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Different forms of curve 
functions

Explicit: y = f(x), z=g(x)
• Cannot get multiple values for single x, infinite slopes

Implicit: f(x,y,z) = 0
• Cannot easily compare tangent vectors at joints
• In/Out test, normals form gradient

Parametric: x=fx(t), y = fy(t), z= fz(t)
• Overcomes all problems



Describing curves by means of 
polynomials

Reminder:
Lth degre polynomial



Parametric and implicit forms are linear
x(t) = at +b
y(t) = ct +d
F(x,y) = kx + ly+m

Polynomial curves of Degree 1
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Polynomial Curves of Degree 2
Parametric
x(t) = at2+2bt+c
y(t) = dt2+2et+f
For any choice of constants 

a,d,c,d,e,f →parabola

Implicit
F(x,y) = Ax2+2Byx+Cy2+Dx+Ey+F
Let d = AC-B2 
d > 0 → F(x,y) = 0 is an ellipse

d = 0 → F(x,y) = 0 is a parabola

d < 0 → F(x,y) = 0 is a hyperbola



Polynomial curves of degree 2 
Common Vertex form:



Rational Quadratic Parametric 
Curves

w < 1 ellipse
w = 1 parabola
w > 1 hyperbola



So
We will use parametric polynomials and 
constrain them to create desired types of 
curves.

How?



Geometric approach

P0, …,PL→                  → P(t)

Constraints   Polynomial   Curve

Pi control points

P0 …PL control polygon

Interactive curve design

Curve 
generation

Any t

Interpolation vs 
Appoximation

P0

P3

P1

P2



Tweening
Two points=line

A(t) = (1-t)P0 + tP1

De Casteljau Algorithm

P0

P1

A P(t)



Tweening
Three points

A(t) = (1-t)P0 + tP1
B(t) = (1-t)P1 + tP2

De Casteljau Algorithm

P0

P1
P2

A(t)

B(t)



Tweening
Three points 
(parabola)

A(t) = (1-t)P0 + tP1
B(t) = (1-t)P1 + tP2
P(t) = (1-t) A  + tB = (1-t)2P0 +2t(1-t)P1+t2P2 

De Casteljau Algorithm

P0

P1
P2

A(t)

B(t)

P(t)



Tweening
Three points 
(parabola)

A(t) = (1-t)P0 + tP1
B(t) = (1-t)P1 + tP2
P(t) = (1-t) A  + tB = (1-t)2P0 +2t(1-t)P1+t2P2 

De Casteljau Algorithm

P0

P1
P2

A(t)

B(t)

P(t)



De Calsteljau (cont)
Tweening with four points

P(t) = (1-t)3P0+3(1-t)2tP1+3(1-t)t2P2+t3P3

P0

P1
P2

A(t)

B(t)

P(t)
P3



Cubic Berstein polynomials
P(t) = (1-t)3P0+3(1-t)2tP1+3(1-t)t2P2+t3P3

B3
0 (t) = (1-t)3

B3
1 (t) = 3(1-t)2t

B3
2 (t) = 3(1-t)t2

B3
3 (t) = t3

Expansion of [(1-t) + t]3 = (1-t)3 +3(1-t)2t + 3(1-t)t2 +t3 →

Σ B3
k (t) = 1, k = 0,1,2,3 

Affine combination of points



Berstein Polynomials of L 
degree

L + 1 control points

Expansion of [(1-t) + t]L



Berstein Polynomials
Allways positive
Zero only at t =0 or 1

Degree 3



Properties of Bezier curves
• End point interpolation
• Affine Invariance:
• Invariace under affine transformation of the parameter
• Convex Hull property

for t in [0,1]
• Linear precision by collapsing convex hull
• Variation Diminishing property: No straight line cuts 

the curve more times than it cuts the control polygon



Derivatives of Bezier curves
It can be shown that:
Velocity also a Bezier curve of lower degree

Acceleration:



Which degree is best?
Cubic curves
• Lower order not enough flexibility
• Higher order too many wiggles and computationally 

expensive
• Cubic curves are lowest degree polynomial curves 

that are not planar in 3D

More complex curves
• Piecewise cubics



Cubic parametric curves



Cubic parametric curves (Matrix 
Form)



Derivative of Cubic Parametric 
Curves



How does the magnitude of the 
tangent affect the curve?

Same lower tangent direction but different 
magnitude.

The magnitude defines how fast the curve 
assumes the tangent direction (remember: 
tangent  velocity in parametric space)



Example
Constraints
Endpoints and a tangent at 

midpoint



Setting up the curve
Constraints



Solving for A
Constraints



Final form
Basis matrix

For the example



Blending functions
T*M

For the example

Each blending function
weights the contribution 
of one of the constraints



Hermite Curves
Constraints
Two points and two tangents



Hermite Curves
Blending functions



Bezier Curves
Special case of Hermite 
curves



Bezier Curves
Special case of Hermite 
curves



Bezier Curves
Special case of Hermite 
curves



Bezier Curves
Special case of Hermite 
curves



Transforming between 
representations

Just like Bezier  and Hermites curves can be 
transformed into each other with a matrix 
multiplication, other families of curve can do 
so as well



Bezier to Interpolating curves
Curve interpolates
Pi

0,Pi
1,Pi

2,Pi
3

How can we find the 
Pb points from the Pi?

