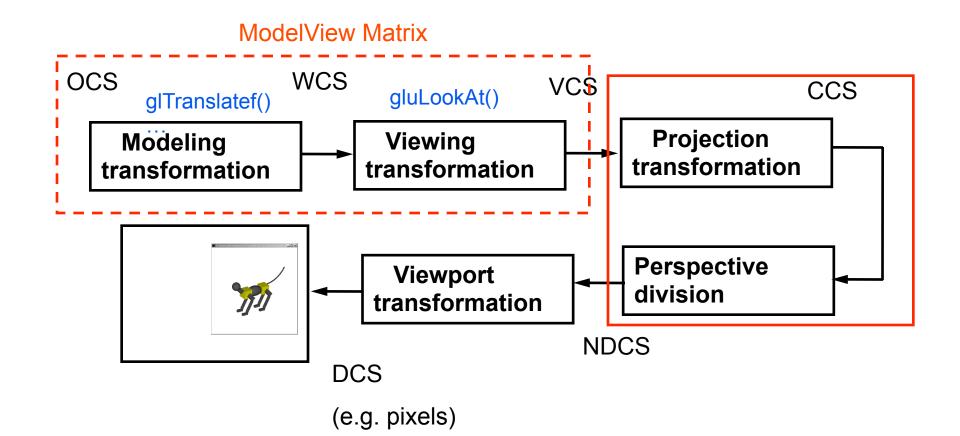
Transformations in the pipeline



Background (reminder)

Line (in 2D)

- Explicit
- Implicit

• Parametric

$$y = \frac{dy}{dx}(x - x_0) + y_0$$

$$F(x, y) = (x - x_0)dy - (y - y_0)dx$$
if $F(x, y) = 0$ then (x, y) is on line
 $F(x, y) > 0$ (x, y) is below line
 $F(x, y) < 0$ (x, y) is above line
 $x(t) = x_0 + t(x_1 - x_0)$

$$\begin{aligned} x(t) &= x_0 + t(x_1 - x_0) \\ y(t) &= y_0 + t(y_1 - y_0) \\ t &\in [0, 1] \end{aligned}$$

$$P(t) = P_0 + t(P_1 - P_0)$$
, or
 $P(t) = (1 - t)P_0 + tP_1$

Background (reminder)

Plane equations

Implicit

 $F(x, y, z) = Ax + By + Cz + D = \mathbf{N} \bullet P + D$ Points on Plane F(x, y, z) = 0

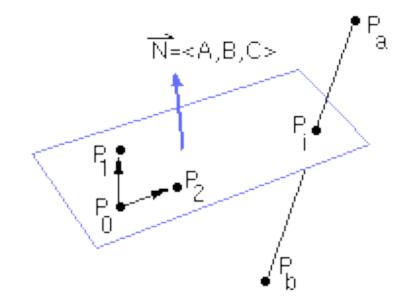
Parametric

 $Plane(s,t) = P_0 + s(P_1 - P_0) + t(P_2 - P_0)$ $P_0, P_1, P_2 \text{ not colinear}$ or

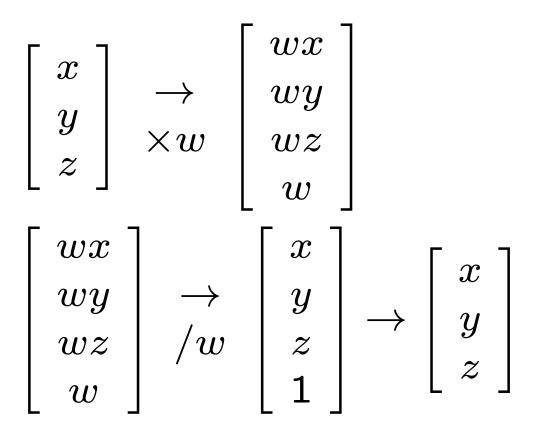
Л

 $Plane(s,t) = (1-s-t)P_0 + sP_1 + tP_2$ $Plane(s,t) = P_0 + sV_1 + tV_2 \text{ where } V_1, V_2 \text{ basis vectors}$

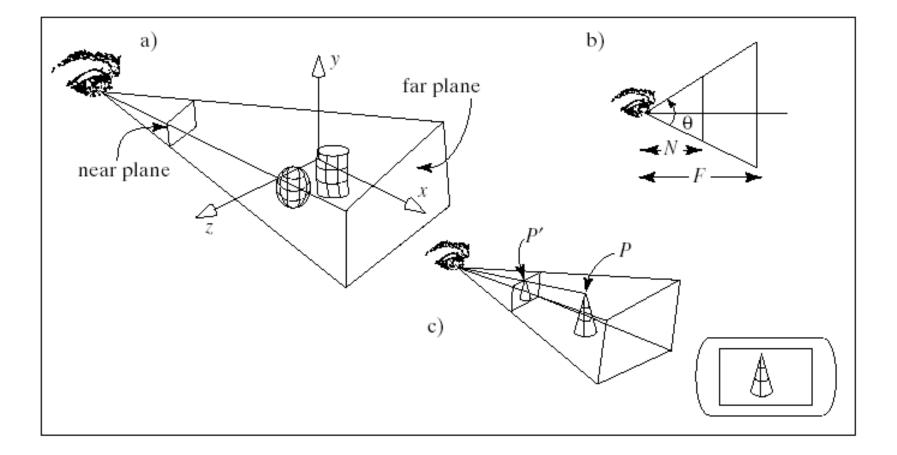
Explicit $z = -(A/C)x - (B/C)y - D/C, C \neq 0$



