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Affine Transformations in 3D

General form
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Elementary 3D Affine 

Transformations

Translation
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Scaling Around the Origin
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Shear around the origin

Along x-axis
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3 DRotation

Various representations

Decomposition into axis 

rotations (x-roll, y-roll, z-roll)

CCW positive assumption
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Reminder 2D z-rotation
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Three axis to rotate around
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Z-roll
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X-roll

Cyclic indexing
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Y-roll
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Rigid body transformations

Translations and 

rotations

Preserve lines, angles and 

distances
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Inversion of transformations

Translation: T-1(a,b,c) = T(-a,-b,-c)

Rotation: R-1
axis(b) = Raxis{-b)

Scaling: S-1(sx,sy,sz) = S(1/sx,1/sy,1/sz)

Shearing: Sh-1(a) = Sh(-a)
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Inverse of Rotations

Pure rotation only, no 

scaling or shear.
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Composition of 3D Affine 

Transformations

The composition of affine transformations 

is an affine transformation.

Any 3D affine transformation can be 

performed as a series of elementary affine 

transformations.
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Composite 3D Rotation around 

origin

The order is important !!

It is often convenient to use other 
representations for 3D rotations….
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Gimball lock

17



Loss of degree of freedom
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Rotation around an arbitrary axis

Euler’s theorem: Any rotation or sequence of 

rotations around a point is equivalent to a single 

rotation around an axis that passes through the 

point.

What does the matrix look like?
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Rotation around an arbitrary axis

Axis: u

Point: P

Angle: !

Method:

1. Two rotations to align u 

with x-axis

2. Do  x-roll by !

3. Undo the alignment
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Derivation

1. Rz(-")Ry(#)

2. Rx(!)

3. Ry(-#)Rz(")

Altogether:

Ry(-#)Rz(") Rx(!) Rz(-")Ry(#)

We can add translation too if 

the axis is not through the 

origin
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Properties of affine 

transformations

1. Preservation of affine combinations of points.

2. Preservation of lines and planes.

3. Preservation of parallelism of lines and planes.

4. Relative ratios on a line are preserved.

5. Affine transformations are composed of 

elementary ones.
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Affine Combinations of Points
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Preservations of Lines and 

Planes
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Preservation of Parallelism

25



General form

Rotation, Scaling, 
Shear

Translation
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Advanced concepts

Generalized shears

Decomposition of 2D AT:

2D : M = T Sh S R 

3D:  M = T S R Sh1 Sh2

Rotations in 3D

Gimbal lock

Quaternions

Exponential maps
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Transformations of Coordinate 

systems

Coordinate systems consist of vectors and 

an origin, therefore we can transform them 

just like points and vectors.

Alternative way to think of transformations.
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Reminder: Coordinate systems

Coordinate 
system: (a,b,c,!)
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Reminder: The homogeneous 

representation of points and vectors
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Transforming CS1 into CS2

What is the relationship 

between P in CS2 and P in 

CS1 if CS2 = T(CS1)?
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Derivation
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Derivation
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P in CS1 vs P in CS2

Proof in pages 245,246 of 

[Hill]
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Successive transformations of 

CS

CS1 ! CS2 ! CS3

x

y

j

i

j’

i’

P

O

O’

T1 T2

35



Transformations as a change of 

basis CS2

CS1

We know the basis vectors and we know that

What is M with respect to  the basis vectors?
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Transformations as a change of 

basis CS2

CS1

That is: 

We can view transformations as a change of  
coodinate system  
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Transforming a point through 

transforming coordinate systems
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Transforming a point through 

transforming coordinate systems
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Transforming a point through 

transforming coordinate systems
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Rule of thumb

Transforming a point P:

Transformations: T1,T2,T3

Matrix: M = M3 x M2 x M1

Point transformed by: MP

Succesive transformations happen with respect to the same CS

Transforming a CS

Transformations: T1, T2, T3

Matrix: M = M1 x M2 x M3

A point has original coordinates MP

Each transformations happens with respect to the new CS.
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Rule of thumb

To find the transformation matrix that 

transforms P from CSA coordinates to CSB 

coordinates, we find the sequence of 

transformations that align CSB to CSA 

accumulating matrices from left to right.
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Explanation of this rule

CS A CS B

Transformation M:  AMB 

P

If we think transforming systems, 
M takes CS A from the left and 
produces B on the right. 

 AMB

After this transformation we talk 
in B coordinates (right side).

If we think about points then we 
move the other way. M takes B 
on the right and produces the A 
coordinates on the left:

AMB
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Explanation of this rule

CS A CS B

Transformation M:  AMB 

P

Take this simple example where 
to produce B we translate A by 1 
on x axis. 

