Color maps (Hill, 688-697)

Reduced size (web)

Which colors do we keep?

Uniform

Popularity algorithm (Heckbert 1982)

- Find the popularity of all colors
- Sort them according to popularity
- Scan the file and replace each color with the closest one from the k-most popular colors.
- Find i for which $(r d-r[i])^{2}+(g r n-g[i])^{2}+(b l u e-b$ $[I])^{2}$ is minimum.

Median Cut (Heckbert 1982)

Subdivide into 2 blocks at the median (each block same number of colors).
Slice along the longest dimension at the median until K blocks.

The representative for each block with the center color.

Rescan the file and substitute the colors with the center color of the block they fall into.

Digital Halftoning (Hill 587-596)

Bilevel displays

How can we create the
illusion of different
intensities?

- Continuous media: vary the size of dots.
- Digital media: use patterns to approximate the variable size of dots.

Example

Halftoning with $\mathbf{2 x 2}$ patters

Origin image 100x100 with 256 shades new image 200x200 bilevel
Four shades with 2×2 patterns
a)

b)

Avoid artifacts by irregular patterns

Patterns

2x2
Four levels
a)

b)

3×3
Nine levels

Growth sequence [Foley]

Avoid artifacts (contouring, islands)

1. If pixel i on at level j then on at every level > j.
2. Grow outwards.
3. Grow in a circle.

Halftoning with same dimensions

Original image 100x100 with n

 shades of grayNew image 100x100 bilevel

Easy way: Thresholding

- If($\mathrm{p}[\mathrm{x}][\mathrm{y}]>\mathrm{t}[\mathrm{x}][\mathrm{y}]$) then $\mathrm{p}[\mathrm{x}][\mathrm{y}]=1$ else $\mathrm{p}[\mathrm{x}][\mathrm{y}]=0$,
- If $T[x][y]$ is the same for every pixel then we get contours and islands of constant color.

Ordered dithering

Vary the threshold from pixel to pixel

- Array of thresholds (dither pattern).

Example: Original image 16 gray shades.

- Shades: 0-15
- Dither pattern 2×2 : $\mathrm{D}=\left(\begin{array}{cc}3 & 9 \\ 12 & 6\end{array}\right)$
- Thresholding: t[x][y] = D[x \% 2][y \% 2]

What is the effect ?

More perceived gray levels

$$
\begin{gathered}
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
0,0.25,0.5,0.75,1
\end{gathered}
$$

Areas of constant intensity
Intensity 8 becomes:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Whose average is 0.5

Thresholding an image with ordered dithering

General case

Original image has m gray levels.
New image bilevel with a nxn dither pattern.

- Chose n^{2} equispaced thresholds $m /\left(\mathrm{n}^{2}+1\right)$
- Arrange then in nxn array using a growth pattern

Trade off between spatial resolution and shade (color) resolution

Multi-level dithering

Example: Original image 256 levels of gray, new image 8 levels

Simple thresholding

- $0, \ldots, 255 \rightarrow 0, \ldots, 7$ that means we have to map 256 / 8
$=32$ original shades to each of the 8 available levels.
- $D=$ (int) $(P / 32)$; // find the lower bound
if $\left(P-32^{*} D\right)>=16$)// if P greater than $l b+16$ then closer to $D++$
D++ ; // essentially we round to the closest level

Better approach: Dithering

Pattern 2x2

- $\mathrm{D}=$ (int) (P/32); if($\left.P-32^{*} \mathrm{D}>=\mathrm{M}[\mathrm{x} \% 2][\mathrm{y} \% 2]\right)$
then $\mathrm{D}++;$
where $M=\left(\begin{array}{cc}0 & 16 \\ 24 & 8\end{array}\right)$
What is the effect?

Effect: more perceived gray levels

Reminder: 0,...,255 $\rightarrow 0, \ldots, 7$
Consider an area of constant intensity

- $P=178$ lies between $5 \times 32=160$ and $6 \times 32=192$.

$$
\left(\begin{array}{ll}
178 & 178 \\
178 & 178
\end{array}\right)<P-5 * 32>\rightarrow\left(\begin{array}{cc}
18 & 18 \\
18 & 18
\end{array}\right)
$$

- Aver $<$ threshold $>\left(\begin{array}{cc}0 & 16 \\ 24 & 8\end{array}\right) \rightarrow\left(\begin{array}{cc}6 & 6 \\ 5 & 6\end{array}\right) \quad$ on 5 and 6.
- Original levels 160 and 192,184 is $3 / 4$ between 160 and 192 which is not far from 178.

Dithering of color images

Dither each color channel separetely.

Error diffusion

Back to Bilevel images: 0,...,255 \rightarrow 0,1

Pure thresholding:

- if($\mathrm{P}<128$) $\mathrm{P}^{\prime}=0$ else $\mathrm{P}^{\prime}=1$

Errror?

- If $P=42 \rightarrow E=42-0=42$

$$
\text { If } P=167 \rightarrow E=255-167=88
$$

- That is if $P<128 \rightarrow P^{\prime}=0 \rightarrow E=P$
if $P, 128 \rightarrow P^{\prime}=255 \rightarrow E=255-P$
Fix: Diffuse the error to the neighbors.

Error diffusion

Diffuse the error to the neighbors.

- 0,...,255 $\rightarrow 0,1$
- Pure thesholding
if($P>128) P^{\prime}=1$ else $P^{\prime}=0$
- If $P=42 \rightarrow E=0-42=-42$

If $P=167 \rightarrow E=255-167$

$$
E=88
$$

Error diffusion

- $E=-P$ or $255-P$
- $a=a-f_{a} E$
$b=b-f_{b} E$
$c=c-f_{c} E$
$d=d-f_{d} E$
- $\left(\mathrm{f}_{\mathrm{a}}, \mathrm{f}_{\mathrm{b}}, \mathrm{f}_{\mathrm{c}}, \mathrm{f}_{\mathrm{d}}\right)=$
(7/16,3/16,5/16,1/16)
sum to unity.

- Serpentine pattern

Example: Error diffusion

Advanced concept: Clustered dot ordered dither

Syperimpose a grid
Images (c) 1998 Austin Donnelly Austin_Donnelly@yahoo.co.uk
Example (too coarse) 16x16

- Shape start as circles and grow according to a spot function (threshold)

Clustered dot ordered dither (cont'd)

Reference gradient
 Images (c) 1998 Austin Donnelly Austin_Donnelly@yahoo.co.uk

Example: Clustered dot Ordered Dither

Example: Dispersed Ordered Dither

Example: White noise dither

Example: Screen to printer

Banding

Error diffusion

Images Copyright © 2003, AGI (autoGraph international), www.augrin.com

Advanced concepts

Combination of dithering and error diffusion [Knuth87]
Stochastic approaches