Reminder: Homogeneous Coordinates

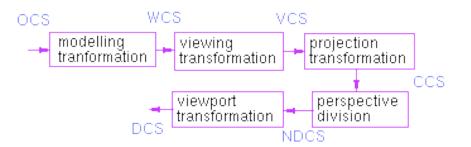


Projection transformations

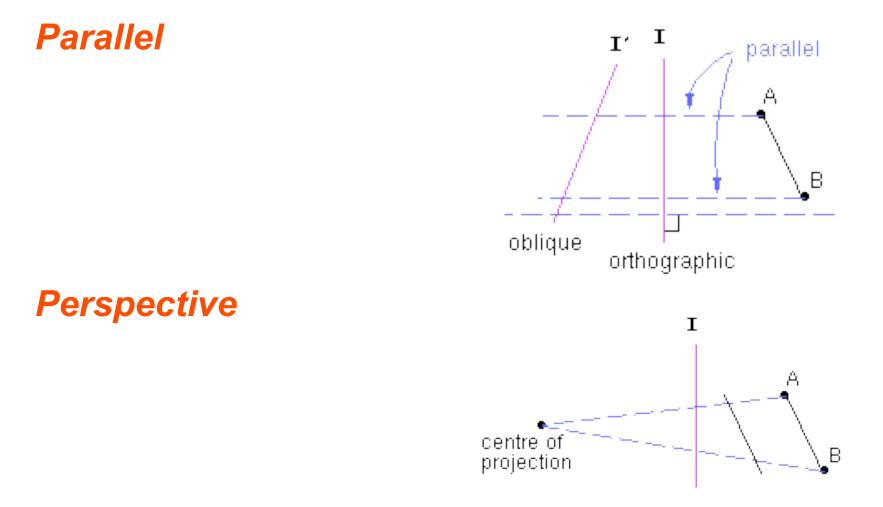


Introduction to Projection Transformations

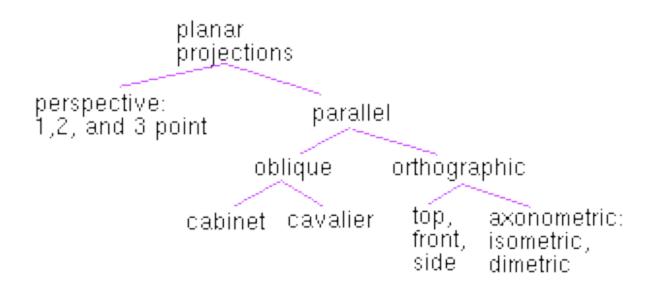
- [Hill: 371-378, 398-404. Foley & van Dam: p. 229-242]
 - Mapping: $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$
 - Projection: n > m
 - Planar Projection: Projection on
 - a plane.
 - $R^3 \rightarrow R^2$ or
 - $R^4 \rightarrow R^3$ homogenous
 - coordinates.

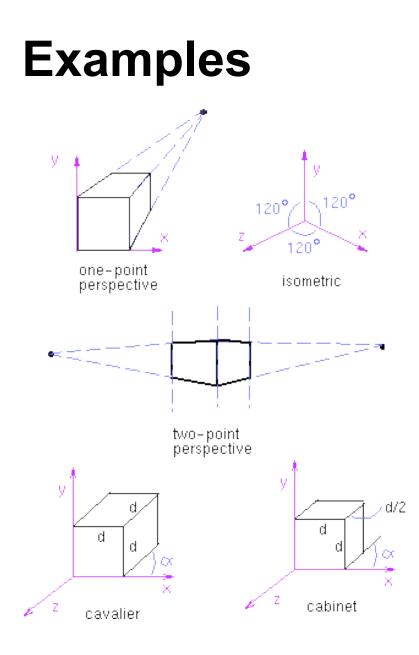


Basic projections



Taxonomy

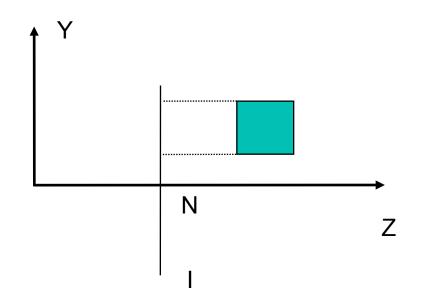




A basic orthographic projection

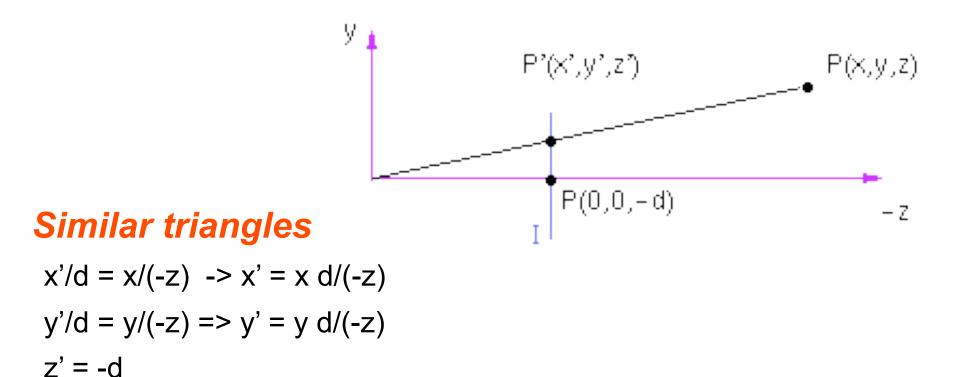
x' = x y' = y z' = N

Matrix Form



$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & N \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ N \\ 1 \end{bmatrix}$$

A basic perspective projection



In matrix form

Matrix form of x' = x d/(-z) y' = y d/(-z) z' = -d

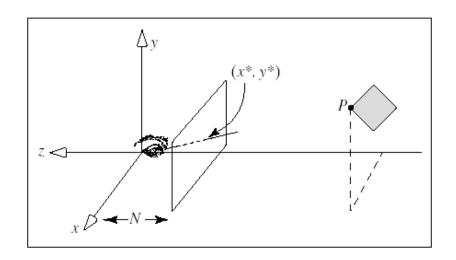
Moving from 4D to 3D

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix}$$
$$\begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} xd \\ yd \\ zd \\ -z \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \\ z \\ -z \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \\ z \\ -z/d \end{bmatrix} \stackrel{h=-z/d}{\longrightarrow} \begin{bmatrix} x/h \\ y/h \\ z/h \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} xd/(-z) \\ yd/(-z) \\ -d \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}$$

Projections in OpenGL

Camera coordinate system

- Image plane = near plane Camera at (0,0,0)
- Looking at –z
- *Image plane at z = -N*

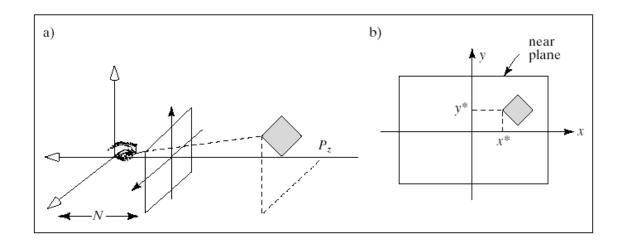


Perspective projection of a point

In eye coordinates $P = [Px, Py, Pz, 1]^T$

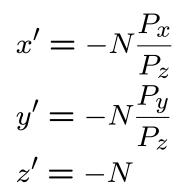
x/Px = N/(-Pz) => x = NPx/(-Pz)

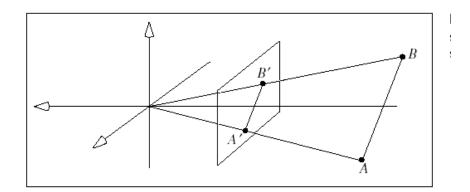
y/Px = N/(-Pz) => y = NPy/(-Pz)



Observations

- Perspective foreshortening
- Denominator becomes undefined for z = 0
- If P is behind the eye Pz changes sign
- Near plane just scales the picture
- Straight line -> straight line





Perspective projection of a line

Perspective Division,

drop fourth coordinate

$$L(t) = \mathbf{A} + \vec{\mathbf{c}}t = \begin{bmatrix} A_x \\ A_y \\ A_z \\ 1 \end{bmatrix} + \begin{bmatrix} c_x \\ c_y \\ c_z \\ 0 \end{bmatrix} t$$
$$\widetilde{L}(t) = \mathbf{M}L(t) = \mathbf{M}(\mathbf{A} + \vec{\mathbf{c}}t) = \mathbf{M} \begin{bmatrix} A_x + c_x t \\ A_y + c_y t \\ A_z + c_z t \\ 1 \end{bmatrix} = \begin{bmatrix} N(A_x + c_x t) \\ N(A_y + c_y t) \\ N(A_z + c_z t) \\ -(A_z + c_z t) \end{bmatrix} t$$
$$L'(t) = \begin{bmatrix} -N(A_x + c_x t)/(A_z + c_z t) \\ -N(A_y + c_y t)/(A_z + c_z t) \\ -N \end{bmatrix}$$

Is it a line?

