STRONG DIRECT PRODUCT THEOREMS FOR QUANTUM COMMUNICATION AND QUERY COMPLEXITY*

ALEXANDER A. SHERSTOV ${ }^{\dagger}$

Abstract

A strong direct product theorem (SDPT) states that solving n instances of a problem requires $\Omega(n)$ times the resources for a single instance, even to achieve success probability $2^{-\epsilon n}$ for a small enough constant $\epsilon>0$. We prove that quantum communication complexity obeys an SDPT whenever the communication lower bound for a single instance is proved by the generalized discrepancy method, the strongest technique in that model. We prove that quantum query complexity obeys an SDPT whenever the query lower bound for a single instance is proved by the polynomial method, one of the two main techniques in that model. In both models, we prove the corresponding XOR lemmas and threshold direct product theorems.

Key words. Strong direct product theorems, XOR lemmas, quantum communication complexity, quantum query complexity

AMS subject classifications. 68Q17, 68Q12, 81P45, 81P68

1. Introduction. A natural question to ask of any computational model is how the resources needed to solve n instances of a problem scale with n. More concretely, suppose that solving a single instance of a given decision problem, with probability of correctness $4 / 5$, requires R units of a computational resource (such as time, memory, communication, or queries). How many units of the resource are needed to solve n independent instances of the problem? Common sense suggests that the answer should be $\Omega(n R)$. After all, with significantly fewer than R units per instance, any algorithm seems doomed to have to guess random answers for many of the instances, resulting in overall success probability $2^{-\Omega(n)}$. Such a statement is called a strong direct product theorem. A related notion is an XOR lemma, which asserts that computing the XOR of the answers to the n problem instances requires $\Omega(n R)$ resources, even if one is willing to settle for a success probability of $\frac{1}{2}+2^{-\epsilon n}$ (where $\epsilon>0$ is a small enough absolute constant). While highly plausible, XOR lemmas and strong direct product theorems are notoriously hard to prove and sometimes flat out wrong. To a considerable extent, the difficulty stems from the claimed exponential decay in the probability of successful computation. Dropping this part of the claim from strong direct product theorems results in direct sum theorems, which nevertheless are also elusive. The described nomenclature is fairly standard by now but does admit slight variations; for example, it may make more sense to work with success probability for an average instance rather than a worst-case instance, or vice versa.
1.1. Previous work. Apart from their inherent importance in theoretical computer science, direct product results have various applications, including separations of circuit classes [30], improvement of soundness in proof systems [45], inapproximability results for optimization problems [11, 21], and time-space trade-offs [34, 5]. Perhaps the two most famous results in this line of research are Yao's XOR lemma [59] for circuits, which was in 1982 the first result of the kind, and Raz's parallel repetition theorem [45] for two-prover games. Considerable progress has been achieved in these and various other models, complemented by surprising counterexamples [20, 49, 8].
[^0]The models of interest to us in this paper are quantum communication complexity and quantum query complexity, where the direct product phenomenon is understood quite poorly. Furthermore, work here has advanced much more slowly than in the classical case, a point conveyed by the following overview of the classical and quantum literature.

Classical communication and query complexity. The direct sum problem in communication complexity was raised for the first time in the work of Karchmer, Raz, and Wigderson [30], who showed that its resolution for relations would prove that NC^{1} is properly contained in NC^{2}. Feder, Kushilevitz, Naor, and Nisan [20] established a direct sum theorem for nondeterministic communication complexity and inferred a weaker result for deterministic communication. Information-theoretic methods have enabled substantial progress $[16,7,26,27,23,8]$ on the direct sum question in the randomized model and its restrictions, including one-way communication and simultaneous message passing. In what generality randomized communication complexity obeys a direct sum theorem remains unknown; some counterexamples have been discovered for a careful choice of parameters [20].

It also remains unknown whether randomized communication complexity in general obeys a strong direct product theorem. A variety of results have been established, however, for concrete functions and some restrictions of the randomized model. Parnafes, Raz, and Wigderson [44] proved the first result of the kind, for "forests" of communication protocols. Shaltiel [49] proved an XOR lemma for uniform-distribution discrepancy, a well-studied communication complexity measure. Shaltiel's result has been generalized and strengthened in several ways [31, 10, 56, 40]. Jain, Klauck, and Nayak [24] obtained strong direct product theorems for an information-theoretic complexity measure called the subdistribution bound. Most recently, Klauck [33] proved the long-conjectured strong direct product theorem for the randomized communication complexity of the disjointness function.

In classical query complexity, the direct product phenomenon is well understood. Strong direct product theorems have been obtained for "decision forests" by Nisan, Rudich, and Saks [43], for "fair" decision trees by Shaltiel [49], and for the randomized query complexity of symmetric functions by Klauck, Špalek, and de Wolf [34]. Very recently, Drucker [18] obtained strong direct product theorems for the randomized query complexity of arbitrary functions.

Quantum communication and query complexity. Klauck, Špalek, and de Wolf [34] proved a strong direct product theorem for the quantum communication complexity of the disjointness function. Shaltiel [49] and Lee, Shraibman, and Špalek [40] obtained an XOR lemma for correlation with low-cost protocols, which gives a strong direct product theorem for certain communication problems such as Hadamard matrices or random matrices. The only other results known to us are for the restricted models of one-way communication and simultaneous message passing [27, 12, 23].

The results for quantum query complexity are just as few in number. The first direct product result is due to Aaronson [1], who proved it for the problem of k-fold search. Aaronson's result was improved to optimal with respect to all parameters by Klauck, Špalek, and de Wolf [34], who established a strong direct product theorem for the quantum query complexity of the OR function. In follow-up work, Ambainis, Špalek, and de Wolf [5] obtained a strong direct product theorem for all other symmetric functions. The only other result prior to our paper is due to Špalek [55], who developed a multiplicative adversary method for quantum query complexity and proved that that method obeys a strong direct product theorem.
1.2. Our results. In what follows, the symbol $f^{\otimes n}$ refers to the XOR of n independent copies of a given decision problem f, which is a sign matrix in the case of communication complexity and a Boolean function $f:\{-1,+1\}^{m} \rightarrow\{-1,+1\}$ in the case of query complexity. The symbol $f^{(n)}$ refers to the task of simultaneously solving n independent instances of f. In the latter context, we recall the notion of a threshold direct product theorem, which is a stronger statement than a strong direct product theorem. Specifically, a threshold direct product theorem defines successful computation of $f^{(n)}$ as correct computation of $(1-\epsilon) n$ instances for a small constant $\epsilon>0$, as opposed to correct computation of all n instances. Moreover, the algorithm is under no obligation to report which instances it solved correctly. A threshold direct product theorem states that computing n instances requires $\Omega(n)$ times the resources for a single instance, even to achieve success probability $2^{-\epsilon n}$ with this relaxed criterion of correct computation. All our direct product theorems are threshold direct product theorems.
1.2.1. Quantum communication. Let \mathscr{R} denote the family of $\{0,1\}$-matrices in which the " 1 " entries form a submatrix. Such matrices are called rectangles and are the basic building blocks in communication complexity. In particular, the matrix Π of acceptance probabilities of any communication protocol with cost c obeys

$$
\begin{equation*}
\Pi \in 2^{O(c)} \operatorname{conv}\{ \pm R: R \in \mathscr{R}\} \tag{1.1}
\end{equation*}
$$

where as usual the operator conv denotes passage to the convex hull of the given set. This fact has an elementary and well-known demonstration [37] for classical protocols. The validity of (1.1) for quantum protocols, on the other hand, was open for several years and settled relatively recently in an elegant paper of Linial and Shraibman [42]. This fact immediately gives a criterion for high communication complexity, known as the generalized discrepancy method. Specifically, define a norm μ on matrices by letting $\mu(\Pi)$ be the least $K \geqslant 0$ for which $\Pi \in K \operatorname{conv}\{ \pm R: R \in \mathscr{R}\}$. Then a sign matrix has high bounded-error communication complexity whenever every real matrix in its neighborhood has high μ norm. The method has an equivalent dual formulation that is widely used and has a rich history, e.g., [32, 46, 42, 52, 50, 39].

Linial and Shraibman [42] showed that the generalized discrepancy method subsumes all earlier criteria for high quantum communication complexity. In particular, all lower bounds for two-way quantum communication obtained to date can be derived using the generalized discrepancy method alone. Furthermore, the full power of the method is rarely necessary, and the main lower bounds have all been obtained using a simpler criterion known as the trace norm method, e.g., [60, 36, 32, 46, 52, 54].

The main result of this paper is that the generalized discrepancy method obeys an XOR lemma and a threshold direct product theorem. This solves an open problem in $[40$, Sec. 6$]$. In particular, whenever the generalized discrepancy method yields a tight lower bound on the quantum communication complexity of a sign matrix F (and it may well be the case that the method yields a tight lower bound for every F), one immediately obtains an XOR lemma and threshold direct product theorem for F. In what follows, we let the real number $\operatorname{GDM}_{1 / 5}(F)$ denote the lower bound that the generalized discrepancy method gives on the $1 / 5$-error quantum communication complexity of F.

ThEOREM 1.1. Let $\epsilon>0$ be a small enough absolute constant. Then for every sign matrix F, the following communication problems require $\Omega\left(n \operatorname{GDM}_{1 / 5}(F)\right)$ qubits of communication each:
(i) solving $F^{\otimes n}$ with worst-case probability $\frac{1}{2}+2^{-\epsilon n}$;
(ii) solving $F^{(n)}$ with worst-case probability $2^{-\epsilon n}$;
(iii) solving with probability $2^{-\epsilon n}$ at least $(1-\epsilon) n$ among n instances of F.

