Vectors

N-tuple:

$$\mathbf{v} = (x_1, x_2, \dots, x_n), \ x_i \in \Re$$

Vectors

N-tuple:
$$\mathbf{v} = (x_1, x_2, \dots, x_n), \ x_i \in \Re$$

Magnitude:

$$|\mathbf{v}| = \sqrt{x_1^2 + \ldots + x_n^2}$$

Unit vectors

 \mathbf{v} : $|\mathbf{v}| = 1$ Normalizing a vector

$$\hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|}$$

Operations with vectors

Addition

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)$$

Multiplication with scalar (scaling)

$$a\mathbf{x} = (ax_1, \dots, ax_n), \ a \in \Re$$

Properties

$$u + v = v + u$$

(u + v) + w = u + (v + w)
$$a(u + v) = au + av, a \in \Re$$

u - u = 0

Visualization for 2D and 3D vectors

Scaling

Subtraction

Adding the negatively scaled vector

Linear combination of vectors

Definition

A linear combination of the m vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ is a vector of the form:

 $w = a_1 v_1 + ... a_m v_m, a_1, ..., a_m$ in R

Special cases

Linear combination

 $w = a_1 v_1 + ... a_m v_m, a_1, ..., a_m$ in R

Affine combination:

A linear combination for which $a_1 + ... + a_m = 1$

Convex combination

An affine combination for which $a_i \ge 0$ for i = 1,...,m

Linear Independence

For vectors **v**₁*, ...,* **v**_m

If $a_1 \mathbf{v}_1 + \dots + a_m \mathbf{v}_m = \mathbf{0}$ iff $a_1 = a_2 = \dots = a_m = 0$

then the vectors are linearly independent.

Generators and Base vectors

How many vectors are needed to generate a vector space?

- Any set of vectors that generate a vector space is called a generator set.
- Given a vector space Rⁿ we can prove that we need minimum n vectors to generate all vectors v in Rⁿ.
- A generator set with minimum size is called a base for the given vector space.

Standard unit vectors

$$\mathbf{v} = (x_1, \ldots, x_n), \ x_i \in \Re$$

$$(x_1, x_2, ..., x_n) = x_1(1, 0, 0, ..., 0, 0)$$

+ $x_2(0, 1, 0, ..., 0, 0)$

. . .

 $+x_n(0,0,0,\ldots,0,1)$

Standard unit vectors

For any vector space Rⁿ:

$$i_1 = (1, 0, 0, \dots, 0, 0)$$

 $i_2 = (0, 1, 0, \dots, 0, 0)$

$$i_n = (0, 0, 0, \dots, 0, 1)$$

The elements of a vector v in Rⁿ are the scalar coefficients of the linear combination of the base vectors.

Standard unit vectors in 3D

i = (1,0,0)j = (0,1,0)k = (0,0,1)

Right handed

Left handed

Representation of vectors through basis vectors

Given a vector space Rⁿ, a set of basis vectors B {b_i in Rⁿ, i=1,...n} and a vector v in Rⁿ we can always find scalar coefficients such that:

$$\mathbf{v} = a_1 \mathbf{b}_1 + \ldots + a_n \mathbf{b}_n$$

So, **v** with respect to *B* is:

$$\mathbf{v}_{\rm B} = (a_1, ..., a_{\rm n})$$

Dot Product

Definition:

$$\mathbf{w}, \mathbf{v} \in \mathfrak{R}^n$$
$$\mathbf{w} \cdot \mathbf{v} = \sum_{i=1}^n w_i v_i$$

Properties

- 1. Summetry: $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
- 2. Linearity: $(a + b) \cdot c = a \cdot c + b \cdot c$
- 3. Homogeneity: $(sa) \cdot b = s(a \cdot b)$
- 4. $|\mathbf{b}|^2 = \mathbf{b} \cdot \mathbf{b}$
- 5. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| cos(\theta)$

Dot product and perpendicularity

From Property 5:

 $b \cdot c > 0 \qquad b \cdot c = 0 \qquad b \cdot c < 0$

Perpendicular vectors

Definition

Vectors **b** and **c** are perpendicular iff **b**·**c** = 0 Also called normal or orthogonal

It is easy to see that the standard unit vectors form an orthogonal basis: i·j = 0, j·k = 0, i·k = 0

Cross product

Defined only for 3D Vectors and with respect to the standard unit vectors Definition

$$\mathbf{a} \times \mathbf{b} = (a_y b_z - a_z b_y)\mathbf{i} + (a_z b_x - a_x b_z)\mathbf{j} + (a_x b_y - a_y b_x)\mathbf{k}$$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Properties of the cross product

- 1. $\mathbf{i} \times \mathbf{j} = \mathbf{k}, \mathbf{i} \times \mathbf{j} = \mathbf{k}, \mathbf{i} \times \mathbf{j} = \mathbf{k}$.
- 2. Antisymmetry: $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$.
- 3. Linearity: $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$.
- 4. Homogeneity: $(sa) \times b = s(a \times b)$.
- 5. The cross product is normal to both vectors: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = 0$ and $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$. 6. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|sin(\theta)$.

Geometric interpretation of the cross product

Recap

Vector spaces

Operations with vectors

Representing vectors through a basis

 $\mathbf{v} = a_1 \mathbf{b}_1 + ... a_n \mathbf{b}_n, \ \mathbf{v}_B = (a_1, ..., a_n)$

Standard unit vectors

Dot product

Perpendicularity

Cross product

Normal to both vectors

Points vs Vectors

What is the difference?

Points vs Vectors

What is the difference?

Points have location but no size or direction.

Vectors have size and direction but no location. Problem: we represent both as triplets!

Relationship between points and vectors

A difference between two points is a vector:

Q - P = v

We can consider a point as a point plus an offset

Q = P + v

Coordinate systems

 $\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c}$

 $P - \theta = p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$ $P = \theta + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$

The homogeneous representation of points and vectors

$$\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c} \to \mathbf{v} = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta) \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{pmatrix}$$
$$P = \theta + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c} \to P = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta) \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{pmatrix}$$

Switching coordinates

Normal to homegeneous:

 Vector: append as fourth coordinate 0

Point: append as fourth coordinate 1

 $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \to \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ $P = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \rightarrow \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{pmatrix}$

Switching coordinates

Homegeneous to normal:

Vector: remove fourth coordinate (0)

 Point: remove fourth coordinate (1)

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{pmatrix} \to \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
$$P = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{pmatrix} \to \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix}$$

Does the homogeneous representation support operations?

Operations :

•
$$\mathbf{v} + \mathbf{w} = (v_1, v_2, v_3, 0) + (w_1, w_2, w_3, 0) =$$

 $(v_1 + w_1, v_2 + w_2, v_3 + w_3, 0)$ Vector!
• $a\mathbf{v} = a(v_1, v_2, v_3, 0) = (av_1, av_2, av_3, 0)$. Vector!

•
$$a\mathbf{v} + b\mathbf{w} = a(v_1, v_2, v_3, 0) + b(w_1, w_2, w_3, 0) =$$

 $(av_1+bw_1, av_2+bw_2, av_3+bw_3, 0)$ Vector!

•
$$P+v = (p_1, p_2, p_3, 1) + (v_1, v_2, v_3, 0) =$$

= $(p_1+v_1, p_2+v_2, p_3+v_3, 1)$ Point!

Linear combination of points

Points *P*, *R* scalars *f*,*g*:

$$\begin{split} fP+gR &= f(p_1,p_2,p_3,1) + g(r_1,r_2,r_3,1) \\ &= (fp_1+gr_1,\ fp_2+gr_2,\ fp_3+gr_3,\ f+g) \end{split}$$

What is it?