Original:
$$L(t) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} A_x + c_x t \\ A_y + c_y t \\ A_z + c_z t \end{bmatrix}$$

Projected: $L'(t) = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -Nx/z \\ -Ny/z \\ -N \end{bmatrix} = \begin{bmatrix} -N(A_x + c_x t)/(A_z + c_z t) \\ -N(A_y + c_y t)/(A_z + c_z t) \\ -N \end{bmatrix}$

$$x' = -N(A_x + c_x t)/(A_z + c_z t) \Rightarrow x'(A_z + c_z t) = -N(A_x + c_x t) \Rightarrow$$
$$x'A_z + x'c_z t = -NA_x - Nc_x t \Rightarrow \begin{cases} x'A_z + NA_x = -(x'c_z + Nc_x)t \\ \text{and similarly for y} \\ y'A_z + NA_y = -(y'c_z + Nc_y)t \end{cases}$$

Cont'd next slide

Is it a line? (cont'd)

$$\begin{vmatrix} x'A_z + NA_x &= -(x'c_z + Nc_x)t \\ y'A_z + NA_y &= -(y'c_z + Nc_y)t \end{vmatrix} \Rightarrow \begin{vmatrix} x'A_z + NA_x &= -(x'c_z + Nc_x)t \\ -(y'c_z + Nc_y)t &= y'A_z + NA_y \end{vmatrix} \Rightarrow$$

$$(x'A_z + NA_x)(y'c_z + Nc_y) = (x'c_z + Nc_x)(y'A_z + NA_y) \Longrightarrow$$

$$x'A_zy'c_z + x'A_zNc_y + NA_xy'c_z + N^2A_xc_y = x'c_zy'A_z + x'c_zNA_y + Nc_xy'A_z + N^2A_yc_x \Rightarrow$$

 $(A_z N c_y - c_z N A_y) x' + (N A_x c_z + N c_x A_z) y' + N^2 (A_x c_y + A_y c_x) = 0 \Longrightarrow$

ax'+by'+c = 0 which is the equation of a line.

 \Rightarrow

So is there a difference?

Original:
$$L(t) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} A_x + c_x t \\ A_y + c_y t \\ A_z + c_z t \end{bmatrix}$$

Projected :
$$L'(t) = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -Nx/z \\ -Ny/z \\ -N \end{bmatrix} = \begin{bmatrix} -N(A_x + c_x t)/(A_z + c_z t) \\ -N(A_y + c_y t)/(A_z + c_z t) \\ -N \end{bmatrix}$$

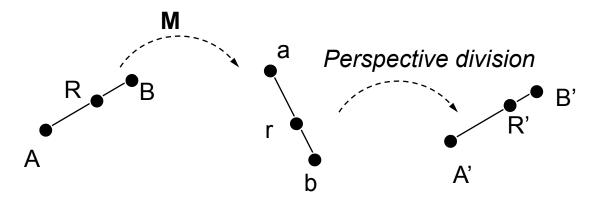
So is there a difference?

The speed of the lines if cz is not 0

$$\begin{aligned} \text{Original}: L(t) &= \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} A_x + c_x t \\ A_y + c_y t \\ A_z + c_z t \end{bmatrix} \Rightarrow \frac{\partial L(t)}{\partial t} = \vec{c} \\ \frac{\partial L(t)}{\partial t} &= \vec{c} \\ \text{Projected}: L'(t) = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -Nx/z \\ -Ny/z \\ -N \end{bmatrix} = \begin{bmatrix} -N(A_x + c_x t)/(A_z + c_z t) \\ -N(A_y + c_y t)/(A_z + c_z t) \\ -N \end{bmatrix} \Rightarrow \\ \frac{\partial x'}{\partial t} &= -N\frac{\partial}{\partial t}((A_x + c_x t)/(A_z + c_z t)) = -N\frac{c_x(A_z + c_z t) - (A_x + c_x t)c_z}{(A_z + c_z t)^2} = -N\frac{c_x A_z - A_x c_z}{(A_z + c_z t)^2} \Rightarrow \\ \frac{\partial L'(t)}{\partial t} &= \frac{-N}{(A_z + c_z t)^2} \begin{bmatrix} c_x A_z - A_x c_z \\ c_y A_z - A_y c_z \end{bmatrix} \end{aligned}$$

Inbetween points

How do points on lines transform?

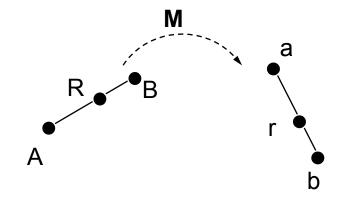


Viewing system:R(g) = (1-g)A + gBProjected (4D) :r = MRProjected cartesian:R'(f) = (1-f)A' + fB'

What is the relationship between g and f?

First step

Viewing to homogeneous space (4D)



$$R = (1 - g)A + gB$$

$$r = MR = M[(1 - g)A + gB] = (1 - g)MA + gMB \Rightarrow$$

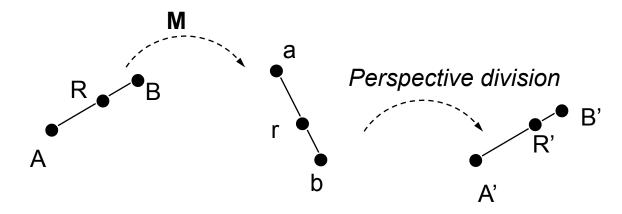
$$r = (1 - g)a + gb$$

$$a = MA = (a_1, a_2, a_3, a_4)$$

$$b = MB = (b_1, b_2, b_3, b_4)$$

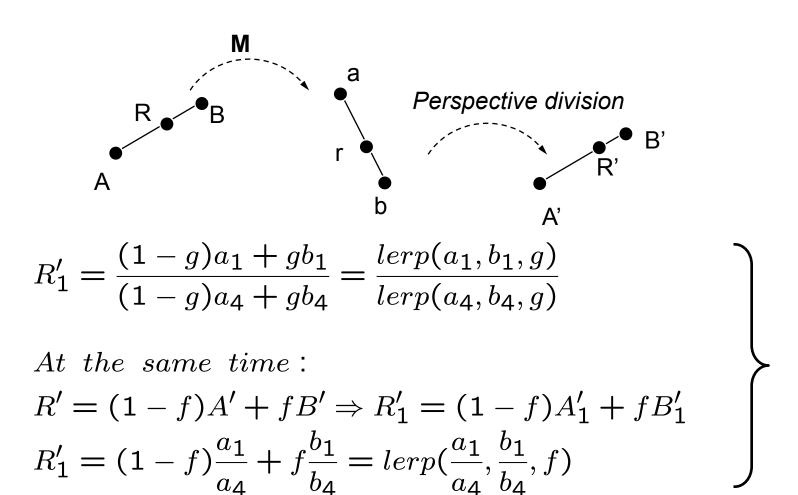
Second step

Perspective division



$$\left\{ \begin{array}{l} r = (1-g)a + gb \\ a = (a_1, a_2, a_3, a_4) \\ b = (b_1, b_2, b_3, b_4) \end{array} \right\} \Rightarrow \qquad R_1' = \frac{r_1}{r_4} = \frac{(1-g)a_1 + gb_1}{(1-g)a_4 + gb_4}$$

