Z-buffer algorithm

for each polygon in model
project vertices of polygon onto viewing plane
for each pixel inside the projected polygon calculate pixel colour calculate pixel z-value compare pixel z-value to value stored for pixel innazenffer if pixel is closer, draw it in frame-buffer and z-buiffer end
end

COMPLETION OF Z-buffer Graphics Pipeline

Raytracing

Rendered by

 PovRay 3.6www.povray.org

Raytracing

Tuned for specular and transparent objects

- Partly physics, geometric, optics

A pixel should have the
 color of the object point that projects to it.

Raytracing

for each pixel on screen
determine ray from eye through pixel
find closest intersection of ray with an object
cast off reflected and refracted ray, recursively
calculate pixel colour, draw pixel
end

Forward and Backward methods

Forward: from light sources

 to eyeBackward: from eye to light sources

Scene

Eye

Three sources of light

The light that point P_{A} emits to the eye comes from:
light sources
other objects (reflection) other objects (refraction)

Directly from light source

Local illumination model:
I = Ia+Idiff+Ispec

Reflection

What is the color that is reflected to P_{A} and that PA reflects back to the eye?
The color of P_{C}.
What is the color of P_{C} ?

S_{A}	shiny, transparent
S_{B}, S_{D}	diffuse,opaque
S_{C}	shiny, opaque
Light O	

Reflection

What is the color of Pc?

Just like P_{A} : raytrace P_{C} i.e compute the three contributions from

- Light sources
- Reflection
- Refraction

Refraction

Transparent materials

How do you compute the refracted contribution?
You raytrace the refracted ray.

1. Lights
2. Reflection
3. Refraction

What are we missing?

What are we missing?

Diffuse objects do not receive light from other objects.

Three sources of light together

The color that the pixel is assigned comes from:
light sources
other objects (reflection) other objects (refraction)

It is more convenient to trace the rays from the eye to the scene (backwards)

S_{A}	shiny, transparent
S_{B}, S_{D}	diffuse, opaque
S_{C}	shiny, opaque

Eye

Backwards Raytracing Algoritm

For each pixel construct a ray: eye \rightarrow pixel raytrace(ray)

$$
\begin{aligned}
& \text { P = compute_closest_intersection_(ray) } \\
& \text { color_local = ShadowRay(light1, P)+... } \\
& \text { + ShadowRay(lightN, P) } \\
& \text { color_reflect }=\text { raytrace(reflected_ray) } \\
& \begin{aligned}
& \text { color_refract }=\text { raytrace(refracted_ray) } \\
& \text { color = color_local } \\
&+\mathrm{k}_{\text {re }}{ }^{*} \text { color_reflect } \\
&+\mathrm{k}_{\mathrm{ra}}{ }^{*}{ }^{*} \text { color_refract }
\end{aligned}
\end{aligned}
$$

return(color)

How many levels of recursion do we use?

The more the better.

Infinite reflections at the limit.

Stages of raytracing

Setting the camera and the image plane Computing a ray from the eye to every pixel and trace it in the scene
Object-ray intersections
Shadow, reflected and refracted ray at each intersection

Setting up the camera

Image parameters

Width 2W, Height 2 H
Number of pixels nCols x nRows
Camera coordinate system (eye, u,v,n)
Image plane at -N

Pixel coordinates in camera coordinate system

Lower left corner of pixel $P(r, c)$ has

 coordinates in camera space:"

$$
\begin{array}{ll}
u_{c}=-W+W \frac{2 c}{n C o l s}, & c=0,1, \ldots, n \text { Cols }-1 \\
v_{r}=-H+H \frac{2 r}{n R o w s}, & r=0,1, \ldots, n \text { Rows }-1
\end{array}
$$

Ray through pixel

Lower left corner

Camera coordinates: $P(r, c)=\left(u_{c}, v_{r},-N\right)$
Wolrd coordinates : $P(r, c)=$ eye $-N \mathbf{n}+u_{c} \mathbf{u}+u_{r} \mathbf{v}$

Ray through pixel:

$$
\begin{aligned}
& \operatorname{ray}(r, c, t)=\text { eye }+t(P(r, c)-e y e) \\
& \operatorname{ray}(r, c, t)=\text { eye }+t\left(-N \mathbf{n}+W\left(\frac{2 c}{n C o l s}-1\right) \mathbf{u}+H\left(\frac{2 r}{n \text { Rows }}-1\right) \mathbf{v}\right.
\end{aligned}
$$