Linear combination of points

Points *P*, *R* scalars *f*,*g*:

$$\begin{split} fP+gR &= f(p_1,p_2,p_3,1) + g(r_1,r_2,r_3,1) \\ &= (fp_1+gr_1,\ fp_2+gr_2,\ fp_3+gr_3,\ f+g) \end{split}$$

What is it?

- If (f+g) = 0 then vector!
- If (f+g) = 1 then point!

Affine combinations of points

Definition:

Points P_i: i = 1,...,n Scalars f_i: i = 1,...,n $f_1P_1 + \dots + f_nP_n$ iff $f_1 + \dots + f_n = 1$

Example: $0.5P_1 + 0.5P_2$

Geometric explanation

Recap

- **Vector spaces**
- **Dot product**
- **Cross product**
- **Coordinate systems**

Homogeneous representations of points and vectors

Exercises

- Orthogonal projection of a vector on another vector.
- Orthogonal projection of a point on a plane.

Matrices

Rectangular arrangement of elements:

$$A_{3\times3} = \begin{pmatrix} -1 & 2.0 & 0.5 \\ 0.2 & -4.0 & 2.1 \\ 3 & 0.4 & 8.2 \end{pmatrix}$$
$$A = (A_{ij})$$

Special square matrices

Symmetric: $(A_{ij})_{n \times n} = (A_{ji})_{n \times n}$

Zero: $A_{ij} = 0$, for all i,j

Operations with matrices

Addition:

$$A_{m \times n} + B_{m \times n} = (a_{ij} + b_{ij})$$

Properties:

1. A + B = B + A. 2. A + (B + C) = (A + B) + C. 3. f(A + B) = fA + fB. 4. Transpose: $A^T = (a_{ij})^T = (a_{ji})$.

Multiplication

Definition:

$$C_{m \times l} = A_{m \times n} B_{n \times r}$$
$$(C_{ij}) = (\sum_{k}^{n} a_{ik} b_{kj})$$

Properties:

1.
$$AB \neq BA$$
.
2. $A(BC) = (AB)C$.
3. $f(AB) = (fA)B$.
4. $A(B+C) = AB + AC$,
 $(B+C)A = BA + CA$.
5. $(AB)^T = B^T A^T$.

Inverse of a square matrix

Definition

 $MM^{-1} = M^{-1}M = I$

(AB)⁻¹= B⁻¹ A⁻¹

Convention

Vectors and points are represented as column matrices.

Dot product as a matrix multiplication

A vector is a column matrix

 $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$ = $(a_1, a_2, a_3) \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ = $a_1 b_1 + a_2 b_2 + a_3 b_3.$

Lines and Planes

Lines

Line (in 2D)

- Explicit
- Implicit

$$y = \frac{dy}{dx}(x - x_0) + y_0$$

$$F(x, y) = (x - x_0)dy - (y - y_0)dx$$

- ifF(x,y) = 0then(x,y) is on lineF(x,y) > 0(x,y) is below lineF(x,y) < 0(x,y) is above line
- Parametric (extends to 3D)

$$\begin{aligned} x(t) &= x_0 + t(x_1 - x_0) \\ y(t) &= y_0 + t(y_1 - y_0) \\ t &\in [0, 1] \end{aligned}$$

$$P(t) = P_0 + t(P_1 - P_0)$$
, or
 $P(t) = (1 - t)P_0 + tP_1$

Planes

Plane equations

Implicit

 $F(x, y, z) = Ax + By + Cz + D = \mathbf{N} \bullet P + D$ Points on Plane F(x, y, z) = 0

Parametric

 $Plane(s,t) = P_0 + s(P_1 - P_0) + t(P_2 - P_0)$ $P_0, P_1, P_2 \text{ not colinear}$ or $Plane(s,t) = (1 - s - t)P_0 + sP_1 + tP_2$ $Plane(s,t) = P_0 + sV_1 + tV_2 \text{ where } V_1, V_2 \text{ basis vectors}$

Explicit

$$z = -(A/C)x - (B/C)y - D/C, C \neq 0$$

Z-buffer Graphics Pipeline

Transformations (2D)

General Form: Q = T(P), $P \in \Re^n, Q \in \Re^m$ If n > m projection

Example: $(Q_x \ Q_y \ 1)^T = (cos(P_y)e^{-P_y} \ ln(P_x) \ 1)^T$

Why Transformations?