Putting all together



Relation between the fractions

$$R'_{1}(g) = \frac{lerp(a_{1}, b_{1}, g)}{lerp(a_{4}, b_{4}, g)}$$

$$R'_{1}(f) = lerp\left(\frac{a_{1}}{a_{4}}, \frac{b_{1}}{b_{4}}, f\frac{1}{f}\right)$$

$$\Rightarrow g = \frac{f}{lerp(\frac{b_{4}}{a_{4}}, 1, f)}$$

substituting this in R(g) = (1 - g)A + gB yields

$$R_{1} = \frac{lerp(\frac{A_{1}}{a_{4}}, \frac{B_{1}}{b_{4}}, f)}{lerp(\frac{1}{a_{4}}, \frac{1}{b_{4}}, f)}$$

THAT MEANS: For a given f in **screen space** and A,B in **viewing space** we can find the corresponding R (or g) in **viewing space** using the above formula.

"A" can be texture coordinates, position, color, normal etc.

Effect of perspective projection on lines [Hill 375]

Equations

Original:
$$L(t) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} A_x + c_x t \\ A_y + c_y t \\ A_z + c_z t \end{bmatrix}$$

Projected:
$$L'(t) = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -Nx/z \\ -Ny/z \\ -N \end{bmatrix} = \begin{bmatrix} -N(A_x + c_x t)/(A_z + c_z t) \\ -N(A_y + c_y t)/(A_z + c_z t) \\ -N \end{bmatrix}$$

What happens to parallel lines?

Effect of perspective projection on lines [Hill 375]

Parallel lines

Original:
$$L(t) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} A_x + c_x t \\ A_y + c_y t \\ A_z + c_z t \end{bmatrix}$$

Projected:
$$L'(t) = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -Nx/z \\ -Ny/z \\ -N \end{bmatrix} = \begin{bmatrix} -N(A_x + c_x t)/(A_z + c_z t) \\ -N(A_y + c_y t)/(A_z + c_z t) \\ -N \end{bmatrix}$$

If parallel to view plane then:

$$c_z = 0 \rightarrow L'(t) = -\frac{N}{A_z}(A_x + c_x t, A_y + c_y t)$$

slope $= \frac{c_y}{c_x}$

Effect of perspective projection on lines [Hill 375]

Parallel lines

Original:
$$L(t) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} A_x + c_x t \\ A_y + c_y t \\ A_z + c_z t \end{bmatrix}$$

Projected: $L'(t) = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -Nx/z \\ -Ny/z \\ -N \end{bmatrix} = \begin{bmatrix} -N(A_x + c_x t)/(A_z + c_z t) \\ -N(A_y + c_y t)/(A_z + c_z t) \\ -N \end{bmatrix}$

If not parallel to view plane then:

$$c_z \neq 0 \rightarrow \lim_{t \to \infty} L'(t) = -\frac{N}{c_z}(c_x, c_y)$$

Vanishing point!

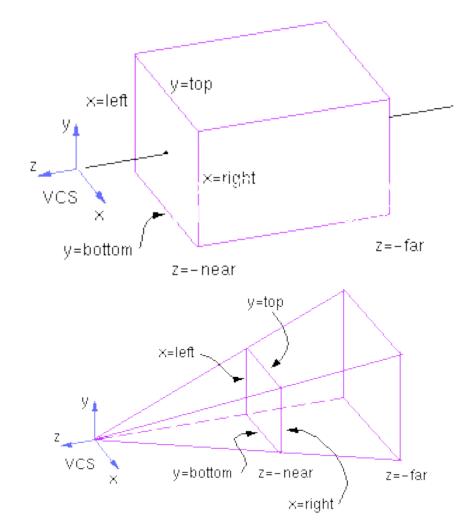
Summary

- **Forshortening**
- Non-linear
- Lines go to lines
- Parallel lines either intersect or remain parallel
- Inbetweeness

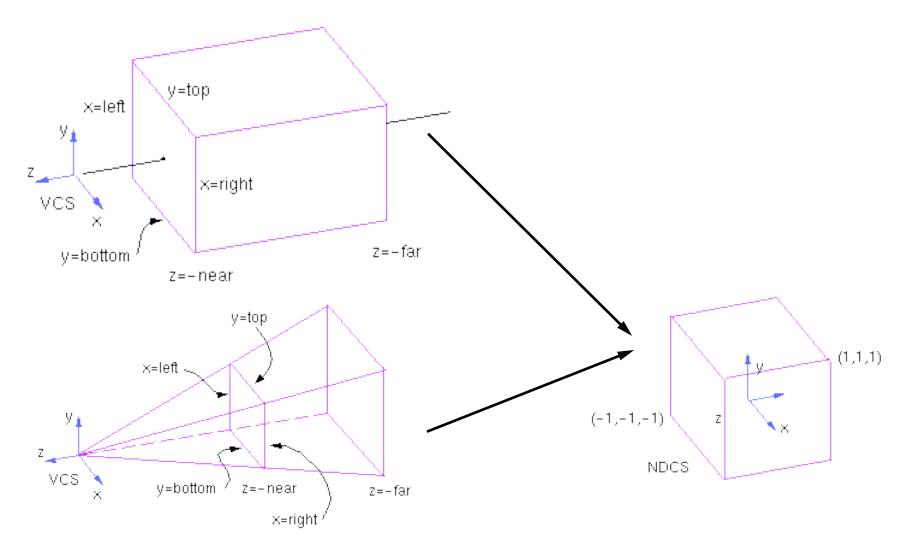
Projections in the Graphics Pipeline

View volumes

- Our pipeline supports two projections:
 - Orthographic
 - Perspective
- This stage also defines the view window
- What is visible with each projection?
 - a cube
 - or a pyramid



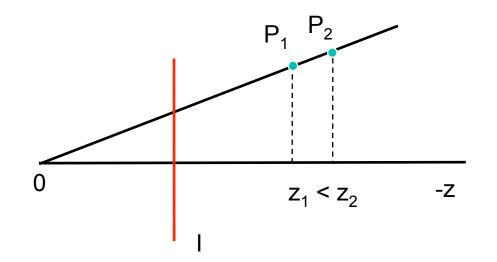
View volumes



Transformation vs Projection

We want to keep z Why?