It is natural to consider the direct product question in the broader context of distinct communication problems $F_{1}, F_{2}, \ldots, F_{n}$, rather than n instances of the same communication problem. This paper gives a detailed solution in the generalized setting as well. As before, we consider the task of computing the XOR of the answers, denoted $F_{1} \otimes \cdots \otimes F_{n}$, and the task of solving each of the n problems, denoted $\left(F_{1}, \ldots, F_{n}\right)$. Here, one clearly cannot hope to prove that $\Omega\left(\sum_{i=1}^{n} \operatorname{GDM}_{1 / 5}\left(F_{i}\right)\right)$ is a communication lower bound for solving the above two tasks with advantage $2^{-\epsilon n}$ over random guessing. Indeed, if F_{1} has communication cost larger than the other problems combined, then for all intents and purposes we are working with a single problem, and no exponential decay in success probability is possible by definition. However, it is reasonable to expect a direct sum theorem here - and we prove that it indeed holds:

Theorem 1.2. For all sign matrices $F_{1}, F_{2}, \ldots, F_{n}$, computing $F_{1} \otimes \cdots \otimes F_{n}$ with probability $4 / 5$ requires a communication protocol with cost

$$
\Omega\left(\sum_{i=1}^{n} \operatorname{GDM}_{1 / 5}\left(F_{i}\right)\right)
$$

We complement Theorem 1.2 by proving that a quantum protocol's success probability does indeed become exponentially close to that of random guessing when the protocol's communication is bounded by the sum of the smallest $\lceil 0.99 n\rceil$ of the numbers $\operatorname{GDM}_{1 / 5}\left(F_{1}\right), \ldots, \operatorname{GDM}_{1 / 5}\left(F_{n}\right)$:

Theorem 1.3. Let $\epsilon>0$ be a small enough absolute constant. Then for all sign matrices $F_{1}, F_{2}, \ldots, F_{n}$ of rank greater than 1 , the following communication problems require

$$
\Omega\left(\min _{|S|=\lceil 0.99 n\rceil}\left\{\sum_{i \in S} \operatorname{GDM}_{1 / 5}\left(F_{i}\right)\right\}\right)
$$

quantum bits each:
(i) solving $F_{1} \otimes \cdots \otimes F_{n}$ with worst-case probability $\frac{1}{2}+2^{-\epsilon n}$;
(ii) solving $\left(F_{1}, \ldots, F_{n}\right)$ with worst-case probability $2^{-\epsilon n}$;
(iii) solving with probability $2^{-\epsilon n}$ at least $(1-\epsilon) n$ of the n instances F_{1}, \ldots, F_{n}.

The above requirement that the matrices have rank greater than 1 serves to avoid trivialities; the degenerate case of rank-1 matrices is also solved in this paper, for the sake of completeness (see Section 4.3). Second, all the theorems above are valid for quantum protocols with arbitrary prior entanglement. Third, we show that the constant $\epsilon>0$ in our strong direct product theorems can be taken arbitrarily close to its optimum value 1 (see Theorem 4.16). Fourth, while Theorems 1.1-1.3 are stated for worst-case complexity, they also hold for average-case complexity under a certain joint probability distribution defined explicitly in our proof. Finally, we prove results identical to Theorems 1.1-1.3 in the setting of partial communication problems, whose domain of definition is a proper subset of all possible inputs. In such cases $\mathrm{GDM}_{1 / 5}(F)$ is computed by considering the smallest μ norm over real matrices whose entries are within $\frac{1}{5}$ of the values of F on the domain of F and range unrestricted in $\left[-1-\frac{1}{5}, 1+\frac{1}{5}\right]$ outside the domain of F.
1.2.2. Quantum query complexity. The polynomial method is a technique for proving lower bounds on quantum query complexity, pioneered by Beals, Buhrman, Cleve, Mosca, and de Wolf [9]. The method is easy to state: the acceptance probability of a quantum query algorithm on input $x \in\{-1,+1\}^{m}$ is a real polynomial in $x_{1}, x_{2}, \ldots, x_{m}$ of degree at most $2 T$, where T is the number of queries. Therefore, if there is no degree- d real polynomial that approximates a given Boolean function f within $1 / 5$ on all inputs, then f has bounded-error query complexity $\Omega(d)$. Beals et al. [9] used this method to obtain tight lower bounds on the query complexity of all symmetric functions. The polynomial method has since yielded many other tight lower bounds, e.g., $[13,2,1,34]$. The main alternative to the polynomial method is the adversary method, introduced by Ambainis [4] and augmented in many subsequent works.

Our second main result is that the polynomial method obeys an XOR lemma and a threshold direct product theorem. In particular, whenever the polynomial method yields a tight lower bound on the query complexity of a given Boolean function f, one automatically obtains an XOR lemma and a threshold direct product theorem for f. This subsumes the functions f in all previous direct product theorems for quantum query complexity $[1,34,5]$. Analogous to communication complexity, we prove our results in the general setting of distinct functions $f_{1}, f_{2}, \ldots, f_{n}$ rather than n instances of the same function f. In the statements to follow, the symbol $\operatorname{deg}_{\epsilon}(f)$ stands for the least degree of a real polynomial that approximates f within ϵ pointwise.

ThEOREM 1.4. For all functions $f_{1}, f_{2}, \ldots, f_{n}:\{-1,+1\}^{m} \rightarrow\{-1,+1\}$, computing $f_{1} \otimes \cdots \otimes f_{n}$ with probability $4 / 5$ requires a quantum query algorithm with cost

$$
\Omega\left(\sum_{i=1}^{n} \operatorname{deg}_{1 / 5}\left(f_{i}\right)\right)
$$

We complement this with a direct product result analogous to the one for communication:

ThEOREM 1.5. Let $\epsilon>0$ be a small enough absolute constant. Then for all functions $f_{1}, f_{2}, \ldots, f_{n}:\{-1,+1\}^{m} \rightarrow\{-1,+1\}$, the following tasks require

$$
\Omega\left(\min _{|S|=\lceil 0.99 n\rceil}\left\{\sum_{i \in S} \operatorname{deg}_{1 / 5}\left(f_{i}\right)\right\}\right)
$$

quantum queries each:
(i) solving $f_{1} \otimes \cdots \otimes f_{n}$ with worst-case probability $\frac{1}{2}+2^{-\epsilon n}$;
(ii) solving $\left(f_{1}, \ldots, f_{n}\right)$ with worst-case probability $2^{-\epsilon n}$;
(iii) solving with probability $2^{-\epsilon n}$ at least $(1-\epsilon) n$ of the n instances f_{1}, \ldots, f_{n}.

In particular, Theorem 1.5 shows that for every Boolean function f, the tasks of computing $f^{\otimes n}$ and $f^{(n)}$ each have quantum query complexity $\Omega\left(n \operatorname{deg}_{1 / 5}(f)\right)$, even to achieve advantage $2^{-\epsilon n}$ over random guessing. The additional remarks made in the context of communication carry over in full. Specifically, Theorems 1.4 and 1.5 remain valid for partial Boolean functions, in which case the approximate degree $\operatorname{deg}_{\epsilon}(f)$ is defined as the least degree of a polynomial that approximates f within ϵ on the domain of f and ranges freely in $[-1-\epsilon, 1+\epsilon]$ everywhere else on the hypercube. Lastly, Theorems 1.4 and 1.5 are stated for worst-case complexity but are also valid for average-case complexity under a certain joint probability distribution given explicitly in our proof.
1.2.3. Polynomial approximation. In proving Theorem 1.5, we show in particular that

$$
\operatorname{deg}_{1-\epsilon^{-n}}\left(f^{\otimes n}\right) \geqslant \Omega\left(n \operatorname{deg}_{1 / 5}(f)\right)
$$

for any constant $\epsilon \in(0,1)$. This is the first direct product theorem for polynomial approximation. It matches the upper bound due to Buhrman, Newman, Röhrig, and de Wolf [14, Thm. 6], who proved that $\operatorname{deg}_{1 / 5}\left(f^{\otimes n}\right)=O\left(n \operatorname{deg}_{1 / 5}(f)\right)$. In Section 6, we also obtain the first direct sum results for polynomial approximation: given any function $F:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ with $\operatorname{deg}_{1 / 5}(F)=\Omega(n)$ (which includes the familiar majority and parity functions and the random functions), we prove that

$$
\operatorname{deg}_{1 / 5}(F(f, f, \ldots, f))=\Omega\left(\operatorname{deg}_{1 / 5}(F) \operatorname{deg}_{1 / 5}(f)\right)
$$

for all Boolean functions f. This lower bound matches the upper bound in [14].
1.3. Our techniques. The proof technique of this paper is quite general and applies to any bounded-error model of computation that admits a representation as a convex subset of a real linear space. Examples of convex subsets that naturally arise from a computational model include the unit ball of a norm and the linear span of a given set of functions. Both of these cases are treated in this paper: the former corresponds to communication complexity and the latter, to query complexity. For simplicity, we will focus on the former setting in this overview.

Here, one fixes a finite set X and equips the space of real functions on X and X^{n} with a norm $\|\cdot\|$. The norm captures the complexity of exact computation, as measured in the relevant resource. In other words, functions that represent low-cost communication protocols and low-cost query algorithms will have small norm. The complexity of ϵ-error computation for a given function $f: X \rightarrow\{-1,+1\}$ is then given by the minimum norm in the ϵ-neighborhood of f. This norm-based formalism is particularly natural in quantum computing and has been in use for many years, e.g., $[60,36,46]$.

XOR lemmas for correlation represent a particularly well-studied form of hardness amplification in this setting: given a function $f: X \rightarrow\{-1,+1\}$ that has small correlation γ with all low-cost communication protocols or low-cost query algorithms, one argues that for $f^{\otimes n}$ the correlation further drops to $\gamma^{\Omega(n)}$. In the language of norms, a function f has small correlation with the simple functions if and only if the dual norm $\|f\|^{*}$ is small. Thus, an XOR lemma for correlation is an assertion about the multiplicativity of the dual norm: $\left\|\left\|f^{\otimes n}\right\|^{*} \leqslant\left(\|f\|^{*}\right)^{\Omega(n)}\right.$. Much of the research surveyed above fits in this framework, including [49, 17, 56, 40].

