IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 6, JUNE 1992

725

Dynamically-Allocated Multi-Queue Buffers
for VLSI Communication Switches

Yuval Tamir, Member, IEEE, and Gregory L. Frazier, Student Member, IEEE

Abstract—Small n x n switches are key components of inter-
connection networks used in multiprocessors and multicomput-
ers. The architecture of these n x n switches, particularly their
internal buffers, is critical for achieving high-throughput low-
latency communication with cost-effective implementations. We
discuss several buffer structures and compare them in terms
of implementation complexity, inter-switch handshaking require-
ments, and their ability to deal with variations in traffic patterns
and message lengths. We present a new design of buffers that
provide non-FIFO message handling and efficient storage allo-
cation for variable size packets using linked lists managed by
a simple on-chip controller. We evaluate the new buffer design
by comparing it to several alternative designs in the context
of a multistage interconnection network. Our modeling and
simulations show that the new buffer outperforms alternative
buffers and can thus be used to improve the performance of a
wide variety of systems currently using less efficient buffers.

Index Terms— Communication coprocessors, communication
switches, interconnection networks, multicomputers, multi-queue
buffers, multistage networks, VLSI systems.

I. INTRODUCTION

IGH-BANDWIDTH low-latency communication be-

tween processors is critical to the ability of multi-
processors and multicomputers to achieve high performance
by exploiting parallelism. Multiprocessors with a large
number of nodes (e.g., greater than 64) use multistage
interconnection networks composed of small n x n switches
(typical, 2 < n < 10) for communication [2], (8], [17].
Similarly, communication through point-to-point dedicated
links in multicomputers [4], [21], [26] relies on communication
coprocessors with a small number of ports [3], [22] that
function as small n X n switches with n — 1 ports connected to
other nodes, and one bidirectional port connected to the local
application processor. The design of high-performance small
n x n switches is thus of critical importance to the success of
multiprocessor and multicomputer systems.

This paper deals with the design and implementation of a
small n x n VLSI communication switch, focusing on the
organization of its internal buffers. The function of the switch
is to take packets arriving at its input ports and route them to
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its output ports. As long as only one packet at a time arrives
for a given output port, there will be no conflict, and the
packets are routed with minimum latency. Unfortunately, as
the throughput goes up, so does the probability of conflict.
When two packets destined for the same output port arrive
at different input ports of a switch at approximately the same
time, they cannot both be forwarded immediately. Only one
packet can be transmitted from an output port at a time, and
hence one of the two packets is stored at the node for later
transmission. The maximum throughput at which the switch
can operate depends directly on how efficient the switch is at
storing the conflicting packets and forwarding them when the
appropriate output port is no longer busy.

An ideal switch has infinite buffer space, but will only
buffer (delay) a packet as long as the output port to which
the packet is destined is busy. Such a switch can handle
n incoming packets while transmitting n packets and can
receive and forward the first byte of a packet in a single cycle
{12]. In a real implementation, buffers are finite and have a
finite bandwidth. This can result in conflicts due to attempted
simultaneous accesses to shared buffers and in messages that
cannot be received due to lack of buffer space. Packets ready
to be transmitted may be blocked behind packets waiting for
their output port to free up, and significant delays may be
introduced by complex memory allocation schemes required
to handle variable length packets.

The research described in this paper is part of the
UCLA ComCoBB (Communication Coprocessor Building-
Block) project, whose focus is the design and implementation
of a single-chip high-performance communication coprocessor
for VLSI multicomputer. The ComCoBB chip is, in part, a
small n x n switch, and the problem of designing an efficient
buffering scheme for it had to be faced early on in the project.
We have developed a new type of buffer for small n x n
switches, called a dynamically allocated multi-queue (DAMQ)
buffer [23], which will be described and evaluated in this
paper. While this buffer was originally developed for use in a
multicomputer communication coprocessor, it is equally useful
for multistage networks and it is in that context (multistage
networks) that the buffer will be evaluated.

In the next section we will discuss the key issues in the
design and implementation of n x n switches. Several alterna-
tive switch architectures will be described and the choice of the
DAMAQ buffer as the key building block of the switch will be
explained. As a reference point for evaluating practical switch
architectures, we will also describe a theoretical “ideal” switch
which achieves many of the desirable characteristics of an
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n X n switch by ignoring the constraints of the implementation
technology. The design and micro architecture of the DAMQ
switch (a switch which uses DAMQ buffers) will be described
in Section III. This description will include the timing of the
buffer in the context of the ComCoBB chip and the use of
virtual circuits [1], [7] and virtual cut through routing [12].
In Section IV the DAMQ switch is evaluated in the context
of a multistage interconnection network by comparing it to
three alternative practical switches as well as the theoretical
“ideal” switch using Markov models and event-driven simu-
lations. One of the results described in Section IV is that a
multistage interconnection network implemented with 4 x 4
DAMAQ switches can achieve a maximum throughput which is
forty percent higher than a network of FIFO (first-in-first-out)
switches with the same amount of storage (storage for four
packets) in each input buffer.

II. DESIGNING A SWITCH FOR A PACKET
SWITCHING NETWORK

An n x n switch should be able to accept simultaneous
arrival of packets from all of the input ports, while at the
same time transmitting packets through all of the output ports.
Packets that cannot be immediately forwarded to an output port
need to be buffered within the switch. There are three basic
conditions where buffering is necessary: 1) the output port
through which the packet needs to be routed is blocked by the
next stage of the network, 2) two packets destined for the same
output port arrive simultaneously at different input ports but
the output port can accept only one packet at a time, and 3) the
packet needs to be held while the router in the switch deter-
mines the output port through which the packet is to be routed.

In order to maximize throughput and minimize latency,
virtual cut-through [12] should be supported—the switch
should not have to wait for a complete packet to arrive before
beginning to forward it through an available output port.
Efficient utilization of the available storage in the switch for
buffering packets implies that as long as there is any storage
space available, it should be possible to receive packets from
any input port. Furthermore, if variable length packets are
used, wasted memory due to internal and/or external fragmen-
tation must be minimized. In order to minimize unnecessary
delays, the switch should be organized so that forwarding a
packet to an output port will not be delayed by having to wait
for the transmission of packets destined for other output ports
(more on this last point later in this section).

Buffering may be done by shared central buffers, inde-
pendent buffers at each output port, or independent buffers
at each input port. Complete sharing of available storage
by all communication ports results in more efficient storage
utilization than static partitioning of the buffer storage between
ports. Hence, ideally it would be best to use central buffers
where all the available storage can be dynamically allocated to
arriving packets from any input port. In the rest of this paper
a switch that uses such buffers is called a centrally-buffered,
dynamically-allocated (CBDA) switch.

Unfortunately, there are fundamental difficulties in produc-
ing efficient high-performance implementations of a switch
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with shared central buffers. In order to achieve high perfor-
mance, multiple high-bandwidth communication ports must be
able to access the central buffers simultaneously. In the worst
case, the bandwidth of the interconnection between the buffer
pool and the ports must be equal to the sum of the bandwidths
of all the ports. Furthermore, for an n X n switch, the buffers
must have 2 x n ports in order to support n simultaneous reads
with n simultaneous writes. Multiport memory is undesirable
since its implementation is expensive (in area) and leads to
poor performance (long access times).

