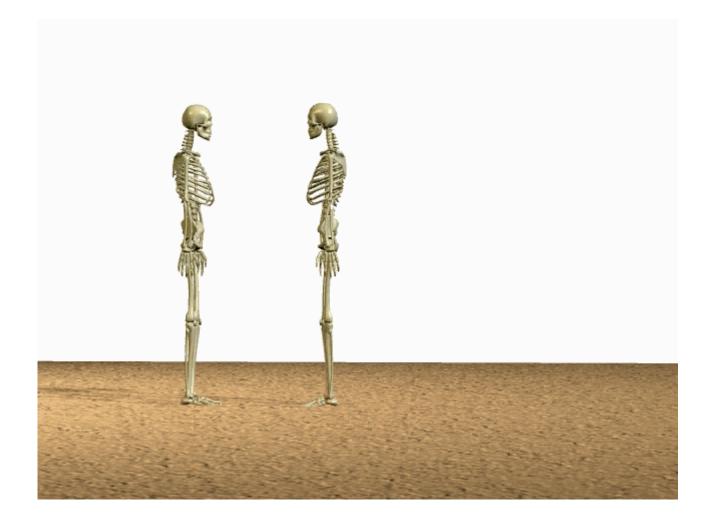
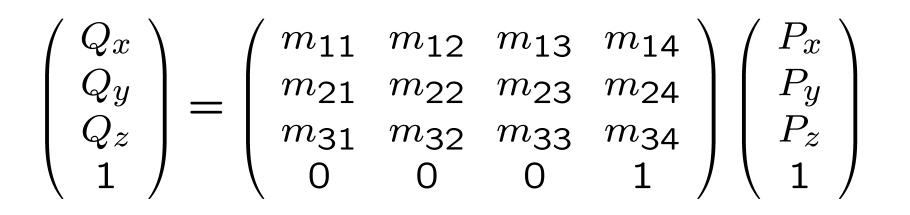
Affine Transformations in 3D

Affine Transformations in 3D



Affine Transformations in 3D

General form



Elementary 3D Affine Transformations

Translation

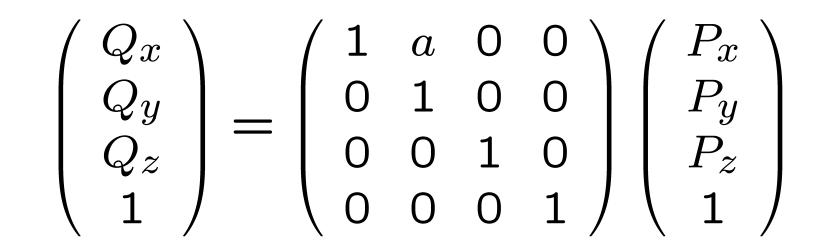
$$\begin{pmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix}$$

Scaling Around the Origin

 $\begin{pmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix}$

Shear around the origin

Along x-axis



3 DRotation

Various representations

Decomposition into axis rotations (x-roll, y-roll, z-roll)

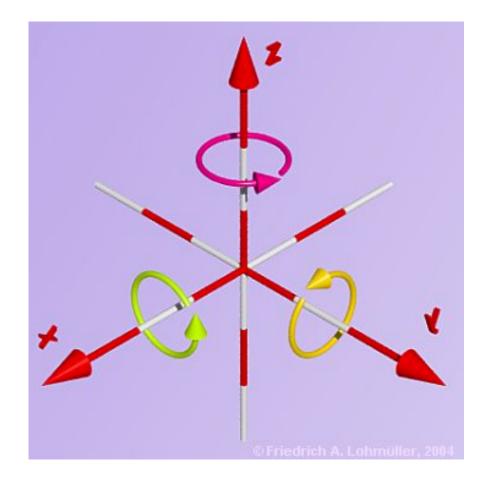
CCW positive assumption

Reminder 2D z-rotation

$$Q_x = \cos\theta P_x - \sin\theta P_y$$
$$Q_y = \sin\theta P_x + \cos\theta P_y$$

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix}$$

Three axis to rotate around



Z-roll

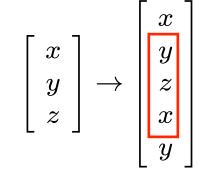
$$Q_x = \cos\theta P_x - \sin\theta P_y$$
$$Q_y = \sin\theta P_x + \cos\theta P_y$$
$$Q_z = P_z$$

$$R_z(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0\\ \sin(\theta) & \cos(\theta) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 1 & \end{pmatrix}$$

X-roll

Cyclic indexing

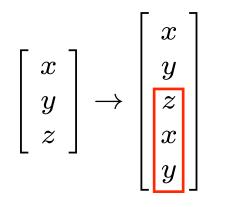
$$x \to y \to z \to x \to y$$



$$Q_y = \cos\theta P_y - \sin\theta P_z$$
$$Q_z = \sin\theta P_y + \cos\theta P_z$$
$$Q_x = P_x$$

$$R_x(heta) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & cos(heta) & -sin(heta) & 0 \ 0 & sin(heta) & cos(heta) & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Y-roll



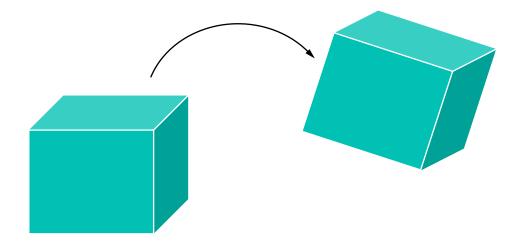
$$Q_{z} = \cos\theta P_{z} - \sin\theta P_{x}$$
$$Q_{x} = \sin\theta P_{z} + \cos\theta P_{x}$$
$$Q_{y} = P_{y}$$

$$R_{y}(\theta) = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & & 1 \end{pmatrix}$$

Rigid body transformations

Translations and rotations

Preserve lines, angles and distances

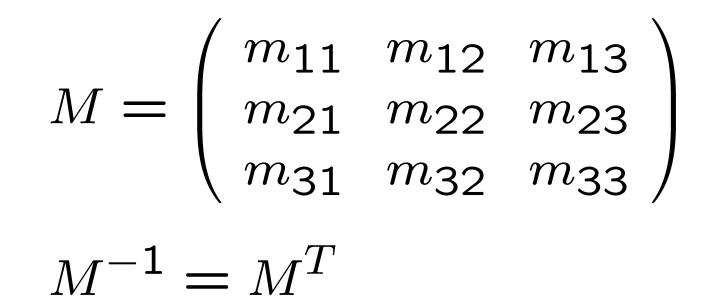


Inversion of transformations

Translation: $T^{-1}(a,b,c) = T(-a,-b,-c)$ Rotation: $R^{-1}_{axis}(b) = R_{axis}\{-b\}$ Scaling: $S^{-1}(sx,sy,sz) = S(1/sx,1/sy,1/sz)$ Shearing: $Sh^{-1}(a) = Sh(-a)$

Inverse of Rotations

Pure rotation only, no scaling or shear.



Composition of 3D Affine Transformations

The composition of affine transformations is an affine transformation.

Any 3D affine transformation can be performed as a series of elementary affine transformations.

Composite 3D Rotation around origin

$R = R_z(\theta_3) R_y(\theta_2) R_x(\theta_1)$

The order is important !!

It is often convenient to use other representations for 3D rotations....

