
CS 289 Communication Complexity
Instructor: Alexander A. Sherstov
Handout: Separating hyperplane theorem

Strict separation

For x, y ∈ Rn, we write d(x, y) = ‖x − y‖. For subsets A,B ⊆ Rn, we de-
fine d(A, x) = d(x,A) = infa∈A d(x, a) and d(A,B) = infa∈A,b∈B d(a, b). Let
diamA = supx,y∈A d(x, y). For A ⊆ Rn and x ∈ Rn, we define 〈A, x〉 = {〈a, x〉 :
a ∈ A}. In Euclidean space Rn, the term compact set refers to any set that is
closed and bounded.

Theorem 1 (Separating hyperplane theorem, strict case). Let C,K ⊆ Rn be
nonempty convex sets with C ∩ K = ∅. If C is closed and K compact, then
there exists ψ ∈ Rn with

inf 〈C,ψ〉 > sup 〈K,ψ〉.

Proof. The strategy of the proof is illustrated in Figure 1. We start by proving
the existence of a pair of closest points x∗ and y∗, where x ∈ C and y ∈ K.
We then show that the hyperplane with normal vector ψ = x∗ − y∗ separates
the two convex sets. Details follow.

Claim 2. There exist x∗ ∈ C and y∗ ∈ K such that d(x∗, y∗) = d(C,K).

Proof. For this, pick an arbitrary point x0 ∈ C and define r = 2d(x0, K) +
diamK. By the triangle inequality, d(x, x0) 6 d(x,K) + diamK + d(x0, K). It
follows that any point x with d(x, x0) > r satisfies

d(x,K) > d(x, x0)− diamK − d(x0, K)

> d(x0, K).

As a result, the compact set C ′ = C ∩ {x : d(x, x0) 6 r} obeys d(C,K) =
d(C ′, K). Since d(·, ·) is a continuous function on the compact C ′×K, it must
attain its infimum on C ′ × K, i.e., there must exist (x∗, y∗) ∈ C ′ × K with
d(x∗, y∗) = d(C ′, K) = d(C,K).

In the remainder of the proof, fix x∗ and y∗ as in Claim 2, and define
ψ = x∗ − y∗.

Claim 3. inf 〈C,ψ〉 > 〈x∗, ψ〉.
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Figure 1: Separating two convex sets by a hyperplane.

Proof. For the sake of contradiction, suppose that 〈x, ψ〉 < 〈x∗, ψ〉 for some
x ∈ C. This is equivalent to

〈x− x∗, x∗ − y∗〉 < 0. (1)

For ε ∈ (0, 1), the point xε = (1 − ε)x∗ + εx is contained in C by convexity.
However,

‖xε − y∗‖2 = 〈x∗ − y∗ + ε(x− x∗), x∗ − y∗ + ε(x− x∗)〉
= ‖x∗ − y∗‖2 + 2ε 〈x− x∗, x∗ − y∗〉︸ ︷︷ ︸

<0 by (1)

+ε2‖x− x∗‖2.

Hence d(xε, y
∗) < d(x∗, y∗) for ε > 0 small enough, contradicting d(x∗, y∗) =

d(C,K).

Claim 4. 〈x∗, ψ〉 > 〈y∗, ψ〉.

Proof. We have 〈x∗ − y∗, ψ〉 = ‖x∗ − y∗‖2 > 0, where the last step uses the
fact that x∗ 6= y∗ by the disjointness of C and K.

Claim 5. 〈y∗, ψ〉 > sup 〈K,ψ〉.

Proof. The proof is analogous to Claim 3. Specifically, suppose for the sake of
contradiction that 〈y, ψ〉 > 〈y∗, ψ〉 for some y ∈ K. This is equivalent to

〈y∗ − y, x∗ − y∗〉 < 0. (2)

For ε ∈ (0, 1), the point yε = (1 − ε)y∗ + εy is contained in K by convexity.
However,

‖x∗ − yε‖2 = 〈x∗ − y∗ + ε(y∗ − y), x∗ − y∗ + ε(y∗ − y)〉
= ‖x∗ − y∗‖2 + 2ε 〈y∗ − y, x∗ − y∗〉︸ ︷︷ ︸

<0 by (2)

+ε2‖y∗ − y‖2.
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Hence d(x∗, yε) < d(x∗, y∗) for ε > 0 small enough, contradicting d(x∗, y∗) =
d(C,K).