In a switch with shared central buffers it is possible to
achieve the required bandwidth without using multiport mem-
ory by making the buffer memory and the interconnection
(e.g., a bus) to the buffer pool sufficiently wide [22]. How-
ever, the need to “assemble” bytes into wide words before
transmission increases communication latency (especially in
lightly loaded networks) and some of the available bandwidth
is wasted when transmitting blocks smaller than the width
of the bus. With variable length packets, it is difficult to
implement control circuitry that can quickly (within one or
two cycles) make memory allocation decisions and minimize
internal and external fragmentation.

In addition to implementation difficulties, shared central
buffers may also result in some performance problems. Specif-
ically, previous studies have shown that with complete sharing
a single congested output port may “hog” most of the available
storage in a centralized buffer pool, thus impeding all other
communication through the switch [10], [7], [18]. This, in turn,
can cause the neighbors, which cannot transmit packets to the
full switch’s node, to have their buffer fill up, thus converting a
single “hogged” buffer into a system-wide problem. The need
to limit the buffer space used by any single port increases
the implementation complexity [7], [18] and prevents the use
of the entire buffer for one path, even when such use would
actually increase performance.

The above considerations limit the choice for efficient
practical switch implementations to independent buffers at
each output port or independent buffers at each input port. If
FIFO buffers are used, it has been shown that the mean queue
length of systems with output port buffering is shorter than
the mean queue length of equivalent systems with input port
buffering [11]. This implies that a switch with input buffering
requires larger buffers in order to achieve the same probability
of buffer overflow. The reason for this is that with buffers
at the input ports, packets destined for output ports which
are idle may be queued behind packets whose output port
is busy, and thus cannot be transmitted. The problem with
implementing output port buffering is that, in order to be able
to handle simultaneous packet arrivals, the buffers must have
as many write ports as there are input ports to the switch.
Implementing buffers with multiple write ports increases their
size and reduces their performance. Furthermore, if more than
one write can occur at a time there is again, as was the case
with centralized buffers, a difficult problem of allocating the
buffer resources efficiently for variable size packets.

The remaining option is to implement buffering at the input
ports. The advantage of input port buffering is that only one
packet at a time arrives at the input port so that the buffer
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Fig. 1. Alternative designs of switches with input port buffers.

needs only a single write port. Furthermore, if the buffer is
managed as a FIFO queue, it is very easy to deal with variable
length packets and avoid the memory management problems
mentioned above. For these reasons some existing switches use
FIFO queues at the input ports [3], [19]. As discussed above,
the problem with FIFO buffers at the input ports is that packets
may be blocked unnecessarily—a single packet at the head of
the queue whose destination output port is busy can block
all other packets in that queue from being transmitted even if
their destination output ports are idle. Our design attempts to
capture the advantages of input FIFO queues but avoids this
critical disadvantage.

In the process of designing an efficient buffer for commu-
nication switches we have experimented with several types of
buffers. The first of these was a FIFO buffer with a single
write port and a single read port which allows packets to be
forwarded in a first-in, first-out manner. A simple switch with
four input and four output ports using FIFO input buffers is
shown in Fig. 1(a). The buffers are connected to the output
ports by a 4 x 4 crossbar. It should be noted that the dual-
ported storage cells used in the FIFO buffer are needed for
virtual cut through and must be used for all buffer types [24].

As mentioned earlier, with FIFO input buffers, output ports
may be idle even though there are packets in the switch waiting
to be transmitted through those ports. In order to utilize the
output ports more efficiently, and thus increase the switch’s
throughput, packets must be segregated according to the output
port to which they have been routed. This can be done using
separate FIFO buffers for each of the output ports at each of
the input ports [13], [15]. In the case of a four-port switch,
this amounts to 16 separate buffers. Since there are multiple
buffers at the same input port, a simple 4 x 4 crossbar will not
accommodate all of the possible ways in which packets can
be transmitted. Instead, this scheme requires a 16 x 4 crossbar
or, as we have shown in Fig. 1(b), four 4 x 1 crossbars. We

call this switch a statically allocated, fully connected (SAFC)
switch, and the buffers are SAFC buffers. This name stems
from the fact that the input ports have separate lines to each
of the output ports (fully connected), and the storage in each
input buffer is statically partitioned between queues to the
output ports.

There are several problems with this design. First, it incurs
a large amount of overhead. Four separate switches must be
controlled, as opposed to a single-crossbar. While it is much
simpler to control a 4 x 1 switch than it is to control a
4 x 4 crossbar, using four of them will require replicating
the same hardware four times. In addition, each input port
will require four separate buffers and buffer controllers. In a
VLSI implementation, with chip area at a premium, replicating
control hardware is not an efficient use of a scarce resource.

Another problem is that the utilization of the available
storage cells in the SAFC switch is not as good as in the
FIFO switch. The available buffer space at each input port is
statically partitioned so that, for a 4 x 4 switch, only one
quarter of the input buffer space is available as potential
storage for any given packet. This is in contrast to the FIFO
buffers where the entire storage at the input port is available for
all arriving packets. Thus, if traffic is not completely uniform,
the FIFO buffer will “adapt” to it better than the SAFC buffers.
With the SAFC buffers, packets may be rejected by an input
port due to lack of buffer space, even though there are some
empty buffers at that port for other output ports.

Another problem with SAFC buffers is the complexity of
efficiently implementing flow control with blocking switches.
In such switches [8], the output port of a switch is allowed to
transmit only if there is space in the buffer of the destination
switch. When the buffer of a switch fills up, the output port(s)
of neighbor switch(es) must be blocked—they are notified
that they cannot transmit any more messages until some buffer
space frees up. With four separate buffers at each input port,
information about each of these buffers must be conveyed to
the corresponding output port. This is four times the amount
of information that is necessary for the flow control of a FIFO
buffer. More importantly, if an output port is notified that
there is a full buffer in the input port to which it is directly
connected, it must “preroute” packets to determine which of
the buffers the packet is to be stored in before transmitting
it. This pre-routing means that each switch makes the routing
decision for the next switch in the path of the packet instead of
keeping routing decisions local to the switch. While prerouting
is possible, it increases the complexity of the routing hardware
and causes routing decisions to be made based on information
that may be out of date. An alternative flow control mechanism
is to forward the packet to the next stage regardless of the
state of its buffers and discard the packet if it turns out that
there is no space for it. Such a scheme avoids prerouting but
requires unacknowledged packets, which may be discarded, to
be retained for possible retransmission. The acknowledgment
and retransmission can be done either on a stage by stage
basis or end-to-end between sender and receiver. In both
cases additional hardware is required to store and manage
unacknowledged packets. Stage by stage acknowledgment,
requires all the switches to be more complex. With end-to-end
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acknowledgment there is a need to route the acknowledgment
signal through multiple hops across the network.

It should be noted that prerouting is necessary not only for
flow control but also in order to determine where to store
the packet as it arrives at the input port. Without prerouting,
incoming packets would have to be stored in a “staging buffer”
until the routing decision is made. This again will add to
communication latency as well as circuit complexity.