Gimball lock

 $R(\theta_1, \theta_2, \theta_3) = R_z(\theta_3) R_y(\theta_2) R_x(\theta_1)$

$$\begin{pmatrix} \cos(\theta_3) & -\sin(\theta_3) & 0 & 0 \\ \sin(\theta_3) & \cos(\theta_3) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta_2) & 0 & \sin(\theta_2) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta_2) & 0 & \cos(\theta_2) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta_1) & -\sin(\theta_1) & 0 \\ 0 & \sin(\theta_1) & \cos(\theta_1) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ R(\theta_1, 90^o, \theta_3) = R_z(\theta_3) R_y(90^o) R_x(\theta_1)$$

$$\begin{pmatrix} \cos(\theta_3) & -\sin(\theta_3) & 0 & 0 \\ \sin(\theta_3) & \cos(\theta_3) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta_1) & -\sin(\theta_1) & 0 \\ 0 & \sin(\theta_1) & \cos(\theta_1) & 0 \\ 0 & \cos(\theta_1) & -\sin(\theta_1) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \\ \begin{pmatrix} \cos(\theta_3) & -\sin(\theta_3) & 0 & 0 \\ \sin(\theta_3) & \cos(\theta_3) & 0 & 0 \\ \sin(\theta_3) & \cos(\theta_3) & 0 & 0 \\ \sin(\theta_3) & \cos(\theta_3) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & \sin(\theta_1) & \cos(\theta_1) & 0 \\ 0 & \cos(\theta_1) & -\sin(\theta_1) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Loss of degree of freedom

$$R(\theta_1, 90^o, \theta_3) = \begin{pmatrix} \cos(\theta_3) & -\sin(\theta_3) & 0 & 0\\ \sin(\theta_3) & \cos(\theta_3) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & \sin(\theta_1) & \cos(\theta_1) & 0\\ 0 & \cos\theta_1) & -\sin(\theta_1) & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} =$$

$$\begin{pmatrix} 0 & \cos(\theta_3)\sin(\theta_1) - \sin(\theta_3)\cos(\theta_1) & \cos(\theta_3)\cos(\theta_1) + \sin(\theta_3)\sin(\theta_1) & 0\\ 0 & \cos(\theta_3)\cos(\theta_1) + \sin(\theta_3)\sin(\theta_1) & -\cos(\theta_3)\sin(\theta_1) + \sin(\theta_3)\cos(\theta_1) & 0\\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$\begin{pmatrix} 0 & \sin(\theta_1 - \theta_3) & \cos(\theta_1 - \theta_3) & 0 \\ 0 & \cos\theta_1 - \theta_3) & -\sin(\theta_1 - \theta_3) & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \\ \begin{pmatrix} 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & \cos\theta) & -\sin(\theta) & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = R(\theta) \qquad (\theta_1, \theta_3) \to \theta = (\theta_1 - \theta_3)$$

Rotation around an arbitrary axis

Euler's theorem: Any rotation or sequence of rotations around a point is equivalent to a single rotation around an axis that passes through the point.

What does the matrix look like?

Rotation around an arbitrary axis

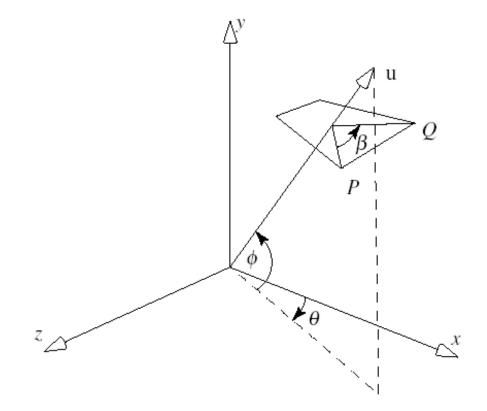
Axis: **u**

Point: P

Angle: β

Method:

- Two rotations to align u with x-axis
- **2**. Do x-roll by β
- 3. Undo the alignment



Derivation

- 1. $R_z(-\phi)R_y(\theta)$
- **2**. **R**_x(β)
- 3. $R_y(-\theta)R_z(\phi)$

$$cos(\theta) = u_x / \sqrt{u_x^2 + u_z^2}$$

$$sin(\theta) = u_z / \sqrt{u_x^2 + u_z^2}$$

$$sin(\phi) = u_y / |\mathbf{u}|$$

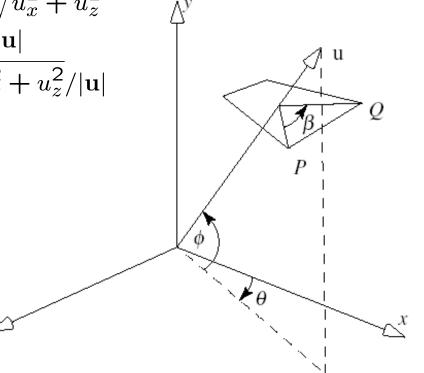
$$cos(\phi) = \sqrt{u_x^2 + u_z^2} / |\mathbf{u}|$$

Z,

Altogether:

 $\mathsf{R}_{\mathsf{y}}(\textbf{-}\theta)\mathsf{R}_{\mathsf{z}}(\phi) \mathsf{R}_{\mathsf{x}}(\beta) \mathsf{R}_{\mathsf{z}}(\textbf{-}\phi)\mathsf{R}_{\mathsf{y}}(\theta)$

We can add translation too if the axis is not through the origin



Properties of affine transformations

- 1. Preservation of affine combinations of points.
- 2. Preservation of lines and planes.
- 3. Preservation of parallelism of lines and planes.
- 4. Relative ratios on a line are preserved.
- 5. Affine transformations are composed of elementary ones.

Affine Combinations of Points

$$W = a_1 P_1 + a_2 P_2$$

$$T(W) = T(a_1 P_1 + a_2 P_2) = a_1 T(P_1) + a_2 T(P_2)$$

Proof: from linearity of matrix multiplication

 $MW = M(a_1P_1 + a_2P_2) = a_1MP_1 + a_2MP_2$

Preservations of Lines and Planes

$$L(t) = (1 - t)P_1 + tP_2$$

$$T(L) = (1 - t)T(P_1) + tT(P_2)$$

$$Pl(t) = (1 - s - t)P_1 + tP_2 + sP_3$$

$$T(L) = (1 - s - t)T(P_1) + tT(P_2) + sT(P_3)$$

Proof: Direct consequence of previous property.

Preservation of Parallelism

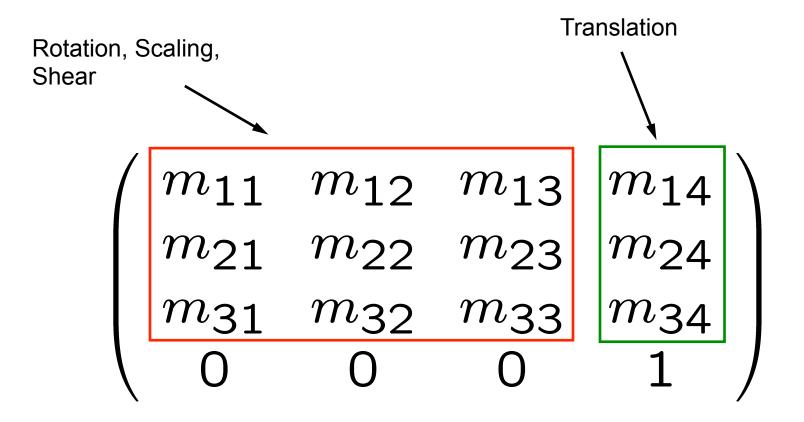
$$L(t) = P + t\mathbf{u}$$

$$ML = M(P + t\mathbf{u}) = MP + M(t\mathbf{u}) \rightarrow$$
$$ML = MP + t(M\mathbf{u})$$

 $M\mathbf{u}$ independent of P.

Similarly for planes.