This paper addresses a rather different problem. While we also seek to establish XOR lemmas, we start with a much more general object: a function $f: X \rightarrow\{-1,+1\}$ with high bounded-error computational complexity. The key point is that f need no longer have small dual norm $\|f\|^{*}$, or equivalently small correlation with the lowcost functions. Indeed, many common functions with near-maximum bounded-error complexity, such as the OR function in query complexity and the disjointness function in communication complexity, have high correlation with the low-cost protocols and query algorithms under every distribution on the domain. In particular, the above research on XOR lemmas for correlation no longer applies.

This described difficulty crystallizes best in the language of norms. By duality, a given function $f: X \rightarrow\{-1,+1\}$ of interest has high bounded-error complexity if and only if there exists a real-valued function $\psi: X \rightarrow \mathbb{R}$ of unit ℓ_{1} norm that has
reasonably large inner product $\langle f, \psi\rangle$ but low dual norm $\|\psi\|^{*}$. This function ψ is a witness to the fact that f has high bounded-error complexity. The challenge is to construct a corresponding witness for $f^{\otimes n}$. The natural candidate, $\psi^{\otimes n}$, is completely useless for this purpose: while $\left\|\psi^{\otimes n}\right\|_{1}=1$ and moreover we can certainly hope for an exponential decay in the dual norm $\left\|\psi^{\otimes n}\right\|^{*} \leqslant\left(\|\psi\|^{*}\right)^{\Omega(n)}$, the correlation with $f^{\otimes n}$ will also decay exponentially: $\left\langle f^{\otimes n}, \psi^{\otimes n}\right\rangle=\langle f, \psi\rangle^{n}$. This translates to an uninteresting statement like "computing $f^{\otimes n}$ with error probability $2^{-\epsilon n}$ incurs $\Omega(n)$ times the cost of computing f." What we want is just the opposite: the error probability allowed in computing $f^{\otimes n}$ should be exponentially close to the trivial rate $1 / 2$ rather than to 0 .

The crux of our solution is the construction of the sought witness for $f^{\otimes n}$, using ideas from approximation theory to design a joint, nonproduct distribution under which the correlation of $\psi^{\otimes n}$ and $f^{\otimes n}$ becomes extremely high but the dual norm $\left\|\psi^{\otimes n}\right\|$ remains extremely low. This construction works for any norm whose dual $\|\cdot\|^{*}$ possesses a multiplicative property, as our norm of interest for which multiplicativity was established in previous work by Cleve, Slofstra, Unger, and Upadhyay [17].

This sketches some ideas in the proofs of our XOR lemmas. The direct product theorems are then derived by combining the XOR lemmas with known results on the low-error approximation of symmetric Boolean functions. In particular, we appeal to a result of de Wolf [58] that OR and other symmetric Boolean functions admit uniform approximation to within $2^{-\Omega(n)}$ by a polynomial of degree ϵn, for a small constant $\epsilon>0$.
1.4. Recent progress. We briefly mention several new results since the publication of this work as a conference paper. In an upcoming article, Lee and Roland [38] prove a strong direct product theorem for quantum query complexity, subsuming the corresponding result on quantum query complexity in this paper. However, the techniques in [38] no longer apply to polynomials, for which we obtain an optimal direct product theorem. The direct product theorem for polynomials in this paper was recently used in [53] to obtain direct product theorems for multiparty communication, including the set disjointness problem. Other recent developments include direct product theorems for natural restrictions of the randomized communication model, such as one-way and bounded-round communication [22, 25].
1.5. Organization. The remainder of this article is organized as follows. Section 2 opens with a review of technical preliminaries. Our generic method for proving XOR lemmas and direct product theorems for bounded-error computation is developed in Section 3. Applications to communication complexity and query complexity are presented in Sections 4 and 5. Further generalizations in the context of polynomial approximation are given in Section 6.
2. Preliminaries. We view Boolean functions as mappings $f: X \rightarrow\{-1,+1\}$ for some finite set X, where -1 and +1 correspond to "true" and "false," respectively. A partial Boolean function g on a finite set X is a mapping $g: D \rightarrow\{-1,+1\}$ for some nonempty proper subset $D \subset X$. We denote the domain of g by dom $g=D$. For emphasis, we will occasionally refer to Boolean functions with dom $g=X$ as total. For a string $x \in\{-1,+1\}^{n}$, we use the shorthand $|x|=\left|\left\{i: x_{i}=-1\right\}\right|=\sum\left(1-x_{i}\right) / 2$. For $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n} \in[0,1]$, the symbol $\Pi\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right)$ stands for the probability distribution on $\{-1,+1\}^{n}$ whereby the i th bit of the string takes on -1 with probability
ϵ_{i}, independently for each i. For an event E, the corresponding indicator function is

$$
\mathbf{I}[E]= \begin{cases}1 & \text { if } E \text { holds } \\ 0 & \text { otherwise }\end{cases}
$$

We adopt the standard definition of the sign function:

$$
\operatorname{sgn} t= \begin{cases}-1, & t<0 \\ 0, & t=0 \\ 1, & t>0\end{cases}
$$

It will also be convenient to define a modified sign function,

$$
\widetilde{\operatorname{sgn}} t= \begin{cases}-1, & t<0 \\ 1, & t \geqslant 0\end{cases}
$$

We will specify an n-bit string by its i th bit, for example, $\left(\ldots,\left(\epsilon-\epsilon_{i}\right) /\left(1-\epsilon_{i}\right), \ldots\right)$ or $\left(\ldots, z_{i}, \ldots\right)$. The Cartesian product of sets $X_{1}, X_{2}, \ldots, X_{n}$ is denoted $\prod X_{i}$, or for greater explicitness $X_{1} \times X_{2} \times \cdots \times X_{n}$. The degree of a real polynomial p is denoted $\operatorname{deg} p$.

Given a function $\phi:\{-1,+1\}^{n} \rightarrow \mathbb{R}$, there exists a unique multilinear polynomial $\tilde{\phi}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\phi \equiv \tilde{\phi}$ on $\{-1,+1\}^{n}$. We will always identify ϕ with its multilinear extension $\tilde{\phi}$ to \mathbb{R}^{n}. In particular, we will write $\phi(z)$ for arbitrary $z \in[-1,1]^{n}$. This convention requires some care. To illustrate, consider the polynomial $p_{k}:\{-1,+1\}^{n} \rightarrow \mathbb{R}$ from Lemma 3.1, defined by

$$
p_{k}(x)=(-1)^{k} \prod_{i=1}^{k}(|x|-i)
$$

One may be tempted to evaluate the multilinear extension of p_{k} to \mathbb{R}^{n} by direct substitution. This would of course be incorrect because the defining equation for p_{k} was only meant to be valid on the hypercube and is not multilinear.

For integers $n \geqslant k \geqslant 0$, we adopt the shorthand

$$
\binom{n}{\leqslant k}=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k}
$$

Throughout this manuscript, $\log x$ stands for the logarithm of x to the base 2 . The binary entropy function $H:[0,1] \rightarrow[0,1]$ is given by $H(p)=-p \log p-(1-p) \log (1-p)$ and is strictly increasing on $[0,1 / 2]$. The following bound is well known [28, p. 283]:

$$
\binom{n}{\leqslant k} \leqslant 2^{H(k / n) n}, \quad \quad k=0,1,2, \ldots,\lfloor n / 2\rfloor .
$$

2.1. Norms and duality. For a finite set X, the linear space of real functions on X is denoted \mathbb{R}^{X}. This space is equipped with the usual norms and inner product:

$$
\begin{align*}
\|\phi\|_{\infty} & =\max _{x \in X}|\phi(x)| & & \left(\phi \in \mathbb{R}^{X}\right) \\
\|\phi\|_{1} & =\sum_{x \in X}|\phi(x)| & & \left(\phi \in \mathbb{R}^{X}\right) \tag{2.1}\\
\langle\phi, \psi\rangle & =\sum_{x \in X} \phi(x) \psi(x) & & \left(\phi, \psi \in \mathbb{R}^{X}\right)
\end{align*}
$$

The tensor product of $\phi \in \mathbb{R}^{X}$ and $\psi \in \mathbb{R}^{Y}$ is the function $\phi \otimes \psi \in \mathbb{R}^{X \times Y}$ given by $(\phi \otimes \psi)(x, y)=\phi(x) \psi(y)$. The tensor product $\phi \otimes \phi \otimes \cdots \otimes \phi(n$ times $)$ is denoted $\phi^{\otimes n} \in$ $\mathbb{R}^{X^{n}}$. When specialized to real matrices, the tensor product is the usual Kronecker product. The pointwise (Hadamard) product of $\phi, \psi \in \mathbb{R}^{X}$ is denoted $\phi \circ \psi \in \mathbb{R}^{X}$ and given by $(\phi \circ \psi)(x)=\phi(x) \psi(x)$. Note the difference between $\phi \otimes \psi$ and $\phi \circ \psi$.

For any norm $\|\cdot\| \|$ on \mathbb{R}^{X}, recall that $\|\cdot\|^{*}$ refers to the dual norm given by

$$
\begin{equation*}
\|\phi\|^{*}=\max _{\psi \neq 0} \frac{\langle\phi, \psi\rangle}{\|\psi\|} \tag{2.2}
\end{equation*}
$$

A corollary to the duality $\left\|\|\cdot\|^{* *}=\right\|\|\cdot\|$ is the following classical fact pertaining to approximation; cf. [39, Thm. 6.3].

FACT 2.1. Let X be a finite set, let N_{1}, N_{2} be norms on \mathbb{R}^{X}. Then for any $\epsilon \geqslant 0$ and any $f \in \mathbb{R}^{X}$ with $N_{2}(f)>\epsilon$,

$$
\begin{equation*}
\min \left\{N_{1}(f-\xi): N_{2}(\xi) \leqslant \epsilon\right\}=\max _{\psi \neq 0} \frac{\langle f, \psi\rangle-\epsilon N_{2}^{*}(\psi)}{N_{1}^{*}(\psi)} \tag{2.3}
\end{equation*}
$$

Proof. One can restate (2.3) as

$$
\begin{equation*}
\sup \left\{c \geqslant 0: f+\epsilon B_{N_{2}} \cap c B_{N_{1}}=\varnothing\right\}=\max _{\psi \neq 0} \frac{\langle f, \psi\rangle-\epsilon N_{2}^{*}(\psi)}{N_{1}^{*}(\psi)}, \tag{2.4}
\end{equation*}
$$

where $B_{N_{1}}$ and $B_{N_{2}}$ stand for the unit balls of N_{1} and N_{2}, respectively. By the separating hyperplane theorem, the compact convex sets $f+\epsilon B_{N_{2}}$ and $c B_{N_{1}}$ are disjoint if and only if $\left\langle\psi, f+\zeta_{2}\right\rangle>\left\langle\psi, \zeta_{1}\right\rangle$ for some $\psi \in \mathbb{R}^{X}$ and all $\zeta_{1} \in c B_{N_{1}}, \zeta_{2} \in$ $\epsilon B_{N_{2}}$, which by duality is equivalent to $\langle f, \psi\rangle-\epsilon N_{2}^{*}(\psi)>c N_{1}^{*}(\psi)$. This forces equality in (2.4).

