testbed we focus on (1) and
(2) since thisis the overhead that impacts the system the
majority of the time. Only the functionality of recovery,
not the performance, has been tested.

(Asynchronous) M essage L ogging —
During normal operation the following is required:

e Extra processing by the send and receive primitives
(to track dependencies).

e Periodic broadcast of logging status.
e Periodic reclamation of checkpoints and message logs.

e Loca memory for bookkeeping data structures and
volatile message logs.

e Stable storage for the message log including the

dependency vectors.

e Network bandwidth for dependency vectors and for
copies of messages (and their dependency vectors)
being sent to remote stable storage.

e Disk bandwidth for messages and their dependency
vectors.

e Delay in committing outputs to the external world.

This overhead is likely to have a more impact on
applications with fine-grained paralelism than on
applications with coarse-grained parallelism.

During checkpointing, network and disk
bandwidth are needed to transmit local bookkeeping data
structures and the process current state, and stable
storage is required for the checkpoint state and data
structures. This overhead is dependent on the checkpoint
interval and the size of the process state.

(Asynchronous) Coordinated Checkpointing —
During normal operation the overhead incurred is:

e Loca memory for the Buddies list and processing to
update it.

e Delay in committing outputs to the external world.

Also, compared to a system that has no process
recovery but uses check bits to send reliable messages —
less OS processing and network bandwidth are required
to transmit messages, if message transmission error
checking is incorporated into coordinated checkpointing
as described in[27].

During checkpointing the following is required:

e The process is suspended the length of time it takes to
copy the current state into local volatile memory and
to queue outgoing Checkpoint messages.

e Significant (‘‘background’’) processing by the
checkpoint handlers.

e Network and disk bandwidth to transmit checkpoints
and message queues; additional network bandwidth
for recovery scheme messages.

e Stable storage for checkpoints: up to two per process.

e Coordinated checkpointing results in ‘‘bursty’’
network and disk traffic.

Message logging techniques incur more overhead
during normal operation than do coordinated
checkpointing techniques and less during checkpointing
sessions. Thus, detailed characterization of distributed
applications is required to accurately compare the two
techniques. All overhead itemized above is simulated by
the testbed at the level of assembly instrucions.

V. TheBenchmarks

Six applications have been incorporated into the
simulator: fast fourier transform (fft), router, placement,
matrix QR factorization, olfactory and extract[9,4].
Some of the characteristics of these applications,
determined by examining simulation output, are listed in



#Nodes| 4 8 16 32 64 128 256
Total #assembly instructions (in millions)
executed by the application

Extract| 2219 3001 3957 - - - -
OLF - 359 486 737 1245 2259 4303
FFT - - 2017 2081 2160 2260 2422
QR| 819 819 820 821 - -
Place| 349 468 692 - - -
Router| 254 299 351 -
Total #msgs sent & total message volume (M Byteﬁ)

Ext: #msgs| 1299 2969 7941 -

volume| 127 253 635 -
2807 7483 18.7K 44. 9K 105K 239K

OLF: #msgs
volume 11.8 253 522 106.1 2143 4321
FFT: #msgs - 32.0K 80.1K 192K 448K 1.02M
volume 65.6 820 984 1148 1311

QR: #msgs | 55. 3K 55.3K 55.4K 55.4K - -
volume| 586 586 58.6 58.6 - -
Place: #msgs| 735 16.5K 131K
volume| 18 34 79
Rtr: #msgs| 127K 326K 715K
volume| 7.2 163 155
Avg. #pages modified after 146 m||||0n instrs
(for Extract) and 46 million instrs (for al others)
Extract|1.85K 1.62K 1.42K -
OLF - 16.34 19.70 22.14 2441 2568 2654
FFT - 231 256 297 355 423
QR 1.15 130 158 207 - -
Place| 58.63 59.18 57.40 - - - -
Router | 30.00 37.45 48.99 - - - -

Table 1. Application statistics: communication
frequency (avg. no. of assembly instructions ex-
ecuted between sends), no. of messages sent,
message volume, and typical checkpoint state
size (the number of 1Kbyte modified pages
checkpointed by an independent checkpointing
algorithm using a particular checkpoint interval).

Table 1. fft isrun over 22 points. Matrix QR is run for
four successive matrices (64x64, 96x96, 128x128,
160x160). Router (with input of 72 nets) and placement
(with 183 cells) are both VLSI CAD tools that use
simulated annealing algorithms. Extract isa VLSl CAD
tool that performs circuit extraction (on a CIF file with
66K rectangles). Olfactory is a hypercube
implementation of an anatomically redlistic model of a
real neural network (the piriform cortex).