General form



Advanced concepts

Generalized shears

Decomposition of 2D AT:

- 2D: M = T Sh S R
- 3D: $M = T S R Sh_1 Sh_2$

Rotations in 3D

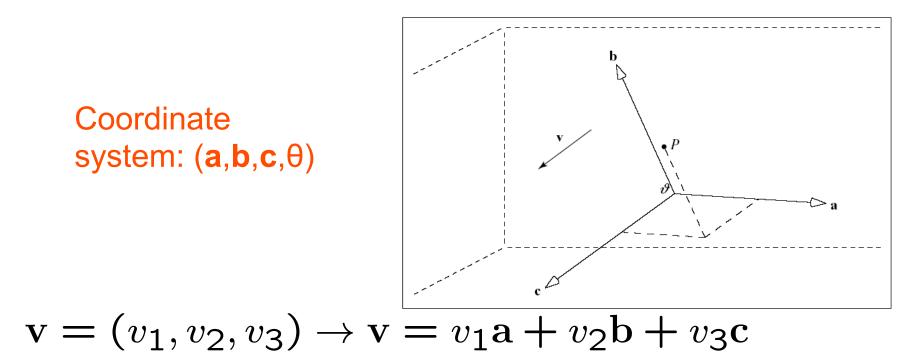
- **Gimbal lock**
- Quaternions
- **Exponential maps**

Transformations of Coordinate systems

Coordinate systems consist of vectors and an origin, therefore we can transform them just like points and vectors.

Alternative way to think of transformations.

Reminder: Coordinate systems



 $P = (p_1, p_2, p_3) \rightarrow P - \theta = p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$ $P = \theta + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$

Reminder: The homogeneous representation of points and vectors

$$\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c} \rightarrow \mathbf{v} = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta) \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{pmatrix}$$
$$P = \theta + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c} \rightarrow P = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta) \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{pmatrix}$$

Transforming CS1 into CS2

What is the relationship between P in CS2 and P in CS1 if CS2 = T(CS1)?

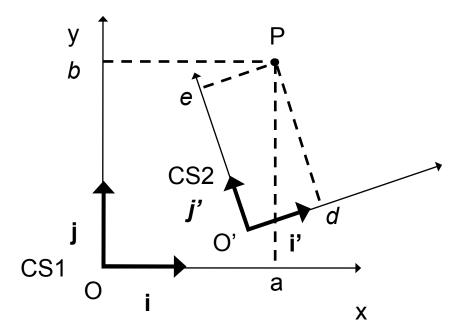
$$CS1 : P = (a, b, c, 1)^T$$
$$CS2 : P = (d, e, f, 1)^T$$

$$O' = T(O),$$

$$i' = T(i),$$

$$j' = T(j),$$

$$k' = T(k)$$



Derivation

By definition P is the linear combination of vectors $\mathbf{i}', \mathbf{j}', \mathbf{k}'$ and point O'.

$$P = d\mathbf{i}' + e\mathbf{j}' + f\mathbf{k}' + O'$$

In system CS1:

 $P_{CS1} = d\mathbf{i}_{CS1}' + e\mathbf{j}_{CS1}' + f\mathbf{k}_{CS1}' + O_{CS1}'$

Derivation

 $P_{CS1} = d\mathbf{i}'_{CS1} + e\mathbf{j}'_{CS1} + f\mathbf{k}'_{CS1} + O'_{CS1}$

We know that $(\mathbf{i}_{CS1}',\mathbf{j}_{CS1}',\mathbf{k}_{CS1}',O_{CS1}')=T((\mathbf{i},\mathbf{j},\mathbf{k},O))$

$$P_{CS1} = dT(\mathbf{i}) + eT(\mathbf{j}) + fT(\mathbf{k}) + T(O)$$

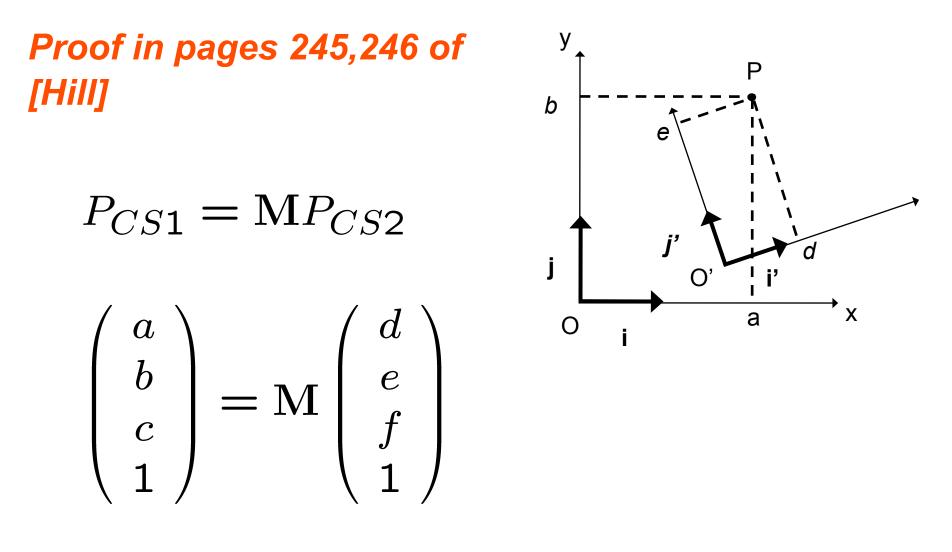
$$= d(\mathbf{M}\mathbf{i}) + e(\mathbf{M}\mathbf{j}) + f(\mathbf{M}\mathbf{k}) + \mathbf{M}O$$

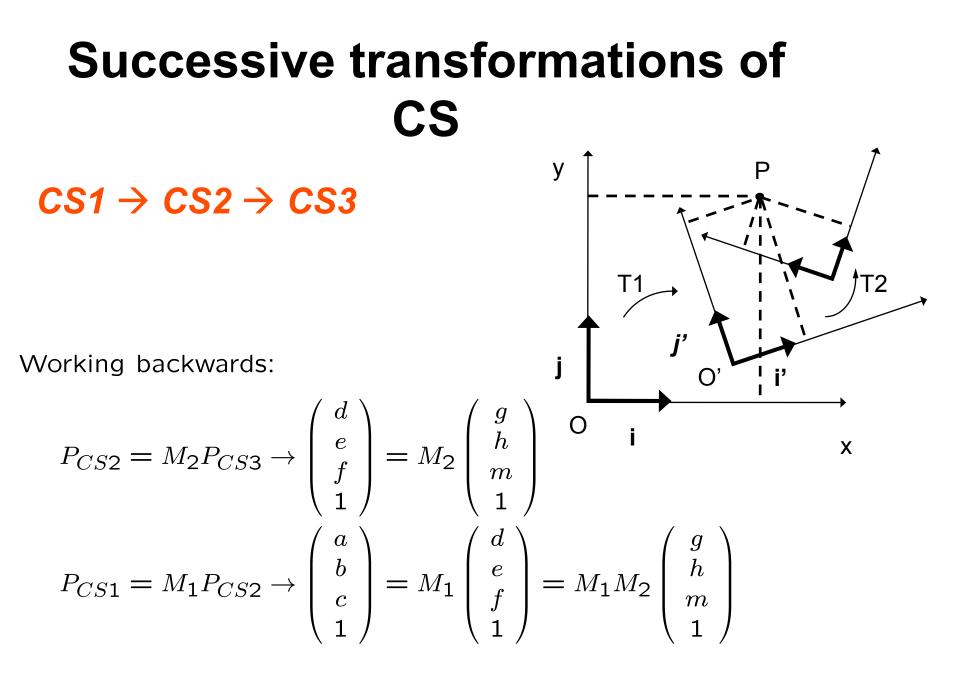
$$= d(\mathbf{M}\begin{bmatrix}1\\0\\0\\0\\0\end{bmatrix}) + e(\mathbf{M}\begin{bmatrix}0\\1\\0\\0\\0\end{bmatrix}) + f(\mathbf{M}\begin{bmatrix}0\\0\\1\\0\end{bmatrix}) + \mathbf{M}\begin{bmatrix}0\\0\\0\\1\end{bmatrix}$$

$$= \mathbf{M}\begin{bmatrix}d\\0\\0\\0\\0\end{bmatrix} + \mathbf{M}\begin{bmatrix}0\\e\\0\\0\\0\end{bmatrix} + \mathbf{M}\begin{bmatrix}0\\0\\0\\f\\0\end{bmatrix} + \mathbf{M}\begin{bmatrix}0\\0\\0\\f\\0\end{bmatrix} + \mathbf{M}\begin{bmatrix}0\\0\\0\\1\end{bmatrix}$$

$$= \mathbf{M}(\begin{bmatrix}d\\0\\0\\0\\0\end{bmatrix} + \begin{bmatrix}0\\e\\0\\0\\0\end{bmatrix} + \begin{bmatrix}0\\0\\f\\0\end{bmatrix} + \begin{bmatrix}0\\0\\f\\0\end{bmatrix} + \begin{bmatrix}0\\0\\0\\1\end{bmatrix}) = \mathbf{M}\begin{bmatrix}d\\e\\f\\1\end{bmatrix}$$

P in CS1 vs P in CS2





Transformations as a change of basis

We know the basis vectors and we know that

 $P_{CS1} = MP_{CS2}$

What is M with respect to the basis vectors?

