Sampling

Aliasing

- Discretization of signals
 - Space
 - Time
 - Intensity
- High Frequency information appears as low frequency
- Jaggies

FIGURE 10.23 Drawing a straight-line-segment.

IA-81 Even during an Ice Age, things can get hot for Sid the sloth. ©2002 Twentieth Century Fox All Rights Reserved Not For Sale Or Duplication

Sampling

Sampling Theorem (Nyquist or Shannon)

To avoid aliasing the sampling frequency must be greater than two times the highest frequency in the signal.

Sampling exactly equal to Highest frequency x 2 can produce both good and bad results

Sampling rate strictly greater than highest frequency x 2

$$\begin{cases} Bad \\ Good \\ Bad \\ f_{s} < 2f \\ f_{s} = 2f \\ f_{s} > 2f \\ f_{s} >$$

Sampling in graphics

Example: Sampling at pixel centers

pixels pixel centres real-world pattern

Sampling and reconstruction

Aliasing in Computer Graphics

Reducing aliasing

Only one way: Blur the image

Strategies

- Prefiltering (Before sampling)
 - Pixel Coverages
 - Computationally expensive especially for non-polygonal objects
- Postfiltering (After sampling)
 - Weighted average of samples

Filtering

Filtering of step function using convolution with kernel g

Pre-filtering

Unweighted Area sampling

 Use average intensity of square pixel area

FIGURE 10.49 Using the fraction of the pixel area covered by the object.

Black 0, White 1 (15)

Pixel value: coverage*15

from Computer Graphics Using OpenGL, 2e, by F. S. Hill © 2001 by Prentice Hall / Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458

Incremental Polygon Antialiasing

Bresenham's Algorithm provides the dotted pixels (boundary)

FIGURE 10.50 Example of scan conversion with antialiasing.

Incremental area calculation

Inside pixels 1

Outside pixels 0

Boundary pixels fractions based on coverage

Box Filter

Area coverage approach corresponds to a box filter

Pixel

$$P(x) = \int_{-s}^{s} f(x+u)g(u)du$$

Problem with Box filter

Area Coverage Independent of position

Box Filter

Filters Kernels

Postfiltering

Super sampling

- Take many samples
- Combine them

FIGURE 10.51 Antialiasing using supersampling.

Box Filter (Discreet version)

1/4	1/4
1/4	1/4

Bartlett window

FIGURE 10.55 Examples of window functions.

All weights add up to 1

from Computer Graphics Using OpenGL, 2e, by F. S. Hill © 2001 by Prentice Hall / Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458

Stochastic supersampling

High frequency noise

Importance Sampling

Location vs density

equal distribution unequal weights

unequal distribution equal weights

Height indicates weight

Scene antialiasing

```
glClear(GL_ACCUM_BUFFER_BIT)
for(int i = 0 ; i < 8 ; i++ )
{
   glClear(GL COLOR BUFFER BIT|GL DEPTH BUFFER BIT)
   cam.slide(jitter[i].x,jitter[i].y,0); // move camera less than
                                             // a pixel in x and y
   display();
   glAccum(GL_ACCUM,1/8.0);
glAccum(GL_RETURN, 1.0);
// jitter is chosen from a particular distribution
```

Texture Antialiasing

Pixels have area

FIGURE 10.57 Cause of aliasing in rendering texture.

Area coverage

Two costly

Elliptical weighted average

Stochastic sampling

Average = $1/N_k$ texture(s + a_k , t+ b_k)

Where a_k , b_k are small random quantities and N_k the number of samples.

FIGURE 10.60 Antialiasing using stochastic sampling.

Examples

From: www.hpl.hp.com/research/mmsl/ projects/graphics/antialiasing/index.html

Box vs Tent filtering over regular grids 1 Sample 4 Samples

Box vs Tent filtering over regular grids --- Animation

Box vs Tent filtering over regular grids --- Animation

4x uniform, box