All of the applications, with the exception of QR,
become more communication-intensive as they scale
(with constant problem size). Extract has the largest
state (eg. 1.4 to 29 MBytes of modified state
checkpointed per process) and is the least
communication-intensive (sending a message every .5 to
1.7 million instructions). This is in contrast to router
where, with 16 processes, each process sends a message,
on average, every 492 instructions. We did not know,
prior to executing the applications on the testbed what
sort of execution profile they would exhibit. Thus, the
simulator is useful for obtaining such information (e.g.
for usein an analytical model).

In developing the testbed a significant problem
was encountered with the applications in the form of

intraprocess and interprocess nondeterminism. Message
logging agorithms require applications to be
deterministic in their actions — therefore, all
intraprocess nondeterminism had to be removed. For
example, random number seeds had to be saved and
restored with the checkpoint.

More difficult was a specific case of interprocess
nondeterminism caused by the interaction of 1) the use
(by Placement) of aring broadcast to update data on the
processors and 2) the use of periodic checkpointing. The
simulated annealing algorithm used by placement
chooses master-slave pairs in every annealing iteration.
Without checkpointing, an application, using the ring
broadcast, can be run multiple times, with the same
inputs, and it will always give the same outputs; the same
master-dave pairs will be chosen in the same order.
With checkpointing, however, it is possible for a
different process to exit a particular ring broadcast first
and then decide to become a master. Thus the chosen
master-dave pairs are different than in the simulation
without checkpointing — altering the application’s
execution and resulting in significant changes to
application execution time and application results. This
made it impossible to compare the execution times of the
application with and without checkpointing.

There were two possible solutions. We could run
multiple simulations with checkpointing, measure
confidence intervals, and determine an average
checkpointing overhead. Instead, we chose to replace
the ring broadcast with a broadcast that guarantees the
order in which processes will exit the broadcast. It
should be noted that this problem is not peculiar to the
simulator; the same problem would exist if the
applications were running directly on a multicomputer.

VI. Experienceswith the Recovery Schemes

We are primarily interested in the overhead
incurred by error recovery schemes during normal
operation and checkpointing. Therefore, for the
simulations which do not measure the overhead of failure
recovery, much of the code that performs the actua
checkpointing and rollback functions is *‘turned-off’’
while still incorporating the overhead incurred by these
functions into the simulations. This conserves disk,
memory, and swap space, increasing the degree to which
the applications can be scaled. With these optimizations
Olfactory and fft could be scaled to 256 nodes when
executing on a Sun-4 with 32MBytes of physical
memory and 100MBytes of swap space. The other
applications had been hard-coded to scale to 16 or 32
nodes.

A. Message Logging

The flexibility of the testbed alowed us to
examine recovery scheme overhead at a very low level.
By measuring the processing overhead of individua
recovery components, we can 1) determine the



Origina Orph_roll DV_diffs Optimal No_Chkpt
Sender:
DV diff - - N* 33 - -
Tag copy N* 1.5 N* 1.5 X*1.5 - -
SEND 10 10 10 10 10
Save DV - - N* 1.5 - -
Setup to - 129 129 129 - -
Savemsg | (Size+N)* 1.5 (size+N)*15 (size+X)* 15 - -
Link Xfer: | (SizetN+4)/2 (size+N+4)/2 (Size+X+4)/2 (Size+N+4)/2 Size/2
Interm. Node: 10 10 10 10 10
Receiver:
RECV 10 10 10 10 10
SSN check 43 43 43 - -
Orphan check 6+N* 33 - - - -
Update DV 6+N* 48 - - - -
DELIVER 0 0 0 0 0
Send Ack 145 145 145
Send Log 129 129 129 - -
Update DV - 6+N* 48 6+X* 48 - -
Ack_Msg 304 304 304 - -
Disk_Ack 274 274 274 - -

Table 2: Breakdown of OS processing overhead for message logging incurred per application message in terms of assem-
bly instructions executed. N is the number of processes and X<N. Reliable message delivery is assumed to be free.
Each dependency vector entry fitsin asingle byte. Thereis no cost to send the SSN, just to check the sequencing.

#Nodes| 4 8 16 32 64 128 256 | dynamic

OS overhead per appl. msg (in assembly instr. executed)
Original | 1392 1728 2400 3744 6432 11808 22560|size* 1.5
Orph_roll {1254 1458 1866 2682 4314 7578 14106|size* 1.5
DV_diffs|1188 1326 1602 2154 3258 5466 9882|size* 1.5
+X* 51

Table 3: Assembly instruction counts, as the hy-
percube is scaled. The dynamic count must be
added to the static instruction count.

performance impact of each component, 2) devise how to
improve the performance of the recovery scheme, and
3) measure the effectiveness of the resulting
optimizations. This capability is illustruated below,
using the asynchronous message logging technique. We
broke the overhead of asynchronous message logging
(Original) into its component parts — Msg_Ovrhd,
Chkpt_Ovrhd (also called Optimal), and No_Chkpt.
After measuring the performance impact of each of
these, we devised and simulated optimizations to the
kernel code (Orph roll and DV_diffs) and hardware
support (Optimal) to reduce the total overhead. The
components of message logging overhead and the
optimizations are briefly described below. The
assembly-level operations (overhead), required by the
message handling routines of the message logging
agorithm (Original) and its optimizations (Orph_rall,
DV_diffs, and Optimal), are listed inin Table 2. Table 3
shows the impact of scaling the hypercube on these
routines in terms of total assembly instructions executed.

