
Curves and Surfaces (pp
597-623,643-648,654-660,321-342)

Different forms of curve
functions

Explicit: y = f(x), z=g(x)
• Cannot get multiple values for single x, infinite slopes

Implicit: f(x,y,z) = 0
• Cannot easily compare tangent vectors at joints
• In/Out test, normals form gradient

Parametric: x=fx(t), y = fy(t), z= fz(t)
• Overcomes all problems

Describing curves by means of
polynomials

Reminder:
Lth degre polynomial

Parametric and implicit forms are linear
x(t) = at +b
y(t) = ct +d
F(x,y) = kx + ly+m

Polynomial curves of Degree 1

x

y(x)

t

y(t)

x(t)

Polynomial Curves of Degree 2
Parametric
x(t) = at2+2bt+c
y(t) = dt2+2et+f
For any choice of constants

a,d,c,d,e,f →parabola

Implicit
F(x,y) = Ax2+2Byx+Cy2+Dx+Ey+F
Let d = AC-B2
d > 0 → F(x,y) = 0 is an ellipse

d = 0 → F(x,y) = 0 is a parabola

d < 0 → F(x,y) = 0 is a hyperbola

Polynomial curves of degree 2
Common Vertex form:

Rational Quadratic Parametric
Curves

w < 1 ellipse
w = 1 parabola
w > 1 hyperbola

So
We will use parametric polynomials and
constrain them to create desired types of
curves.

How?

Geometric approach

P0, …,PL→ → P(t)

Constraints Polynomial Curve

Pi control points

P0 …PL control polygon

Interactive curve design

Curve
generation

Any t

Interpolation vs
Appoximation

P0

P3

P1

P2

Tweening
Two points=line

A(t) = (1-t)P0 + tP1

De Casteljau Algorithm

P0

P1

A P(t)

Tweening
Three points

A(t) = (1-t)P0 + tP1
B(t) = (1-t)P1 + tP2

De Casteljau Algorithm

P0

P1
P2

A(t)

B(t)

Tweening
Three points
(parabola)

A(t) = (1-t)P0 + tP1
B(t) = (1-t)P1 + tP2
P(t) = (1-t) A + tB = (1-t)2P0 +2t(1-t)P1+t2P2

De Casteljau Algorithm

P0

P1
P2

A(t)

B(t)

P(t)

Tweening
Three points
(parabola)

A(t) = (1-t)P0 + tP1
B(t) = (1-t)P1 + tP2
P(t) = (1-t) A + tB = (1-t)2P0 +2t(1-t)P1+t2P2

De Casteljau Algorithm

P0

P1
P2

A(t)

B(t)

P(t)

De Calsteljau (cont)
Tweening with four points

P(t) = (1-t)3P0+3(1-t)2tP1+3(1-t)t2P2+t3P3

P0

P1
P2

A(t)

B(t)

P(t)
P3

Cubic Berstein polynomials
P(t) = (1-t)3P0+3(1-t)2tP1+3(1-t)t2P2+t3P3

B3
0 (t) = (1-t)3

B3
1 (t) = 3(1-t)2t

B3
2 (t) = 3(1-t)t2

B3
3 (t) = t3

Expansion of [(1-t) + t]3 = (1-t)3 +3(1-t)2t + 3(1-t)t2 +t3 →

Σ B3
k (t) = 1, k = 0,1,2,3

Affine combination of points

Berstein Polynomials of L
degree

L + 1 control points

Expansion of [(1-t) + t]L

Berstein Polynomials
Allways positive
Zero only at t =0 or 1

Degree 3

Properties of Bezier curves
• End point interpolation
• Affine Invariance:
• Invariace under affine transformation of the parameter
• Convex Hull property

for t in [0,1]
• Linear precision by collapsing convex hull
• Variation Diminishing property: No straight line cuts

the curve more times than it cuts the control polygon

Derivatives of Bezier curves
It can be shown that:
Velocity also a Bezier curve of lower degree

Acceleration:

Which degree is best?
Cubic curves
• Lower order not enough flexibility
• Higher order too many wiggles and computationally

expensive
• Cubic curves are lowest degree polynomial curves

that are not planar in 3D

More complex curves
• Piecewise cubics

Cubic parametric curves

Cubic parametric curves (Matrix
Form)

Derivative of Cubic Parametric
Curves

How does the magnitude of the
tangent affect the curve?

Same lower tangent direction but different
magnitude.

The magnitude defines how fast the curve
assumes the tangent direction (remember:
tangent  velocity in parametric space)

Example
Constraints
Endpoints and a tangent at

midpoint

Setting up the curve
Constraints

Solving for A
Constraints

Final form
Basis matrix

For the example

Blending functions
T*M

For the example

Each blending function
weights the contribution
of one of the constraints

Hermite Curves
Constraints
Two points and two tangents

Hermite Curves
Blending functions

Bezier Curves
Special case of Hermite
curves

Bezier Curves
Special case of Hermite
curves

Bezier Curves
Special case of Hermite
curves

Bezier Curves
Special case of Hermite
curves

Transforming between
representations

Just like Bezier and Hermites curves can be
transformed into each other with a matrix
multiplication, other families of curve can do
so as well

Bezier to Interpolating curves
Curve interpolates
Pi

0,Pi
1,Pi

2,Pi
3

How can we find the
Pb points from the Pi?

