Transformations in the pipeline

ModelView Matrix

Background (reminder)

Line (in 2D)

- Explicit

$$
y=\frac{d y}{d x}\left(x-x_{0}\right)+y_{0}
$$

- Implicit
- Parametric

$$
\begin{aligned}
& F(x, y)=\left(x-x_{0}\right) d y-\left(y-y_{0}\right) d x \\
& \text { if } \quad F(x, y)=0 \text { then }(x, y) \text { is on line } \\
& F(x, y)>0 \quad(x, y) \text { is below line } \\
& F(x, y)<0 \quad(x, y) \text { is above line }
\end{aligned}
$$

$$
\begin{gathered}
x(t)=x_{0}+t\left(x_{1}-x_{0}\right) \\
y(t)=y_{0}+t\left(y_{1}-y_{0}\right) \\
t \in[0,1] \\
P(t)=P_{0}+t\left(P_{1}-P_{0}\right), \text { or } \\
P(t)=(1-t) P_{0}+t P_{1}
\end{gathered}
$$

Background (reminder)

Plane equations

Implicit
$F(x, y, z)=A x+B y+C z+D=\mathbf{N} \cdot P+D$
Points on Plane $F(x, y, z)=0$

Parametric

$\operatorname{Plane}(s, t)=P_{0}+s\left(P_{1}-P_{0}\right)+t\left(P_{2}-P_{0}\right)$ P_{0}, P_{1}, P_{2} not colinear
or

Plane $(s, t)=(1-s-t) P_{0}+s P_{1}+t P_{2}$
Plane $(s, t)=P_{0}+s V_{1}+t V_{2}$ where V_{1}, V_{2} basis vectors

Explicit

$$
z=-(A / C) x-(B / C) y-D / C, C \neq 0
$$

Reminder: Homogeneous Coordinates

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \underset{\sim}{\rightarrow}\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right]} \\
& {\left[\begin{array}{c}
w x \\
w y \\
w z \\
w
\end{array}\right] \xrightarrow{w} \rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}
\end{aligned}
$$

Projection transformations

Introduction to Projection Transformations

[Hill: 371-378, 398-404.
Foley \& van Dam: p.
229-242]
Mapping: $\mathrm{f}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}$
Projection: $n>m$
Planar Projection: Projection on a plane.
$R^{3} \rightarrow R^{2}$ or
$R^{4} \rightarrow R^{3}$ homogenous coordinates.

Basic projections

Parallel

Perspective

Taxonomy

Examples

two-point
perspective

A basic orthographic projection

$x^{\prime}=x$
$y^{\prime}=y$
$z^{\prime}=N$
Matrix Form

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & N \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
N \\
1
\end{array}\right]
$$

A basic perspective projection

Similar triangles

$x^{\prime} / d=x /(-z) \quad->x^{\prime}=x d /(-z)$
$y^{\prime} / d=y /(-z)=>y^{\prime}=y d /(-z)$
$z^{\prime}=-\mathrm{d}$

In matrix form

Matrix form of
$x^{\prime}=x d /(-z)$
$y^{\prime}=y d /(-z)$
$z^{\prime}=-d$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
-z / d
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & d & 0 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x d \\
y d \\
z d \\
-z
\end{array}\right]}
\end{aligned}
$$

Moving from 4D to 3D

$$
\left[\begin{array}{c}
x \\
y \\
z \\
-z / d
\end{array}\right] \xrightarrow{h=-z / d}\left[\begin{array}{c}
x / h \\
y / h \\
z / h \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
x d /(-z) \\
y d /(-z) \\
-d
\end{array}\right]=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]
$$

Projections in OpenGL

Camera coordinate system

Image plane = near
plane
Camera at (0,0,0)
Looking at -z
Image plane at $z=-N$

Perspective projection of a point

In eye coordinates $P=[P x, P y, P z, 1]^{T}$
$x / P x=N /(-P z)=>x=N P x /(-P z)$
$y / P x=N /(-P z)=>y=N P y /(-P z)$

