
Affine Transformations in 3D

1

Affine Transformations in 3D

1

Affine Transformations in 3D

General form

2

Elementary 3D Affine

Transformations

Translation

3

Scaling Around the Origin

4

Shear around the origin

Along x-axis

5

3 DRotation

Various representations

Decomposition into axis

rotations (x-roll, y-roll, z-roll)

CCW positive assumption

6

Reminder 2D z-rotation

7

Three axis to rotate around

8

Z-roll

9

X-roll

Cyclic indexing

10

Y-roll

11

Rigid body transformations

Translations and

rotations

Preserve lines, angles and

distances

12

Inversion of transformations

Translation: T-1(a,b,c) = T(-a,-b,-c)

Rotation: R-1
axis(b) = Raxis{-b)

Scaling: S-1(sx,sy,sz) = S(1/sx,1/sy,1/sz)

Shearing: Sh-1(a) = Sh(-a)

13

Inverse of Rotations

Pure rotation only, no

scaling or shear.

14

Composition of 3D Affine

Transformations

The composition of affine transformations

is an affine transformation.

Any 3D affine transformation can be

performed as a series of elementary affine

transformations.

15

Composite 3D Rotation around

origin

The order is important !!

It is often convenient to use other
representations for 3D rotations….

16

Gimball lock

17

Loss of degree of freedom

18

Rotation around an arbitrary axis

Euler’s theorem: Any rotation or sequence of

rotations around a point is equivalent to a single

rotation around an axis that passes through the

point.

What does the matrix look like?

19

Rotation around an arbitrary axis

Axis: u

Point: P

Angle: !

Method:

1. Two rotations to align u

with x-axis

2. Do x-roll by !

3. Undo the alignment

20

Derivation

1. Rz(-")Ry(#)

2. Rx(!)

3. Ry(-#)Rz(")

Altogether:

Ry(-#)Rz(") Rx(!) Rz(-")Ry(#)

We can add translation too if

the axis is not through the

origin

21

Properties of affine

transformations

1. Preservation of affine combinations of points.

2. Preservation of lines and planes.

3. Preservation of parallelism of lines and planes.

4. Relative ratios on a line are preserved.

5. Affine transformations are composed of

elementary ones.

22

Affine Combinations of Points

23

Preservations of Lines and

Planes

24

Preservation of Parallelism

25

General form

Rotation, Scaling,
Shear

Translation

26

Advanced concepts

Generalized shears

Decomposition of 2D AT:

2D : M = T Sh S R

3D: M = T S R Sh1 Sh2

Rotations in 3D

Gimbal lock

Quaternions

Exponential maps

27

Transformations of Coordinate

systems

Coordinate systems consist of vectors and

an origin, therefore we can transform them

just like points and vectors.

Alternative way to think of transformations.

28

Reminder: Coordinate systems

Coordinate
system: (a,b,c,!)

29

Reminder: The homogeneous

representation of points and vectors

30

Transforming CS1 into CS2

What is the relationship

between P in CS2 and P in

CS1 if CS2 = T(CS1)?

x

y

j

i

j’

i’

P

O

O’

a

b
e

d

CS1

CS2

31

Derivation

32

Derivation

33

P in CS1 vs P in CS2

Proof in pages 245,246 of

[Hill]

x

y

j

i

j’

i’

P

O

O’

a

b
e

d

34

Successive transformations of

CS

CS1 ! CS2 ! CS3

x

y

j

i

j’

i’

P

O

O’

T1 T2

35

Transformations as a change of

basis CS2

CS1

We know the basis vectors and we know that

What is M with respect to the basis vectors?

36

Transformations as a change of

basis CS2

CS1

That is:

We can view transformations as a change of
coodinate system

37

Transforming a point through

transforming coordinate systems

38

Transforming a point through

transforming coordinate systems

39

Transforming a point through

transforming coordinate systems

40

Rule of thumb

Transforming a point P:

Transformations: T1,T2,T3

Matrix: M = M3 x M2 x M1

Point transformed by: MP

Succesive transformations happen with respect to the same CS

Transforming a CS

Transformations: T1, T2, T3

Matrix: M = M1 x M2 x M3

A point has original coordinates MP

Each transformations happens with respect to the new CS.

41

Rule of thumb

To find the transformation matrix that

transforms P from CSA coordinates to CSB

coordinates, we find the sequence of

transformations that align CSB to CSA

accumulating matrices from left to right.

42

Explanation of this rule

CS A CS B

Transformation M: AMB

P

If we think transforming systems,
M takes CS A from the left and
produces B on the right.

 AMB

After this transformation we talk
in B coordinates (right side).

If we think about points then we
move the other way. M takes B
on the right and produces the A
coordinates on the left:

AMB

43

Explanation of this rule

CS A CS B

Transformation M: AMB

P

Take this simple example where
to produce B we translate A by 1
on x axis.

PB = (1,1) PA = (2,1)

If we move A by +1 to transform
it into B then the coordinates of
P with respect to the new system
are shortened by 1 (B is closer to
P than A by 1). So if we want to
transform the coordinates of P
from B to A we need to add 1 in
x. Exactly what we need to do to
transform system A to B.