Pseudodepth



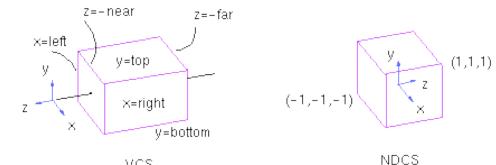
Derivation of the orthographic transformation

Map each axis separately:

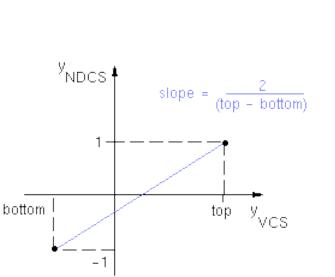
Scaling and translation

Let's look at y:

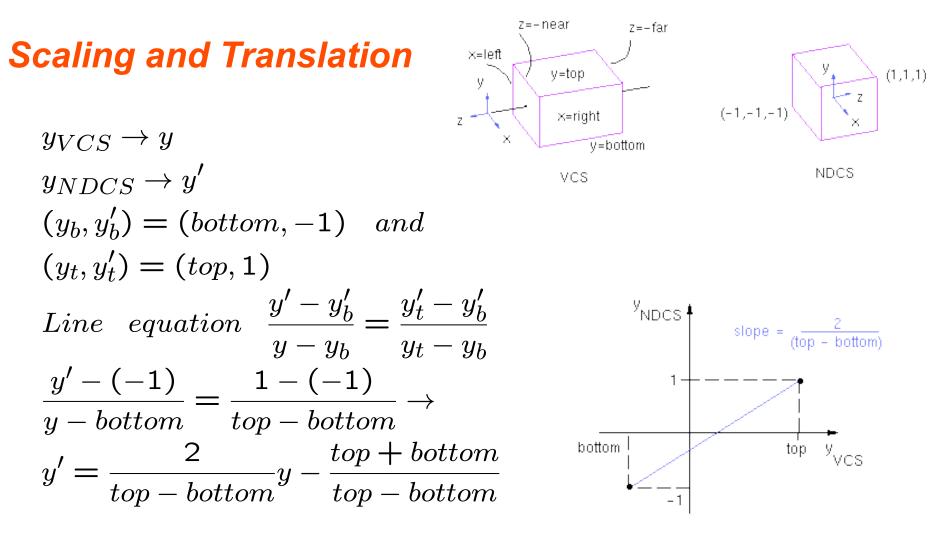
y' = ay + b such that • bottom \rightarrow -1 top \rightarrow 1



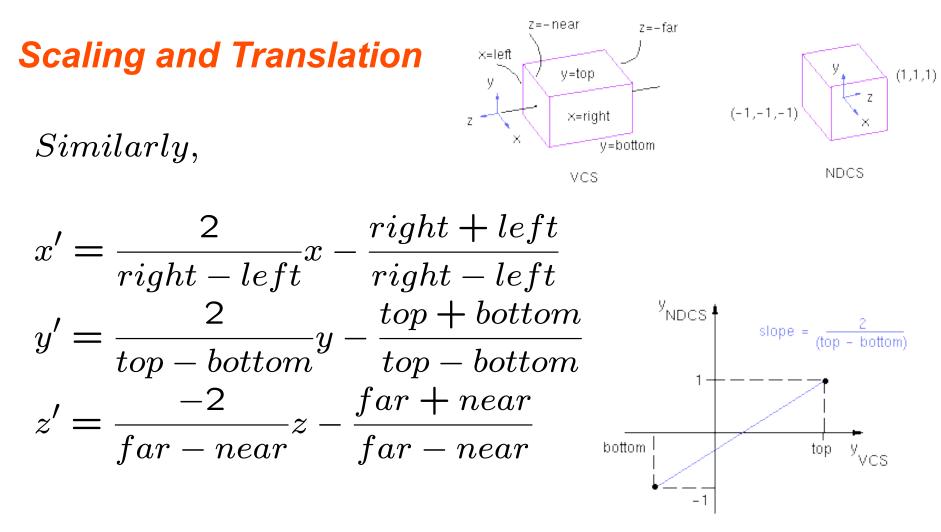
VCS



Derivation of the orthographic transformation



All three coordinates



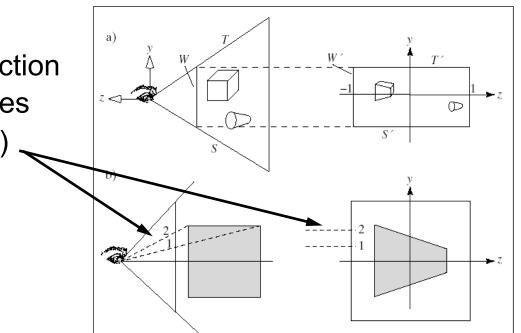
Matrix form

$$P' = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix} P$$

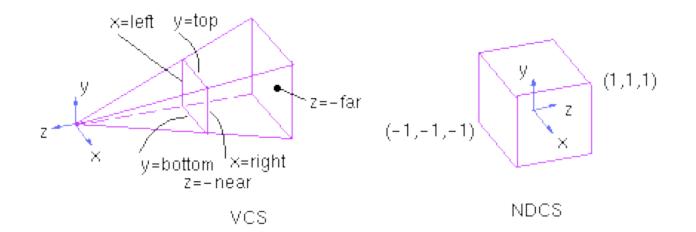
Perspective transformation

Warps the view volume and the objects in it.

- Eye becomes a point at infiinity, and the projection rays become parallel lines (orthographic projection)
- We also want to keep z

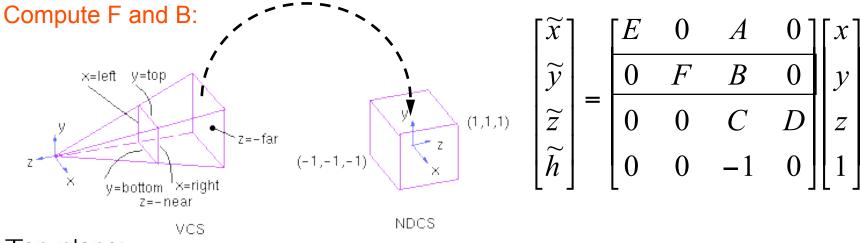


Derivation of the perspective transformation



It is basically a mapping of planes Normalized view volume is a left handed system!