Why Transformations?

Affine Transformations (2D)

Linear in the coordinates

$$Q = T(P) \begin{pmatrix} Q_x \\ Q_y \end{pmatrix} = \begin{pmatrix} m_{11}P_x + m_{12}P_y + m_{13} \\ m_{21}P_x + m_{22}P_y + m_{23} \end{pmatrix}, m_{11}, ..., m_{23} \in \Re$$

In homogeneous coordinates:

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11}P_x + m_{12}P_y + m_{13} \\ m_{21}P_x + m_{22}P_y + m_{23} \\ 1 \end{pmatrix}$$

Matrix Form of Affine Transformations

Transformation as a matrix multiplication

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix}$$

Q = MP

Transforming Points and Vectors

Points:

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix}$$

Vectors:

$$\begin{pmatrix} W_x \\ W_y \\ 0 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} V_x \\ V_y \\ 0 \end{pmatrix}$$

Elementary Affine Transformations

Any affine transformation is equivalent to a combination of four elementary affine transformations

- Translation
- Scaling
- Rotation
- Shear

Translation

$$Q = P + \mathbf{d}, \mathbf{d} = (T_x \ T_y)^T$$

$$Q_x = P_x + T_x$$

$$Q_y = P_y + T_y$$

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix}$$

Rotation around the origin $Q_x = \cos\theta P_x - \sin\theta P_y$ $Q_y = \sin\theta P_x + \cos\theta P_y$

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix}$$

Shear around the origin

In the x-direction

$$Q_x = P_x + aP_y$$
$$Q_y = P_y$$

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix}$$

Inverse of a Transformation

Cramer's rule or we can be smarter

• Inverse transformation: Q = MP, $P = M^{-1}Q$

Inverse of Translation

 $\begin{pmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & -T_x \\ 0 & 1 & -T_y \\ 0 & 0 & 1 \end{pmatrix}$

Inverse of Scaling

$$Q = S(\mathbf{s})P \rightarrow P = S(1/s_x, 1/s_y)Q$$

 $\begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/s_x & 0 & 0 \\ 0 & 1/s_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Inverse of Rotation

$$Q = R(\theta)P \to P = R(-\theta)Q$$

$$\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Inverse of a Shear in x

 $Q = Sh_x(a)P \rightarrow P = Sh_x(-a)Q$

 $\begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Composing 2D Affine Transformations

Composing two affine tranformations produces an affine transformation

$$Q = T_2(T_1(P))$$

In matrix form:

 $Q = M_2(M_1P) = (M_2M_1)P = MP$

Which transformation happens first?

Main Point

Any affine transformation can be performed as series of elementary transformations.

Affine transformations are the main modeling tool in graphics.

Make sure you understand the order.

Examples

Reflection

Rotation about an arbitrary pivot point

Scaling around an arbitrary point Reflection about a tilted line

Example of 2D transformation

Rotate around an arbitraty point O:

Rotate around an arbitraty point

Х

Rotate around an arbitraty point

We know how to rotate around the origin

Rotate around an arbitraty point

...but that is not what we want to do!

So what do we do?

Transform it to a known case

Translate(-Ox,-Oy)

Second step: Rotation

Translate(-Ox,-Oy) Rotate(-90)

Final: Put everything back

Translate(-Ox,-Oy) Rotate(90) Translate(Ox,Oy)
Rotation about arbitrary point

IMPORTANT!: Order M = *T*(*Ox*,*Oy*)*R*(-90)*T*(-*Ox*,-*Oy*)