The agorithms investigated were;

e Original is the basic asynchronous message logging
technique[21].

e No_Chkpt is the application without any recovery
scheme and with an inexpensive send and receive
protocol (see Table2). In Figure2 No_Chkpt is
aways 1.0. All schemes are graphed relative to
No_Chkpt.

e Msg_Ovrhd is the application without any recovery
scheme but with expensive send and receive
primitives equivalent to the computation time
performed by the OSin Original. Thisisolatesthe OS
processing overhead (by the sender and receiver) in
the Original scheme.

e Chkpt Ovrhd assumes that the operations listed in
Table2 are performed in paralel with normal
processing by specia-purpose hardware (hence
Optimal). This isolates the checkpointing overhead in
the Original scheme.

e Orph_roll is the Original scheme with two
optimizations we devised: 1) Messages are not
examined to determine if they are orphans — orphan
detection is delayed until a Recovery message arrives.
The cost is the potential rollback of additional
processes that could have been avoided by detecting
the orphan message earlier. 2) The message is
delivered to the application as soon as it passes the
SSN protocol. The dependency vector is updated after
the message is delivered; the OS must complete this
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Figure 2: Application execution time with message logging relative to execution time with no recovery scheme. The

checkpoint interval is 4600000 instructions.
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Figure 3: Application execution time with coordinated and independent checkpointing relative to execution time without
checkpointing. The checkpoint interval is 4600000 instructions.

update before sending any new messages.

e DV diffs is an optimization, previously proposed by
others, that sends only the changes between the
dependency vector previously sent by StoR and S’s
current dependency vector (X entries instead of N).
These simulationsinclude Orph_roll optimizations.

Figure 2 shows typical results from the simulator
running these recovery agorithms for two of the
applications (fft performed much worse, Placement a
little better than QR, Olfactory a little better than Router,
and Extract’s overhead came only from checkpointing).

Using the asynchronous message logging
technique we have shown that our testbed can be used to
examine the impact of recovery techniques on actual
distributed applications in a high-performance
multicomputer environment and that the maximum
flexibility afforded by such a simulator allows low-level
investigation of architectural tradeoffs and optimizations.

B. Coordinated Checkpointing

Running simulations  using coordinated
checkpointing and independent checkpointing illustrates
the importance of measuring recovery agorithm
overhead on applications as they are executing. It is

generally expected that independent checkpointing is less
disruptive to system operation (e.g. [3,18]) because only
asingle process isinvolved in a checkpoint session. This
intuition is compounded by the fact that, with
coordinated checkpointing, processes will checkpoint
more often than is dictated by the checkpoint interval.
Indeed, in the simulations most interacting sets contained
all application processes and processes checkpointed
measurably more often than with independent
checkpointing.

We coded several coordinated checkpointing
algorithms:  F_Synch,  synchronous  coordinated
checkpointing where processes do not resume execution
until  the checkpoint has completed, S Synch,
synchronous coordinated checkpointing where processes
resume execution after the interacting set has been found,
and A Synch, our asynchronous coordinated
checkpointing algorithm. The coded independent
checkpointing algorithm is, in a sense, ‘‘optimal”
because only the overhead of checkpointing is simulated
— any costs for dependency tracking and/or message
ordering are not simulated. Figure 3 shows some results
of simulations using the Placement and Olfactory
applications. In Olfactory, independent checkpointing



performed significantly worse than all three coordinated
checkpointing  agorithms, and in  Placement,
outperformed only the fully synchronous coordinated
checkpointing algorithm. It appears that the coordination
of checkpointing sessions can be beneficia. With
independent checkpointing there is a higher probability
that process y is checkpointing when process X is
waiting to receive a message from y. With coordinated
checkpointing X and y are likely to be checkpointing
simultaneously, reducing CPU idle time. This confirms
results presented in[6].

Time # processes

Slice| 2 4 8 16 32 64
450 |1.1584 1.1739 1.1384 1.1215 -

45K [1.1582 1.1740 1.1383 1.1215 -

Extract | 5ok |1.1548 1.1722 1.1391 11143 -
45M |1.1557 1.1753 1.1417 11156 -
450 | - ~ 1.0030 1.0034 1.0031 1.0036
Otfactory| 45€ | - - 1.0030 1.0033 1.0031 1.0036
450K | - - 1.0031 1.0033 1.0031 1.0036
M| - - 1.0031 1.0033 1.0031 1.0036

Table 4: Execution time with asynchronous coor-
dinated checkpointing relative to execution time
without any checkpointing for several values of
TIME_SLICE (specified in assembly instruc-
tions).