Observations

- Perspective foreshortening
- Denominator becomes undefined for $z=0$
- If P is behind the eye Pz changes sign

$$
\begin{aligned}
x^{\prime} & =-N \frac{P_{x}}{P_{z}} \\
y^{\prime} & =-N \frac{P_{y}}{P_{z}} \\
z^{\prime} & =-N
\end{aligned}
$$

- Near plane just scales the picture
- Straight line -> straight line

Perspective projection of a line

$$
L(t)=\mathbf{A}+\overrightarrow{\mathbf{c}} t=\left[\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{x} \\
c_{y} \\
c_{z} \\
0
\end{array}\right] t
$$

$$
\widetilde{L}(t)=\mathbf{M} L(t)=\mathbf{M}(\mathbf{A}+\overrightarrow{\mathbf{c}} t)=\mathbf{M}\left[\begin{array}{c}
A_{x}+c_{x} t \\
A_{y}+c_{y} t \\
A_{z}+c_{z} t \\
1
\end{array}\right]=\left[\begin{array}{c}
N\left(A_{x}+c_{x} t\right) \\
N\left(A_{y}+c_{y} t\right) \\
N\left(A_{z}+c_{z} t\right) \\
-\left(A_{z}+c_{z} t\right)
\end{array}\right] \xrightarrow{\text { Perspective Division, }} \begin{aligned}
& \text { drop fourth coordinate }
\end{aligned}
$$

$$
L^{\prime}(t)=\left[\begin{array}{c}
-N\left(A_{x}+c_{x} t\right) /\left(A_{z}+c_{z} t\right) \\
-N\left(A_{y}+c_{y} t\right) /\left(A_{z}+c_{z} t\right) \\
-N
\end{array}\right]
$$

Is it a line?

Original : $L(t)=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}A_{x}+c_{x} t \\ A_{y}+c_{y} t \\ A_{z}+c_{z} t\end{array}\right]$
Projected : $L^{\prime}(t)=\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=\left[\begin{array}{c}-N x / z \\ -N y / z \\ -N\end{array}\right]=\left[\begin{array}{c}-N\left(A_{x}+c_{x} t\right) /\left(A_{z}+c_{z} t\right) \\ -N\left(A_{y}+c_{y} t\right) /\left(A_{z}+c_{z} t\right) \\ -N\end{array}\right]$

$$
\begin{aligned}
& x^{\prime}=-N\left(A_{x}+c_{x} t\right) /\left(A_{z}+c_{z} t\right) \Rightarrow x^{\prime}\left(A_{z}+c_{z} t\right)=-N\left(A_{x}+c_{x} t\right) \Longrightarrow \\
& x^{\prime} A_{z}+x^{\prime} c_{z} t=-N A_{x}-N c_{x} t \Rightarrow\left\{\begin{array}{c}
x^{\prime} A_{z}+N A_{x}=-\left(x^{\prime} c_{z}+N c_{x}\right) t \\
\text { and similarly for y } \\
y^{\prime} A_{z}+N A_{y}=-\left(y^{\prime} c_{z}+N c_{y}\right) t
\end{array}\right.
\end{aligned}
$$

Cont'd next slide

Is it a line? (cont'd)

$$
\begin{aligned}
& x^{\prime} A_{z}+N A_{x}=-\left(x^{\prime} c_{z}+N c_{x}\right) t \\
& y^{\prime} A_{z}+N A_{y}=-\left(y^{\prime} c_{z}+N c_{y}\right) t
\end{aligned}\left|\begin{array}{c}
x^{\prime} A_{z}+N A_{x}=-\left(x^{\prime} c_{z}+N c_{x}\right) t \\
-\left(y^{\prime} c_{z}+N c_{y}\right) t=y^{\prime} A_{z}+N A_{y}
\end{array}\right| \Rightarrow \text { (x } \begin{aligned}
& \left.x^{\prime} A_{z}+N A_{x}\right)\left(y^{\prime} c_{z}+N c_{y}\right)=\left(x^{\prime} c_{z}+N c_{x}\right)\left(y^{\prime} A_{z}+N A_{y}\right) \Rightarrow \\
& x^{\prime} A_{z} y^{\prime} c_{z}+x^{\prime} A_{z} N c_{y}+N A_{x} y^{\prime} c_{z}+N^{2} A_{x} c_{y}=x^{\prime} c_{z} y^{\prime} A_{z}+x^{\prime} c_{z} N A_{y}+N c_{x} y^{\prime} A_{z}+N^{2} A_{y} c_{x} \Rightarrow \\
& \left(A_{z} N c_{y}-c_{z} N A_{y}\right) x^{\prime}+\left(N A_{x} c_{z}+N c_{x} A_{z}\right) y^{\prime}+N^{2}\left(A_{x} c_{y}+A_{y} c_{x}\right)=0 \Rightarrow \\
& \Rightarrow \quad a x^{\prime}+b y^{\prime}+c=0 \quad \text { which is the equation of a line. }
\end{aligned}
$$