The SAFC buffer can be simplified by implementing the
four separate buffers at each input port as a single buffer whose
space is divided into four separate queues. This does not reduce
the rate at which the buffers can receive packets, since there is
only a single input port supplying all four queues. However,
it does reduce the number of packets which can be read from
the queues associated with an input port (assuming that the
buffer has a single read port and a single write port). This
switch is shown in Fig. 1(c). It is called a statically allocated
multi-queue (SAMQ) switch and the buffers are called SAMQ
buffers. The space for the output ports is allocated statically,
but it is implemented as multiple queues within a single buffer.
Since only one packet can be read from a buffer at a time, the
interconnection network is a 4 X 4 crossbar. This eliminates
some of the overhead associated with the SAFC switch.
However, the problems caused by the need to preroute packets
and the inefficiency of statically partitioning the available
buffer storage are the same as in the SAFC switch.

What is needed is a buffer which can access the packets
destined for each of the output ports separately, but which can
apply its free space to any packet. This is the buffer which we
have designed, and which we call the dyramically allocated,
multi-queue buffer (DAMQ). Dynamically allocated, because
the space within the buffer is not statically partitioned between
the output ports, but is allocated on the basis of each packet
received. Multi-queue, because within each buffer there are
separate FIFO queues of packets destined for each output port
[Fig. 1(d)].

[II. DYNAMICALLY ALLOCATED MULTI-QUEUE BUFFERS

In this section we describe the design and micro architecture
of the dynamically allocated, multi-queue buffer, as it is used
in the ComCoBB chip. It should be noted that an almost
identical design can be used for DAMQ buffers in a switch
of a multistage interconnection network. The design presented
uses similar building blocks to those used in a single chip
2 pm CMOS VLSI layout of a DAMQ buffer [6]. The ability
to achieve the bandwidth and latency mentioned in this section
has been verified by SPICE circuit simulations of key building
blocks [6].

In order to understand the design decisions in the DAMQ
buffer, it is necessary to be familiar with a few details re-
garding the ComCoBB chip. The communications coprocessor
being designed in the ComCoBB project has four input ports,
four output ports, and a processor interface, all connected
via a 5 x 5 crossbar switch. Each port is autonomous, and
independently handles receiving and transmitting packets, so
that all the ports can be active at the same time. Each input
port has associated with it a buffer and a router, and input and
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output ports are paired such that there are two unidirectional
links between each pair of neighboring processing nodes. The
links are eight bits wide and transfer data at a raw bandwidth
of at least 40 Mbytes per second. The input port uses a packet-
level synchronizer that selects the clock phase used to latch in
the data in order to minimize the probability of synchronization
failures [24]. The packets in the ComCoBB system are of
variable length, from 1 to 32 bytes long, and messages can be
made up of multiple packets.

A. Buffer Organization

Multiple queues of packets are maintained within a DAMQ
buffer in linked lists. In order to manage linked lists of variable
size packets, the buffer is partitioned into 8 byte blocks. Each
packet occupies from one to four blocks (the set of blocks
which hold a packet is referred to as that packet’s slor within
the buffer). For each buffer block there is a pointer register,
which points to the next block in the list (Pointer Registers, in
Fig. 2). The pointers for the linked list are stored in a separate
storage array so that they can be accessed simultaneously with
accessing the data in the buffer. There are five linked lists in
each buffer: a list of packets destined for each of the three
output ports with which the input port is not paired, a list of
packets destined for the processor interface, and a list of free
(currently unused) buffer blocks.

Linked lists are also used by the Intel 82596 LAN copro-
cessor for efficient flexible storage utilization [9]. However,
with the 82596, the pointers are stored with the data in
main memory and the linked list data structure is prepared
and managed by the general-purpose host processor. The
coprocessor simply follows the prepared linked list to obtain
the data for transmission or to store an arriving packet (frame).
While this organization is sufficient for interfacing to local-
area networks, it does not support the high throughput and
low latency required for multiprocessor and multicomputer
interconnection networks.

When a packet arrives at an input port, a block is removed
from the free list and used to store the first 8 bytes of the
packet. The block is then linked to the tail of the list for the
output port to which the packet is routed. When a packet is
transmitted through the crossbar switch from the input buffer
to an output port, the blocks it occupies are returned to the
free list. In order to manage the linked lists, each buffer has
five head and tail registers (Fig. 2). The head register points to
the first block of the first packet of its linked lists, and the tail
register points to the last block of the last packet in the list.
Except for the buffer storage array and the control finite state
machines, all the hardware required to implement dynamic
buffer allocation and multiple queues is contained within the
box marked “B” in Fig. 2. The functional blocks within “A”
are needed for low latency handling of virtual circuits and
variable length packets. The hardware in “A” is independent
of the DAMQ buffer, and would accompany any other buffer
configuration.

B. Packet Reception and Transmission

The actions required to receive, forward, and transmit a
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Fig. 2. The dynamically-allocated multi-queue buffer, as used in the ComCoBB chip.

packet depend on the packet format and basic protocol of
the ComCoBB system. Packets consist of a header byte, a
length byte if the packet is the first packet of a message,
and then from 1 to 32 bytes of data. The ComCoBB uses
a form of virtual circuits [1], [18] to route packets through
the network [25]. Each physical link is logically divided into
multiple virtual channels. Before data are transmitted, a path of
virtual channels is established from sender to receiver. While
a packet is transmitted through a link, its header byte specifies
the virtual channel number used by the packet. In most cases,
routing consists of a single read from a small table at the
input port. When a packet is forwarded to an output port, its
header byte may be changed to reflect the fact that it will use a
different virtual channel on the outgoing link than it had used
on the incoming link [25].

The router (shown as a “black box™ in Fig. 2) uses the
header byte to determine the packet’s output port and new
header (and length, if this is not the first packet in the
message). Each packet is preceded by a “start-bit,” which is
used for synchronization [24]. The header byte is transmitted
in the clock cycle immediately following the start-bit, and the
rest of the packet is transmitted at a rate of one byte per clock
cycle following that.

1) Packet Reception: Because each byte of the packet must
pass through the synchronizer before entering the buffer, there
is a full clock cycle delay between the signaling of packet
arrival (SB in Fig. 2) and the actual arrival of the header

byte, with the rest of the bytes of the packet following in the
succeeding clock cycles. While the router is dealing with the
header byte, the first byte(s) of the packet are stored in
the block which is at the head of the free block list. As
the packet is being stored in the first free block, the router
stores the packet’s length in a length register associated with
that block (and into the write counter), and notifies the buffer
controller which of the output ports the packet is destined for.
In addition, the router creates a new header byte for the packet
and stores it in another register associated with the packet’s
first block.

Once the buffer controller is notified of the linked list into
which the packet should be placed, it sets the pointer register
of the block currently pointed to by the tail register of that
linked list to point to the first block of the current packet. It
then sets the tail register to point to the packet’s first block.
When the transmission reaches 8 bytes, and the first block is
filled, the next block in the free list (not necessarily adjacent
within the buffer) is used to store the next 8 bytes. The same
sequence as given above is used to place the packet’s second
block at the end of the queue, and to point the tail of the list
at that block. The end of the packet (EOP) is detected when
the write counter reaches zero.