P0

Pb
1

Pb
2

A(t) P3
Pi

1 Pi
2

Bezier to Interpolating curves
For the next three slides
points are row vectors!!

P0

Pb
1

Pb
2

A(t) P3
Pi

1 Pi
2

Bezier to Interpolating curves

P0

Pb
1

Pb
2

A(t) P3
Pi

1 Pi
2

Bezier to Interpolating curves

P0

Pb
1

Pb
2

A(t) P3
Pi

1 Pi
2

Piecewise cubic curves

Connection?

C1

C2

C3

Continuity
Geometric Gk-continuity
P(i)(t-) = ciP(i)(t+) ∀t in [a,b]

 for i = 0,…,k and
 for some ci constants

Parametric Ck-continuity
P(i) exists and is continuous ∀t

in [a,b], for i = 0,…,k
Terminology:
 P is k-smooth
 P has kth-order continuity

Is a Ck-continuous function GK continuous as well?

Examples
C1

C2

C3

C1
C2

C3

Piecewise Cubic Hermite Curves

What are the conditions for G1 continuity?

Piecewise Cubic Hermite Curves

R’1 = kR4

P1’= P4

BSplines

Matrix form
For a bspline curve with:
• m+1 control points P0, …, Pm

• m-2 segments Q3,…, Qm

• t in [3,…,m]

Properties
C2 continuous
Convex hull property
NO invariace under perspective projection!

NURBS: Nonuniform Rational B-
splines

X(t) = X(t) / W(t)
Y(t) = Y(t) / W(t)
Z(t) = Z(t) / W(t)
• Exact conic sections
• Invariance under perspective projection

Summary: General problem

P0, …,PL→ → P(t)Curve
generation

Blending functions
Weight the influence of each constraint (e.g. control

point) on the curve created.

B1 B2 B3

t

Wish list for blending functions

• Easy to compute and stable
• Sum to unity for every t in [a,b]
• Support over portion of [a,b]
• Interpolate certain control points
• Sufficient smoothness

Example: Bezier curves

• Sum up to unity
• Smooth
• Interpolate first and last
• Expensive to compute for

large L
• No local control

Rendering parametric curves
Transform into
primitives we know how
to handle
Curves
• Line segments

Converting to Lines
Straightforward
Uniform subdivision

Evaluation of C(t) at t: 0, dt, 2dt,…,1.
Draw as lines.

 GLfloat ctrlpoints[4][3] = { { -4.0, -4.0, 0.0},
 { -2.0, 4.0, 0.0},
 {2.0, -4.0, 0.0},
 {4.0, 4.0, 0.0}
};

void myinit(void) {
 glClearColor(0.0, 0.0, 0.0,1.0);
 // t1,t2,stride,order

 glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, &ctrlpoints[0][0]);
 glEnable(GL_MAP1_VERTEX_3);
}

Curves in OpenGL

Stride
OpenGL allows interleaved information
GLfloat ctrlpts[1000] = {
 x1, y1,z1, nx1, ny1,nz1, tx1,ty1,
 x2,y2,z2, nx2,ny2,nz2,tx2,ty2,
 …..
}
Stride here is 8

Evaluating and displaying
void display(void) {

int i;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(1.0, 1.0, 1.0);

glBegin(GL_LINE_STRIP);
for (i = 0; i <= 30; i++)
 glEvalCoord1f((GLfloat) i/30.0);
glEnd();

/* The following code displays the control points as dots. */
glPointSize(5.0);
glColor3f(1.0, 1.0, 0.0);
glBegin(GL_POINTS);
for (i = 0; i < 4; i++)
 glVertex3fv(&ctrlpoints[i][0]);
glEnd();
glFlush();

}

Uniform subdivision
void glMapGrid1{fd}(GLint n, TYPE u1, TYPE u2);

Defines a grid that goes from u1 to u2 in n steps, which
are evenly spaced.

Evaluation for n in [n1,n2] using:
void glEvalMesh1(GLenum mode, GLint t1, GLint t2);

Uniform subdivision
void display(void) {

int i;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(1.0, 1.0, 1.0);

glMapGrid1(30,0.0,1.0) ;
glEvalMesh1(GL_LINE,0,30) ;

/* The following code displays the control points as dots. */
glPointSize(5.0);
glColor3f(1.0, 1.0, 0.0);
glBegin(GL_POINTS);
for (i = 0; i < 4; i++)
 glVertex3fv(&ctrlpoints[i][0]);
glEnd();
glFlush();

}

Evaluators can do more than
position

Color
Normal
Texture coordinates

How many evaluation points are
enough for Bezier curves?

Not too few
Not too many

Ok, how many?

Adaptive Subdivision of Bezier
Curves

de Casteljau subdivision
One Bezier curve
becomes 2 flatter
curves

Original points 1,2,3,4 
Midpoints 12, 23, 34
Midpoints of midpoints: 123, 234
Midpoints of midpoints of midpoints, 1234
Remember: tweening for t = 0.5
Can chose any t we want
Ok, how many times do we subdivide?

Images courtesy of
Maxim Shemanarev

Error metrics

Examples:

 Point distance Tangent distance

Images courtesy of
Maxim Shemanarev