Ray-object intersections

Unit sphere at origin - ray intersection:

$$
\begin{aligned}
& \operatorname{ray}(t)=S+\mathbf{c} t \\
& \operatorname{Sphere}(P)=|P|-1=0
\end{aligned}
$$

$$
\operatorname{Sphere}(\operatorname{ray}(t))=0 \Rightarrow
$$

$$
|S+\mathbf{c} t|-1=0 \Rightarrow(S+\mathbf{c} t)(S+\mathbf{c} t)-1=0 \Rightarrow
$$

$$
|\mathbf{c}|^{2} t^{2}+2(S \cdot \mathbf{c}) t+|S|^{2}-1=0
$$

That's a quadratic equation

Solving a quadratic equation

$$
\begin{aligned}
& |\mathbf{c}|^{2} t^{2}+2(S \cdot \mathbf{c}) t+|S|^{2}-1=0 \\
& A t^{2}+2 B t+C=0 \\
& t_{h}=-\frac{B}{A} \pm \frac{\sqrt{B^{2}-A C}}{A} \\
& t_{h}=-\frac{S \cdot \mathbf{c}}{|\mathbf{c}|^{2}} \pm \frac{\sqrt{(S \cdot \mathbf{c})^{2}-|\mathbf{c}|^{2}\left(|S|^{2}-1\right)}}{|\mathbf{c}|^{2}}
\end{aligned}
$$

If $\left(B^{2}-A C\right)=0$ one solution
If $\left(B^{2}-A C\right)<0$ no solution
If $\left(B^{2}-A C\right)>0$ two solutions

First intersection?

First intersection?

Transformed primitives?

That was a canonical sphere.
Where does S+ct hit the transformed sphere $G=T(F)$?

$F\left(P^{\prime}\right)=0$

$G(P)=0$

Linear transformation

Implicit equation $G(P)=0$.

Untransformed implicit equation $F\left(P^{\prime}\right)=0$.

$$
P=M P^{\prime} \Rightarrow P^{\prime}=M^{-1} P
$$

Linear transformation

$$
\begin{aligned}
P= & M P^{\prime} \Rightarrow P^{\prime}=M^{-1} P \\
& F\left(P^{\prime}\right)=F\left(T^{-1}(P)\right)=0 \Rightarrow F\left(T^{-1}(P)\right)=0 \\
& F\left(T^{-1}(S+\mathbf{c} t)\right)=0 \Rightarrow \\
& F\left(T^{-1}(S)+T^{-1}(\mathbf{c} t)\right)=0
\end{aligned}
$$

Which means that we can intersect the inverse transformed ray with the untransformed primitive.

Final Intersection

Inverse transformed ray

$$
\tilde{r}(t)=M^{-1}\left(\begin{array}{c}
S_{x} \\
S_{y} \\
S_{z} \\
1
\end{array}\right)+M^{-1}\left(\begin{array}{c}
c_{x} \\
c_{y} \\
c_{z} \\
0
\end{array}\right)=\tilde{S}^{\prime}+\tilde{\mathbf{c}}^{\prime} t
$$

- Drop 1 and O to get $S^{\prime}+c^{\prime} t$.

So ..for each object

- Inverse transform ray and get $S^{\prime}+c^{\prime} t$.
- Find the intersection t, t_{h}, between inv-ray and canonical sphere.
- Use t_{h} in the untransformed ray $S+c t$ to find the intersection.

Shadow ray

- For each light intersect shadow ray with all objects.
- If no intersection is found apply local illumination at intersection.
- If in shadow no contribution.

Lights

Reflected ray

Raytrace the reflected ray

$$
\begin{aligned}
& \operatorname{Ray}(t)=A+\mathbf{c} t \\
& \operatorname{Ray}_{r f}(t)=P+\mathbf{v} t \\
& \mathbf{v}=-2(N \cdot \mathbf{c}) N+\mathbf{c}
\end{aligned}
$$

Refracted ray

Raytrace the refracted ray

Snell's law

Add all together

- color(r,c) = color_shadow_ray + $\mathrm{K}_{\mathrm{re}}{ }^{*}$ color $_{r e}+$ $\mathrm{K}_{\mathrm{ra}}{ }^{*}$ color r_{ra}

Efficiency issues

Computationally expensive

- avoid intersection calculations
- Voxel grids
- BSP trees
- Octrees
- Bounding volume trees
- optimize intersection calculations
- try recent hit first
- reuse info from numerical methods

Summary: Raytracing

Recursive algorithm

Function Main
for each pixel (c,r) on screen determine ray $r_{c, r}$ from eye through pixel ray.setDepth(1) $\operatorname{color}(\mathrm{c}, \mathrm{r})=\operatorname{raytrace}\left(\mathrm{r}_{\mathrm{c}, \mathrm{r}}\right)$
end for
end
function raytrace(r)
if (ray.depth() > MAX_DEPTH) return black

$P=$ closest intersection of ray with all objects
if(no intersection) return backgroundColor
clocal = Sum(shadowRays(P,Lighti))
$c_{r e}=$ raytrace $\left(r_{r e}\right)$
$\mathrm{C}_{\mathrm{ra}}=$ raytrace $\left(\mathrm{r}_{\mathrm{ra}}\right)$
return $\mathrm{c}=$ clocal $+\mathrm{k}_{\mathrm{re}}{ }^{*} \mathrm{C}_{\mathrm{re}}+\mathrm{k}_{\mathrm{ra}}{ }^{*} \mathrm{C}_{\mathrm{ra}}$
end

Advanced concepts

Participating media
Transculency
Sub-surface scattering (e.g. Human skin) Photon mapping

Raytracing summary

View dependent
Computationally expensive
Good for refraction and reflection effects