2) Packet Transmission and Virtual Cut Through: The
crossbar is controlled by a central arbiter which determines
which buffers are to be connected to which output ports. It
makes this decision based upon data it receives from each of
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TABLE I
VIRTUAL CUT THROUGH IN Four CLock CYCLES
Cycle Phase Action

0 The start bit arrives in either phase 0 or phase 1. The start bit detector notifies the synchronizer of the proper phase in which
to receive packets and notifies the FSM controlling the buffer that a packet is arriving.

1 The header byte arrives in the synchronizer is either phase 0 or phase 1, but is not yet available.

2 0 The synchronizer releases the header byte, which is latched by the header register, for use by the router. The rest of the
packet will be released from the synchronizer a byte at a time, at phase 0 of each clock cycle.

1 The router determines the output port the packet is to be sent using a local table, and sends this information to both the
arbiter (for access to the crossbar) and the controlling FSM’s. The router also generates a new header for the packet, which
is stored in a register associated with the packet’s slot.

3 0 The byte specifying the length of the message is released from the synchronizer. It is loaded into the router, using the header
byte to index a table contained within the router.

1 Latch the result of the crossbar arbitration. The packet’s length is passed through the length decoder, and latched into the
length register associated with the packet's slot and into the write counter.

4% 0 The synchronizer releases the first byte of the packet itself, which is stored in the buffer. If the packet is only a single byte
long, the write counter signals EOP. The new packet header is transmitted across the crossbar to be latched at the output
port, and the output port generates a start-bit.

The output port latches the new packet header. The bit in the write address shift register is shifted up a location.

5 0

The output port transmits the header byte to the next switch. The packet’s length is sent through the crossbar, and is also

loaded into the read counter. The second byte of the packet is written into the buffer slot.

1 The output port latches the packet length. The bit in the write address shift register is shifted up a location. An on-bit is
loaded into the read address shift register, at the beginning of the packet’s slot, prepared to read the packet’s first byte for
transmission across the crossbar on the next clock cycle.

*The new start bit is generated here; thus, four cycle turn-around time.

the buffers, so that a buffer is never connected to an output
port for which it does not have any data. When a buffer is
connected to an output port through the crossbar, it uses the
head register of that output port’s linked list to locate the first
block to be transmitted. The first byte transmitted is the new
header byte (the start bit is generated automatically by the
output port). While the length of the packet is loaded into the
read counter, the head register of that list is set to the value
stored in the pointer register associated with the first block.
The packet is transmitted until the read counter reaches zero,
using the pointer registers associated with each block to find
the next block to be transmitted. The list’s head register always
points to the next block to be transmitted, or to the first block
in the free list if its linked list is empty.

With virtual cut through [12] the switch begins to forward
a packet before it has completely received it. The amount of
time a packet is delayed by the switch using virtual cut through
depends on the availability of the output port and the speed
with which the packet is routed. This delay is independent
of the packet’s length. We refer to this latency as the “turn-
around” time: the time from the arrival of the start bit until the
time that the switch transmits the start bit for the same packet
to the next switch. Since the buffers can handle simultaneous
reads and writes and the header and length registers are stored
in a separate memory, the turn-around time can be as low as
four cycles (see Table I).

One of the critical factors that facilitates the short-turn-
around is the fact that, when a linked list is empty, its head
register is set to point to the first block of the free list. The only
time a packet is “cut through” the buffer is when the linked
list to the appropriate output port is empty and that output
port is currently idle. When a packet arrives at an input port
and it can be cut through, the head register for the appropriate

linked list is already pointing to the correct block. Thus, the
process of receiving can be overlapped with the process of
transmitting, resulting in a fast cut through.

3) Buffer Implementation: Our buffer design is driven by
the high bandwidth of the ports. The links between ComCoBB
chips are 8 bits wide and transfer data at a raw bandwidth of at
least 40 megabytes per second (one byte per clock cycle, with
2 pm CMOS implementation) [6]. This high rate of transfer is
achieved by using packet-level synchronized communication
[24]. The clock phase used to latch the incoming bytes is
determined by the synchronizer based on the packet start bit.
With a small maximum packet size (32 bytes), the crystal-
controlled local clock will not “drift” to the point of causing a
synchronization failure during the reception of the rest of the
packet [24]. The buffer pool is an 8 x n array of dual ported
static memory cells, where n is a multiple of eight (since the
buffer must contain an integer number of blocks). Two 8-bit
buses traverse the memory array: one carries data from the
synchronizer (write bus), and one transmits data to the crossbar
(read bus). Based on the simulation results discussed in
Section IV and a maximum packet size of 32 bytes, we expect
the size of the buffer to be between 64 and 128 bytes [6].

In order to achieve high transfer rates, address decode time
is eliminated by using shift registers to address the storage
cells instead of traditional addressing mechanisms [24]. Along
both sides of the static cell array are a series of 8-bit shift
registers, one shift register for each buffer block (Fig. 2). There
are separate shift registers for reading from and writing to the
buffer, making the two operations completely independent. For
either reading or writing, there is never more than a single shift
register enabled at a time, and never more than a single bit
of that shift register which is “on.” It is the “on” bit of the
enabled shift register which addresses the buffer, enabling the
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8 static cells associated with it to sequentially read/write their
data. To write into the buffer, the “on” bit is set to the first
byte of the initial buffer block in which we will receive the
packet, and then each cycle a byte of the packet is written into
the buffer, and the bit is shifted to receive the next byte. When
the last byte of a block is used, the shift register associated
with that block is disabled, and the shift register associated
with the next block is enabled, with its “on” bit pointing to
the first byte of the block [24].

As mentioned earlier, in order to efficiently handle variable
length packets, the buffer is partitioned into 8-byte blocks.
Support for the linked list organization is provided by a pointer
register which is associated with each block. The value of the
pointer register is the number of the next block in the list. One
important design parameter is the size of the blocks. At one
extreme, a block can be the size of the largest possible packet
(32 bytes). This choice would result in inefficient utilization of
the buffer memory since small packets (e.g., four bytes) would
use up an entire block, wasting large amounts (e.g., 28 out of
32 bytes) memory. On the other hand, the blocks should not
be too small since there is some overhead associated with each
block. For each block there is a pointer register (for the linked
lists) as well as a length register and a new header register (to
facilitate fast virtual cut through) because any block can be
the first block of a packet. Thus, smaller blocks require more
chip area for the same amount of buffer space. Smaller blocks
also require more processing by the receiving and transmitting
finite state machines for pointer manipulation. 8-byte were
chosen as a compromise between the overhead of small blocks
and the internal fragmentation in large blocks.

The buffers are locally controlled, to allow the ports to
operate concurrently and independently. Each input port has
three finite state machines associated with it, each FSM
handling a separate facet of the buffer management [6]. The
first is the buffer manager, which handles receiving new
packets and assigning them to free buffers. Second, there is
the router, which does the routing and updates the routing
information. Finally, there is the transmission manager, which,
when notified by the arbiter that the buffer has been connected
to an output port, transmits the packets and returns the freed
blocks to the free list. Because these state machines exist as
separate entities, interacting via registers and a few shared
signals, each buffer can both receive and transmit packets
simultaneously at the highest bandwidth possible. The FSM’s
maintain the organization within the buffer via the head and
tail registers of the five linked lists and the pointer registers
associated with each block. The FSM’s are synchronized so
that they will not attempt to read/write from/to the same
register or use the same bus simultaneously, and they will
never read and write from/to the same byte of memory at the
same time.

