Visibility

Do not draw what is not visible

- Self occlusions
- Object to object occlusion

Back Face culling

[Hill: 406.407. Foley \& van Dam: p. 663-664]

Remove back facing polygons

Back facing culling in VCS

Can we use the z-component of the normal?

Back facing culling in VCS

Can we use the z-component of the normal?

Yes, if the projection is orthorgaphic.
What about perspective?

Back facing culling in VCS

No!

"Zero"point: projection is a point (line in 3D)

Back facing culling in VCS

What do we really need to look at?

Answer:
The face that projects on the Image plane.

Which comes down to: Is the eye above or below the polygon?

Back facing culling in VCS

How do we do that?

- Calculate surface normal $N=(A, B, C)$
- Compute D in plane equation using any of the vertices of the polygon Plane $(x, y, z)=A x+B y+C z$ $+D$.
- Compute Plane(eye) and check the sign >0 above \rightarrow front facing
<0 below (behind) \rightarrow back facing

Back face culling in NDCS

In NDCS, the z-component of the surface normal does reflect the true visibility, as desired. If the z-component is positive, the normal points away from the eye and the polygon should thus be culled.

Reminder: In NDCS the camera is pointing towards the positive z-axis.

Back face culling in OpenGL

gICullFacel(GLenum mode) mode: GL_FRONT

GL_BACK
GL_FRONT_AND_BACK
gIEnable(GL_CULL_FACE);
gIDisable(GL_CULL_FACE) ;

Visibility Algorithms

[Hill: Chapter 13. Foley \& van Dam: p. 649-651]

Visibility algorithms are needed to determine which objects in the scene are obscured by other objects. They are typically classified into two groups:
image-space algorithms

- operate on display primitives. e.g., pixels, scan-lines
- visibility resolved to the precision of the display
- e.g.: z-buffer, Watkin's, ray-tracing
object-space algorithms
- BSP: binary-space partitions
- variations on painter's algorithm
- worst case: creation of $O\left(N^{2}\right)$ primitives from N original primitives

Z-buffer ${ }_{[\text {Hill: }}$ 436-439. Foley \& van Dam: p. 668-672]

The z-buffer keeps depth information about each pixel.

$(r, g, b, a l p h a, 2, \ldots)$
$8+8+8+8+24+$
bits
per pixel

Z-buffer algorithm

```
for all i,j {
    Depth[i,j] = MAX_DEPTH
    Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
        for all pixels in P {
        if (Z_pixel < Depth[i,j]) {
        Image [i,j]= C_pixel
        Depth[i,j] = Z_pixel
        }
        }
}
```


Characteristics of the z-buffer algorithm:

- Commonly used

Memory intensive
Hardware implementation common
Handles polygon interpenetration
Jaggies!

Generating z values during scan conversion.

Method A: From the plane equation

We want $z=f(x, y)$.
Plane equation: $0=A x+B y+C z+D$

Solving for $z: \quad z(x, y)=(-A x-B y-D) / C \quad z^{\prime}=z-\frac{A / m+B}{C}$
So $\quad z(x+1, y)=(-A(x+1)-B y-D) / C$

$$
=z(x+1)=z(x, y)-A / C
$$

So along a scanline $z(x+1, y)=z(x, y)-A / C$
Similarly from scanline to scanline $(x, y) \rightarrow(x+1 / m, y+1)$ and $Z(x+1 / m, y+1)=z(x, y)-(A / m+B) / C$.

Method B: Bilinear interpolation

Equivalent to method A, without having to

 solve for plane equation- Incrementally interpolates any type of quantity between known values at the vertices
- colours -- Gouraud shading
- texture coordinates
- surface normals

Bilinear interpolation of z-coordinates

It can also be done

 incrementally

$$
\begin{aligned}
& \frac{z_{1}-z_{2}}{z_{1}-z_{2}}=\frac{y_{1}-y_{2}}{y_{1}-y_{2}} \\
& z_{a_{1}}=z_{2}+\left(z_{1}-z_{2}\right) \frac{\left(y_{1}-y_{2}\right)}{\left(y_{1}-V_{2}\right)}
\end{aligned}
$$

A-buffer [Not covered in Hill]

z-buffer: only one visible surface per pixel A-buffer: linked list of surfaces

Antialiased, area-averaged, accumulation buffer

A-buffer linked list of surfaces

The data for each surface includes:

RGB
Z
alpha
area coverage percentage
other surface parameters

BSP trees [Hill: 707-711. Foley \& van Dam: p. 675-680]

- Binary space partition
- Object space, produces back-to-front ordering
- Preprocess the scene once to build BSP tree
- Traversal of BSP tree is view dependent

Building a BSP tree

BSPtree *BSPmaketree(polygon list) \{ choose a polygon as the tree root for all other polygons
if polygon is in front, add to front list if polygon is behind, add to behind list

else split polygon and add one part to each list
BSPtree $=$ BSPcombinetree(BSPmaketree(front list), root, BSPmaketree(behind list))
\}
Example tree with A chosen as the root:

Drawing using the BSP tree

View dependent

```
DrawTree(BSPtree) {
    if (eye is in front of root) {
            DrawTree(BSPtree->behind)
            DrawPoly(BSPtree->root)
            DrawTree(BSPtree->front)
        } else {
            DrawTree(BSPtree->front)
            DrawPoly(BSPtree->root)
            DrawTree(BSPtree->behind)
        }
    }
}
```


Example

Execution:
Eye in front of A,
draw A->behind, eye
behind C 2 , draw C2$>$ front, draw C2, draw
$\mathrm{C} 2 \rightarrow$ behind,
draw E,
draw A, draw $\mathrm{A} \rightarrow$ front, Eye in front of B, draw
$B \rightarrow$ behind,

Depth sorting algorithms [hill:

706,711-713. Foley \& van Dam: p. 672-675]

Several object-space algorithms achieve a front-to-back ordering in other ways. These depth-sort algorithms have the following basic steps:

- Sort polygons by z
- Resolve ambiguities where z-extents overlap
- Scan-convert polygons in back-to-front order

Resolving ambiguities

- Bounding rectangles do not overlap in xy-plane
- A is completely behind C
- C is completely in front of A
- Projections on xy-plane do not overlap

If these fail, exchange the order of the surfaces and repeat. If this still fails, the polygons can be intersected to split one of the polygons if necessary. In the worst case, the algorithm can generate $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ new polygons.

Scanline Algorithms

[Hill: 713-716. Foley \& van Dam: p. 680-684]

modify scan-conversion to handle multiple polygons

- priority according to Z
- resolve visibility one scanline at a time
- less memory
for each scanline (row) in image for each pixel in scanline determine closest object

scan-convert

end
end

Raytracing

for each pixel on screen
determine ray from eye through pixel
find closest intersection of ray with an object
cast off reflected and refracted ray, recursively
calculate pixel colour, draw pixel End

- rays cast through image pixels
- solves visibility, some global illumination
- requires efficient intersection tests $O(m n N)$: $m \times n$ pixels, N objects