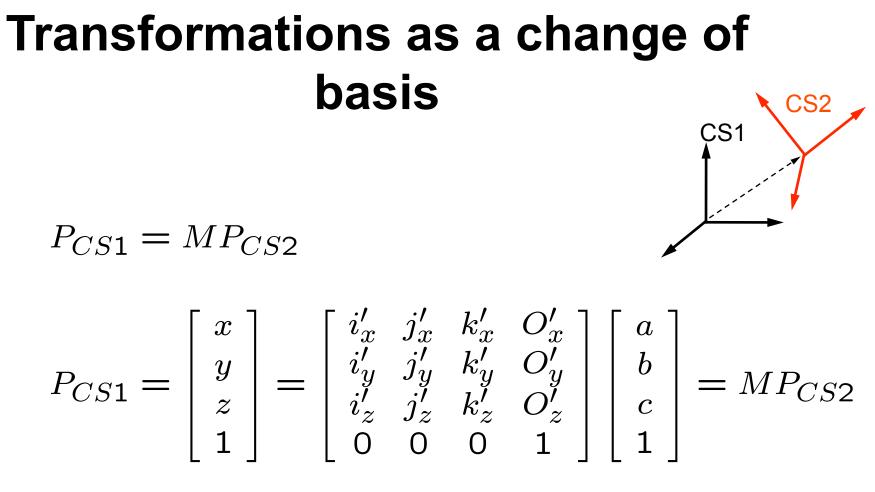
$$P_{CS2} = ai'_{CS2} + bj'_{CS2} + ck'_{CS2} + O'_{CS2} = a \begin{bmatrix} 1\\0\\0 \end{bmatrix} + b \begin{bmatrix} 0\\1\\0 \end{bmatrix} + c \begin{bmatrix} 0\\0\\1 \end{bmatrix} + c \begin{bmatrix} 0\\0\\1 \end{bmatrix} + \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

$$P_{CS1} = ai'_{CS1} + bj'_{CS1} + ck'_{CS1} + O'_{CS1} = a \begin{bmatrix} i'_x\\i'_y\\i'_z \end{bmatrix} + b \begin{bmatrix} j'_x\\j'_y\\j'_z \end{bmatrix} + c \begin{bmatrix} k'_x\\k'_y\\k'_z \end{bmatrix} + \begin{bmatrix} O'_x\\O'_y\\O'_z \end{bmatrix}$$

$$P_{CS1} = \begin{bmatrix} x\\y\\z\\1 \end{bmatrix} = \begin{bmatrix} i'_x&j'_x&k'_x&O'_x\\i'_y&j'_y&k'_y&O'_y\\i'_z&j'_z&k'_z&O'_z\\0&0&0&1 \end{bmatrix} \begin{bmatrix} a\\b\\c\\1 \end{bmatrix} = MP_{CS2}$$

CS2

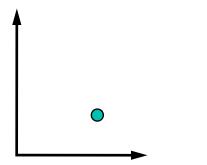
г _ ¬



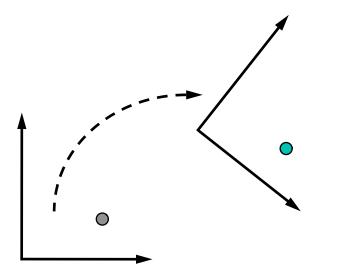
That is:

We can view transformations as a change of coodinate system

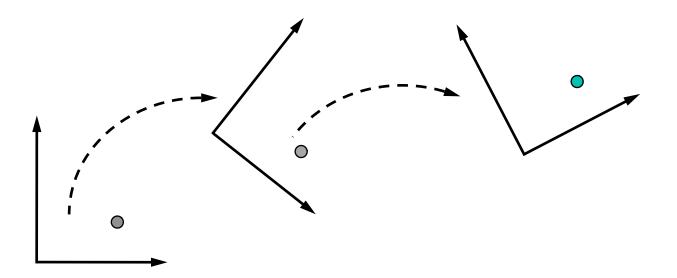
Transforming a point through transforming coordinate systems



Transforming a point through transforming coordinate systems



Transforming a point through transforming coordinate systems



Rule of thumb

Transforming a point P:

Transformations: T1,T2,T3

Matrix: $M = M3 \times M2 \times M1$

Point transformed by: MP

Succesive transformations happen with respect to the same CS

Transforming a CS

Transformations: T1, T2, T3

Matrix: $M = M1 \times M2 \times M3$

A point has original coordinates MP

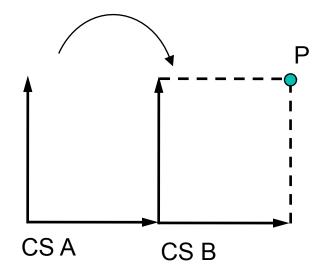
Each transformations happens with respect to the new CS.

Rule of thumb

To find the transformation matrix that transforms P from CSA coordinates to CSB coordinates, we find the sequence of transformations that align CSB to CSA accumulating matrices from left to right.

Explanation of this rule

Transformation M: _AM_B



If we think transforming systems, M takes CS A from the left and produces B on the right.

 AM_B

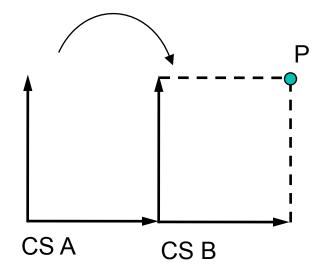
After this transformation we talk in B coordinates (right side).

If we think about points then we move the other way. M takes B on the right and produces the A coordinates on the left:

 $_{A}M_{B}$

Explanation of this rule

Transformation M: _AM_B

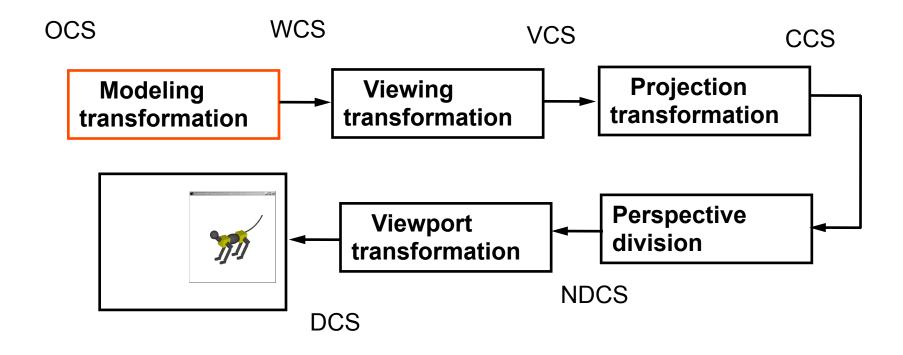


Take this simple example where to produce B we translate A by 1 on x axis.

 $P_{B} = (1,1)$ $P_{A} = (2,1)$

If we move A by +1 to transform it into B then the coordinates of P with respect to the new system are shortened by 1 (B is closer to P than A by 1). So if we want to transform the coordinates of P from B to A we need to add 1 in x. Exactly what we need to do to transform system A to B.