Deriving the Matrix



Top plane:

Before projection y = -zt/nAfter projection and division $\tilde{y}/\tilde{h} = 1$

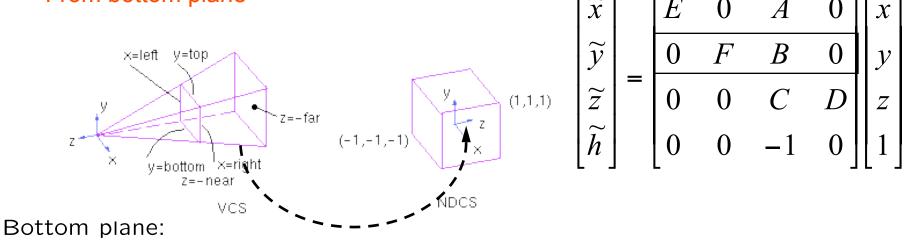
From the matrix multiplication:

$$\tilde{y} = Fy + Bz \rightarrow (perspective \ division)$$

 $\tilde{y}/\tilde{h} = (Fy + bz)/\tilde{h} \rightarrow 1 = (Fy + Bz)/(-z) \rightarrow$
 $Ft/n - B = 1$ (1)

Forming the second equation

From bottom plane



Before projection y = -zb/nAfter projection and division $\tilde{y}/\tilde{h} = -1$

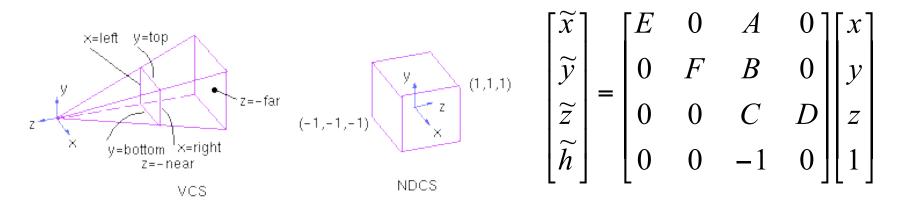
From the matrix multiplication:

$$\tilde{y} = Fy + Bz \rightarrow (perspective \ division)$$

 $\tilde{y}/\tilde{h} = (Fy + bz)/\tilde{h} \rightarrow -1 = (Fy + Bz)/(-z) \rightarrow$
 $Fb/n - B = -1$ (2)

Solving the 2x2 system

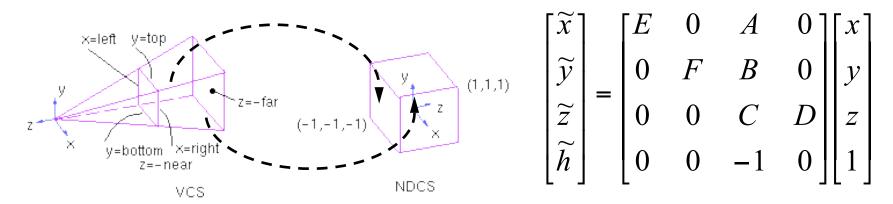
Compute F and B:



$$\left\{\begin{array}{c}\frac{t}{n}F - B = 1\\ \frac{b}{n}F - B = -1\end{array}\right\} \Rightarrow \begin{array}{c}F = \frac{2n}{t-b}\\B = \frac{t+b}{t-b}\end{array}$$

Similarly for x

Compute E and A:



 $\left\{\begin{array}{c} \frac{i}{n}E - A = 1\\ \frac{l}{n}E - A = -1\end{array}\right\} \Rightarrow \begin{array}{c} E = \frac{2n}{r-l}\\ A = \frac{r+l}{r-l}\end{array}$

Similarly z

Compute C and D

 $\tilde{z} = Cz + D$ (1) $\tilde{h} = -z$ (2)

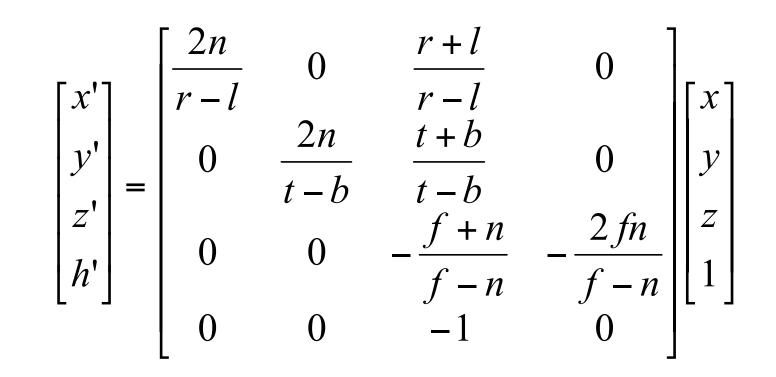
 $\begin{vmatrix} x \\ \tilde{y} \\ \tilde{z} \\ \tilde{k} \end{vmatrix} = \begin{vmatrix} E & 0 & A & 0 \\ 0 & F & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0 \end{vmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix}$ Near plane : $z = -n
ightarrow rac{ ilde{z}}{ ilde{h}} = rac{ ilde{z}}{n} = -1$ (3) $(1), (2), (3) \rightarrow C(-n)/n + D/n = -1$ (4)

Similarly for far plane :

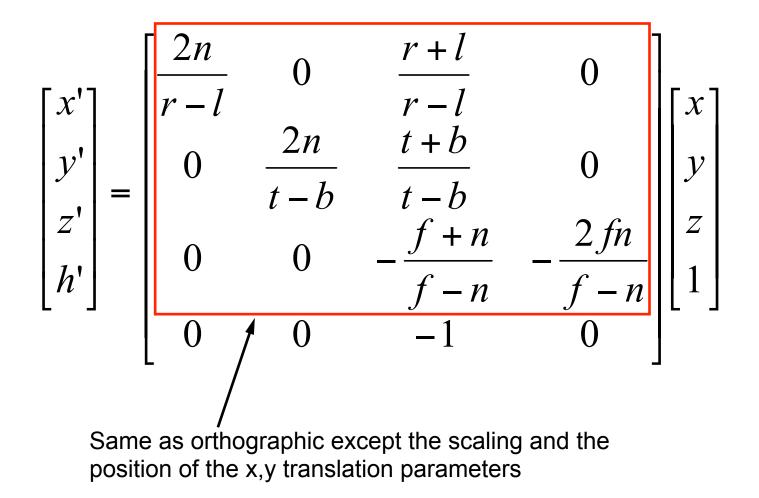
$$z = f \rightarrow \frac{z}{\tilde{h}} = 1$$
 (5)
(1), (2), (5) $\rightarrow C(-f)/f + D/f = 1$ (6)

From (4), (6) C = -(f+n)(f-n), D = -2fn/(f-n)

Putting everything together



Putting everything together



Orthographic projection in OpenGL

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

Followed by one of:

glOrtho(left,right,bottom,top,near,far);

near plane at z = -near

far plane at z = -far

gluOrtho2D(left,right,bottom,top);

assumes near = 0 far = 1

Perspective projection in OpenGL

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

Followed by one of:

glFrustrum(left,right,bottom,top,near,far);

near plane at z = -near

far plane at z = -far

gluPerspective(fovy, aspect,bottom,top);

fov measured in degrees and center at 0

Put the code in init or reshape callback.

Matrix pre-multiplies Modelview matrix

M = *Mproj***CM*

Important

Projection parameters are given in CAMERA Coordinate system (Viewing).

So if camera is at *z* = 50 and you give near = 10 where is the near plane with respect to the world?