So is there a difference?

Original : $L(t)=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}A_{x}+c_{x} t \\ A_{y}+c_{y} t \\ A_{z}+c_{z} t\end{array}\right]$

Projected : $L^{\prime}(t)=\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=\left[\begin{array}{c}-N x / z \\ -N y / z \\ -N\end{array}\right]=\left[\begin{array}{c}-N\left(A_{x}+c_{x} t\right) /\left(A_{z}+c_{z} t\right) \\ -N\left(A_{y}+c_{y} t\right) /\left(A_{z}+c_{z} t\right) \\ -N\end{array}\right]$

So is there a difference?

The speed of the lines if $\mathbf{c z}$ is not 0

Original : $L(t)=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}A_{x}+c_{x} t \\ A_{y}+c_{y} t \\ A_{z}+c_{z} t\end{array}\right] \Rightarrow \frac{\partial L(t)}{\partial t}=\overrightarrow{\mathbf{c}}$
Projected : $L^{\prime}(t)=\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=\left[\begin{array}{c}-N x / z \\ -N y / z \\ -N\end{array}\right]=\left[\begin{array}{c}-N\left(A_{x}+c_{x} t\right) /\left(A_{z}+c_{z} t\right) \\ -N\left(A_{y}+c_{y} t\right) /\left(A_{z}+c_{z} t\right) \\ -N\end{array}\right] \Rightarrow$
$\frac{\partial x^{\prime}}{\partial t}=-N \frac{\partial}{\partial t}\left(\left(A_{x}+c_{x} t\right) /\left(A_{z}+c_{z} t\right)\right)=-N \frac{c_{x}\left(A_{z}+c_{z} t\right)-\left(A_{x}+c_{x} t\right) c_{z}}{\left(A_{z}+c_{z} t\right)^{2}}=-N \frac{c_{x} A_{z}-A_{x} c_{z}}{\left(A_{z}+c_{z} t\right)^{2}} \Rightarrow$

$$
\frac{\partial L^{\prime}(t)}{\partial t}=\frac{-N}{\left(A_{z}+c_{z} t\right)^{2}}\left[\begin{array}{l}
c_{x} A_{z}-A_{x} c_{z} \\
c_{y} A_{z}-A_{y} c_{z}
\end{array}\right]
$$

Inbetween points

How do points on lines transform?

Viewing system:

$$
R(g)=(1-g) A+g B
$$

Projected (4D) :
Projected cartesian:

$$
r=M R
$$

$$
R^{\prime}(f)=(1-f) A^{\prime}+f B^{\prime}
$$

What is the relationship between g and f ?

First step

Viewing to homogeneous space (4D)

Second step

Perspective division

$$
\left\{\begin{array}{l}
r=(1-g) a+g b \\
a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \\
b=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)
\end{array}\right\} \Rightarrow \quad R_{1}^{\prime}=\frac{r_{1}}{r_{4}}=\frac{(1-g) a_{1}+g b_{1}}{(1-g) a_{4}+g b_{4}}
$$

Putting all together

$$
R_{1}^{\prime}=\frac{(1-g) a_{1}+g b_{1}}{(1-g) a_{4}+g b_{4}}=\frac{\operatorname{lerp}\left(a_{1}, b_{1}, g\right)}{\operatorname{lerp}\left(a_{4}, b_{4}, g\right)}
$$