IV. BUFFER PERFORMANCE EVALUATION

In our performance evaluation of the different buffer types
we considered both discarding switches, which discard packets
that attempt to enter a full buffer [2], and blocking switches
which block the transmitter from sending to a full buffer 7],

[8]. In order to evaluate the DAMQ buffer, we compared
the performance of DAMQ switches to the performance of
FIFO, SAMQ, and SAFC switches and to the performance of
hypothetical CBDA switches (see Section II). Markov models
were used to evaluate 2 X 2 discarding switches. For 4 x 4
switches, Markov modeling is difficult due to the large number
of states. For example, for a 4 x 4 switch with storage for six
packets at each input port, the model has more than three
million states. Hence, the evaluation of both discarding and
blocking switches was done using event-driven simulation.

As discussed in Section II, there are fundamental difficulties
in producing efficient high-performance implementations of
switches with shared central (CBDA) buffers. We include
these switches in our evaluation studies not as a practical
implementation option but as hypothetical “idealized” switches
whose performance is a yardstick against which the perfor-
mance of practical switches can be measured. The CBDA
switches are “ideal” only in the sense that they provide the
most efficient utilization of buffer storage as well as non-
FIFO access to stored packets. If traffic is not uniform (some
destinations receive more packets than others), CBDA buffers
are susceptible to buffer hogging (see Section II) and may
actually result in lower performance than switches with other
buffer organizations. Since most of the evaluation in the
paper is based on uniform traffic, the CBDA switches do
provide a basis of comparison with “idealized” performance
characteristics.

It should be noted that an additional significant imple-
mentation problem with shared central buffers is the need
for complex flow control. In our idealized simulations, when
there are fewer buffer slots than inputs ports (so that not all
the input ports can receive packets), the input ports which
do not have packets pending for them are blocked first, and
the rest are prioritized according to the length of time the
packets had spent in the preceding switch. In an actual network
implementation, the information about pending packets in
other switches would not be available to the switch. However,
this is not of concern to us since the CBDA switch is not being
considered as an implementable switch.

A. Evaluation of 2 x 2 Discarding Switches Using
Markov Models

We have evaluated the performance of individual 2 x 2
discarding switches using Markov models. An entire network
was not modeled due of the intractable number of states which
would result. Several simplifying assumptions were made:
1) fixed length packets, 2) uniform distribution of packet des-
tinations, 3) when there is contention for an output port, the
input port that is allowed to transmit is chosen randomly, and
4) synchronous store-and-forward operation of the switch so
that during each stage cycle [27] packets either completely
arrive or completely depart. Since we assume a uniform packet
size, the packet slots are made up of a constant number of
blocks, and will therefore be used as the unit of buffer storage.

The model used to generate the Markov state transition
graph for each switch allows the switch to simultaneously
receive and transmit messages during each stage cycle. A
packet is discarded if and only if it arrives at a full buffer
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TABLE 11
THE PERFORMANCE OF A SINGLE 2 X 2 DISCARDING SWITCH. RESULTS OBTAINED USING A MARKOV MODEL. SHOWN IS THE PERCENTAGE
OF DISCARDED PACKETS FOR VARIOUS APPLIED INPUT TRAFFIC RATES (THE FRACTION OF THE RAW INPUT PORT CAPACITY)

Buffer Percentage of Discarded Packets Versus Applied Input Traffic Rate
Buffer Size per
Type Port 0.25 0.50 0.75 0.80 0.85 0.90 0.95 0.99
FIFO 1 1.7 7.1 15.5 17.4 19.3 21.2 23.1 24.6
2 0+ 12 8.7 11.4 145 17.8 213 24.2
3 ot 0.2 6.1 9.2 13.0 17.0 21.0 242
4 0+ 0+ 47 8.1 12.3 16.7 21.0 24.2
5 0t 0+ 3.8 7.5 120 16.7 21.0 242
6 0+ 0+ 32 7.1 11.9 16.6 21.0 24.2
SAMQ 2 0.9 4.7 11.3 12.9 14.5 16.1 17.8 19.1
4 0+ 0.3 3.0 42 55 7.1 8.9 10.5
6 0+ 0+ 0.9 1.5 2.4 3.7 5.4 7.1
SAFC 2 0.8 38 9.1 10.5 11.9 13.4 15.0 16.3
4 0t 0.2 2.0 2.8 3.8 5.1 6.6 8.1
6 0+ ot 0.5 0.9 15 2.4 38 5.2
DAMOQ 2 0t 0.6 48 6.4 8.3 10.5 12.9 15.0
3 0t 0+ 1.4 2.4 39 5.8 83 10.6
4 o+ 0+ 0.4 0.9 1.8 33 5.6 8.1
5 0+ 0+ 0.1 0.4 0.9 2.0 39 6.5
6 0t 0+ o+ 0.1 0.4 1.2 2.8 5.4
CBDA 2 0t 0t 1.8 3.0 4.6 6.7 9.3 11.8
3 0+ 0t 0.2 0.5 1.2 2.6 4.9 7.5
4 0+ 0+t 0+ 0.1 0.3 1.1 29 5.4
5 o+ ot o+ o+ 0.1 0.4 1.8 4.1
6 o+ 0+ o+ ot ot 0.2 11 3.3

which is not currently transmitting a packet. This corresponds
to the hardware described earlier, where the buffer supports
simultaneous read and write operations. The operation of the
switch is equivalent to a switch that alternately sends and
receives packets, where the state of the switch is defined by
the packets in its buffers after packet transmission but before
packet reception. With this model, a packet is discarded when
it arrives at a full buffer. Thus, if one packet arrives at the
switch, the probability that it will be discarded is

P(discard) = Y P(i) + 0.5 P(j)

el jed

where I is the set of states in which both input ports are
full and J is the set of states in which one of the input
ports is full. Packets arrive at each input port of the switch
with a probability equal to the applied traffic rate and with
equal probability of exiting either output port. The transition
probabilities between states is calculated in two stages: packet
arrival puts the switch into an intermediate state, and then
arbitration and transmission moves the switch to the next
state. The product of these probabilities is the probability
of transferring from one state to the next via a particular
intermediate state. The sum of all such transfers is the total
probability of that state transition.

All four practical switches as well as the CBDA switch
were evaluated at varying applied traffic rates and different
buffer sizes. The applied traffic rate corresponds directly to
the probability of a packet arriving at an input port, i.e., for
a switch operating with 70% applied input traffic rate each
input port has a probability of 0.70 of having a packet arrive

at each long clock cycle. From our model we could determine
the probability that a given packet arriving at a switch will be
discarded for a given level of traffic. The results are presented
in Table II. Since the SAMQ and SAFC switches statically
allocate buffer space to each of the output ports, they can only
have an even number of packet slots in each buffer.