Graphics Pipeline



Translation in OpenGL

glTranslate3f(GLfloat x, GLfloat y, GLfloat z); glTranslate3d(GLdouble x, GLdouble y, GLdouble z);

$$\left(\begin{array}{ccccc} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Scaling in OpenGL

glScalef(GLfloat sx, GLfloat sy, GLfloat sz); glScaled(GLdouble sx, GLdouble sy, GLdouble sz);

$$\left(\begin{array}{cccccccccc} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Rotation in OpenGL

glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) ; glRotated(GLdouble angle, GLdouble ux, GLdouble uy, GLdouble uz) ;

(Matrix in the next slide)

Matrix created

- 1. $R_z(-\phi)R_y(\theta)$
- **2**. **R**_x(β)
- 3. $R_y(-\theta)R_z(\phi)$

$$cos(\theta) = u_x / \sqrt{u_x^2 + u_z^2}$$

$$sin(\theta) = u_z / \sqrt{u_x^2 + u_z^2}$$

$$sin(\phi) = u_y / |\mathbf{u}|$$

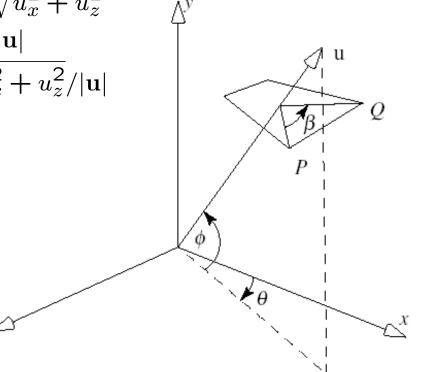
$$cos(\phi) = \sqrt{u_x^2 + u_z^2} / |\mathbf{u}|$$

Z,

Altogether:

 $\mathsf{R}_{\mathsf{y}}(\textbf{-}\theta)\mathsf{R}_{\mathsf{z}}(\phi) \mathsf{R}_{\mathsf{x}}(\beta) \mathsf{R}_{\mathsf{z}}(\textbf{-}\phi)\mathsf{R}_{\mathsf{y}}(\theta)$

We can add translation too if the axis is not through the origin



Composition of transformations in OpenGL

Successively transforming the coordinate system

M = M1 M2 M3 Mn

Pwolrd = M Pobj

OpengGL Modelview Matrix

Each transformation post multiplies the current modelview matrix CM

glMatrixMode(GL_MODELVIEW); glLoadIdentity(); // CM glRotatef(45, 0,0,1); // CM glTranslatef(1,1,1); // CM

glScale(2,1,1);

// CM = I
// CM = I*Rz(45);
// CM = CM*T(1,1,1)
// = I*Rz(45) *T(1,1,1)
// CM = CM *S(2,1,1) = I*Rz*T*S

Arbitrary matrices

Arbitrary affine (or not) transformations

glLoadMatrixf(GLfloat *M) ; // CM = M glLoadMatrixd(GLdouble *M) ; // CM = M

gIMultMatrixf(GLfloat *M) ; // CM = CM*M gIMultMatrixd(GLfloat *M) ; // CM = CM*M

Tricky Point

There are no multi-dimensional arrays in c.

Column-major order vs. row-major order.

OpenGL uses column major order that is:

float
$$m[16] = a0, a1, a2, a3..., a15;$$

becomes :

$$\begin{bmatrix} a0 & a4 & a8 & a12 \\ a1 & a5 & a9 & a13 \\ a2 & a6 & a10 & a14 \\ a3 & a7 & a11 & a15 \end{bmatrix}$$

Feedback

GLdouble m[16]; glGetDoublev(GL_MODELVIEW_MATRIX,m);

GLfloat m[16]; glGetFloatv(GL_MODELVIEW_MATRIX,m);

Matrix Stack

Why a stack?

- Reuse of transformations
- Control the effect of transformations
- Hierarchical structures

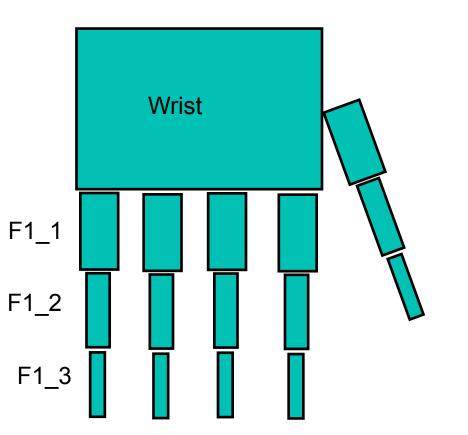
Manipulating the stack

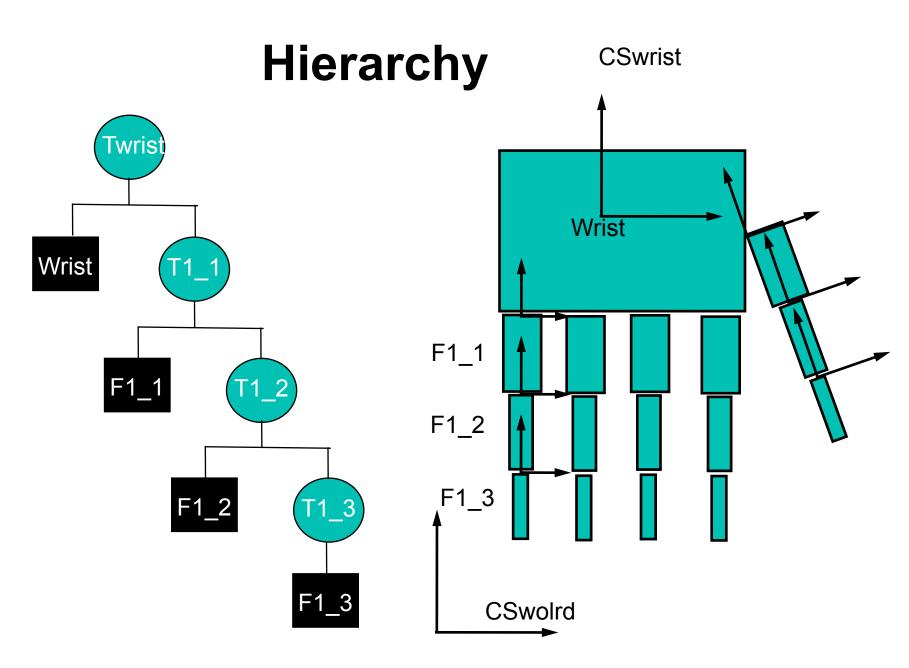
- glPushMatrix();
- glPopMatrix();

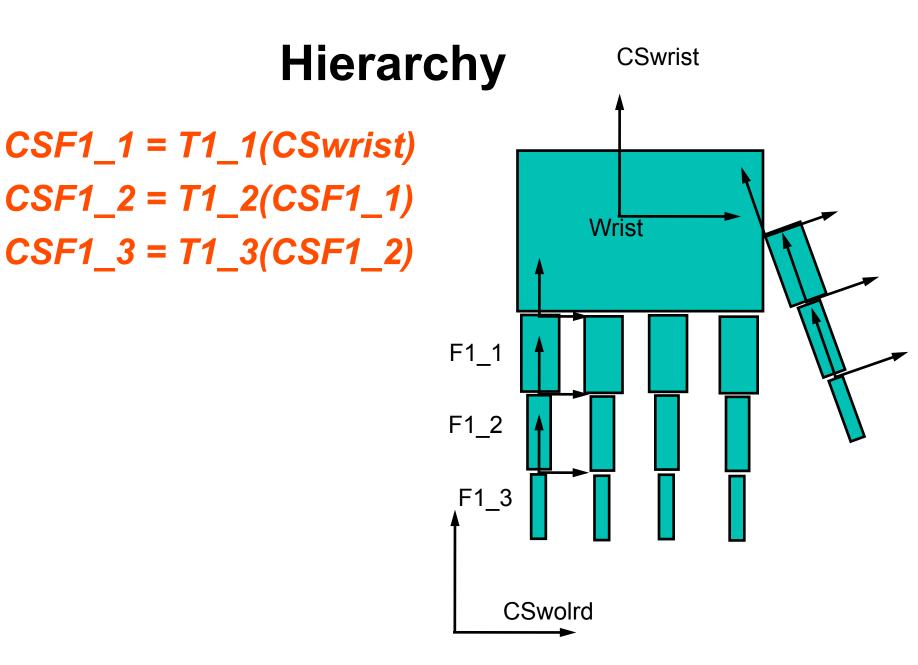
Example

Wrist and 5 fingers

We want the fingers to stay attached to the wrist as the wrist moves.