At the same time:

$$
R^{\prime}=(1-f) A^{\prime}+f B^{\prime} \Rightarrow R_{1}^{\prime}=(1-f) A_{1}^{\prime}+f B_{1}^{\prime}
$$

$$
R_{1}^{\prime}=(1-f) \frac{a_{1}}{a_{4}}+f \frac{b_{1}}{b_{4}}=\operatorname{lerp}\left(\frac{a_{1}}{a_{4}}, \frac{b_{1}}{b_{4}}, f\right)
$$

Relation between the fractions

$$
\left.\begin{array}{l}
R_{1}^{\prime}(g)=\frac{\operatorname{lerp}\left(a_{1}, b_{1}, g\right)}{\operatorname{lerp}\left(a_{4}, b_{4}, g\right)} \\
R_{1}^{\prime}(f)=\operatorname{lerp}\left(\frac{a_{1}}{a_{4}}, \frac{b_{1}}{b_{4}}, f \frac{)}{\dot{\dot{j}}}\right.
\end{array}\right\} \Rightarrow g=\frac{f}{\operatorname{lerp}\left(\frac{b_{4}}{a_{4}}, 1, f\right)}
$$

substituting this in $R(g)=(1-g) A+g B$ yields
$R_{1}=\frac{\operatorname{lerp}\left(\frac{A_{1}}{a_{4}}, \frac{B_{1}}{b_{4}}, f\right)}{\operatorname{lerp}\left(\frac{1}{a_{4}}, \frac{1}{b_{4}}, f\right)}$

THAT MEANS: For a given f in screen space and A, B in viewing space we can find the corresponding R (or g) in viewing space using the above formula.
"A" can be texture coordinates, position, color, normal etc.

Effect of perspective projection on lines [Hill 375]

Equations

$$
\begin{aligned}
& \text { Original: } L(t)=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
A_{x}+c_{x} t \\
A_{y}+c_{y} t \\
A_{z}+c_{z} t
\end{array}\right] \\
& \text { Projected : } L^{\prime}(t)=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{c}
-N x / z \\
-N y / z \\
-N
\end{array}\right]=\left[\begin{array}{c}
-N\left(A_{x}+c_{x} t\right) /\left(A_{z}+c_{z} t\right) \\
-N\left(A_{y}+c_{y} t\right) /\left(A_{z}+c_{z} t\right) \\
-N
\end{array}\right]
\end{aligned}
$$

What happens to parallel lines?

Effect of perspective projection on lines [Hill 375]

Parallel lines

$$
\begin{aligned}
& \text { Original: } L(t)=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
A_{x}+c_{x} t \\
A_{y}+c_{y} t \\
A_{z}+c_{z} t
\end{array}\right] \\
& \text { Projected: } L^{\prime}(t)=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{c}
-N x / z \\
-N y / z \\
-N
\end{array}\right]=\left[\begin{array}{c}
-N\left(A_{x}+c_{x} t\right) /\left(A_{z}+c_{z} t\right) \\
-N\left(A_{y}+c_{y} t\right) /\left(A_{z}+c_{z} t\right) \\
-N
\end{array}\right]
\end{aligned}
$$

If parallel to view plane then:

$$
\begin{aligned}
& c_{z}=0 \rightarrow L^{\prime}(t)=-\frac{N}{A_{z}}\left(A_{x}+c_{x} t, A_{y}+c_{y} t\right) \\
& \text { slope }=\frac{c_{y}}{c_{x}}
\end{aligned}
$$

Effect of perspective projection on lines [Hill 375]

Parallel lines

$$
\begin{aligned}
& \text { Original: } L(t)=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
A_{x}+c_{x} t \\
A_{y}+c_{y} t \\
A_{z}+c_{z} t
\end{array}\right] \\
& \text { Projected : } L^{\prime}(t)=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{c}
-N x / z \\
-N y / z \\
-N
\end{array}\right]=\left[\begin{array}{c}
-N\left(A_{x}+c_{x} t\right) /\left(A_{z}+c_{z} t\right) \\
-N\left(A_{y}+c_{y} t\right) /\left(A_{z}+c_{z} t\right) \\
-N
\end{array}\right]
\end{aligned}
$$

If not parallel to view plane then:
$c_{z} \neq 0 \rightarrow \lim _{t \rightarrow \infty} L^{\prime}(t)=-\frac{N}{c_{z}}\left(c_{x}, c_{y}\right)$
Vanishing point!

