University of California, Los Angeles CS 289A Communication Complexity *Instructor:* Alexander Sherstov

Problem Set II

- 1. We proved in class that $DISJ_n$ has unbounded-error communication complexity $O(\log n)$. Prove that this bound is asymptotically tight. You must solve this problem from first principles, without appeal to the techniques of Lecture 15 such as Forster's method.
- 2. Determine the unbounded-error communication complexity of EQ_n , up to a multiplicative constant.
- 3. A Euclidean embedding of $A \in \{-1, +1\}^{n \times m}$ is a system of vectors $u_1, \ldots, u_n, v_1, \ldots, v_m \in \mathbb{R}^k$ (for finite but arbitrarily large k) such that $A_{ij} = \operatorname{sgn}\langle u_i, v_j \rangle$ for all i, j. The margin of this Euclidean embedding is defined as $\min_{i,j} |\langle u_i | | u_i | |, v_j / | v_j | \rangle|$. The margin of A, denoted m(A), is the supremum of the margin over all Euclidean embeddings of A. Prove that $c \leq \operatorname{disc}(A)/m(A) \leq C$ for some absolute constants $C \geq c > 0$ and all $A \in \{-1, +1\}^{n \times m}$.
- 4. A village has *n* residents. Every day at noon, they all meet at the main square to discuss daily matters. An evil spirit visits the village one night and marks the ears of *k* of the villagers with indelible ink, $k \ge 1$. Later that day, at noon, the evil spirit comes to the village meeting and announces that at least one villager has a marked ear. The evil spirit never visits the village again. If (and only if) a villager is able to logically deduce that he has a marked ear, he will leave the village the same day, never to be seen again. Ear marks being a taboo subject in town, the villagers never discuss it in any way. Moreover, a villager with a marked ear can never see his own mark in a mirror or otherwise. What will be the population count in the village n + 1 days after the evil spirit's visit?
- 5. Prove that the containment $\Sigma_1^{cc} \cup \Pi_1^{cc} \subset \Sigma_2^{cc} \cup \Pi_2^{cc}$ is strict.
- 6. Define $E(n,d) = \min_p \sum_{x \in \{0,1\}^n} |p(x_1, x_2, \dots, x_n) x_1 x_2 \cdots x_n|$, where the minimum is over all polynomials p of degree at most d. In words, E(n,d) is the least ℓ_1 error in an approximation of the AND function by a polynomial of degree at most d. Determine E(n,d) for $d = 0, 1, 2, \dots, n$.
- 7. Let N_1, N_2, \ldots, N_k be norms on \mathbb{R}^n . Consider the norm N given by $N = \max\{N_1, N_2, \ldots, N_k\}$. Prove that $B_N = \bigcap B_{N_i}$ and $B_{N^*} = \operatorname{conv}(\bigcup B_{N_i^*})$.
- 8. Complete the proof of Forster's theorem by showing that range($\sum_{x \in X} xx^T$) = span X for any finite $X \subset \mathbb{R}^n$.
- 9. A Boolean formula in Boolean variables $z_1, ..., z_n$ is a fully parenthesized Boolean expression with literals $z_1, \neg z_1, ..., z_n, \neg z_n$ and binary operators \land and \lor . Formally, a Boolean formula is recursively defined as follows: each of z_i and $\neg z_i$ is a Boolean formula; if F and G are Boolean formulas, then so are $(F) \land (G)$ and $(F) \lor (G)$. Let $F(z_1, ..., z_n)$ be a Boolean formula in which every variable occurs exactly once. Determine the deterministic communication complexity of $f : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}$ given by $f(x, y) = F(x_1 \oplus y_1, ..., x_n \oplus y_n)$.
- 10. For a random $A \in \{-1, +1\}^{n \times n}$, prove that $\mathbf{P}[|||A|| \mathbf{E} ||A||| \ge t] \le \exp(-\Omega(t^2))$.