Examples on the computer

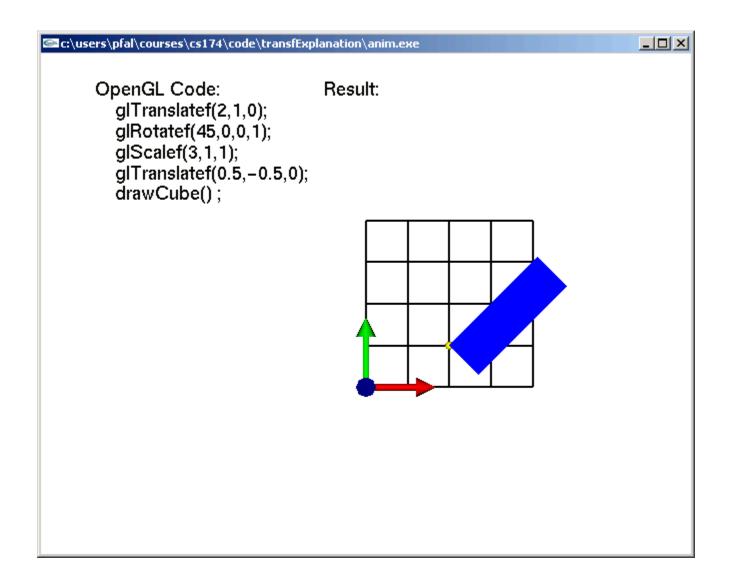
How to think about transformations

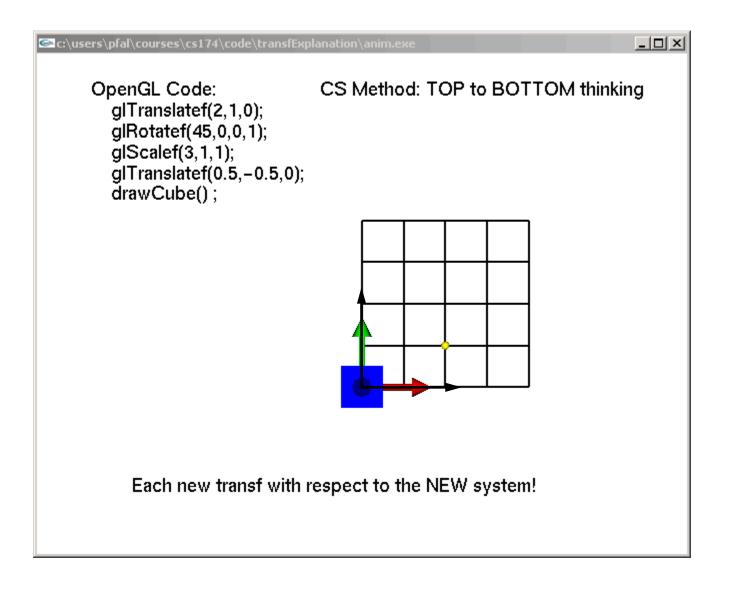
OpenGL code

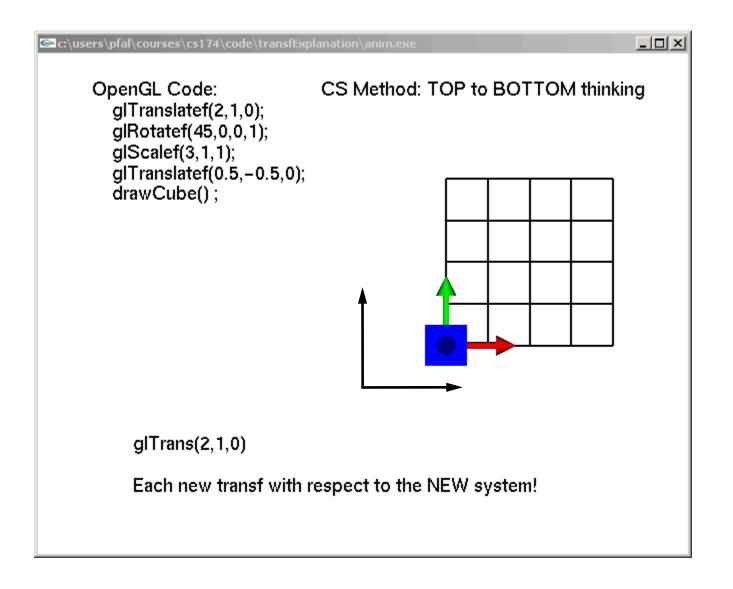
- Transformations of coordinate systems TOP to BOTTOM
- Transformations of objects BOTTOM to TOP
 Which one do we use to think of
 transformations?
 - Whichever we like
 - Usually both

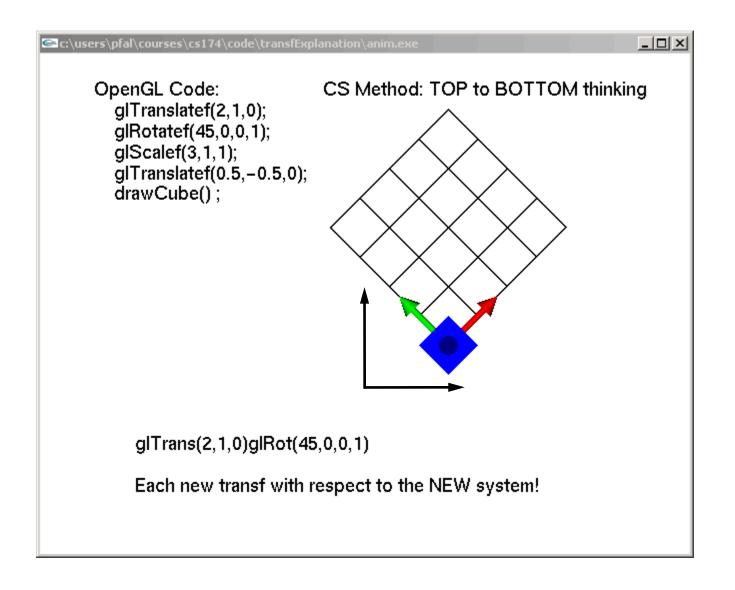
Example:

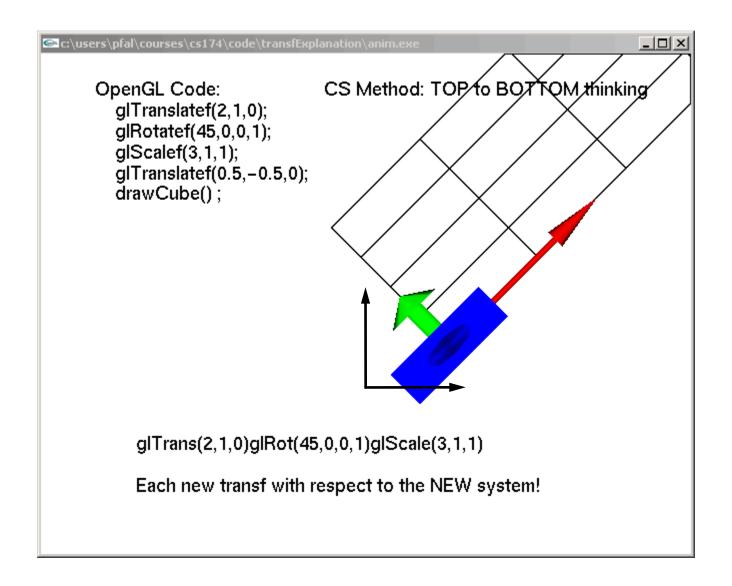
Given a unit cube center at the origin create a cube as shown in the next slide