We will mainly be concerned with approximation in the infinity norm. This case is served by the notation $\|f\|_{\epsilon}=\min \left\{\|f-\xi\|:\|\xi\|_{\infty} \leqslant \epsilon\right\}$, where $f: X \rightarrow \mathbb{R}$ is a given function and $\|\cdot\| \|$ is a given norm on \mathbb{R}^{X}. When f is a partial Boolean function on X, we define $\|f\|_{\epsilon}$ to be the least norm $\|\phi\|$ over all elements $\phi \in \mathbb{R}^{X}$ such that

$$
\begin{aligned}
|f(x)-\phi(x)| \leqslant \epsilon, & x \in \operatorname{dom} f \\
|\phi(x)| \leqslant 1+\epsilon, & x \notin \operatorname{dom} f
\end{aligned}
$$

When $\operatorname{dom} f=X$, this agrees with the earlier definition of the symbol $\|f\|_{\epsilon}$. A straightforward consequence of Fact 2.1 is:

Corollary 2.2. Let X be a finite set, $\|\cdot\|$ a norm on \mathbb{R}^{X}. Then for every $\epsilon \in(0,1)$ and every (possibly partial) Boolean function f on X,

$$
\begin{align*}
\|f\|_{\epsilon} & =\max _{\psi \in \mathbb{R}^{X} \backslash\{0\}} \frac{1}{\|\psi\|^{*}}\left\{\sum_{x \in \operatorname{dom} f} f(x) \psi(x)-\sum_{x \notin \operatorname{dom} f}|\psi(x)|-\epsilon\|\psi\|_{1}\right\} \tag{2.5}\\
& \geqslant \max _{\psi \in \mathbb{R}^{X} \backslash\{0\}} \frac{1}{\|\psi\|^{*}}\left\{2 \sum_{x \in \operatorname{dom} f} f(x) \psi(x)-(1+\epsilon)\|\psi\|_{1}\right\}
\end{align*}
$$

In particular, when $\operatorname{dom} f=X$,

$$
\|f\|_{\epsilon}=\max _{\psi \in \mathbb{R}^{X} \backslash\{0\}} \frac{\langle f, \psi\rangle-\epsilon\|\psi\|_{1}}{\|\psi\|^{*}}
$$

Proof. We only prove (2.5), the other statements being trivial consequences. Let \mathbb{R}^{X} be normed by $N_{1}=\|\cdot\| \cdot \|$ and

$$
N_{2}(\psi)=\max \left\{\max _{x \in \operatorname{dom} f}|\psi(x)|, \frac{\epsilon}{1+\epsilon} \max _{x \notin \operatorname{dom} f}|\psi(x)|\right\}
$$

The dual norm N_{2}^{*} is given by

$$
\begin{align*}
N_{2}^{*}(\psi) & =\sum_{x \in \operatorname{dom} f}|\psi(x)|+\frac{1+\epsilon}{\epsilon} \sum_{x \notin \operatorname{dom} f}|\psi(x)| \tag{2.6}\\
& =\|\psi\|_{1}+\frac{1}{\epsilon} \sum_{x \notin \operatorname{dom} f}|\psi(x)| . \tag{2.7}
\end{align*}
$$

Equation (2.6) follows easily from the definition of a dual norm, (2.2). Another way to get (2.6) is to recall that $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ are dual norms, and that $N_{2}(\psi)=\left\|\psi^{\prime}\right\|_{\infty}$ where the vector ψ^{\prime} is obtained from ψ by scaling certain entries by $\epsilon /(1+\epsilon)$.

We have $\|f\|_{\epsilon}=\min \left\{N_{1}(F-\xi): N_{2}(\xi) \leqslant \epsilon\right\}$, where F is the extension of f to X given by $F=0$ outside $\operatorname{dom} f$. In view of (2.7), Fact 2.1 implies (2.5).
2.2. Matrix analysis. A special case covered by the notation (2.1) is the family $\mathbb{R}^{n \times m}$ of all real matrices of dimension $n \times m$. More explicitly, one has $\|A\|_{\infty}=$ $\max \left|A_{i j}\right|,\|A\|_{1}=\sum\left|A_{i j}\right|$, and $\langle A, B\rangle=\sum A_{i j} B_{i j}$ for all $A, B \in \mathbb{R}^{n \times m}$. For finite sets X and Y, we let $\mathbb{R}^{X \times Y}$ and $\{-1,+1\}^{X \times Y}$ stand for the families of real and ± 1 matrices, respectively, with rows indexed by elements of X and columns indexed by elements of Y. The rank of a matrix A over the reals is denoted rk A. The symbol $\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ refers to the diagonal matrix of order n with entries $a_{1}, a_{2}, \ldots, a_{n}$ on the diagonal. A signature scaling of a matrix $M \in \mathbb{R}^{n \times m}$ is any matrix of the form $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) M \operatorname{diag}\left(b_{1}, \ldots, b_{m}\right)$, where $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \in\{-1,+1\}$. The symbols I_{n} and $J_{n, m}$ refer to the identity matrix of order n and the all-ones matrix of dimension $n \times m$, respectively; we will drop the subscripts and write I, J whenever the dimension is clear from the context. A sign matrix is any matrix with entries ± 1. A Hadamard matrix is any sign matrix A of order n that obeys $A A^{\top}=n I$. The property of being a Hadamard matrix is preserved under signature scaling. In particular, the Hadamard matrices of order 2 are precisely the signature scalings of the matrix

$$
H=\left[\begin{array}{cc}
1 & 1 \tag{2.8}\\
1 & -1
\end{array}\right]
$$

Recall that the tensor product of Hadamard matrices is a Hadamard matrix. In particular, $H^{\otimes n}$ is a Hadamard matrix for every integer $n \geqslant 1$, a classical construction due to J. J. Sylvester.

The Frobenius norm of $M \in \mathbb{R}^{n \times m}$ is given by $\|M\|_{\mathrm{F}}=\sqrt{\sum M_{i j}^{2}}$. The singular values of M are denoted $\sigma_{1}(M) \geqslant \sigma_{2}(M) \geqslant \sigma_{3}(M) \geqslant \cdots$, with the spectral norm and trace norm given by $\|M\|=\sigma_{1}(M)$ and $\|M\|_{\Sigma}=\sum \sigma_{i}(M)$, respectively. The spectral norm and trace norm are duals of each other. An equivalent definition of the trace norm is

$$
\begin{equation*}
\|M\|_{\Sigma}=\min \left\{\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}: A B=M\right\} \tag{2.9}
\end{equation*}
$$

A close relative of the trace norm is the γ_{2} norm, defined by

$$
\begin{equation*}
\gamma_{2}(M)=\min \left\{\|A\|_{\text {row }}\|B\|_{\text {col }}: A B=M\right\} \tag{2.10}
\end{equation*}
$$

where $\|A\|_{\text {row }}$ and $\|B\|_{\text {col }}$ stand for the largest Euclidean norm of a row of A and the largest Euclidean norm of a column of B, respectively. The subscript in γ_{2} is a reference to the norm used to measure the rows of A and columns of B, namely, the Euclidean norm ℓ_{2}. Put

$$
\gamma_{2, \epsilon}(M)=\min \left\{\gamma_{2}(M-E):\|E\|_{\infty} \leqslant \epsilon\right\}
$$

the least γ_{2} norm of a matrix in the ϵ-neighborhood of M. Note that γ_{2}, the trace norm, spectral norm, and Frobenius norm are all norms, whereas $\gamma_{2, \epsilon}$ is not a norm (homogeneity fails). We collect some well-known properties of γ_{2} in the following statement.

Fact 2.3. Let A and B denote arbitrary real matrices. Let H_{N} be a Hadamard matrix of order N. Then:
(i) $\gamma_{2}(A)=\gamma_{2}(B)$ whenever A is a signature scaling of B,
(ii) $\gamma_{2}(A) \geqslant \gamma_{2}(B)$ whenever B is a submatrix of A,
(iii) γ_{2} is invariant under duplication of rows and columns,
(iv) $\gamma_{2}(A) \geqslant\|A\|_{\infty}$,
(v) $\gamma_{2}(A) \geqslant\|A\|_{\Sigma} / \sqrt{n m}$ for all $A \in \mathbb{R}^{n \times m}$,
(vi) $\gamma_{2}^{*}(A) \leqslant\|A\| \sqrt{n m}$ for all $A \in \mathbb{R}^{n \times m}$,
(vii) $\gamma_{2}(J)=1$,
(viii) $\gamma_{2}\left(H_{N}\right)=\sqrt{N}$,
(ix) $\gamma_{2, \epsilon}(A) \geqslant(1-\epsilon) \sqrt{n m} /\|A\|$ for every $A \in\{-1,+1\}^{n \times m}$,
(x) $\gamma_{2, \epsilon}(J)=1-\epsilon$ for $0 \leqslant \epsilon \leqslant 1$,
(xi) $\gamma_{2, \epsilon}\left(H_{N}\right)=(1-\epsilon) \sqrt{N}$ for $0 \leqslant \epsilon \leqslant 1$,
(xii) $\gamma_{2}(A \otimes B) \leqslant \gamma_{2}(A) \gamma_{2}(B)$,
(xiii) $\gamma_{2}(A \circ B) \leqslant \gamma_{2}(A) \gamma_{2}(B)$.