Summary

Forshortening
Non-linear
Lines go to lines
Parallel lines either intersect or remain parallel
Inbetweeness

Projections in the Graphics Pipeline

View volumes

- Our pipeline supports two projections:
- Orthographic
- Perspective
- This stage also defines the view window
- What is visible with each projection?
- a cube
- or a pyramid

View volumes

Transformation vs Projection

We want to keep z
Why?

- Pseudodepth

Derivation of the orthographic transformation

Map each axis separately:

- Scaling and translation

Let's look at y:

- $y^{\prime}=a y+b$ such that bottom $\rightarrow-1$ top $\rightarrow 1$

VCS

Derivation of the orthographic transformation

Scaling and Translation

$$
y_{V C S} \rightarrow y
$$

$y_{N D C S} \rightarrow y^{\prime}$

$\left(y_{b}, y_{b}^{\prime}\right)=($ bottom, -1) and
$\left(y_{t}, y_{t}^{\prime}\right)=(t o p, 1)$
Line equation $\frac{y^{\prime}-y_{b}^{\prime}}{y-y_{b}}=\frac{y_{t}^{\prime}-y_{b}^{\prime}}{y_{t}-y_{b}}$
$\frac{y^{\prime}-(-1)}{y-\text { bottom }}=\frac{1-(-1)}{\text { top }- \text { bottom }} \rightarrow$
$y^{\prime}=\frac{2}{\text { top }- \text { bottom }} y-\frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }}$

All three coordinates

Scaling and Translation

Similarly,

$$
\begin{aligned}
x^{\prime} & =\frac{2}{\text { right }- \text { left }} x-\frac{\text { right }+ \text { left }}{\text { right }- \text { left }} \\
y^{\prime} & =\frac{2}{\text { top }- \text { bottom }} y-\frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }} \\
z^{\prime} & =\frac{-2}{\text { far }- \text { near }} z-\frac{\text { far }+ \text { near }}{\text { far }- \text { near }}
\end{aligned}
$$

Matrix form

$$
P^{\prime}=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right] P
$$

Perspective transformation

Warps the view volume and the objects in it.

- Eye becomes a point at infiinity, and the projection rays become parallel lines (orthographic projection)
- We also want to keep z

Derivation of the perspective transformation

It is basically a mapping of planes
Normalized view volume is a left handed system!

Deriving the Matrix

$\left[\begin{array}{c}\widetilde{x} \\ \tilde{y} \\ \widetilde{z} \\ \widetilde{h}\end{array}\right]=\left[\begin{array}{cccc}E & 0 & A & 0 \\ 0 & F & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]$

Top plane:
Before projection $y=-z t / n$
After projection and division $\tilde{y} / \widetilde{h}=1$
From the matrix multiplication:

$$
\begin{aligned}
& \tilde{y}=F y+B z \rightarrow(\text { perspective division }) \\
& \tilde{y} / \tilde{h}=(F y+b z) / \tilde{h} \rightarrow 1=(F y+B z) /(-z) \rightarrow \\
& F t / n-B=1 \quad(1)
\end{aligned}
$$

Forming the second equation

From bottom plane

Bottom plane:
$\left[\begin{array}{c}\tilde{x} \\ \tilde{y} \\ \widetilde{z} \\ \tilde{h}\end{array}\right]=\left[\begin{array}{llll}E & 0 & A & 0 \\ 0 & F & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]$

Before projection $y=-z b / n$
After projection and division $\tilde{y} / \tilde{h}=-1$
From the matrix multiplication:

$$
\begin{aligned}
& \tilde{y}=F y+B z \rightarrow(\text { perspective division }) \\
& \tilde{y} / \tilde{h}=(F y+b z) / \tilde{h} \rightarrow-1=(F y+B z) /(-z) \rightarrow \\
& F b / n-B=-1 \quad(2)
\end{aligned}
$$