By Claims 3–5, the proof is complete.

Nonstrict separation

The proofs below use the following property of compact sets K ⊂ Rn: given
any sequence x1, x2, . . . , xn, . . . ∈ K, there is a subsequence xi1 , xi2 , . . . , xin , . . .
and some x∗ ∈ K such that xin → x∗ as n → ∞. In other words, every
sequence in a compact set has a convergent subsequence. The closure of a
set A ⊆ Rn is a superset of A defined by clA = {x ∈ Rn : d(x,A) = 0}. Put
differently, clA is the smallest closed set that contains A. A point x is called an
interior point of A if there exists ε > 0 such that {y ∈ Rn : d(x, y) < ε} ⊆ A.
The set of all interior points of A is denoted intA.

Lemma 6. Let M ∈ Rn×(n+1) be given by

M =


1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
...

...
...

. . . 0 −1
0 0 0 1 −1

 .
Let {Mk} be a sequence with Mk →M. Then for some k, there exists a vector
λ ∈ (0,∞)n+1 with Mkλ = 0.

Proof. Since the nullspace of every Mk is nonempty, we can fix a sequence
{λk} of unit vectors with Mkλk = 0. By passing to a subsequence if necessary,
we may assume that λk → λ∗. But then λ∗ is a unit vector with Mλ∗ = 0,
which forces

λ∗ =
±1√
n+ 1


1
1
...
1

 .
In particular, for all k large enough, the components of λk are either all positive
or all negative, so that either λk or −λk is the desired vector.

Theorem 7 (Separating hyperplane theorem, nonstrict case). Let X, Y ⊆ Rn

be nonempty convex subsets. If X∩Y = ∅, then there exists a nonzero ψ ∈ Rn

with

inf 〈X,ψ〉 > sup 〈Y, ψ〉.
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Figure 2: Separating 0 from B by a hyperplane.

Proof. Consider the convex set A = X − Y = {x − y : x ∈ X, y ∈ Y }. Then
0 /∈ A, and our objective is to find a nonzero ψ ∈ Rn with inf 〈A,ψ〉 > 0. Let
B = clA be the closure of A.

First of all, we claim that 0 /∈ intB. For the sake of contradiction, suppose
otherwise. Then for ε > 0 small enough, B contains the ball {v : ‖v‖∞ 6 ε}.
In particular, B contains εv1, εv2, . . . , εvn+1, where vi is the ith column of the
matrix M in Lemma 6. Recall that each vi is the limit of a sequence in A.
By Lemma 6, it follows that some ṽ1, ṽ2, . . . , ṽn+1 ∈ A obey

∑
λivi = 0 for

some positive coefficients λ1, λ2, . . . , λn+1. Since A is convex, we conclude that
0 ∈ A, a contradiction. Hence 0 /∈ intB, as claimed.

The remainder of the proof is illustrated in Figure 2. By the claim just
settled, we can fix a sequence of points {zk} outside of B with zk → 0. By the
strict version of the separating hyperplane theorem, for each k there exists a
unit vector ψk with

inf 〈B,ψk〉 > 〈zk, ψk〉. (3)

Passing to a subsequence if necessary, we may assume that ψk → ψ for some
unit vector ψ. We now claim that inf 〈B,ψ〉 > 0. Indeed, for every v ∈ B,

〈v, ψ〉 = lim
k→∞
〈v, ψk〉 since ψk → ψ

> lim
k→∞
〈zk, ψk〉 by (3)

= 0 since ‖ψk‖ = 1 and zk → 0.
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