PB = (1,1)  PA = (2,1)

If we move A by +1 to transform 
it into B then the coordinates of 
P with respect to the new system 
are shortened by 1 (B is closer to 
P than A by 1). So if we want to 
transform the coordinates of P 
from B to A we need to add 1 in 
x. Exactly what we need to do to  
transform system A to B.
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Graphics Pipeline

   Modeling 
transformation

   Viewing 
transformation

   Projection 
transformation

Perspective     
division 

   Viewport 
transformation

OCS WCS VCS CCS

NDCS
DCS
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Translation in OpenGL

glTranslate3f(GLfloat x, GLfloat y, GLfloat z) ;

glTranslate3d(GLdouble x, GLdouble y, GLdouble z);
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Scaling in OpenGL

glScalef(GLfloat sx, GLfloat sy, GLfloat sz) ;

glScaled(GLdouble sx, GLdouble sy, GLdouble sz) ;
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Rotation in OpenGL

glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) ;

glRotated(GLdouble angle, GLdouble ux, GLdouble uy, 

GLdouble uz) ;

(Matrix in the next slide)
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Matrix created

1. Rz(-")Ry(#)

2. Rx(!)

3. Ry(-#)Rz(")

Altogether:

Ry(-#)Rz(") Rx(!) Rz(-")Ry(#)

We can add translation too if 

the axis is not through the 

origin
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Successively transforming the coordinate 

system

M = M1 M2 M3 …. Mn

Pwolrd = M Pobj

Composition of transformations in 

OpenGL
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OpengGL Modelview Matrix

Each transformation post multiplies the current 

modelview matrix CM

glMatrixMode(GL_MODELVIEW) ;

glLoadIdentity() ;   // CM = I

glRotatef(45, 0,0,1) ;  // CM = I*Rz(45) ;

glTranslatef(1,1,1) ;   // CM = CM*T(1,1,1)

   //        = I*Rz(45) *T(1,1,1) 

glScale(2,1,1) ;   // CM = CM *S(2,1,1) = I*Rz*T*S
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Arbitrary matrices

Arbitrary affine  (or not) 

transformations

glLoadMatrixf(GLfloat *M) ; // CM = M

glLoadMatrixd(GLdouble *M) ; // CM = M

glMultMatrixf(GLfloat *M) ; // CM = CM*M

glMultMatrixd(GLfloat *M) ; // CM = CM*M
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Tricky Point 

There are no multi-dimensional arrays in c.

Column-major order vs. row-major order.

OpenGL uses column major order that is:
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Feedback

GLdouble m[16] ; glGetDoublev(GL_MODELVIEW_MATRIX,m) ;

GLfloat m[16] ; glGetFloatv(GL_MODELVIEW_MATRIX,m) ;
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Matrix Stack

Why a stack?

• Reuse of transformations

• Control the effect of transformations

• Hierarchical structures

Manipulating the stack

• glPushMatrix() ;

• glPopMatrix() ;
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Example

Wrist and 5 fingers

We want the fingers to stay 

attached to the wrist as the 

wrist moves.

Wrist

F1_1

F1_2

F1_3
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Hierarchy

Wrist

F1_1

F1_2

F1_3

Wrist T1_1

F1_1 T1_2

Twrist

F1_2 T1_3

F1_3

CSwrist

CSwolrd
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Hierarchy

CSF1_1 = T1_1(CSwrist)

CSF1_2 = T1_2(CSF1_1)

CSF1_3 = T1_3(CSF1_2)

F1_1

F1_2

F1_3

CSwrist

CSwolrd

Wrist
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Examples on the computer
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How to think about transformations

OpenGL code

• Transformations of coordinate systems TOP to 

BOTTOM

• Transformations of objects BOTTOM to TOP

Which one do we use to think of 

transformations?

• Whichever we like

• Usually both
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Example:

Given a unit cube center at the origin create 

a cube as shown in the next slide
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Hybrid way of thinking

Use TOP to BOTTOM to position a 

coordinate system 

Then use BOTTOM to TOP to position the 

objects within that system

Often it is easier to do it in the opposite 

order

73



Graphics Pipeline

   Modeling 
transformation

   Viewing 
transformation

   Projection 
transformation

Perspective     
division 

   Viewport 
transformation

OCS WCS VCS CCS

NDCS
DCS

M-1
cam
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Taking a snapshot of a 3D Scene
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OpenGL Assumption

In world coordinates the camera system is:
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Camera transformation (Hill 358-366)

Transforms objects  to camera coordinates

OpenGL Modelview matrix
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Defining Mcam

Common way

 Eye point

Reference point

Upvector

To build Mcam we need to define a camera coordinate 

system (origin, i, j, k)
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Camera Coordinate system
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Building Mcam

Change of basis

 Our reference system is WCS,

we know the camera parameters with

respect to the world

Align WCS with  VCS

VCS
WCS

Peye x

y

z
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Building Mcam inverse

Invert smart
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Building Mcam inverse

Invert smart

Transpose
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Camera in OpenGL

gluLookAt(ex,ey,ez,rx,ry,rz,ux,uy,uz)

The resulting matrix pre-multiplies the 

modelview matrix

! glMatrixMode(GL_MODELVIEW); 

glLoadIdentity(); 

gluLookAt(ex,ey,ez,rx,ry,rz,ux,uy,uz); 

! // setup modelling transformations here 
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End of Modeling transformations

1. Preservation of affine combinations of points.

2. Preservation of lines and planes.

3. Preservation of parallelism of lines and planes.

4. Relative ratios on a line are preserved

5. Affine transformations are composed of 

elementary ones.

Camera transformation as a change of basis.

OpenGL matrix stack.
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