Important

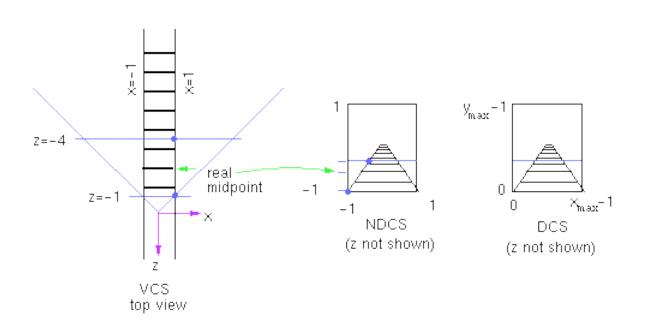
Projection parameters are given in CAMERA Coordinate system (Viewing).

So if the camera is at z = 50 and you give near = 10 where is the near plane with respect to the world? Transformed by inverse(Mvcs)

Nonlinearity of perspective transformation

Tracks:

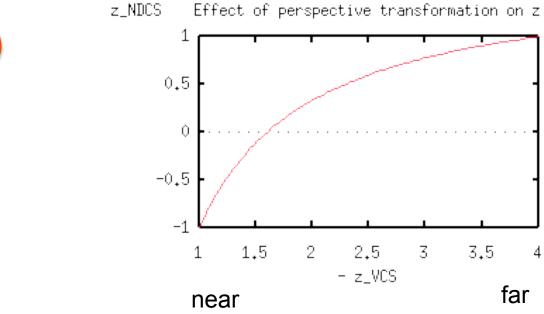
- Left: x = -1, y = -1Right: x = 1, y = -1Z = -inf, inf
- View volume:
- Left = -1, right = 1
- Bot = -1, top = 1
- Near = 1, far = 4



Comparison of cs's

VCS	CCS		NDC:	S
Х		X' = EX + AZ		X''=X'/W'
Y		Y' = FY + BZ		Y'' = Y'/W'
Z		Z' = CZ + D		Z" = Z '/W'
Point		Point'		Point"
1		X'= X = 1		X'' = -1/Z
-1		Y' = Y = -1		Y" = 1 /Z
Z		Z' = -5Z/3 - 8/3	3	Z'' = 5/3 + 8/(3Z)
		W' = -Z		

Z in NDCS vs –Z in VCS



Z'' = 5/3 + 8/(3Z)

Other comparisons

 $X'' = -1/Z \rightarrow Z = -1/X''$

z_VCS as a function of x_NDCS 108 6 - z_VCS 4 2 Û 0.5 1

×_NDCS

Other comparisons

X'' = -1/Z1 Z'' = 5/3 + 8/(3Z)0.5 Û \rightarrow Z" = 5/3-(8/3)X" z_NDCS -0,5

z_NDCS as a function of x_NDCS

0.5

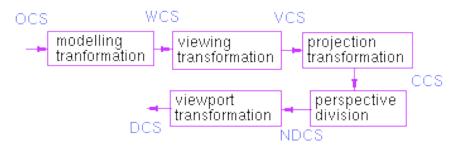
×_NDCS

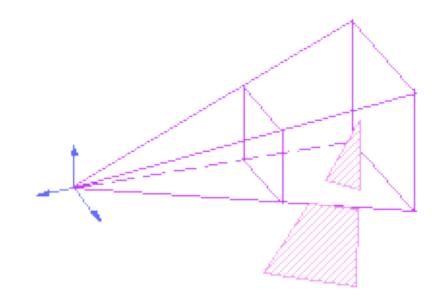
1

-1

3D Clipping

Keep what is visible





Background (reminder)

Plane equations

Implicit

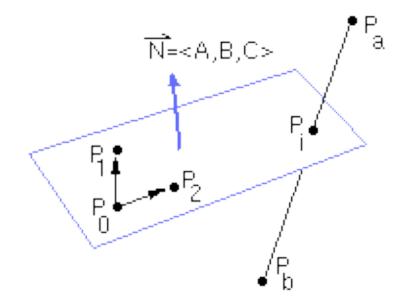
 $F(x, y, z) = Ax + By + Cz + D = \mathbf{N} \bullet P + D$ Points on Plane F(x, y, z) = 0**Parametric**

 $Plane(s,t) = P_0 + s(P_1 - P_0) + t(P_2 - P_0)$ $P_0, P_1, P_2 \text{ not colinear}$

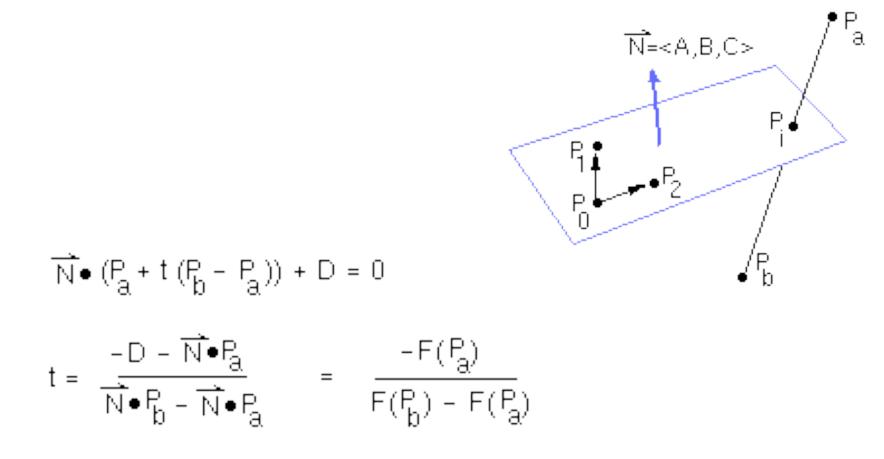
or

 $Explicit, t) = (1 - s - t)P_0 + sP_1 + tP_2$ $Plane(s,t) = P_0 + sV_1 + tV_2 \text{ where } V_1, V_2 \text{ basis vectors}$

$$z = -(A/C)x - (B/C)y - D/C, C \neq 0$$



Intersection of line and plane

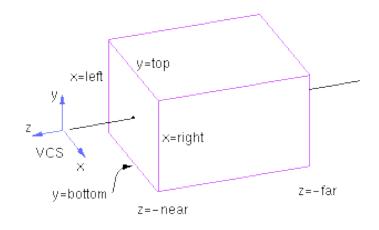


Orthographic view volume

Planes

Normals pointing inside

- left: x left = 0
- right: -x + right = 0
- bottom: y bottom = 0
- top: -y + top = 0
- front: -z near = 0
- back: z + far = 0