Tracing the authorship of the items in Fact 2.3 is somewhat challenging. Items (v) and (vi) appear in [41], and the others are likely classical. For the reader's convenience, we include the short proofs for all.

Proof.
(i)-(iii) Immediate from the definition (2.10).
(iv) By (2.10), one has $A_{i j}=\left\langle u_{i}, v_{j}\right\rangle$ for some vectors u_{i}, v_{j} with $\left\|u_{i}\right\|_{2}\left\|v_{j}\right\|_{2} \leqslant$ $\gamma_{2}(A)$, whence $\left|A_{i j}\right| \leqslant \gamma_{2}(A)$ by the Cauchy-Schwarz inequality.
(v) Immediate from the definitions (2.9), (2.10).
(vi) Equivalent to (v) by duality.
(vii) The upper bound follows from (2.10) and $J_{n, m}=J_{n, 1} J_{1, m}$. The lower bound follows from (iv).
(viii) The upper bound follows from (2.10) and $H_{N}=H_{N} I$. The lower bound follows from (v) and $\left\|H_{N}\right\|_{\Sigma}=N \sqrt{N}$.
(ix) Take $\|\cdot\|=\gamma_{2}, f=A$, and $\psi=\frac{1}{n m} A$ in Corollary 2.2 and apply (vi).
(x) $M=(1-\epsilon) J$ obeys $\gamma_{2}(M)=1-\epsilon$ by (vii) and $\|J-M\|_{\infty}=\epsilon$, which gives the upper bound. The lower bound follows from (ix).
(xi) $M=(1-\epsilon) H_{N}$ obeys $\gamma_{2}(M)=(1-\epsilon) \sqrt{N}$ by (viii) and $\left\|H_{N}-M\right\|_{\infty}=\epsilon$, which gives the upper bound. The lower bound follows from (ix) and $\left\|H_{N}\right\|=\sqrt{N}$.
(xii) Immediate from (2.10) and the mixed-product property: if $A=X Y$ and $B=X^{\prime} Y^{\prime}$, then $A \otimes B=\left(X \otimes X^{\prime}\right)\left(Y \otimes Y^{\prime}\right)$.
(xiii) Immediate from (xii) in view of (ii) and the fact that $A \circ B$ is a submatrix of $A \otimes B$.

In the context of lower bounds on communication complexity, we will encounter partial sign matrices, which are matrices with entries in $\{-1,+1, *\}$ and at least one entry in $\{-1,+1\}$. For a partial sign matrix F and a norm $\|\cdot\|$, we let $\|F\|_{\epsilon}$ stand for the least norm $\|M\|$ of a real matrix M with

$$
\begin{aligned}
\left|F_{i j}-M_{i j}\right| \leqslant \epsilon & \left(F_{i j}= \pm 1\right) \\
\left|M_{i j}\right| \leqslant 1+\epsilon & \left(F_{i j}=*\right)
\end{aligned}
$$

This is an instantiation for matrices of an earlier definition. The primary case of interest to us will be $\gamma_{2, \epsilon}(F)$.
2.3. Approximation by polynomials. Let $f: X \rightarrow\{-1,+1\}$ be given, for a finite subset $X \subset \mathbb{R}^{n}$. The ϵ-approximate degree of f, denoted $\operatorname{deg}_{\epsilon}(f)$, is the least degree of a real polynomial p such that $\|f-p\|_{\infty} \leqslant \epsilon$. We generalize this definition to a partial Boolean function f on X by letting $\operatorname{deg}_{\epsilon}(f)$ be the least degree of a real polynomial p with

$$
\begin{aligned}
|f(x)-p(x)| \leqslant \epsilon, & x \in \operatorname{dom} f \\
|p(x)| \leqslant 1+\epsilon, & x \in X \backslash \operatorname{dom} f
\end{aligned}
$$

By basic approximation theory [19], there is a univariate polynomial of degree $O\left(\log \frac{1}{\epsilon}\right)$ that sends $\left[-\frac{4}{3}, \frac{4}{3}\right] \rightarrow[-1-\epsilon, 1+\epsilon],\left[-\frac{4}{3},-\frac{2}{3}\right] \rightarrow[-1-\epsilon,-1+\epsilon]$ and $\left[\frac{2}{3}, \frac{4}{3}\right] \rightarrow[1-\epsilon, 1+\epsilon]$. Thus, every (possibly partial) Boolean function f obeys

$$
\begin{equation*}
\operatorname{deg}_{\epsilon}(f) \leqslant O\left(\operatorname{deg}_{1 / 3}(f) \log \frac{1}{\epsilon}\right), \quad 0<\epsilon<\frac{1}{3} \tag{2.11}
\end{equation*}
$$

Moreover, for $0<\epsilon \leqslant \frac{2}{3}$, a univariate polynomial exists [47] that maps $[-1,1] \rightarrow$ $[-1,1],[-1,-\epsilon] \rightarrow\left[-1,-\frac{2}{3}\right]$ and $[\epsilon, 1] \rightarrow\left[\frac{2}{3}, 1\right]$ and has degree $O(1 / \epsilon)$. Hence,

$$
\begin{equation*}
\operatorname{deg}_{1 / 3}(f) \leqslant O\left(\frac{1}{\epsilon} \operatorname{deg}_{1-\epsilon}(f)\right), \quad 0<\epsilon \leqslant \frac{2}{3} \tag{2.12}
\end{equation*}
$$

We will need the following dual characterization of the approximate degree.
Theorem 2.4. Fix $\epsilon \geqslant 0$. Let $X \subset \mathbb{R}^{n}$ be a finite set, f a (possibly partial) Boolean function on X. Then $\operatorname{deg}_{\epsilon}(f)>d$ if and only if there exists a function $\psi: X \rightarrow$ \mathbb{R} such that

$$
\sum_{x \in \operatorname{dom} f} f(x) \psi(x)-\sum_{x \notin \operatorname{dom} f}|\psi(x)|>\epsilon\|\psi\|_{1}
$$

and $\sum_{X} \psi(x) p(x)=0$ for every polynomial p of degree up to d.
Theorem 2.4 is immediate from linear programming duality; see [52, Sec. 3] for details. In the special case of functions $f: X \rightarrow\{-1,+1\}$, the first property of ψ simplifies to $\langle f, \psi\rangle>\epsilon\|\psi\|_{1}$. The following weakening of Theorem 2.4 will be useful.

Corollary 2.5. Fix $\epsilon \geqslant 0$. Let $X \subset \mathbb{R}^{n}$ be a finite set, f a (possibly partial) Boolean function on X. Then $\operatorname{deg}_{\epsilon}(f)>d$ whenever there exists a function $\psi: X \rightarrow \mathbb{R}$ such that

$$
\sum_{x \in \operatorname{dom} f} f(x) \psi(x)>\frac{1+\epsilon}{2}\|\psi\|_{1}
$$

and $\sum_{X} \psi(x) p(x)=0$ for every polynomial p of degree up to d. Proof. Immediate from the inequality

$$
\sum_{x \notin \operatorname{dom} f}|\psi(x)| \leqslant\|\psi\|_{1}-\sum_{x \in \operatorname{dom} f} f(x) \psi(x) .
$$

The threshold degree $\operatorname{deg}_{ \pm}(f)$ of a Boolean function $f: X \rightarrow\{-1,+1\}$, for a finite subset $X \subset \mathbb{R}^{n}$, is the limit

$$
\begin{equation*}
\operatorname{deg}_{ \pm}(f)=\lim _{\epsilon \searrow 0} \operatorname{deg}_{1-\epsilon}(f) \tag{2.13}
\end{equation*}
$$

Equivalently, $\operatorname{deg}_{ \pm}(f)$ is the least degree of a real polynomial p with $f(x) \equiv \operatorname{sgn} p(x)$.
2.4. Communication complexity. For an excellent exposition of quantum communication complexity, see [15, 57]. Here we will mostly limit ourselves to a review of basic facts and notation. Let f be a (possibly partial) Boolean function on the Cartesian product $X \times Y$ of two finite sets X, Y. A quantum protocol is said to compute f with error ϵ if on every input $(x, y) \in \operatorname{dom} f$, the output of the protocol disagrees with the value of f with probability no greater than ϵ. Analogous to classical communication, the cost of a quantum protocol is the maximum number of quantum bits exchanged between the two players on any input (x, y). The least cost of an ϵ-error quantum protocol (with arbitrary prior entanglement) for f is denoted $Q_{\epsilon}^{*}(f)$. The precise choice of a constant $\epsilon \in(0,1 / 2)$ affects $Q_{\epsilon}^{*}(f)$ by at most a constant factor, and thus the setting $\epsilon=1 / 3$ entails no loss of generality. As another convention, by the communication complexity of a (possibly partial) sign matrix $F=\left[F_{i j}\right]_{i \in I, j \in J}$ will be meant the communication complexity of the associated (possibly partial) Boolean function f on $I \times J$ given by $f(i, j)=F_{i j}$ when $F_{i j}= \pm 1$ and undefined otherwise.

We will additionally consider the setting where the quantum protocol simultaneously solves n communication problems (equivalently, sign matrices) $F_{1}, F_{2}, \ldots, F_{n}$. Given n input instances $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, one per communication problem, the protocol is required to output a string $z \in\{-1,+1\}^{n}$ representing a guess at the vector $\left(F_{1}\left(x_{1}, y_{1}\right), \ldots, F_{n}\left(x_{n}, y_{n}\right)\right) \in\{-1,+1\}^{n}$. As before, a $(1-\sigma)$-error protocol is one whose output differs from the correct answer with probability no greater than $1-\sigma$, on any given input. The least cost of such a protocol for $F_{1}, F_{2}, \ldots, F_{n}$ is denoted $Q_{1-\sigma}^{*}\left(F_{1}, F_{2}, \ldots, F_{n}\right)$. As usual, we allow $F_{1}, F_{2}, \ldots, F_{n}$ to be partial functions (equivalently, partial sign matrices).