Solving the 2×2 system

Compute F and B :

$$
\begin{aligned}
& \left\{\begin{array}{c}
\frac{t}{n} F-B=1 \\
\frac{b}{n} F-B=-1
\end{array}\right\} \Rightarrow \begin{array}{c}
F=\frac{2 n}{t-b} \\
B=\frac{t+b}{t-b}
\end{array}
\end{aligned}
$$

Similarly for \mathbf{x}

Compute E and A :

$$
\begin{aligned}
& \left\{\begin{array}{c}
\frac{r}{n} E-A=1 \\
\frac{l}{n} E-A=-1
\end{array}\right\} \Rightarrow \begin{array}{c}
E=\frac{2 n}{r-l} \\
A=\frac{r+l}{r-l}
\end{array}
\end{aligned}
$$

Similarly z

Compute C and D

$$
\begin{align*}
& \tilde{z}=C z+D \tag{1}\\
& \tilde{h}=-z \quad(2)
\end{align*}
$$

Near plane :

$$
\left[\begin{array}{c}
\tilde{x} \tag{2}\\
\widetilde{y} \\
\widetilde{z} \\
\widetilde{h}
\end{array}\right]=\left[\begin{array}{cccc}
E & 0 & A & 0 \\
0 & F & B & 0 \\
0 & 0 & C & D \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

$z=-n \rightarrow \frac{\tilde{z}}{\tilde{h}}=\frac{\tilde{z}}{n}=-1$

$$
\begin{equation*}
(1),(2),(3) \rightarrow C(-n) / n+D / n=-1 \tag{3}
\end{equation*}
$$

Similarly for far plane:
$z=f \rightarrow \frac{\tilde{z}}{\tilde{h}}=1$
(1), (2), (5) $\rightarrow C(-f) / f+D / f=1$
$\operatorname{From}(4),(6) \quad C=-(f+n)(f-n), \quad D=-2 f n /(f-n)$

Putting everything together

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
h^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Putting everything together

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
h^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Same as orthographic except the scaling and the position of the x, y translation parameters

Orthographic projection in OpenGL

glMatrixMode(GL_PROJECTION) ;
gILoadldentity() ;
Followed by one of:
glOrtho(left,right,bottom,top,near,far) ;
near plane at $z=-n e a r$
far plane at $z=-f a r$
gluOrtho2D(left,right,bottom,top) ;
assumes near $=0$ far $=1$

Perspective projection in OpenGL

glMatrixMode(GL_PROJECTION) ;
gILoadIdentity() ;
Followed by one of:
gIFrustrum(left,right,bottom,top,near,far) ; near plane at $z=-n e a r$
far plane at $z=-f a r$
gluPerspective(fovy, aspect,bottom,top) ;
fov measured in degrees and center at 0

Put the code in init or reshape callback.

Matrix pre-multiplies Modelview matrix

M = Mproj*CM

Important

Projection parameters are given in CAMERA Coordinate system (Viewing).

So if camera is at $z=50$ and you give near $=$ 10 where is the near plane with respect to the world?

Important

Projection parameters are given in CAMERA Coordinate system (Viewing).

So if the camera is at $z=50$ and you give near $=10$ where is the near plane with respect to the world?
Transformed by inverse(Mvcs)

Nonlinearity of perspective transformation

Tracks:

Left: $x=-1, y=-1$
Right: $x=1, y=-1$
$Z=-i n f, i n f$
View volume:"
Left $=-1$, right $=1$
Bot $=-1$, top $=1$
Near $=1$, far $=4$

Comparison of cs's

VCS
X
Y
Z
Point
1
-1
Z

CCS

NDCS

$$
\begin{array}{ll}
X^{\prime}=E X+A Z & X^{\prime \prime}=X^{\prime} / W^{\prime} \\
Y^{\prime}=F Y+B Z & Y^{\prime \prime}=Y^{\prime} / W^{\prime} \\
Z^{\prime}=C Z+D & Z^{\prime \prime}=Z^{\prime} / W^{\prime} \\
\text { Point' } & \text { Point'" } \\
X^{\prime}=X=1 & X^{\prime \prime}=-1 / Z \\
Y^{\prime}=Y=-1 & Y^{\prime \prime}=1 / Z \\
Z^{\prime}=-5 Z / 3-8 / 3 & Z^{\prime \prime}=5 / 3+8 /(3 Z) \\
W^{\prime}=-Z &
\end{array}
$$