In Section |1l we discussed the use of bounded
time slices for each simulation thread in order to handle
the “*out of sync’’ problem due to messages which are
not anticipated. Table 4 shows the impact of varying the
size of the time slice on the results obtained from the
simulator for asynchronous coordinated checkpointing.
These results increase confidence in testbed results since
varying the time dlice does not appreciably alter
simulated application execution time.

#Nodes| 1 2 4 8 16 32 64 128 256

Simulation time (nsec) per application assembly instr.
Extract:|2281 2305 2235 2210 2231 -
w/ indep|2694 2734 2677 2648 2600

OLF: - - 349 459 558 646 700 745
w/ indep - - 440 539 649 730 794 836
FFT: - - - - 946 1053 1153 1384 1832
w/ indep - - - 1084 1138 1261 1486 1979
QR: - - 564 575 573 578
w/ indep - - 599 621 628 631

Place:| 672 721 776 802 1052
w/ indep|1018 1068 1122 1169 1439
Router: | 2028 2344 2680 3462 4877
w/ indep|2711 2995 3281 4090 5341

Table 5: Simulation time per application assembly
instruction — for the application without check-
pointing and with independent checkpointing.

VIIl. Simulator Performance

Finally, we comment on the efficiency of the
simulator as it runs the applications. Since processes run
sequentially on a uniprocessor, the ssimulator will be at
least a factor of N slower than an n-node multicomputer
running the application. We examine the overall
efficiency of the ssmulator by measuring simulation time
per application assembly instruction (Table5). As can
be seen from the table, the simulator execution rate
ranges from a low of .187 MIPS (Router) to 2.71 MIPS
(Olfactory) on a host whose rate is 25-35 MIPS. It
appears that, for Router, a communication-intensive
application, the overhead of sending messages in the
simulator shows up as the application is scaled. For
extract and gr, the simulator becomes relatively more
efficient as the application is scaled because the
application is becoming less efficient (e.g spending more
time waiting for messages). For the remaining
applications the simulator becomes less efficient as it
spends more time switching processes contexts.

VIIl. PreviousWork

In[12], sender-based message logging was
implemented on an ethernet-based network of Sun
workstations (V-system). Applications composed of 8
processes were run to obtain experimental results of
checkpointing, logging, and recovery overhead. In[3],
synchronous coordinated checkpointing and independent
checkpointing were implemented on an ethernet-based
network of Sun-3/50 workstations. Input parameters
were varied using ‘‘dummy’’ processes which
“‘communicated’’ through Sun Unix message queues.
Many simulation results were reported. In[6],
coordinated checkpointing and independent
checkpointing[2] were implemented on an ethernet-
based network of Sun workstations (V-system).
Applications composed of 16 processes were run to show
that the coordination overhead of coordinated
checkpointing can be quite small. In[28],
communication trace-driven simulation of 8 process
applications from an Intel iPSC/2 hypercube were used
to determine rollback distance, percentage of messages
logged, and number of checkpoints reclaimed. In[14],
analytical simulations, using fixed parameters (e.g.
message sending intervals of 500 to 7500 secs), were
used to obtain some specific, limited results.

IX. Summary and Conclusions

The different sources of overhead of various
distributed error recovery schemes preclude the use of
analytical models for accurately evauating the
performance impact of these schemes. Hence, we have
developed a simulation testbed for anayzing the
performance of distributed application-transparent error
recovery techniques. The testbed is redistic and
accurate — application and operating system execution
is simulated at the assembly instruction level through
low-level timing and assembly code instrumentation.



The testbed simulates a scalable multicomputer (up to
256 nodes) and is currently able to run six applications
and a number of recovery schemes. The recovery
schemes are fully functional; an application will execute
correctly in the presence of simulated node failures. We
have described the functionality of the testbed, the
difficulties we encountered during development, and
some of our experiences simulating applications and
recovery schemes.

The flexibility of the testbed facilitated directly
comparing different error recovery schemes as well as
devising and measuring various optimizations to the
schemes. For example, we simulated coordinated and
independent checkpointing (without message logging)
and found that, for the target system and the applications
used, the coordination of checkpointing sessions led to
less overhead than with independent checkpointing. We
were also able to evaluate optimizations to the message
handling routines of asynchronous message logging
schemes, measure the effectiveness of reducing the size
of checkpoints using copy-on-write pages[8], simulate
an ‘‘optimal’’ message logging scheme, and fine-tune a
large number of parameters.
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