In the case of n communication problems $F_{1}, F_{2}, \ldots, F_{n}$, it is meaningful to consider protocols that solve all but m of the n instances, where the ratio m / n is a small constant. In other words, given n input instances $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, one per communication problem, the protocol is required to output, with probability at least σ, a vector $z \in\{-1,+1\}^{n}$ such that $z_{i}=F_{i}\left(x_{i}, y_{i}\right)$ for at least $n-m$ indices i. We let $Q_{1-\sigma, m}^{*}\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ stand for the least cost of such a quantum protocol for $F_{1}, F_{2}, \ldots, F_{n}$. When referring to this formalism, we will write that a protocol "solves with probability σ at least $n-m$ of the communication problems $F_{1}, F_{2}, \ldots, F_{n}$."

Yao [60], Kremer [36], and Razborov [46] showed that the matrix of acceptance probabilities of a low-cost quantum protocol has low trace norm. Using work by Lee, Shraibman, and Špalek [40, Thm. 9], one can show that the γ_{2} norm of a matrix M is the maximum trace norm over all matrices obtained from M by duplicating rows and columns (and normalizing in each case for the number of entries in the resulting matrix). It follows that the matrix of acceptance probabilities of a low-cost quantum protocol has low γ_{2} norm. We will however use an earlier, first-principles proof of
this statement, due to Linial and Shraibman [42, Lem. 12], which achieves optimal constants.

Theorem 2.6 (Linial and Shraibman). Let Π be a quantum protocol of cost c, with or without prior entanglement. Then the matrix $M=[\mathbf{P}[\Pi \text { accepts }(x, y)]]_{x, y}$ satisfies

$$
\gamma_{2}(M) \leqslant 2^{c}
$$

This result has the following corollary [42, Thm. 13], described earlier as the generalized discrepancy method for quantum communication.

Theorem 2.7 (Linial and Shraibman). Let F be a sign matrix. Then for all $\epsilon \in(0,1 / 2)$,

$$
\begin{equation*}
Q_{\epsilon}^{*}(F) \geqslant \frac{1}{4} \log \left\{\gamma_{2, \frac{\epsilon}{1-\epsilon}}(F)\right\} . \tag{2.14}
\end{equation*}
$$

For partial sign matrices F,

$$
\begin{equation*}
Q_{\epsilon}^{*}(F) \geqslant \log \left\{\gamma_{2, \frac{\epsilon}{1-\epsilon}}(F)\right\}-3 \tag{2.15}
\end{equation*}
$$

Proof. Let $c=Q_{\epsilon}^{*}(F)$ and fix a cost- c quantum protocol for F with error ϵ. Then by Theorem 2.6, the matrix M of the protocol's acceptance probabilities satisfies $\gamma_{2}(M) \leqslant 2^{c}$. Defining $\tilde{F}=\frac{1}{1-\epsilon}(2 M-J)$, we infer that $\gamma_{2}(\tilde{F}) \leqslant \frac{1}{1-\epsilon}\left(2 \cdot 2^{c}+1\right) \leqslant 2^{c+3}$. Since $\|\tilde{F}\|_{\infty} \leqslant 1+\frac{\epsilon}{1-\epsilon}$ and $\left|F_{x y}-\tilde{F}_{x y}\right| \leqslant \frac{\epsilon}{1-\epsilon}$ on the domain of F, we conclude that

$$
\gamma_{2, \frac{\epsilon}{1-\epsilon}}(F) \leqslant 2^{c+3}
$$

This proves the lower bound (2.15) for all (possibly partial) sign matrices.
For (total) sign matrices F, the alternate lower bound (2.14) can be derived as follows. If $\operatorname{rk} F=1$, then $\gamma_{2, \epsilon /(1-\epsilon)}(F)=\gamma_{2, \epsilon /(1-\epsilon)}(J)<1$ by Fact 2.3 (i), (x). This means that the right-hand side of (2.14) is negative when rk $F=1$, and bound holds trivially in that case. In the complementary case when rk $F \geqslant 2$, we have $Q_{\epsilon}^{*}(F) \geqslant 1$. Then (2.14) is an arithmetic average of this one-bit lower bound and the lower bound in (2.15).

The quantity $\operatorname{GDM}_{\epsilon}(F)$ from the introduction refers to the lower bound on $Q_{\epsilon}^{*}(F)$ given by Theorem 2.7. Note that the discussion in the introduction was in terms of a different norm μ and not γ_{2}. This substitution, original to [42], is legitimate because the two norms are within a small multiplicative factor; see [39, Sec. 2.3] for details.
2.5. Query complexity. One of the basic models of computation is the decision tree. It represents a deterministic algorithm that computes a given function $f:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ on an unknown input $x \in\{-1,+1\}^{n}$ by querying a few bits of x, in an adaptive manner. A randomized algorithm in this model corresponds to a probability distribution on a family of decision trees. Classical query algorithms have natural quantum counterparts; see $[9,57]$ for a detailed introduction to this model. Analogous to the classical case, the cost of a quantum query algorithm is the number of queries on the worst-case input. The ϵ-error quantum query complexity $T_{\epsilon}(f)$ of a (possibly partial) Boolean function f on $\{-1,+1\}^{n}$ is the least cost of a quantum algorithm that computes $f(x)$ correctly with probability at least $1-\epsilon$, on every input $x \in \operatorname{dom} f$.

Quantum query complexity is closely related to polynomial approximation, as discovered by Beals, Buhrman, Cleve, Mosca, and de Wolf [9, Lem. 4.2].

Theorem 2.8 (Beals et al.). Let A be a cost-T quantum query algorithm, with input $x \in\{-1,+1\}^{n}$ and one-bit output. Then the acceptance probability of A is a real polynomial in x_{1}, \ldots, x_{n} of degree at most $2 T$. In particular,

$$
\begin{equation*}
T_{\epsilon}(f) \geqslant \frac{1}{2} \operatorname{deg}_{\frac{\epsilon}{1-\epsilon}}(f) \tag{2.16}
\end{equation*}
$$

for every (possibly partial) Boolean function f on $\{-1,+1\}^{n}$.
The difficult part of Theorem 2.8 is expressing the algorithm's acceptance probability as a degree- $2 T$ polynomial $p\left(x_{1}, \ldots, x_{n}\right)$. Once this has been done, the final statement in the theorem follows easily by noting that the shifted and scaled polynomial $p^{\prime}=\frac{1}{1-\epsilon}(2 p-1)$ obeys $\left\|p^{\prime}\right\|_{\infty} \leqslant 1+\frac{\epsilon}{1-\epsilon}$ and $\left|f-p^{\prime}\right| \leqslant \frac{\epsilon}{1-\epsilon}$ on the domain of f. Theorem 2.8 gives what is known as the polynomial method for proving lower bounds on quantum query complexity. Inequality (2.16) was used in [9] to prove tight lower bounds for all symmetric functions and has been successfully employed in subsequent research, e.g., $[13,2,1,34]$.

Analogous to quantum communication complexity, we will consider query algorithms that simultaneously solve n problems $f_{1}, f_{2}, \ldots, f_{n}$, where each f_{i} is a (possibly partial) Boolean function on $\{-1,+1\}^{m}$. We say that a quantum query algorithm solves with probability σ at least $n-m$ of the problems $f_{1}, f_{2}, \ldots, f_{n}$ if on every input $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Pi \operatorname{dom} f_{i}$, the algorithm outputs, with probability at least σ, a string $z \in\{-1,+1\}^{n}$ with $z_{i}=f_{i}\left(x_{i}\right)$ for $n-m$ or more indices i. We let $T_{1-\sigma, m}\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ denote the least cost of such a quantum algorithm.
2.6. Fourier transform. Consider the vector space of functions $\{-1,+1\}^{n} \rightarrow$ \mathbb{R}. For $S \subseteq\{1,2, \ldots, n\}$, define $\chi_{S}:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ by $\chi_{S}(x)=\prod_{i \in S} x_{i}$. Then the functions $\chi_{S}, S \subseteq\{1,2, \ldots, n\}$, form an orthogonal basis for the vector space in question. In particular, every function $f:\{-1,+1\}^{n} \rightarrow \mathbb{R}$ has a unique representation of the form

$$
f=\sum_{S \subseteq\{1,2, \ldots, n\}} \hat{f}(S) \chi_{S}
$$

where $\hat{f}(S)=2^{-n} \sum_{x \in\{-1,+1\}^{n}} f(x) \chi_{S}(x)$ is the Fourier coefficient of f that corresponds to χ_{S}. The orthogonality of $\left\{\chi_{S}\right\}$ leads to

$$
\begin{equation*}
\sum_{S \subseteq\{1,2, \ldots, n\}} \hat{f}(S)^{2}={\underset{x \in\{-1,+1\}^{n}}{\mathbf{E}}\left[f(x)^{2}\right], \text {, }, \text {, }} \tag{2.17}
\end{equation*}
$$

a fact known as Parseval's identity. The functional

$$
\|\hat{f}\|_{1}=\sum_{S \subseteq\{1,2, \ldots, n\}}|\hat{f}(S)|
$$

is subadditive and submultiplicative. In other words,

$$
\begin{align*}
\|\widehat{f+g}\|_{1} & \leqslant\|\hat{f}\|_{1}+\|\hat{g}\|_{1} \tag{2.18}\\
\|\widehat{f \circ g}\|_{1} & \leqslant\|\hat{f}\|_{1}\|\hat{g}\|_{1} \tag{2.19}
\end{align*}
$$

for all $f, g:\{-1,+1\}^{n} \rightarrow \mathbb{R}$. The subadditivity is obvious, and the submultiplicativity can be verified as follows:

$$
\begin{aligned}
\|\widehat{f \circ g}\|_{1} & =\sum_{S \subseteq\{1,2, \ldots, n\}}|\widehat{f \circ g}(S)| \\
& =\sum_{S \subseteq\{1,2, \ldots, n\}}\left|\sum_{T \subseteq\{1,2, \ldots, n\}} \hat{f}(T) \hat{g}(S \oplus T)\right| \\
& \leqslant \sum_{S \subseteq\{1,2, \ldots, n\}} \sum_{T \subseteq\{1,2, \ldots, n\}}|\hat{f}(T)||\hat{g}(S \oplus T)| \\
& =\|\hat{f}\|_{1} \cdot\|\hat{g}\|_{1},
\end{aligned}
$$

where $S \oplus T=(S \cap \bar{T}) \cup(\bar{S} \cap T)$ denotes the symmetric difference of sets.
3. Preparatory work. Theorems 2.6 and 2.8 point to a key similarity between quantum communication and query complexity. Specifically, every efficient communication protocol, when viewed as a matrix of acceptance probabilities, resides in the convex set corresponding to matrices of low γ_{2} norm. Every efficient query algorithm, when viewed as a function of acceptance probabilities, resides in the convex set corresponding to low-degree polynomials. In this section, we develop a number of auxiliary results that are not affected by the nature of the convex set and are thus common to quantum communication and query complexity. This allows us to avoid a considerable duplication of effort. In what follows, we categorize the preparatory work into results pertaining to XOR lemmas, direct product theorems, and direct sum theorems.
3.1. Auxiliaries for XOR lemmas. The starting point in our analysis is a polynomial construction. It will play a key role in finding the witness object described in the introduction. We remind the reader that for $z \in\{-1,+1\}^{n}$, we use the shorthand $|z|=\left|\left\{i: z_{i}=-1\right\}\right|$.

