
Transformations in the pipeline

 Modeling
transformation

 Viewing
transformation

 Projection
transformation

Perspective
division

 Viewport
transformation

OCS WCS VCS CCS

NDCS
DCS

(e.g. pixels)

gluLookAt()glTranslatef()
…

ModelView Matrix

Background (reminder)
Line (in 2D)
• Explicit
• Implicit

• Parametric

Background (reminder)
Plane equations
Implicit

Parametric

Explicit

Reminder: Homogeneous
Coordinates

Projection transformations

Introduction to Projection
Transformations

[Hill: 371-378, 398-404.
Foley & van Dam: p.
229-242]
Mapping: f : Rn Rm
Projection: n > m
Planar Projection: Projection on

a plane.
 R3R2 or

R4R3 homogenous
coordinates.

Basic projections
Parallel

Perspective

Taxonomy

Examples

A basic orthographic projection
x’ = x
y’ = y
z’ = N

Matrix Form

Z

Y

I

N

A basic perspective projection

Similar triangles
x’/d = x/(-z) -> x’ = x d/(-z)
y’/d = y/(-z) => y’ = y d/(-z)
z’ = -d

In matrix form

Matrix form of
x’ = x d/(-z)
y’ = y d/(-z)
z’ = -d

Moving from 4D to 3D

Projections in OpenGL

Camera coordinate system
Image plane = near
plane
Camera at (0,0,0)
Looking at –z
Image plane at z = -N

Perspective projection of a
point

In eye coordinates P =[Px,Py,Pz,1]T

x/Px = N/(-Pz) => x = NPx/(-Pz)
y/Px = N/(-Pz) => y = NPy/(-Pz)

Observations
• Perspective foreshortening
• Denominator becomes

undefined for z = 0
• If P is behind the eye Pz

changes sign
• Near plane just scales the

picture
• Straight line -> straight line

Perspective projection of a line

Perspective Division,
drop fourth coordinate

Is it a line?

Cont’d next slide

Is it a line? (cont’d)

So is there a difference?

So is there a difference?
The speed of the lines if cz is not 0

Inbetween points
How do points on lines transform?

Viewing system: R(g) = (1-g)A + gB

Projected (4D) : r = MR

Projected cartesian: R’(f) = (1-f)A’ + fB’

 What is the relationship between g and f?

A

BR

M
Perspective divisiona

b

r

A’

B’
R’

First step
Viewing to homogeneous space (4D)

A

BR

M
a

b

r

Second step
Perspective division

A

BR

M
a

b

r

Perspective division

A’

B’
R’

Putting all together

A

BR

M
a

b

r

Perspective division

A’

B’
R’

Relation between the fractions

R can be texture coordinates, color etc.THAT MEANS: For a given f in screen space and A,B in viewing
space we can find the corresponding R (or g) in viewing space
using the above formula.

“A” can be texture coordinates, position, color, normal etc.

g

Effect of perspective projection
on lines [Hill 375]

Equations

What happens to parallel lines?

Effect of perspective projection
on lines [Hill 375]

Parallel lines

If parallel to view plane then:

Effect of perspective projection
on lines [Hill 375]

Parallel lines

If not parallel to view plane then:

Vanishing point!

Summary
Forshortening
Non-linear
Lines go to lines
Parallel lines either intersect or remain
parallel
Inbetweeness

Projections in the Graphics
Pipeline

View volumes
• Our pipeline supports

two projections:
– Orthographic
– Perspective

• This stage also defines
the view window

• What is visible with
each projection?
– a cube
– or a pyramid

Open GL Canonical view
volume (left handed!)

View volumes

Open GL Canonical view
volume (left handed!)

Transformation vs Projection
We want to keep z
Why?
• Pseudodepth

I

-z0 z1 < z2

P1
P2

Derivation of the orthographic
transformation

Map each axis
separately:
• Scaling and translation

Let’s look at y:
• y’ = ay+b such that

bottom -1
top 1

Derivation of the orthographic
transformation

Scaling and Translation

All three coordinates
Scaling and Translation

Matrix form

Perspective transformation
Warps the view volume
and the objects in it.
• Eye becomes a point

at infiinity, and the projection
rays become parallel lines
(orthographic projection)

• We also want to keep z

Derivation of the perspective
transformation

It is basically a mapping of
planes
Normalized view volume is a
left handed system!