As shown in Table II, the switch with DAMQ buffers
performs better (lower probability of discarding) than any of
the other practical switches with the same amount of storage
at any rate of traffic (except for the SAFC switch with 0.99
applied input traffic rate). It should be noted that a DAMQ
switch with space for three packets per input buffer discards
as few or fewer packets than the FIFO switch with space for
up to six packets for all traffic rates. Furthermore, the DAMQ
switch performs significantly better than the FIFO switch for
high traffic rates. The savings in chip area due to this dramatic
decrease in storage requirements is several times greater than
the area for the extra control circuitry needed for the DAMQ
buffer (ten head/tail registers, one pointer register per block,
and more complex FSM’s) [6].

For light traffic and only two slots per buffer, the FIFO
switch performs better than the SAMQ and SAFC switches.
Under these conditions the probability of discarding is de-
termined by available storage and the FIFO buffer, having a
single pool of slots instead of statically partitioned storage,
delivers better performance. This effect is overshadowed by
the unnecessary blocking of packets due to FIFO handling
when the traffic rate is high or when there are more than four
slots per buffer. In general, the SAMQ buffer performs almost
as well as the SAFC buffer, indicating that the additional
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throughput provided by fully connecting the inputs with the
outputs does not provide a significant boost in performance
for synchronous uniform traffic.

The benefits of non-FIFO access to the buffers are demon-
strated by the fact that the FIFO buffers perform significantly
worse than the three other buffer types for traffic rates above
80% and a wide range of buffer sizes. Furthermore, the
performance of the FIFO buffers cannot be improved by
simply increasing the buffer size—for example, with a traffic
rate of 90%, increasing the FIFO buffer size from three to six
slots does not significantly reduce the discarding rate. On the
other hand, SAMQ, SAFC, and DAMQ switches with four
slot buffers have significantly lower discarding rate than the
FIFO switches with six slot buffers. Thus, it is not always
possible to trade off implementation and control complexity
for increased storage. FIFO switches perform poorly at high
traffic rates regardless of their buffer size.

We have previously described the benefits of the DAMQ
buffer over the SAMQ and SAFC buffers in the areas of
implementation, flow control, and routing. The performance
advantage of the DAMQ compared with the SAMQ and SAFC
buffers is based on more efficient use of storage. As shown in
Table II, the DAMQ switch consistently performs significantly
better (lower discarding rate) than a SAMQ or SAFC switch
with equal size buffers. This effect becomes more pronounced
as the partitioning of SAMQ and SAFC buffer increases (i.e.,
for n x n switches with larger n).

B. Switch Evaluation Using Omega Network Simulation

We have simulated communication on a 64 x 64 Omega
network [14] constructed from three stages of 4 x 4 switches.
The network connects 64 processors (message generators) to
64 memory modules (message receivers). In our simulation we
assumed synchronized, store-and-forward message transmis-
sions, where packets are transmitted/received instantaneously
once every stage cycle [27]. Fixed length packets are assumed.
Both blocking and discarding protocols were used for packet
flow control. Most of our network simulations were done
for uniformly distributed traffic, where packets have an equal
probability of being sent to any one of the possible destina-
tions. We have also studied “hot-spot” traffic [16], in which a
disproportionate percentage of the messages from each source
are sent to a single common destination.

An important issue is the design of communication switches
is the scheme used to arbitrate between multiple packets
which require conflicting resources in order to be forwarded.
The switches have to arbitrate between multiple buffers with
packets destined for the same output port. The SAMQ and
DAMQ switches also need to arbitrate between packets from
the same buffer which were routed to different output ports.
The arbitration scheme used in the evaluation involved ex-
amining the buffers of a switch one at a time, transmitting
packets from the longest unblocked queue is the buffer. To
support fairness, the order in which buffers are examined is
not fixed—a modified round-robin priority scheme is used. In
successive arbitration “rounds” each buffer in turn is the first
buffer to be examined. If a nonempty buffer has the top priority
but is unable to transmit (for example, due to a full buffer at

the destination node), the bufter retains its top priority for the
next round. To maintain fairness within the buffers, a stale
count is used on the queues [22] to determine which queues
within a buffer have held packets for a long period of time
and should therefore get top priority.

1) Networks of Discarding Switches: The results of simulat-
ing a network of discarding switches [2] under uniform traffic
are presented in Table III. The table shows the percentage of
packets which are discarded for various rates of introducing
packets to the network. The applied input traffic rates are
expressed as the fraction of the network’s raw input port
capacity. For each applied input traffic rate R, with a resulting
discarding rate D, the throughput of the network is R x
(1-D).

The results in Table III show that, for a given buffer size
and wide range of applied input traffic rates, the DAMQ switch
network has significantly lower discarding rates than networks
with FIFO, SAMQ, and SAFC switches. Furthermore, the
maximum achievable throughput is significantly higher with
the DAMQ switch. At low applied input traffic rates, the FIFO
switch performed better than the SAMQ and SAFC switches
due to the four-way static partitioning of the buffer space in
the SAMQ and SAFC buffers. However, for high traffic rates
the advantages of non-FIFO handling of packets dominate, and
both SAMQ and SAFC switches achieve lower discarding rate
and higher maximum throughput than the FIFO switches. In
all cases, the hypothetical CBDA switch performs better than
the other switches, thus demonstrating the value of complete
sharing of storage and arbitrary random access to any packet
buffered in the switch.

2) Networks of Blocking Switches: A multistage intercon-
nection network composed of blocking switches can be charac-
terized by the relationship between packet latency and through-
put. In general, as throughput increases, so does the latency.
For low throughputs, before the network approaches satura-
tion, latency grows very slowly with increasing throughput.
As the throughput approaches saturation, the latency increases
rapidly. Near saturation, small increases in throughput are
accompanied by large changes in latency. This relationship be-
tween latency and throughput is shown in Fig. 3 and elsewhere
(5], [16]).

We have simulated 64 x 64 Omega networks of blocking
switches using all five switch types and several buffer sizes
under uniform traffic with a wide range of traffic loads.
The results of our simulations are shown in Table IV. The
throughput is reported as the fraction of the aggregate raw
link bandwidth. This is the fraction of the maximum network
throughput that would be achieved if all the network links
were transmitting at all times (this would be possible if there
were no conflicts in any of the switches). The latency is the
number of stage cycles from the moment the packet is created
to its delivery at the destination. The minimum latency through
the Omega network is three stage cycles. At each sender, the
interval to the next packet creation is calculated from the time
the current packet enters the network.