44

Graphics Pipeline

 Modeling
transformation

 Viewing
transformation

 Projection
transformation

Perspective
division

 Viewport
transformation

OCS WCS VCS CCS

NDCS
DCS

45

Translation in OpenGL

glTranslate3f(GLfloat x, GLfloat y, GLfloat z) ;

glTranslate3d(GLdouble x, GLdouble y, GLdouble z);

46

Scaling in OpenGL

glScalef(GLfloat sx, GLfloat sy, GLfloat sz) ;

glScaled(GLdouble sx, GLdouble sy, GLdouble sz) ;

47

Rotation in OpenGL

glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) ;

glRotated(GLdouble angle, GLdouble ux, GLdouble uy,

GLdouble uz) ;

(Matrix in the next slide)

48

Matrix created

1. Rz(-")Ry(#)

2. Rx(!)

3. Ry(-#)Rz(")

Altogether:

Ry(-#)Rz(") Rx(!) Rz(-")Ry(#)

We can add translation too if

the axis is not through the

origin

49

Successively transforming the coordinate

system

M = M1 M2 M3 …. Mn

Pwolrd = M Pobj

Composition of transformations in

OpenGL

50

OpengGL Modelview Matrix

Each transformation post multiplies the current

modelview matrix CM

glMatrixMode(GL_MODELVIEW) ;

glLoadIdentity() ; // CM = I

glRotatef(45, 0,0,1) ; // CM = I*Rz(45) ;

glTranslatef(1,1,1) ; // CM = CM*T(1,1,1)

 // = I*Rz(45) *T(1,1,1)

glScale(2,1,1) ; // CM = CM *S(2,1,1) = I*Rz*T*S

51

Arbitrary matrices

Arbitrary affine (or not)

transformations

glLoadMatrixf(GLfloat *M) ; // CM = M

glLoadMatrixd(GLdouble *M) ; // CM = M

glMultMatrixf(GLfloat *M) ; // CM = CM*M

glMultMatrixd(GLfloat *M) ; // CM = CM*M

52

Tricky Point

There are no multi-dimensional arrays in c.

Column-major order vs. row-major order.

OpenGL uses column major order that is:

53

Feedback

GLdouble m[16] ; glGetDoublev(GL_MODELVIEW_MATRIX,m) ;

GLfloat m[16] ; glGetFloatv(GL_MODELVIEW_MATRIX,m) ;

54

Matrix Stack

Why a stack?

• Reuse of transformations

• Control the effect of transformations

• Hierarchical structures

Manipulating the stack

• glPushMatrix() ;

• glPopMatrix() ;

55

Example

Wrist and 5 fingers

We want the fingers to stay

attached to the wrist as the

wrist moves.

Wrist

F1_1

F1_2

F1_3

56

Hierarchy

Wrist

F1_1

F1_2

F1_3

Wrist T1_1

F1_1 T1_2

Twrist

F1_2 T1_3

F1_3

CSwrist

CSwolrd

57

Hierarchy

CSF1_1 = T1_1(CSwrist)

CSF1_2 = T1_2(CSF1_1)

CSF1_3 = T1_3(CSF1_2)

F1_1

F1_2

F1_3

CSwrist

CSwolrd

Wrist

58

Examples on the computer

59

How to think about transformations

OpenGL code

• Transformations of coordinate systems TOP to

BOTTOM

• Transformations of objects BOTTOM to TOP

Which one do we use to think of

transformations?

• Whichever we like

• Usually both

60

Example:

Given a unit cube center at the origin create

a cube as shown in the next slide

61

62

63

64

65

66

67

68

69

70

71

72

Hybrid way of thinking

Use TOP to BOTTOM to position a

coordinate system

Then use BOTTOM to TOP to position the

objects within that system

Often it is easier to do it in the opposite

order

73

Graphics Pipeline

 Modeling
transformation

 Viewing
transformation

 Projection
transformation

Perspective
division

 Viewport
transformation

OCS WCS VCS CCS

NDCS
DCS

M-1
cam

74

Taking a snapshot of a 3D Scene

75

OpenGL Assumption

In world coordinates the camera system is:

76

Camera transformation (Hill 358-366)

Transforms objects to camera coordinates

OpenGL Modelview matrix

77

Defining Mcam

Common way

 Eye point

Reference point

Upvector

To build Mcam we need to define a camera coordinate

system (origin, i, j, k)

78

Camera Coordinate system

79

Building Mcam

Change of basis

 Our reference system is WCS,

we know the camera parameters with

respect to the world

Align WCS with VCS

VCS
WCS

Peye x

y

z

80

Building Mcam inverse

Invert smart

81

Building Mcam inverse

Invert smart

Transpose

82

Camera in OpenGL

gluLookAt(ex,ey,ez,rx,ry,rz,ux,uy,uz)

The resulting matrix pre-multiplies the

modelview matrix

! glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(ex,ey,ez,rx,ry,rz,ux,uy,uz);

! // setup modelling transformations here

83

End of Modeling transformations

1. Preservation of affine combinations of points.

2. Preservation of lines and planes.

3. Preservation of parallelism of lines and planes.

4. Relative ratios on a line are preserved

5. Affine transformations are composed of

elementary ones.

Camera transformation as a change of basis.

OpenGL matrix stack.

84