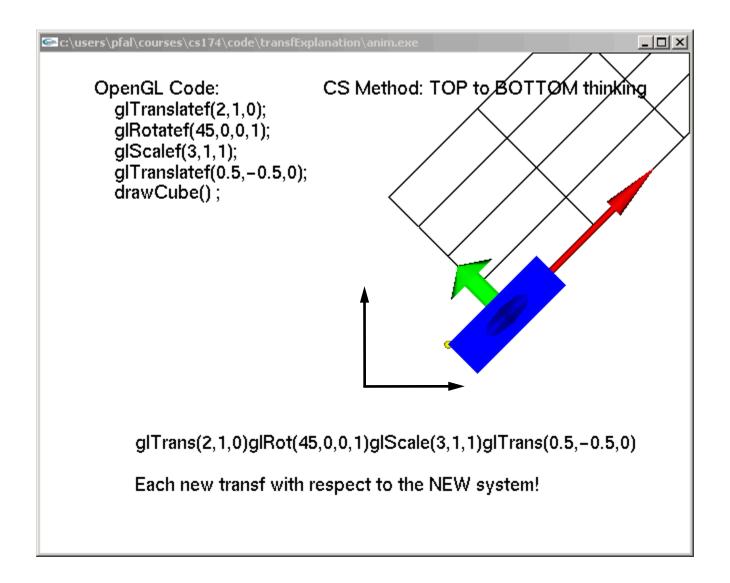


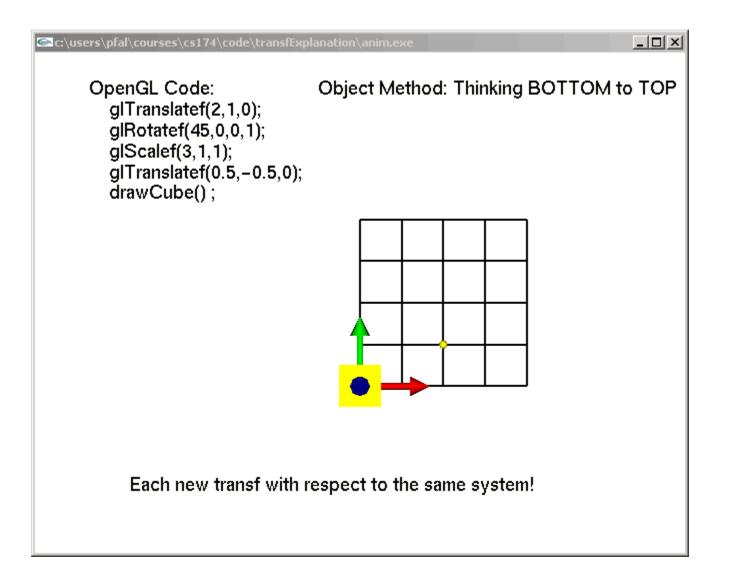


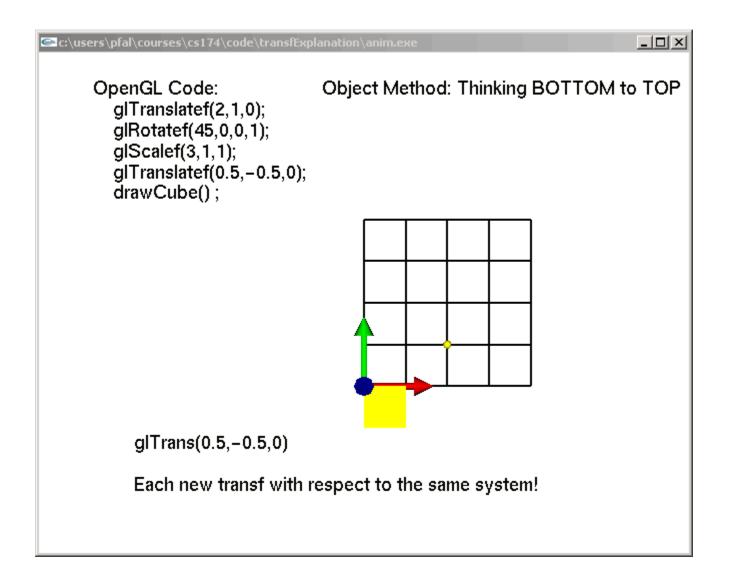


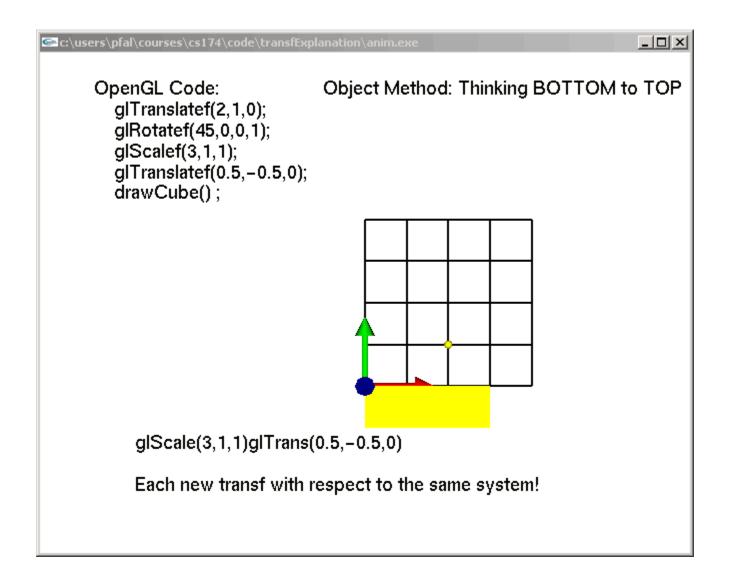




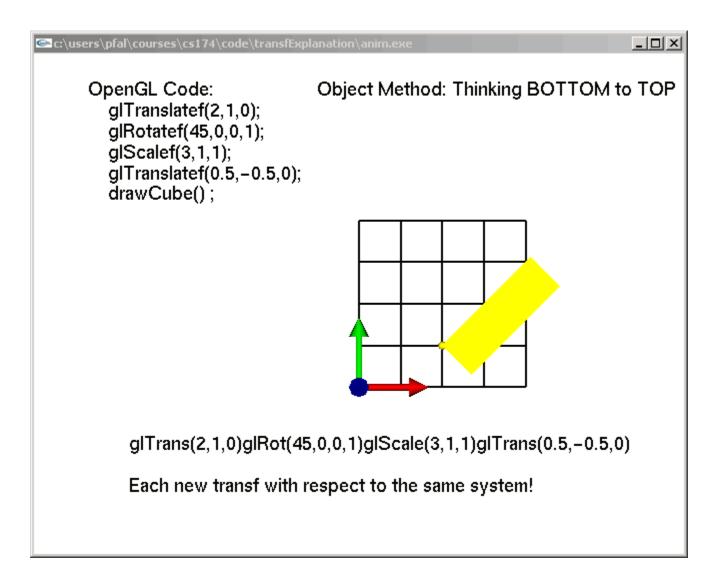












Hybrid way of thinking

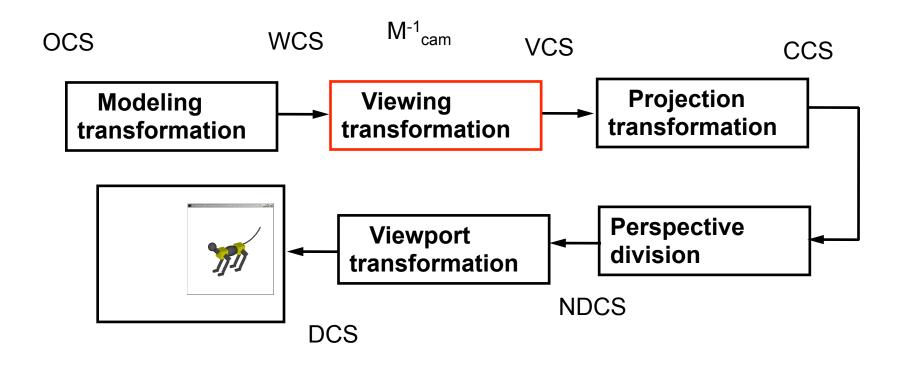
Use TOP to BOTTOM to position a coordinate system