Lemma 3.1. For any $\eta_{1}, \eta_{2}, \ldots, \eta_{n} \in[0,1)$, define $\mu=\Pi\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)$ and $\eta=\max \left\{\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right\}$. For $k=0,1,2, \ldots, n-1$, let $p_{k}:[-1,1]^{n} \rightarrow \mathbb{R}$ be the unique degree-k multilinear polynomial such that

$$
p_{k}(z)=(-1)^{k} \prod_{i=1}^{k}(|z|-i), \quad z \in\{-1,+1\}^{n}
$$

Then

$$
\begin{align*}
& \underset{\mu}{\mathbf{E}}\left[\left|p_{k}(z)\right|\right] \leqslant p_{k}\left(1^{n}\right) \mu\left(1^{n}\right)\left\{1+\binom{n}{k+1} \frac{\eta^{k+1}}{(1-\eta)^{n}}\right\}, \tag{3.1}\\
& \left\|\hat{p}_{k}\right\|_{1} \leqslant k!\binom{n+k}{k} . \tag{3.2}
\end{align*}
$$

Furthermore, $p_{k}(z) \geqslant 0$ for all $z \in[-1,1]^{n}$ provided that k is even.
Proof. Nonnegativity for even k is immediate on $\{-1,+1\}^{n}$ and generalizes to all of $[-1,1]^{n}$ by the multilinearity of p_{k} and convexity. Next, (2.18) and (2.19) imply

$$
\left\|\hat{p}_{k}\right\|_{1} \leqslant \prod_{i=1}^{k}(n+i)=k!\binom{n+k}{k}
$$

where the first step uses the fact that the function $z \mapsto|z|$ has Fourier representation $z \mapsto \frac{n}{2}-\frac{1}{2} \sum_{i=1}^{n} \chi_{\{i\}}(z)$.

It remains to prove (3.1). We have

$$
\begin{array}{rlrl}
p_{k}\left(1^{n}\right) & =k! \\
p_{k}(z) & =0 \\
\left|p_{k}(z)\right| & =p_{k}\left(1^{n}\right)\binom{|z|-1}{k} & & 1 \leqslant|z| \leqslant k \\
& \leqslant p_{k}\left(1^{n}\right)\binom{|z|}{k+1} \\
& =p_{k}\left(1^{n}\right)\binom{n}{k+1}\binom{n-k-1}{|z|-k-1}\binom{n}{|z|}^{-1}, & & |z| \geqslant k+1 \tag{3.5}
\end{array}
$$

In addition,

$$
\begin{align*}
\underset{\mu}{\mathbf{P}}[|z|=i] & =\sum_{|S|=i} \prod_{j \in S} \eta_{j} \cdot \prod_{j \notin S}\left(1-\eta_{j}\right)=\mu\left(1^{n}\right) \sum_{|S|=i} \prod_{j \in S} \frac{\eta_{j}}{1-\eta_{j}} \\
& \leqslant \mu\left(1^{n}\right)\binom{n}{i}\left(\frac{\eta}{1-\eta}\right)^{i} \tag{3.6}
\end{align*}
$$

where the final step uses $\eta_{j} \leqslant \eta$. Putting together (3.3)-(3.6) gives:

$$
\begin{aligned}
\underset{\mu}{\mathbf{E}}\left[\left|p_{k}(z)\right|\right] & \leqslant p_{k}\left(1^{n}\right) \mu\left(1^{n}\right)+\sum_{i=k+1}^{n} p_{k}\left(1^{n}\right)\binom{n}{k+1}\binom{n-k-1}{i-k-1} \mu\left(1^{n}\right)\left(\frac{\eta}{1-\eta}\right)^{i} \\
& =p_{k}\left(1^{n}\right) \mu\left(1^{n}\right)\left\{1+\binom{n}{k+1}\left(\frac{\eta}{1-\eta}\right)^{k+1} \sum_{i=0}^{n-k-1}\binom{n-k-1}{i}\left(\frac{\eta}{1-\eta}\right)^{i}\right\} \\
& =p_{k}\left(1^{n}\right) \mu\left(1^{n}\right)\left\{1+\binom{n}{k+1} \frac{\eta^{k+1}}{(1-\eta)^{n}}\right\}
\end{aligned}
$$

Using the polynomial p_{k} from the previous lemma, we will now construct the desired witness object Ψ_{k}, for later use in the XOR lemmas. For now we will only establish those properties of Ψ_{k} that are common to the settings of communication and query complexity.

Lemma 3.2. Fix $\epsilon \in(0,1)$. Consider a (possibly partial) Boolean function g_{i} on a finite set $X_{i}(i=1,2, \ldots, n)$. Let $\psi_{i}: X_{i} \rightarrow \mathbb{R}$ be given with

$$
\begin{array}{ll}
\left\|\psi_{i}\right\|_{1}=1, & i=1,2, \ldots, n \\
\sum_{x_{i} \in \operatorname{dom} g_{i}} g_{i}\left(x_{i}\right) \psi_{i}\left(x_{i}\right)-\sum_{x_{i} \notin \operatorname{dom} g_{i}}\left|\psi_{i}\left(x_{i}\right)\right|>(1-\epsilon)\left\|\psi_{i}\right\|_{1}, & i=1,2, \ldots, n \tag{3.8}
\end{array}
$$

For each i, let $f_{i}: X_{i} \rightarrow\{-1,+1\}$ be the extension of g_{i} given by $f_{i}\left(x_{i}\right)=-\widetilde{\operatorname{sgn}} \psi_{i}\left(x_{i}\right)$ outside dom g_{i}. For $k=0,1,2, \ldots, n-1$, define $\Psi_{k}: \prod X_{i} \rightarrow \mathbb{R}$ by

$$
\Psi_{k}\left(x_{1}, \ldots, x_{n}\right)=p_{k}\left(\ldots, f_{i}\left(x_{i}\right) \operatorname{sgn} \psi_{i}\left(x_{i}\right), \ldots\right) \prod_{i=1}^{n} \psi_{i}\left(x_{i}\right)
$$

where p_{k} is the degree- k polynomial from Lemma 3.1. Then for all $\delta \geqslant 0$,

$$
\begin{align*}
\sum_{x \in \prod \operatorname{dom} g_{i}} \Psi_{k}(x) \prod_{i=1}^{n} g_{i}\left(x_{i}\right)-\sum_{x \notin \prod \operatorname{dom} g_{i}}\left|\Psi_{k}(x)\right|-\delta\left\|\Psi_{k}\right\|_{1} \tag{3.9}\\
>k!\left(1-\frac{\epsilon}{2}\right)^{n}\left\{2-(1+\delta)\left(1+\binom{n}{k+1} \frac{\left(\frac{1}{2} \epsilon\right)^{k+1}}{\left(1-\frac{1}{2} \epsilon\right)^{n}}\right)\right\}
\end{align*}
$$

Proof. It is clear that $\left\langle f_{i}, \psi_{i}\right\rangle>(1-\epsilon)\left\|\psi_{i}\right\|_{1}=1-\epsilon$ for each i. Let $\eta_{i}=\frac{1}{2}-\frac{1}{2}\left\langle f_{i}, \psi_{i}\right\rangle$ and $\eta=\max \left\{\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right\}$. Then

$$
\begin{equation*}
\eta<\frac{\epsilon}{2} \tag{3.10}
\end{equation*}
$$

Let λ be the probability distribution on $\prod X_{i}$ given by $\lambda\left(\ldots, x_{i}, \ldots\right)=\prod\left|\psi_{i}\left(x_{i}\right)\right|$. When $\left(\ldots, x_{i}, \ldots\right) \sim \lambda$, the string $\left(\ldots, f_{i}\left(x_{i}\right) \operatorname{sgn} \psi_{i}\left(x_{i}\right), \ldots\right) \in\{-1,+1\}^{n}$ is distributed according to $\mu=\Pi\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)$. As a result,

$$
\begin{align*}
\left\|\Psi_{k}\right\|_{1} & =\sum_{X_{1} \times \cdots \times X_{n}}\left|p_{k}\left(\ldots, f_{i}\left(x_{i}\right) \operatorname{sgn} \psi_{i}\left(x_{i}\right), \ldots\right)\right| \prod_{i=1}^{n}\left|\psi_{i}\left(x_{i}\right)\right| \\
& =\underset{x \sim \lambda}{\mathbf{E}}\left[\left|p_{k}\left(\ldots, f_{i}\left(x_{i}\right) \operatorname{sgn} \psi_{i}\left(x_{i}\right), \ldots\right)\right|\right] \\
& =\underset{z \sim \mu}{\left.\mathbf{E} \sim\left|p_{k}(z)\right|\right] .} \tag{3.11}
\end{align*}
$$