P0

Pb
1

Pb
2

A(t) P3
Pi

1 Pi
2



Bezier to Interpolating curves
For the next three slides 
points are row vectors!!

P0
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1
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2

A(t) P3
Pi

1 Pi
2



Bezier to Interpolating curves
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Bezier to Interpolating curves

P0

Pb
1

Pb
2

A(t) P3
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1 Pi
2



Piecewise cubic curves

Connection?

C1

C2

C3



Continuity
Geometric Gk-continuity
P(i)(t-) = ciP(i)(t+) ∀t in [a,b]

 for i = 0,…,k and
 for some ci constants

Parametric Ck-continuity
P(i) exists and is continuous ∀t 

in [a,b], for i = 0,…,k
Terminology:
 P is k-smooth
 P has kth-order continuity

Is a Ck-continuous function GK continuous as well?



Examples
C1

C2

C3

C1
C2

C3



Piecewise Cubic Hermite Curves

What are the conditions for G1 continuity?



Piecewise Cubic Hermite Curves

R’1 = kR4

P1’= P4



BSplines



Matrix form
For a bspline curve with:
• m+1 control points P0, …, Pm

• m-2 segments Q3,…, Qm

• t in [3,…,m]



Properties
C2 continuous
Convex hull property
NO invariace under perspective projection!



NURBS: Nonuniform Rational B-
splines

X(t) = X(t) / W(t)
Y(t) = Y(t) / W(t)
Z(t) = Z(t) / W(t)
• Exact conic sections
• Invariance under perspective projection



Summary: General problem

P0, …,PL→                  → P(t)Curve 
generation



Blending functions
Weight the influence of each constraint (e.g. control 

point) on the curve created.

B1 B2 B3

t



Wish list for blending functions

• Easy to compute and stable
• Sum to unity for every t in [a,b]
• Support over portion of [a,b]
• Interpolate certain control points
• Sufficient smoothness



Example: Bezier curves

• Sum up to unity
• Smooth
• Interpolate first and last
• Expensive to compute for 

large L
• No local control



Rendering parametric curves
Transform into 
primitives we know how 
to handle
Curves
• Line segments



Converting to Lines
Straightforward
Uniform subdivision

Evaluation of C(t)  at t: 0, dt, 2dt,…,1.
Draw as lines.



 GLfloat ctrlpoints[4][3] = { { -4.0, -4.0, 0.0}, 
            { -2.0, 4.0, 0.0},
            {2.0, -4.0, 0.0}, 
            {4.0, 4.0, 0.0}
};

 
void myinit(void) {     
        glClearColor(0.0, 0.0, 0.0,1.0); 
    // t1,t2,stride,order

         glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, &ctrlpoints[0][0]); 
        glEnable(GL_MAP1_VERTEX_3); 
} 

Curves in OpenGL



Stride
OpenGL allows interleaved information
GLfloat ctrlpts[1000] = {
  x1, y1,z1, nx1, ny1,nz1, tx1,ty1,  
 x2,y2,z2, nx2,ny2,nz2,tx2,ty2,
 …..
}
Stride here is 8



Evaluating and displaying
void display(void) {     

int i;    
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(1.0, 1.0, 1.0); 

glBegin(GL_LINE_STRIP);
for (i = 0; i <= 30; i++)
 glEvalCoord1f((GLfloat) i/30.0);
glEnd();    

/* The following code displays the control points as dots. */ 
glPointSize(5.0);
glColor3f(1.0, 1.0, 0.0);
glBegin(GL_POINTS);
for (i = 0; i < 4; i++)
 glVertex3fv(&ctrlpoints[i][0]);
glEnd();
glFlush(); 

}



Uniform subdivision
void glMapGrid1{fd}(GLint n, TYPE u1, TYPE u2); 

Defines a grid that goes from u1 to u2 in n steps, which 
are evenly spaced. 

Evaluation for n in [n1,n2] using:
void glEvalMesh1(GLenum mode, GLint t1, GLint t2); 



Uniform subdivision
void display(void) {     

int i;    
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(1.0, 1.0, 1.0); 

glMapGrid1(30,0.0,1.0) ;
glEvalMesh1(GL_LINE,0,30) ;

/* The following code displays the control points as dots. */ 
glPointSize(5.0);
glColor3f(1.0, 1.0, 0.0);
glBegin(GL_POINTS);
for (i = 0; i < 4; i++)
 glVertex3fv(&ctrlpoints[i][0]);
glEnd();
glFlush(); 

}



Evaluators can do more than 
position

Color
Normal
Texture coordinates



How many evaluation points are 
enough for Bezier curves?

Not too few
Not too many

Ok, how many?



Adaptive Subdivision of Bezier 
Curves

de Casteljau subdivision
One Bezier curve 
becomes 2 flatter
curves

Original points 1,2,3,4  
Midpoints 12, 23, 34
Midpoints of midpoints: 123, 234
Midpoints of midpoints of midpoints, 1234
Remember: tweening for t = 0.5
Can chose any t we want
Ok, how many times do we subdivide?

Images courtesy of 
Maxim Shemanarev 



Error metrics

Examples:

 Point distance    Tangent distance

Images courtesy of 
Maxim Shemanarev 