Perspective View volume

Planes

Normals pointing inside

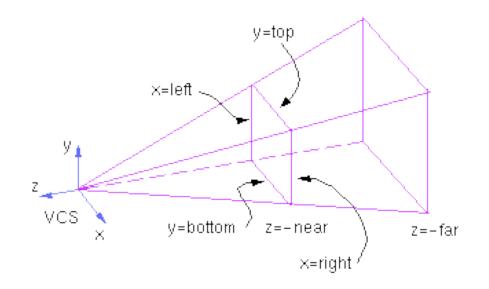
left: x + left*z/near = 0 right: -x - right*z/near = 0

top: $-y - top^*z/near = 0$

bottom: y + bottom*z/near = 0

front: -z - near = 0

back: z + far = 0



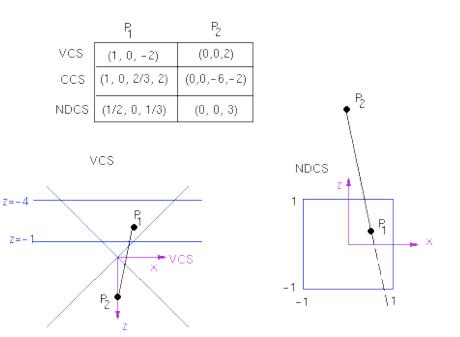
Clipping in NDCS

Normalized view volume

- Constant planes
- Lines in VCS lines NDCS

Problem

Z coordinate loses its sign



Clipping in CCS

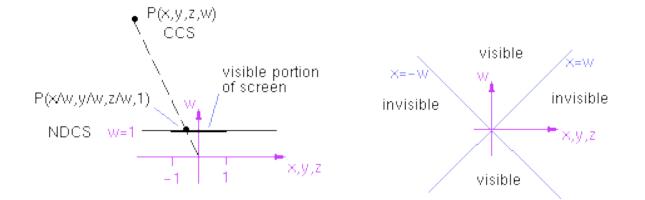
We'll define the clipping region in CCS by first looking at the clipping region in NDCS:

-1 <= x/w <= 1

This means that in CCS, we have:

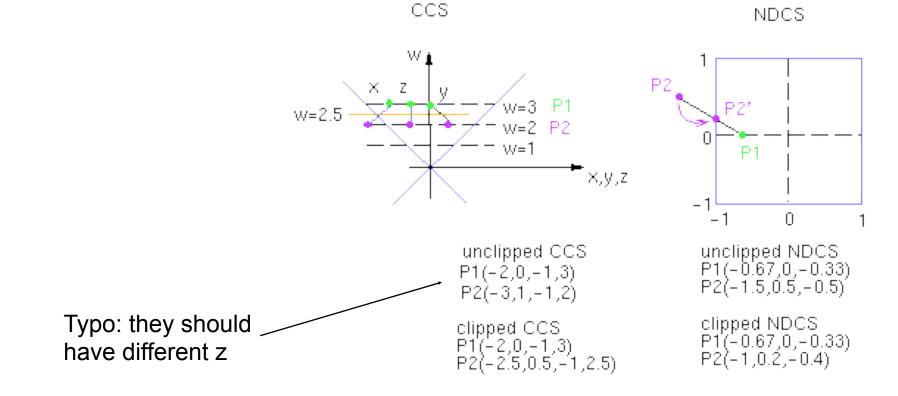
-w <= x <= w

Similarly for y,z

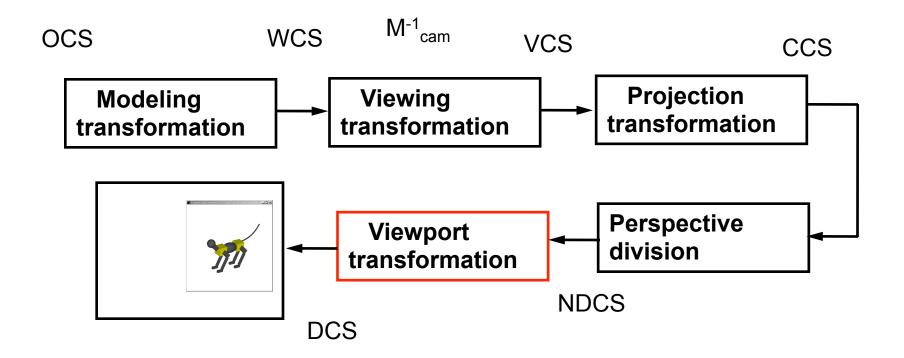


Example

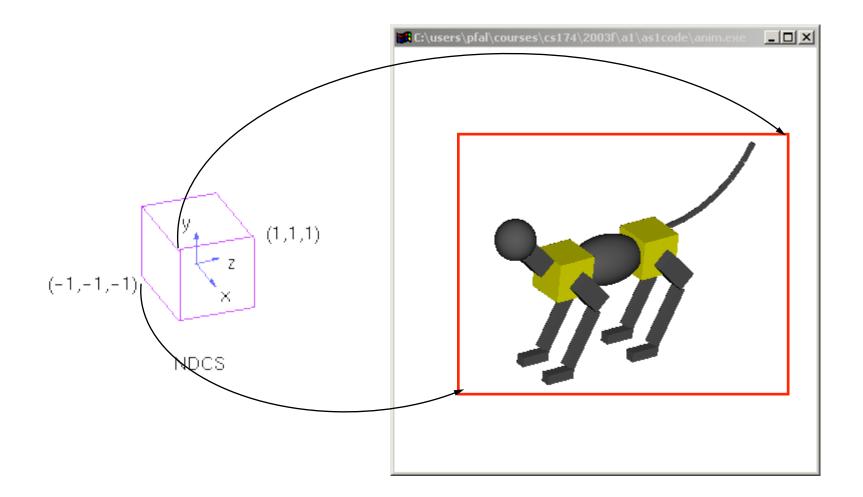
The perspective transformation creates W = -z



Viewport transformation



Viewport



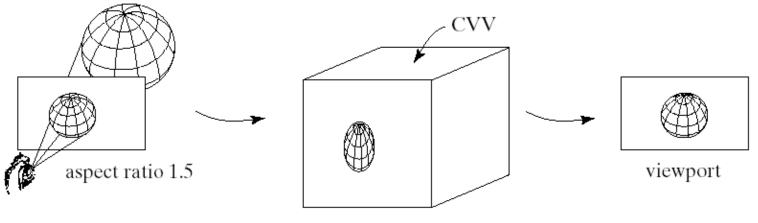
Viewport matrix

Scales the x,y to the dimensions of the viewport Scales z to be in [0,1]

Matrix form left as an exercise.

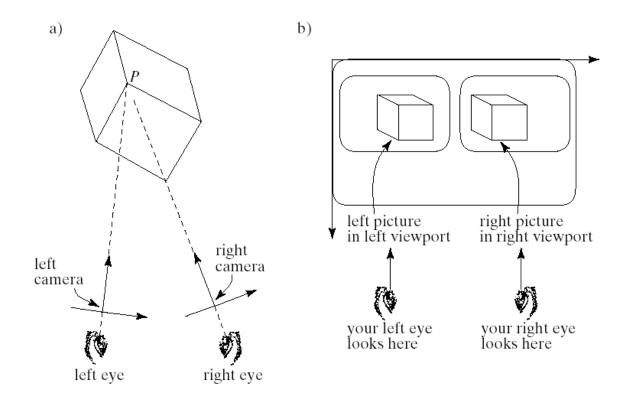
Why viewports?

Undo the distortion of the projection transformation



aspect ratio 1.0

Stereo views



Viewport in OpenGL

glViewport(GLint x, GLint y, GLsizei width, GLsizei height) ;

x,y: lower left corner of viewport rectangle in pixels *width, height*: width and height of viewport.

Put the code in reshape callback.

Transformations in the pipeline