Table IV shows that for low throughput rates all the switches
achieve nearly the same latencies. Furthermore, for particular
buffer type, as long as the throughput is well below saturation,
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THE PERFORMANCE OF A 64 X 64 OMEGA NETWORK COMPOSED OF 4 X 4 DISCARDING SWITCHES. RESULTS OBTAINED FROM SIMULATION. UNIFORM TRAFFIC.
SHOWN IS THE PERCENTAGE OF PACKETS DISCARDED FOR VARIOUS APPLIED INPUT TRAFFIC RATES (THE FRACTION OF THE NETWORK’S Raw INPUT PORT CAPACITY)

Buffer Percentage of Packets Discarded Versus Applied Input Traffic Rate
Buffer Size per Maximum
Type Port 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 Throughput
FIFO 1 1.5 5.8 12.1 19.6 27.0 339 40.3 45.8 0.45
2 ot 0.2 L5 4.9 11.2 19.6 28.0 35.7 0.52
3 0 ot 0.2 1.3 52 134 223 311 0.55
4 0 o+ o+ 0.4 2.5 10.3 18.6 27.2 0.57
8 0 0 0 ot 0.2 53 13.6 24.0 0.61
SAMQ 4 0.4 19 4.6 8.4 13.2 18.6 239 29.1 0.61
8 ot ot 0.1 0.4 1.2 3.1 6.2 10.5 0.78
SAFC 4 0.4 1.5 3.6 6.4 9.9 14.2 18.6 23.2 0.67
8 0 0t 0.1 0.3 0.8 2.0 3.9 6.9 0.84
DAMQ 2 ot 0.1 0.4 1.8 5.0 10.7 17.3 245 0.63
3 0 0t 0t 0.1 0.7 3.0 72 133 0.72
4 0 0 ot ot 0.1 0.7 39 9.6 0.78
8 0 0 0 0 0 o+ 0+ 0.7 0.88
CBDA 1 ot 0.2 1.1 4.4 10.5 18.7 26.8 345 0.53
2 0 0 0 0+ 0.1 1.3 4.7 109 0.73
3 0 0 0 0 0t 0.1 0.8 35 0.82
4 0 0 0 0 0 0t 0.1 1.1 0.86
8 0 0 0 0 0 0 0 o+ 0.93
the buffer size does not have a significant impact on the 15
latency. For any given buffer size the DAMQ switch network
can achieve significantly higher maximum throughput than FIFO - "
networks with FIFO, SAMQ, or SAFC switches. For example, S:::g ;
with a buffer size of four packet slots per input, the maximum 10 DAMQ ———a i .
throughput of a network composed of DAMQ switches is at CBDA ----+ /
; J
least 30% higher than a network composed of any of the other e, .

three practical switches. As shown in the Table IV and in
Fig. 3, for these same switches, at a throughput of 0.50, the
DAMQ network resutls in lower latency than with the other
three practical networks. This difference in latency is due to
the fact that the other switches are at or near their saturation
throughputs. At lower throughputs (below 0.40) the average
latencies with all the networks are very close to each other.
Hence, the major advantage of the DAMQ switches is their
ability to provide good performance for high throughput rates.

As shown in Fig. 3, the latency of the network of SAMQ
and SAFC switches with four packet slots per input buffer
does not increase significantly near saturation as it does with
the other switches. The reason for this is that with four packet
slots per buffer, each queue has only one buffer slot. Hence,
once a packet enters a switch, it is forwarded the next time
its queue gets priority from the arbiter. With the other buffer
types and with larger SAMQ and SAFC buffers, the packet
may be queued behind several other packets waiting for the
same output port.

The results in Table IV are similar to the results of modeling
and simulating discarding switches—in all cases the benefits
of non-FIFO handling of packets are in better performance
under high network loads. At low throughputs, the FIFO
switches perform as well as the SAMQ, SAFC, and DAMQ
switches. However, compared to FIFO buffers, the multi-
queue buffers can provide higher maximum throughput as well

5

T T T T
0.1 03 0.5 0.7
Throughput

Fig. 3. The performance of a 64 x 64 Omega network composed of 4 x 4
blocking switches with four packets slots per input port buffer. Results
obtained from simulation. Uniform traffic.

as lower latency at high throughputs. Increasing the size of
FIFO buffers beyond three or four slots results in very small
increases in the maximum network throughput [5]. On the
other hand, with buffers that provide non-FIFO handling of
packets, the maximum network throughput can be increased
far beyond what is achievable with FIFO buffers. This result
is seen in Fig. 4 which shows the diminishing returns obtained
from increasing the size of FIFO buffers. This figure also
shows that the DAMQ buffers with only three packets slots
results in significantly better performance than a FIFO buffer
with eight slots. Hence, beyond buffer space for two or three
packets, it is more beneficial to allocate hardware resources
to the more complex control of the DAMQ buffer than to use
these resources for additional buffer memory.

As buffer size is increased, efficient utilization of buffer stor-
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TABLE IV
THE PERFORMANCE OF A 64 X 64 OMEGA NETWORK COMPOSED OF 4 X 4 BLOCKING SWITCHES. RESULTS OBTAINED FROM SIMULATION.
UNIFORM TRAFFIC. SHOWN ARE THE AVERAGE LATENCIES OF PACKETS THROUGH THE NETWORK FOR VARIOUS NETWORK THROUGHPUTS

Buffer Average Latency Versus Network Throughput
Buffer Size per Saturation
Type Port 0.10 0.20 0.30 0.40 0.50 saturated Throughput
FIFO 1 3.67 5.51 Sat. Sat. Sat. 8.89 0.24
2 3.14 3.39 3.88 5.41 Sat. 7.95 0.44
3 315 3.38 3.81 4.82 Sat. 10.60 0.48
4 3.14 338 3.79 4.65 9.34 13.14 0.51
5 3.14 3.38 3.79 4.62 8.59 15.65 0.53
6 3.15 3.34 3.79 4.63 7.78 17.87 0.55
8 3.14 338 3.79 4.60 6.90 23.03 0.57
12 3.15 3.38 3.79 4.61 6.78 33.00 0.59
SAMQ 4 3.24 3.58 4.09 4.90 6.57 6.68 0.50
8 3.14 3.36 3.68 4.07 4.95 9.39 0.71
12 3.15 3.36 3.68 4.16 4.91 13.00 0.78
SAFC 4 3.22 3.50 3.88 4.42 5.28 5.88 0.54
8 3.13 3.29 351 3.80 4.21 7.53 0.75
12 3.13 3.29 3.50 3.79 4.20 9.80 0.82
DAMQ 2 3.14 3.36 3.74 4.48 Sat. 7.19 0.50
3 3.14 336 3.68 4.17 5.00 8.81 0.63
4 3.14 3.36 3.68 4.16 4.91 10.66 0.71
5 3.15 336 3.68 4.16 4.90 12.81 0.76
6 3.14 3.36 3.68 4.16 4.90 14.85 0.80
8 3.14 3.36 3.68 4.17 4.89 19.10 0.84
12 3.14 336 3.68 4.16 4.92 29.15 0.90
CBDA 1 324 353 4.64 Sat. Sat. 6.63 0.33
2 3.13 3.30 3.50 3.81 4.35 6.31 0.59
3 3.13 3.29 351 3.79 4.20 7.75 0.73
4 3.13 329 3.50 3.80 4.19 9.71 0.80
5 3.13 3.29 3.50 3.80 4.20 11.40 0.84
6 3.13 3.29 351 3.79 4.20 13.84 0.86
8 3.13 3.29 351 3.79 4.20 18.07 0.90
12 3.13 3.29 3.51 3.79 421 26.07 0.94

age becomes less cirtical. Hence, the performance advantages
of DAMQ buffers over SAMQ and SAFC buffers decreases
with increasing buffer size. With sufficiently large buffers, the
performance of SAFC buffers is expected to be better than
the performance of DAMQ buffers since they allow multiple
packets to be sent from a single input simultaneously. For
example, for network throughput under 0.50, a 12 slot SAFC
buffer achieves slightly lower latency than a 12 slot DAMQ
buffer. However, it should be noted that the DAMQ buffer
with only six packet slots achieves camparable performance.
Based on the implementation described in [6], the additional
control for DAMQ buffer will require significantly less chip
area than the storage for a single 32-byte packet. Hence,
there is a high cost, in terms of wasted chip area, for using
SAFC buffers. Furthermore, as discussed in Section II, the
SAFC buffer requires more complex flow control as well as
prerouting, which are likely to involve even more circuitry
and chip area.