Z in NDCS vs -Z in VCS

$$
Z^{\prime \prime}=5 / 3+8 /(3 Z)
$$

Other comparisons

$$
X^{\prime \prime}=-1 / Z \rightarrow Z=-1 / X^{\prime \prime}
$$

Other comparisons

$$
\begin{aligned}
& X^{\prime \prime}=-1 / Z \\
& Z^{\prime \prime}=5 / 3+8 /(3 Z) \\
& \rightarrow Z^{\prime \prime}=5 / 3-(8 / 3) X^{\prime \prime}
\end{aligned}
$$

3D Clipping

Keep what is visible

Background (reminder)

Plane equations

Implicit
$F(x, y, z)=A x+B y+C z+D=\mathbf{N} \cdot P+D$
Points on Plane $F(x, y, z)=0$
Parametric

```
Plane \((s, t)=P_{0}+s\left(P_{1}-P_{0}\right)+t\left(P_{2}-P_{0}\right)\)
\(P_{0}, P_{1}, P_{2}\) not colinear
or
```


Expllfef,$t)=(1-s-t) P_{0}+s P_{1}+t P_{2}$
$\operatorname{Plane}(s, t)=P_{0}+s V_{1}+t V_{2}$ where V_{1}, V_{2} basis vectors

$$
\mathrm{z}=-(\mathrm{A} / \mathrm{C}) \mathrm{x}-(\mathrm{B} / \mathrm{C}) \mathrm{y}-\mathrm{D} / \mathrm{C}, \mathrm{C} \neq 0
$$

Intersection of line and plane

$$
\vec{N} \cdot\left(P_{a}+t\left(P_{b}-P_{a}\right)\right)+D=0
$$

$$
t=\frac{-D-\vec{N}^{\prime} \cdot P_{a}}{N \cdot P_{b}-\vec{N}^{2} \cdot P_{a}^{\prime}}=\frac{-F\left(P_{a}\right)}{F\left(P_{b}\right)-F\left(P_{a}\right)}
$$

Orthographic view volume

Planes

Normals pointing inside
left: $\quad x$ - left $=0$
right: $-x+$ right $=0$
bottom: y - bottom $=0$
top: $-\mathrm{y}+$ top $=0$
front: -z - near =0
back: $\mathrm{z}+\mathrm{far}=0$

Perspective View volume

Planes

Normals pointing inside
left: $\quad x+$ left $^{\star} z /$ near $=0$
right: $-x-$ right*z/near $=0$
top: $-y-$ top*z/near $=0$
bottom: y + bottom*z/near $=0$
front: -z - near $=0$
back: $\quad z+$ far $=0$

Clipping in NDCS

Normalized view volume

- Constant planes
- Lines in VCS lines NDCS

Problem

- Z coordinate loses its sign

Clipping in CCS

We'll define the clipping region in CCS by first looking at the clipping region in NDCS:
$-1<=x / w<=1$
This means that in CCS, we have:
-w <= $x<=w$

Similarly for y, z

visible
$x=-w$
invisible

Example

The perspective transformation creates

W = -z

CCS

unclipped CCS
$\mathrm{P} 1(-2,0,-1,3)$
$\mathrm{P} 2(-3,1,-1,2)$
Typo: they should have different z

unclipped NDCS
P1(-0.67,0,-0.33)
$\mathrm{P} 2(-1.5,0.5,-0.5)$
clipped NDCS
P1 ($-0.67,0,-0.33$)
$\mathrm{P} 2(-1,0.2,-0.4)$

Viewport transformation

Viewport

Viewport matrix

Scales the x, y to the dimensions of the viewport Scales z to be in $[0,1]$

Matrix form left as an exercise.

Why viewports?

Undo the distortion of the projection transformation

aspect ratio 1.0

Stereo views

Viewport in OpenGL

gIViewport(GLint x, GLint y, GLsizei width, GLsizei height) ;

x, y : lower left corner of viewport rectangle in pixels width, height: width and height of viewport.

Put the code in reshape callback.

Transformations in the pipeline

