
Z-buffer algorithm
for each polygon in model
 project vertices of polygon onto viewing plane
 for each pixel inside the projected polygon
 calculate pixel colour
 calculate pixel z-value
 compare pixel z-value to value stored for pixel in z-buffer
 if pixel is closer, draw it in frame-buffer and z-buffer
 end
end

COMPLETION OF
Z-buffer Graphics Pipeline

 Modeling
transformation

 Viewing
transformation

 Projection
transformation

Perspective
division

 Viewport
transformation

OCS WCS VCS CCS

NDCS
DCS

 Rasterization

Raytracing
Rendered by
PovRay 3.6

www.povray.org

http://www.povray.org
http://www.povray.org

Raytracing
Tuned for specular and
transparent objects
• Partly physics,

geometric, optics

A pixel should have the
color of the object point
that projects to it.

Raytracing
for each pixel on screen
 determine ray from eye through pixel
 find closest intersection of ray with an object
 cast off reflected and refracted ray, recursively
 calculate pixel colour, draw pixel
end

Forward and Backward methods
Forward: from light sources
to eye

Backward: from eye to light
sources

eye

eye

Scene

Light

Eye

SC

SA

SD

SB

SA shiny,
 transparent

SB,SD diffuse,
 opaque

SC shiny,
 opaque

Three sources of light

The light that point PA emits to the eye comes from:

 light sources
other objects (reflection)
other objects (refraction)

Light

Eye

SC

SA

SD

SB

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

PA

Directly from light source
Local illumination model:

I = Ia+Idiff+Ispec

Light

Eye

SC

SA

SD

SB

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

Reflection
What is the color that is reflected to PA

and that PA reflects back to the eye?
The color of PC.

What is the color of PC ? Light

Eye

SC

SA

SD

SB

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

Pc

n

Reflection
What is the color of Pc?
Just like PA : raytrace PC i.e compute

the three contributions from

• Light sources

• Reflection
• Refraction

Light

Eye

SC

SA

SD

SB

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

Pc

Refraction
Transparent materials

How do you compute the refracted
contribution?

You raytrace the refracted ray.
1. Lights
2. Reflection
3. Refraction

Light

Eye

SC

SA

SD

SB

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

What are we missing?

What are we missing?
Diffuse objects do not receive light from
other objects.

Three sources of light together

The color that the pixel is assigned comes
from:
light sources
other objects (reflection)
other objects (refraction)

It is more convenient to trace the rays
from the eye to the scene (backwards)

Light

Eye

SC

SA

SD

SB

SA shiny, transparent

SB,SD diffuse,opaque

SC shiny, opaque

Backwards Raytracing Algoritm
For each pixel construct a ray: eye pixel
raytrace(ray)
 P = compute_closest_intersection(ray)

color_local = ShadowRay(light1, P)+…
 + ShadowRay(lightN, P)
color_reflect = raytrace(reflected_ray)
color_refract = raytrace(refracted_ray)
color = color_local
 + kre*color_reflect
 + kra*color_refract

return(color)

How many levels of recursion do we
use?

The more the better.
Infinite reflections at the limit.

Stages of raytracing
Setting the camera and the image plane
Computing a ray from the eye to every pixel
and trace it in the scene
Object-ray intersections
Shadow, reflected and refracted ray at each
intersection

Setting up the camera

Image parameters
Width 2W, Height 2H
Number of pixels nCols x nRows
Camera coordinate system (eye, u,v,n)
Image plane at -N

Pixel coordinates in camera
coordinate system

Lower left corner of pixel P(r,c) has
coordinates in
camera space:

Lower left corner

Ray through pixel:

Ray through pixel

Camera coordinates : P (r, c) = (uc, vr,−N)

Wolrd coordinates : P (r, c) = eye − Nn + ucu + urv

ray(r, c, t) = eye + t(P (r, c) − eye)

ray(r, c, t) = eye + t(−Nn + W (
2c

nCols
− 1)u + H(

2r

nRows
− 1)v

Ray-object intersections
Unit sphere at origin - ray intersection:

That’s a quadratic equation

Solving a quadratic equation

First intersection?

Ray(t)

t=0

t= ∞
Intersections

First intersection?

t1 < t2

Ray(t)

t=0

t= ∞
Intersections

Transformed primitives?
That was a canonical sphere.
Where does S+ct hit the transformed sphere
G = T(F) ?

Linear transformation

Linear transformation

Final Intersection
Inverse transformed ray

• Drop 1 and O to get S’+c’t.

So ..for each object
• Inverse transform ray and get S’+c’t.
• Find the intersection t, th, between inv-ray and canonical sphere.

• Use th in the untransformed ray S+ct to find the intersection.

Shadow ray
• For each light intersect shadow ray with all objects.
• If no intersection is found apply local illumination

at intersection.
• If in shadow no contribution.

Lights

Reflected ray
Raytrace the reflected ray

Rayrf(t)

Ray(t)

N

a

a

P

Refracted ray
Raytrace the refracted ray
Snell’s law

N

Add all together
• color(r,c) = color_shadow_ray + Kre*colorre +

Kra*colorra

Efficiency issues
Computationally expensive
• avoid intersection calculations

– Voxel grids
– BSP trees
– Octrees
– Bounding volume trees

• optimize intersection calculations
– try recent hit first
– reuse info from numerical methods

Summary: Raytracing
Recursive algorithm

Function Main
for each pixel (c,r) on screen
 determine ray rc,r from eye through pixel
 ray.setDepth(1)
 color(c,r) = raytrace(rc,r)

 end for
end
function raytrace(r)

if (ray.depth() > MAX_DEPTH) return black
P = closest intersection of ray with all objects
if(no intersection) return backgroundColor
clocal = Sum(shadowRays(P,Lighti))

 cre = raytrace(rre)
 cra = raytrace(rra)
 return c = clocal+kre*cre+kra*cra

end

Advanced concepts
Participating media
Transculency
Sub-surface scattering (e.g. Human skin)
Photon mapping

Raytracing summary

View dependent
Computationally expensive
Good for refraction and reflection effects