For some applications, the handling of nonuniform traffic by
the network may be a critical factor in determining system per-
formance [16]. Of particular interest is “hot-spot” traffic, where
a particular (“hot”) destination receives a higher percentage
of the packets than any other destination. Table V presents
the results of simulating networks composed of the various
switches with hot-spot traffic [16]. 5% of the packets from all
senders are sent to the “hot” destination, while the destinations

25+

20+

15+
Latency

10+

54

Throughput

Fig. 4. The performance of a 64 X G4 Omega network composed of 4 x 4
FIFO or DAMQ blocking switches with several sizes of input buffers. Results
obtained from simulation. Uniform traffic. The labels on the curves indicate
the number of packet slots per buffer.

of the rest of the packets are uniformly distributed among all
the receivers. The results demonstrate that with hot-spot traffic,
the buffer type does not matter. Below saturation, the switches
display almost equal latencies, just as with uniform traffic.
However, unlike the situation with uniform traffic the switches
all reach saturation at the same throughput of around 0.24.
With hot-spot traffic (Table V), the saturation throughput
for all switches is significantly lower than with uniform traffic
(Table IV). This is caused by the increased probability of
contention within each switch for the output port on the path




736

IEEE TRANSACTIONS ON COMPUTERS. VOL. 41, NO. 6, JUNE 1992

TABLE V
THE PERFORMANCE OF A 64 X 64 OMEGA NETWORK COMPOSED OF 4 X 4 BLOCKING SWITCHES WITH BUFFER SPACE
OF FOUR PACKET SLOTS PER INPUT PORT. 5% HOT-SPOT TRAFFIC. SHOWN ARE THE LATENCIES OF PACKETS
THROUGH THE NETWORK FOR VARIOUS NETWORK THROUGHPUTS. RESULTS OBTAINED FROM SIMULATION

Average Latency Versus Network Throughput

Buffer Saturation
Type 0.05 0.10 0.15 0.20 saturated Throughput
FIFO 3.07 3.17 332 3.81 23.58 0.24
SAMQ 3.12 3.27 3.48 3.88 10.92 0.24
SAFC 3.11 3.25 343 3.78 10.53 0.24
DAMQ 3.07 3.16 3.30 3.67 25.20 0.24
CBDA 3.10 3.15 3.25 3.55 16.96 (.24

to the hot-spot. With FIFO buffers, when there is contention
for an output port only one packet from one of the contending
input ports is forwarded. All the other contending input ports
are idle. Thus, within a short period of time, all of the
switches which are on the path to the hot-spot have a high
probability of having packets destined for the hot-spot at the
head of their buffers and of having their buffers completely
full. Pfister and Norton [16] call this effect “tree saturation.”
Since there is a path from every sender (processor) to each
receiver (memory bank), when a hot-spot tree saturates, the
traffic backs up to block every single sender. For all buffer
types the network saturates at a throughput ¢ that satisfies
the equation t(1 — h) + thp = 1, where h is the fraction
of packets destined for the hot-spot and p is the number of
inputs/outputs of the network [16].

Tree saturation occurs with DAMQ switches just as with
FIFO switches. The DAMQ switches forward all of the non-
hot-spot traffic, but cannot forward hot-spot traffic since the
bottleneck is the contention for output ports. This causes the
buffers to fill up with hot-spot traffic. Once that happens, each
DAMQ buffer is dominated by the queue to the output port on
the path to the hot-spot and the network becomes saturated just
like a network with FIFO switches. With the SAMQ and SAFC
switches buffer space cannot become completely occupied by
hot-spot traffic since it is statically partitioned. However, the
blocked hot-spot traffic at the inputs to the network quickly
block all non-hot-spot traffic attempting to enter the network,
thus leading to saturation at the same levels as the other
switches.

Since the buffer organization does not help in reducing
the impact of tree saturation, other solutions must be found.
One possiblility is to follow the design of the IBM RP3
multiprocessor [17] and use two separate networks: one for
general traffic and the second, a combining network [8], for
hot-spot traffic caused by synchronization traffic, such as
accesses to semaphores. In a system such as this, the hot-spot
traffic would not interfere with the uniform memory accesses,
so significant performance gains would be made by using the
DAMQ buffer instead of the FIFO buffer in the general traffic
network. If the hot-spot traffic originates from only a subset
of the nodes, an alternative scheme for limiting tree saturation
is the use of feedback from the destinations to “throttle” the
hot-spot traffic and the source [20]. In this case, the use of
DAMQ switches instead of FIFO switches will still improve
network performance for the general traffic.

V. SUMMARY AND CONCLUSIONS

The potential of large multiprocessors and multicomputers
to achieve high performance can only be realized if they
are provided with high-throughput low-latency communica-
tion. Fast small n x n switches with routing and buffering
capabilities are critical components for achieving high-speed
communication. The organization of the buffers in the n x n
switches is one of the most important factors in determining
their performance.

The architecture of n x n switches should allow them to
efficiently utilize their buffer memory as well as the raw
bandwidth of their ports. The architecture is constrained by
the requirement that it must be amenable to high-performance
cost-effective VLSI implementation. Since both the datapath
and control of the switch must operate at high clock rates,
complexity must be limited. Based on these considerations,
we have developed a new type of buffer, called a dynamically
allocated multi-queue buffer, for use in n x n switches. This
buffer supports forwarding of packets in non-FIFO order
and provides efficient handling of variable length packets.
A critical advantage of DAMQ buffers is that flow control
is simpler than with other multi-queue buffers and there is
no need to “preroute” packets as with the other multi-queue
buffers.

We have described the micro architecture of a DAMQ
buffer and its controller in the context of the ComCoBB
communication coprocessor for multicomputers. The DAMQ
buffer can be efficiently implemented in VLSI to support
packet transmission and reception at the rate of one byte per
clock cycle with high clock rates. With a “hardwired” linked
list manager and a fast routing mechanism, the ComCoBB chip
will support virtual cut through of messages with a latency of
four cycles.

We have evaluated the DAMQ buffer by comparing its
performance with that of three alternative practical buffers in
the context of a synchronous store-and-forward multistage in-
terconnection network. Both discarding and blocking switches
were considered. The DAMQ buffer provides two key features:
non-FIFO handling of packets and dynamic partitioning of
buffer storage. We have shown that with hot-spot traffic that
involves all the senders in the network, these features do not
improve performance since they do not prevent tree saturation.
For uniform traffic, our modeling and simulations show that
these features result in large performance improvements over
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conventional FIFO buffers and/or static storage partitioning.
The DAMQ buffer provides significantly lower latencies and
higher maximum throughput than other practical buffer orga-
nizations with the same total buffer storage capacity.
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