Deriving the Matrix
Compute F and B:

Forming the second equation
From bottom plane

Solving the 2x2 system
Compute F and B:

Similarly for x
Compute E and A:

Similarly z
Compute C and D

Putting everything together

Putting everything together

Same as orthographic except the scaling and the
position of the x,y translation parameters

Orthographic projection in
OpenGL

glMatrixMode(GL_PROJECTION) ;
glLoadIdentity() ;
Followed by one of:
glOrtho(left,right,bottom,top,near,far) ;
 near plane at z = -near
 far plane at z = -far
gluOrtho2D(left,right,bottom,top) ;
 assumes near = 0 far = 1

Perspective projection in
OpenGL

glMatrixMode(GL_PROJECTION) ;
glLoadIdentity() ;
Followed by one of:
glFrustrum(left,right,bottom,top,near,far) ;
 near plane at z = -near
 far plane at z = -far
gluPerspective(fovy, aspect,bottom,top) ;
 fov measured in degrees and center at 0

Put the code in init or reshape callback.

Matrix pre-multiplies Modelview
matrix

M = Mproj*CM

Important
Projection parameters are given in CAMERA
Coordinate system (Viewing).

So if camera is at z = 50 and you give near =
10 where is the near plane with respect to
the world?

Important
Projection parameters are given in CAMERA
Coordinate system (Viewing).

So if the camera is at z = 50 and you give
near = 10 where is the near plane with
respect to the world?
Transformed by inverse(Mvcs)

Nonlinearity of perspective
transformation

Tracks:
Left: x= -1, y = -1
Right: x = 1, y = -1
Z = -inf, inf

View volume:
Left = -1, right = 1
Bot = -1, top = 1
Near = 1, far = 4

Comparison of cs’s
VCS CCS NDCS
X X’ = EX + AZ X’’=X’/W’
Y Y’ = FY + BZ Y’’ = Y’/W’
Z Z’ = CZ + D Z” = Z’/W’
Point Point’ Point’’
1 X’= X = 1 X’’ = -1/Z
-1 Y’ = Y = -1 Y’’ = 1 /Z
Z Z’ = -5Z/3 – 8/3 Z’’ = 5/3 +8/(3Z)
 W’ = -Z

Z in NDCS vs –Z in VCS

Z’’ = 5/3 +8/(3Z)

near far

X’’ = -1/Z Z = -1/X’’

Other comparisons

Other comparisons

X’’ = -1/Z

Z’’ = 5/3 +8/(3Z)

 Z’’ = 5/3-(8/3)X’’

3D Clipping
Keep what is visible

Background (reminder)
Plane equations
Implicit

Parametric

Explicit

Intersection of line and plane

Orthographic view volume
Planes
Normals pointing inside
 left: x - left = 0
 right: -x + right = 0
 bottom: y - bottom = 0
 top: -y + top = 0
 front: -z - near = 0
 back: z + far = 0

Perspective View volume
 Planes
 Normals pointing inside
 left: x + left*z/near = 0
 right: -x - right*z/near = 0
 top: -y - top*z/near = 0
 bottom: y + bottom*z/near = 0
 front: -z - near = 0
 back: z + far = 0

Clipping in NDCS
Normalized view volume
• Constant planes
• Lines in VCS lines NDCS

Problem
• Z coordinate loses its sign

Clipping in CCS
We'll define the clipping region in CCS by first looking at

the clipping region in NDCS:
-1 <= x/w <= 1
This means that in CCS, we have:
-w <= x <= w

Similarly for y,z

Example
The perspective transformation creates
W = -z

Typo: they should
have different z

Viewport transformation

 Modeling
transformation

 Viewing
transformation

 Projection
transformation

Perspective
division

 Viewport
transformation

OCS WCS VCS CCS

NDCS
DCS

M-1
cam

Viewport

Viewport matrix

Scales the x,y to the dimensions of the viewport
Scales z to be in [0,1]

Matrix form left as an exercise.

Why viewports?
Undo the distortion of the projection
transformation

Stereo views

Viewport in OpenGL
glViewport(GLint x, GLint y, GLsizei width,
GLsizei height) ;

x,y: lower left corner of viewport rectangle in pixels
width, height: width and height of viewport.

Put the code in reshape callback.

Transformations in the pipeline

 Modeling
transformation

 Viewing
transformation

 Projection
transformation

Perspective
division

 Viewport
transformation

OCS WCS VCS CCS

NDCS
DCS

(e.g. pixels)

gluLookAt()

glOrtho()
glFrustrum()
gluPerspective

glViewport()

glTranslatef()
…

ModelView Matrix

