
Visibility

Do not draw what is not visible

- Self occlusions

- Object to object occlusion

Back Face culling

[Hill: 406.407. Foley & van Dam: p. 663-664]

Remove back facing

polygons

Back facing culling in VCS

Can we use the z-component of

the normal?

Back facing culling in VCS

Can we use the z-component of

the normal?

Yes, if the projection is

orthorgaphic.

What about perspective?

Back facing culling in VCS

-z

N

“Zero”point: projection is a
point (line in 3D)

eye
Image
plane

No!

Back facing culling in VCS

What do we really need to look at?

-z

NAnswer:

The face that projects on the
Image plane.

Which comes down to:
Is the eye above or below the
polygon?

eye

Back facing culling in VCS

How do we do that?

• Calculate surface normal N=(A,B,C)

• Compute D in plane equation using any of the

vertices of the polygon Plane(x,y,z) = Ax+By+Cz

+D.

• Compute Plane(eye) and check the sign

> 0 above ! front facing

< 0 below (behind) ! back facing

Back face culling in NDCS

 In NDCS, the z-component of the surface normal does

reflect the true visibility, as desired. If the z-component

is positive, the normal points away from the eye and

the polygon should thus be culled.

 Reminder: In NDCS the camera is pointing towards

the positive z-axis.

Back face culling in OpenGL

glCullFaceI(GLenum mode)

mode: GL_FRONT

 GL_BACK

 GL_FRONT_AND_BACK

glEnable(GL_CULL_FACE) ;

glDisable(GL_CULL_FACE) ;

Visibility Algorithms

[Hill: Chapter 13. Foley & van Dam: p. 649-651]

Visibility algorithms are needed to determine which objects in

the scene are obscured by other objects. They are typically

classified into two groups:

image-space algorithms

– operate on display primitives. e.g., pixels, scan-lines

– visibility resolved to the precision of the display

– e.g.: z-buffer, Watkin's, ray-tracing

object-space algorithms

– BSP: binary-space partitions

– variations on painter's algorithm

– worst case: creation of O(N2) primitives from N original primitives

Z-buffer[Hill: 436-439. Foley & van Dam: p. 668-672]

The z-buffer keeps depth

information about each

pixel.

Z-buffer algorithm

for all i,j {
 Depth[i,j] = MAX_DEPTH
 Image[i,j] = BACKGROUND_COLOUR
}

for all polygons P {
 for all pixels in P {
 if (Z_pixel < Depth[i,j]) {
 Image[i,j] = C_pixel
 Depth[i,j] = Z_pixel
 }
 }
}

Characteristics of the z-buffer

algorithm:

• Commonly used

• Memory intensive

• Hardware implementation common

• Handles polygon interpenetration

• Jaggies!

Generating z values during scan

conversion.

Method A: From the plane equation

We want z=f(x,y).

Plane equation: 0 = A x + B y + C z + D

Solving for z: z(x,y) = (- A x - B y - D) /C

So z(x+1,y) = (- A (x+1) - B y - D) /C

 = z(x+1) = z(x,y) - A/C

So along a scanline z(x+1,y) = z(x,y) – A/C

Similarly from scanline to scanline (x,y) ! (x+1/m,y+1) and

Z(x+1/m,y+1) = z(x,y) - (A/m + B)/C.

Method B: Bilinear interpolation

Equivalent to method A, without having to

solve for plane equation

• Incrementally interpolates any type of quantity

between known values at the vertices

– colours -- Gouraud shading

– texture coordinates

– surface normals

Bilinear interpolation of z-coordinates

It can also be done

incrementally

y

z

A-buffer [Not covered in Hill]

z-buffer: only one visible surface per pixel

A-buffer: linked list of surfaces

Antialiased, area-averaged, accumulation

buffer

A-buffer linked list of surfaces

The data for each surface
includes:

 RGB
 Z
 alpha
 area coverage percentage
 other surface parameters

BSP trees[Hill: 707-711. Foley & van Dam: p. 675-680]

• Binary space partition

• Object space, produces back-to-front ordering

• Preprocess the scene once to build BSP tree

• Traversal of BSP tree is view dependent

Building a BSP tree

BSPtree *BSPmaketree(polygon list) {

 choose a polygon as the tree root

 for all other polygons

 if polygon is in front, add to front list

 if polygon is behind, add to behind list

 else split polygon and add one part to each list

 BSPtree = BSPcombinetree(BSPmaketree(front list),
root, BSPmaketree(behind list))

}

Example tree with A chosen as the root:

Front

Drawing using the BSP tree

View dependent
DrawTree(BSPtree) {

 if (eye is in front of root) {
 DrawTree(BSPtree->behind)
 DrawPoly(BSPtree->root)
 DrawTree(BSPtree->front)
 } else {
 DrawTree(BSPtree->front)
 DrawPoly(BSPtree->root)
 DrawTree(BSPtree->behind)
 }
}

}
Front

Execution:
Eye in front of A,
draw A->behind,
 eye
behind C2,
 draw C2-
>front,
 draw C2,
 draw
C2!behind,

 draw E,
draw A,
draw A!front,
 Eye in
front of B,
 draw
B!behind,

 draw D,
 draw B,
 draw
B!front,

 draw C1

C2,E,A,D,B,C1

Example

DrawTree(BSPtree) {
 if (eye is in front of root) {
 DrawTree(BSPtree->behind)
 DrawPoly(BSPtree->root)
 DrawTree(BSPtree->front)
 } else {
 DrawTree(BSPtree->front)
 DrawPoly(BSPtree->root)
 DrawTree(BSPtree->behind)
 }
}

}

Front

EYE

Depth sorting algorithms [Hill:

706,711-713. Foley & van Dam: p. 672-675]

Several object-space algorithms achieve a

front-to-back ordering in other ways. These

depth-sort algorithms have the following

basic steps:

• Sort polygons by z

• Resolve ambiguities where z-extents overlap

• Scan-convert polygons in back-to-front order

Resolving ambiguities

• Bounding rectangles do not overlap in xy-plane

• A is completely behind C

• C is completely in front of A

• Projections on xy-plane do not overlap

 If these fail, exchange the order of the surfaces and

repeat. If this still fails, the polygons can be intersected

to split one of the polygons if necessary. In the worst

case, the algorithm can generate O(n^2) new

polygons.

Scanline Algorithms
[Hill: 713-716. Foley & van Dam: p. 680-684]

modify scan-conversion to handle
multiple polygons

• priority according to Z

• resolve visibility one scanline at a
time

• less memory

for each scanline (row) in image

 for each pixel in scanline

 determine closest object

 calculate pixel colour, draw pixel

 end

end

Raytracing

for each pixel on screen

 determine ray from eye through pixel

 find closest intersection of ray with an
object

 cast off reflected and refracted ray,
recursively

 calculate pixel colour, draw pixel

End

– rays cast through image pixels

– solves visibility, some global
illumination

– requires efficient intersection
tests O(mnN): m x n pixels, N
objects

