CS 289 Communication Complexity
Instructor: Alexander A. Sherstov
Handout: Separating hyperplane theorem

Strict separation

For z,y € R™, we write d(z,y) = ||z — y||. For subsets A, B C R", we de-
fine d(A,z) = d(x,A) = inf,cad(z,a) and d(A, B) = inf,capep d(a,b). Let
diam A = sup, ,c4 d(z,y). For A C R" and # € R", we define (A4, ) = {(a, ) :
a € A}. In Euclidean space R", the term compact set refers to any set that is
closed and bounded.

Theorem 1 (Separating hyperplane theorem, strict case). Let C, K C R™ be
nonempty convex sets with C N K = @. If C is closed and K compact, then
there exists 1 € R™ with

inf (C, 1) > sup (K, ).

Proof. The strategy of the proof is illustrated in Figure 1. We start by proving
the existence of a pair of closest points x* and y*, where x € C and y € K.
We then show that the hyperplane with normal vector ¥ = x* — y* separates
the two convex sets. Details follow.

Claim 2. There exist * € C and y* € K such that d(z*,y*) = d(C, K).

Proof. For this, pick an arbitrary point zy € C' and define r = 2d(xg, K) +
diam K. By the triangle inequality, d(x, zo) < d(z, K) + diam K + d(z, K). It
follows that any point x with d(z,z¢) > r satisfies

d(z,K) > d(z,z9) — diam K — d(z, K)
> d(l’o,K)

As a result, the compact set C' = C N {zx : d(z,z9) < r} obeys d(C,K) =
d(C', K). Since d(-, +) is a continuous function on the compact C’ x K, it must
attain its infimum on C’ x K i.e., there must exist (z*,y*) € €' x K with

d(z*,y*) =d(C",K) = d(C, K). O
In the remainder of the proof, fix x* and y* as in Claim 2, and define

Y =a" -y

Claim 3. inf (C,¢) > (z*, ).



Figure 1: Separating two convex sets by a hyperplane.

Proof. For the sake of contradiction, suppose that (z,) < (z* 1) for some
x € C. This is equivalent to

(x —ax", 2" —y") <O. (1)
For € € (0,1), the point z. = (1 — ¢)a* + ex is contained in C' by convexity.
However,
o "I = (0" — " +ele —a%), 0"~y + ez —a%)
= [la" =y [1* + 2¢ (& — 2", 2" — y") ¥ |o — 27|

<0 by (1)
Hence d(z.,y*) < d(z*,y*) for € > 0 small enough, contradicting d(z*,y*) =
d(C, K). O
Claim 4. (z*,¢) > (y*, ).
Proof. We have (z* — y*, ) = ||z* — y*||* > 0, where the last step uses the
fact that x* # y* by the disjointness of C' and K. O
Claim 5. (y*,v) > sup (K, ).

Proof. The proof is analogous to Claim 3. Specifically, suppose for the sake of
contradiction that (y,v) > (y*, 1) for some y € K. This is equivalent to

(y" —y, 2" —y") <O. (2)
For € € (0,1), the point y. = (1 — €)y* 4 €y is contained in K by convexity.
However,
lo* = yell* = (@ —y" +ely” —y). 2" —y" +ely” —y))
= [la* =y I+ 2¢ (" =yt —y) <2y -yl

(. J

<0 by (2)




Hence d(z*,y.) < d(z*,y*) for € > 0 small enough, contradicting d(z*, y*)
d(C, K).

o ol

By Claims 3-5, the proof is complete.

Nonstrict separation

The proofs below use the following property of compact sets K C R™: given
any sequence i, Ta,...,Tn,... € I, there is a subsequence z;,, x;,, ..., %;,, ...
and some z* € K such that z;, — 2" as n — oo. In other words, every
sequence in a compact set has a convergent subsequence. The closure of a
set A C R"™ is a superset of A defined by clA = {z € R" : d(z, A) = 0}. Put
differently, cl A is the smallest closed set that contains A. A point x is called an
interior point of A if there exists ¢ > 0 such that {y € R" : d(z,y) < e} C A.
The set of all interior points of A is denoted int A.

Lemma 6. Let M € R™ ™D be given by

(1 0 0 0 —1]
010 0 —1
M=10 01 0 —1
O | . |
0 0 0 1 —1]

Let { My} be a sequence with My, — M. Then for some k, there exists a vector
A € (0,00)" " with M\ = 0.

Proof. Since the nullspace of every M, is nonempty, we can fix a sequence
{A\x} of unit vectors with M\, = 0. By passing to a subsequence if necessary,
we may assume that Ay — A*. But then \* is a unit vector with MA* = 0,
which forces

1

Vo +1 1

Vn+1 |

1
In particular, for all k£ large enough, the components of A, are either all positive
or all negative, so that either Ay or —\; is the desired vector. ]

Theorem 7 (Separating hyperplane theorem, nonstrict case). Let X, Y C R"
be nonempty convex subsets. If XNY = @&, then there exists a nonzero i» € R™
with

inf (X, 1) > sup (Y, ¢).



Vil e

Figure 2: Separating 0 from B by a hyperplane.

Proof. Consider the convex set A=X —Y ={r—y:2z € X,y € Y}. Then
0 ¢ A, and our objective is to find a nonzero ¢ € R" with inf (A4, ) > 0. Let
B = cl A be the closure of A.

First of all, we claim that 0 ¢ int B. For the sake of contradiction, suppose
otherwise. Then for € > 0 small enough, B contains the ball {v : ||v]|, < €}.
In particular, B contains vy, €vs, . .., €v,41, Where v; is the ¢th column of the
matrix M in Lemma 6. Recall that each v; is the limit of a sequence in A.
By Lemma 6, it follows that some 0y, 0s,...,0,11 € A obey > A\v; = 0 for
some positive coefficients Ay, Ao, ..., A\,41. Since A is convex, we conclude that
0 € A, a contradiction. Hence 0 ¢ int B, as claimed.

The remainder of the proof is illustrated in Figure 2. By the claim just
settled, we can fix a sequence of points {z;} outside of B with z; — 0. By the
strict version of the separating hyperplane theorem, for each k there exists a
unit vector ¢, with

inf <B, ¢k> > <Zk, %) (3)

Passing to a subsequence if necessary, we may assume that 1, — 1 for some
unit vector 1. We now claim that inf (B, ) > 0. Indeed, for every v € B,

(v,9) = Jim (v, Yr) since ¢ —
—00
> lim (2, ) by (3)
k—o00
=0 since ||[¢x|| = 1 and 2z, — 0. O