Then use BOTTOM to TOP to position the

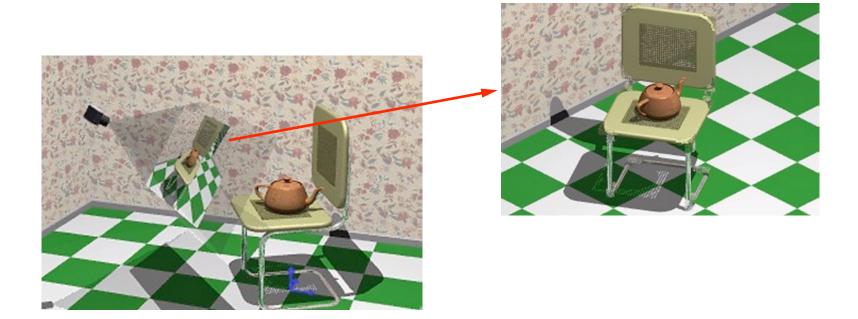
objects within that system

Often it is easier to do it in the opposite order

Graphics Pipeline

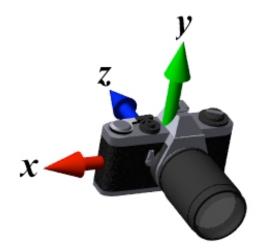


Taking a snapshot of a 3D Scene



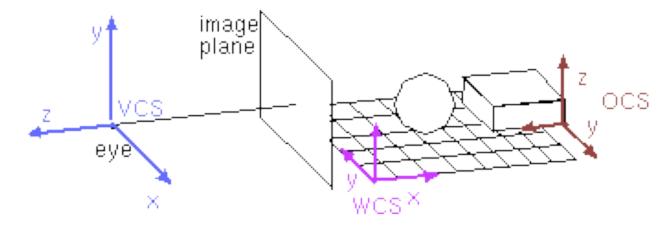
OpenGL Assumption

In world coordinates the camera system is:



Camera transformation (Hill 358-366)

Transforms objects to camera coordinates

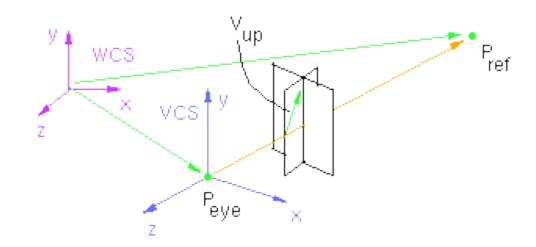


$$P_{wcs} = M_{cam}P_{vcs} \rightarrow P_{vcs} = M_{cam}^{-1}P_{wcs} \\ P_{wcs} = M_{mod}P_{obj} \end{cases} \} \rightarrow P_{vcs} = M_{cam}^{-1}M_{mod}P_{obj}$$

Defining Mcam

Common way

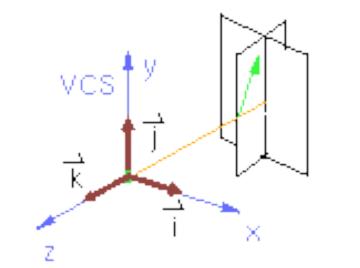
Eye point Reference point Upvector

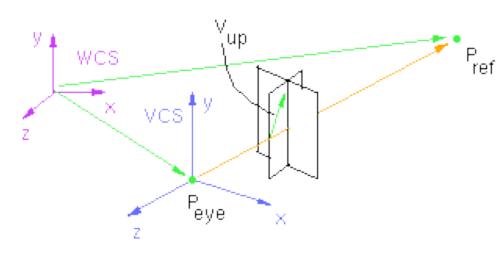


To build Mcam we need to define a camera coordinate system (origin, i, j, k)

Camera Coordinate system

$$\mathbf{k} = \frac{P_{eye} - P_{ref}}{|P_{eye} - P_{ref}|}$$
$$\mathbf{I} = \mathbf{v}_{up} \times \mathbf{k}$$
$$\mathbf{i} = \frac{\mathbf{I}}{|\mathbf{I}|}$$
$$\mathbf{j} = \mathbf{k} \times \mathbf{i}$$



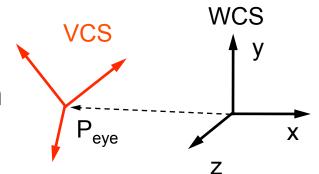


Building Mcam

Change of basis

Our reference system is WCS, we know the camera parameters with respect to the world

Align WCS with VCS



$$M_{cam} = \begin{bmatrix} 1 & 0 & 0 & P_{eye,x} \\ 0 & 1 & 0 & P_{eye,y} \\ 0 & 0 & 1 & P_{eye,z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i_x & j_x & k_x & 0 \\ i_y & j_y & k_y & 0 \\ i_z & j_z & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$P_{wcs} = M_{cam} P_{vcs}$$

Building Mcam inverse

Invert smart

$$M_{cam}^{-1} = \left(\begin{bmatrix} 1 & 0 & 0 & P_{eye,x} \\ 0 & 1 & 0 & P_{eye,y} \\ 0 & 0 & 1 & P_{eye,z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} i_x & j_x & k_x & 0 \\ i_y & j_y & k_y & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right)^{-1} \left(\begin{bmatrix} 1 & 0 & 0 & P_{eye,x} \\ 0 & 1 & 0 & P_{eye,y} \\ 0 & 0 & 1 & P_{eye,z} \\ 0 & 0 & 1 & P_{eye,z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \right)^{-1}$$

Building Mcam inverse

Invert smart

 $P_{vcs} = M_{cam}^{-1} P_{wcs}$

$$M_{cam}^{-1} = \left(\begin{bmatrix} i_x & j_x & k_x & 0 \\ i_y & j_y & k_y & 0 \\ i_z & j_z & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right)^{-1} \left(\begin{bmatrix} 1 & 0 & 0 & P_{eye,x} \\ 0 & 1 & 0 & P_{eye,y} \\ 0 & 0 & 1 & P_{eye,z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \right)^{-1}$$

$$= \begin{bmatrix} i_x & i_y & i_z & 0 \\ j_x & j_y & j_z & 0 \\ k_x & k_y & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -P_{eye,x} \\ 0 & 1 & 0 & -P_{eye,y} \\ 0 & 1 & 0 & -P_{eye,z} \\ 0 & 0 & 1 & -P_{eye,z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Camera in OpenGL

- gluLookAt(ex,ey,ez,rx,ry,rz,ux,uy,uz)
- The resulting matrix pre-multiplies the modelview matrix
 - glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt(ex,ey,ez,rx,ry,rz,ux,uy,uz);
 - // setup modelling transformations here

End of Modeling transformations

- **1.** Preservation of affine combinations of points.
- 2. Preservation of lines and planes.
- 3. Preservation of parallelism of lines and planes.
- 4. Relative ratios on a line are preserved
- 5. Affine transformations are composed of elementary ones.

Camera transformation as a change of basis.

OpenGL matrix stack.