Let $D \subseteq \prod \operatorname{dom} g_{i}$ be given by $D=\prod\left\{x_{i} \in X_{i}: f_{i}\left(x_{i}\right)=\operatorname{sgn} \psi_{i}\left(x_{i}\right)\right\}$. Then

$$
\begin{aligned}
\sum_{x \in \prod_{\operatorname{dom} g_{i}}} \Psi_{k}(x) & \prod_{i=1}^{n} g_{i}\left(x_{i}\right)-\sum_{x \notin \operatorname{dom} g_{i}}\left|\Psi_{k}(x)\right|-\delta\left\|\Psi_{k}\right\|_{1} \\
& \geqslant \sum_{x \in D} \Psi_{k}(x) \prod_{i=1}^{n} f_{i}\left(x_{i}\right)-\sum_{x \notin D}\left|\Psi_{k}(x)\right|-\delta\left\|\Psi_{k}\right\|_{1} \\
& \geqslant 2 \sum_{x \in D} \Psi_{k}(x) \prod_{i=1}^{n} f_{i}\left(x_{i}\right)-(1+\delta)\left\|\Psi_{k}\right\|_{1} \\
& =2 \mu\left(1^{n}\right) p_{k}\left(1^{n}\right)-(1+\delta)\left\|\Psi_{k}\right\|_{1} \\
& =2 \mu\left(1^{n}\right) p_{k}\left(1^{n}\right)-(1+\delta) \underset{z \sim \mu}{\mathbf{E}}\left[\left|p_{k}(z)\right|\right] \\
& \geqslant \mu\left(1^{n}\right) p_{k}\left(1^{n}\right)\left\{2-(1+\delta)\left(1+\binom{n}{k+1} \frac{\eta^{k+1}}{(1-\eta)^{n}}\right)\right\}
\end{aligned} \quad \begin{aligned}
& \text { by }(3.1) .
\end{aligned}
$$

In view of (3.10) and the bound $\mu\left(1^{n}\right) p_{k}\left(1^{n}\right) \geqslant k!(1-\eta)^{n}>k!(1-\epsilon / 2)^{n}$, the proof is complete.

A common operation in this manuscript is that of bounding the correlation of a given function with the elements of a given convex set. In the case of quantum query complexity, this operation is effortless because of the way polynomial multiplication is defined. More care is needed in the setting of quantum communication complexity, where this step corresponds to bounding the norm dual to the convex set. We address the latter case below.

Lemma 3.3. Fix finite sets $X_{1}, X_{2}, \ldots, X_{n}$. Let $\mathbb{R}^{X_{1}}, \mathbb{R}^{X_{2}}, \ldots, \mathbb{R}^{X_{n}}$, and $\mathbb{R}^{\Pi X_{i}}$ be normed by $\|\cdot\| \|$, where

$$
\begin{align*}
& C_{1}=\max \left\{\frac{\left\|\bigotimes_{i=1}^{n} \phi_{i}\right\|^{*}}{\prod_{i=1}^{n}\left\|\phi_{i}\right\|^{*}}: \phi_{i} \in \mathbb{R}^{X_{i}} \backslash\{0\} \text { for all } i=1,2, \ldots, n\right\}, \tag{3.12}\\
& C_{2}=\max \left\{\frac{\|\phi\|_{\infty}}{\|\phi\|}: \phi \in \mathbb{R}^{X_{i}} \backslash\{0\} \text { for some } i=1,2, \ldots, n\right\} . \tag{3.13}
\end{align*}
$$

For $k=0,1,2, \ldots, n$, let \mathscr{C}_{k} be the convex hull of functions $\xi: \prod X_{i} \rightarrow \mathbb{R}$ of the form

$$
\begin{equation*}
\xi\left(x_{1}, \ldots, x_{n}\right)=\underset{|S|=k}{\mathbf{E}}\left[\prod_{i \in S} \xi_{S, i}\left(x_{i}\right)\right], \tag{3.14}
\end{equation*}
$$

where each $\xi_{S, i}: X_{i} \rightarrow \mathbb{R}$ obeys $\left\|\xi_{S, i}\right\|_{\infty} \leqslant 1$. Then for all $\psi_{i}: X_{i} \rightarrow \mathbb{R}$ with $\left\|\psi_{i}\right\|_{1} \leqslant 1$ $(i=1,2, \ldots, n)$,

$$
\max _{\zeta \in \mathscr{C}_{k}}\left\|\zeta \circ \bigotimes_{i=1}^{n} \psi_{i}\right\|^{*} \leqslant C_{1} C_{2}^{k} \underset{|S|=n-k}{\mathbf{E}}\left[\prod_{i \in S}\left\|\psi_{i}\right\|^{*}\right] .
$$

Proof. By convexity, it suffices to prove the claim for the functions ξ in (3.14). In view of (3.12),

$$
\left\|\xi \circ \bigotimes_{i=1}^{n} \psi_{i}\right\|^{*} \leqslant C_{1} \underset{|S|=k}{\mathbf{E}}\left[\prod_{i \in S}\left\|\xi_{S, i} \circ \psi_{i}\right\|^{*} \cdot \prod_{i \notin S}\left\|\psi_{i}\right\|^{*}\right] .
$$

By duality, (3.13) is equivalent to saying that $\|\phi\|^{*} \leqslant C_{2}\|\phi\|_{1}$ for all $\phi \in \bigcup \mathbb{R}^{X_{i}}$, whence

$$
\begin{aligned}
\left\|\xi \circ \bigotimes_{i=1}^{n} \psi_{i}\right\|^{*} & \leqslant C_{1} C_{2}^{k} \underset{|S|=k}{\mathbf{E}}\left[\prod_{i \in S}\left\|\xi_{S, i} \circ \psi_{i}\right\|_{1} \cdot \prod_{i \notin S}\left\|\psi_{i}\right\|^{*}\right] \\
& \leqslant C_{1} C_{2}^{k} \underset{|S|=n-k}{\mathbf{E}}\left[\prod_{i \in S}\left\|\psi_{i}\right\|^{*}\right] .
\end{aligned}
$$

3.2. Auxiliaries for direct product theorems. We now turn our attention to the setting of direct product theorems. We start with a relaxed formalization of what it means to simultaneously solve n problems.

Definition 3.4 (Approximants). Fix a (possibly partial) Boolean function g_{i} on a finite set $X_{i}, i=1,2, \ldots, n$. $A(\sigma, m)$-approximant for $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ is any system $\left\{\phi_{z}\right\}$ of functions $\phi_{z}: \Pi X_{i} \rightarrow \mathbb{R}, z \in\{-1,+1\}^{n}$, such that:

$$
\begin{array}{cl}
\sum_{z \in\{-1,+1\}^{n}}\left|\phi_{z}\left(x_{1}, \ldots, x_{n}\right)\right| \leqslant 1, & x \in \prod X_{i}, \\
\sum_{|z| \leqslant m} \phi_{\left(z_{1} g_{1}\left(x_{1}\right), \ldots, z_{n} g_{n}\left(x_{n}\right)\right)}\left(x_{1}, \ldots, x_{n}\right) \geqslant \sigma, & x \in \prod \operatorname{dom} g_{i} . \tag{3.16}
\end{array}
$$

Roughly speaking, one should think of $\phi_{z}\left(x_{1}, \ldots, x_{n}\right)$ in the above formalism as the probability that the algorithm outputs the string $z=\left(z_{1}, \ldots, z_{n}\right)$ on input
$\left(x_{1}, \ldots, x_{n}\right)$. Property (3.15) says that these probabilities cannot add up to more than 1 on any input $\left(x_{1}, \ldots, x_{n}\right)$, including inputs that lie outside the domain of definition of some g_{i} and are thus illegal. Property (3.16) says that on legal inputs the algorithm should be approximately correct, i.e., it should produce with probability at least σ a string $\left(z_{1}, \ldots, z_{n}\right)$ that differs from the correct answer $\left(g_{1}\left(x_{1}\right), \ldots, g_{n}\left(x_{n}\right)\right)$ in no more than m positions. Definition 3.4 is somewhat more general and allows for negative "probabilities," but the described intuitive interpretation captures the idea well.

It is straightforward to see, as we will in sections to come, that communication protocols and query algorithms that solve with probability σ at least $n-m$ of the problems $g_{1}, g_{2}, \ldots, g_{n}$ give rise to representations $\left\{\phi_{z}\right\}$ that obey (3.15) and (3.16). The representations $\left\{\phi_{z}\right\}$ that arise in that way will obey various additional properties, but we will only appeal to (3.15) and (3.16) in the proofs of our lower bounds. As the reader may have already guessed, strong direct product theorems correspond to $m=0$, whereas threshold direct product theorems correspond to $m=\beta n$ for some small constant $\beta>0$.

We now recall a result on the polynomial approximation of symmetric functions due to de Wolf [58], improving on earlier work in [51]. We only require a special case of de Wolf's theorem.

Theorem 3.5 (De Wolf). Let $\alpha>0$ be a sufficiently small absolute constant. Then for all integers $m, \ell \geqslant 0$, there is a degree- ℓ univariate polynomial Q_{ℓ} with

$$
\begin{aligned}
\left|Q_{\ell}(i)-(-1)^{i}\right| \leqslant 2^{-\frac{\alpha \ell^{2}}{n}+m+1}, & & i=0,1, \ldots, m \\
\left|Q_{\ell}(i)\right| \leqslant 2^{-\frac{\alpha \ell^{2}}{n}+m+1}, & & i=m+1, m+2, \ldots, n \\
\left|Q_{\ell}(i)\right| \leqslant 1, & & i=0,1, \ldots, n .
\end{aligned}
$$

In words, Theorem 3.5 gives a polynomial of reasonably low degree that approximates the parity function with extremely high accuracy at the integer points in $[0, m]$ and is exponentially close to zero at the integer points in (m, n]. We will need the following corollary to Theorem 3.5.

Corollary 3.6. Let α be the absolute constant from Theorem 3.5. Then for all integers $m, \ell \geqslant 0$, there is a degree- ℓ symmetric polynomial $q_{\ell}:\{-1,+1\}^{n} \rightarrow[-1,1]$ such that:

$$
\begin{array}{rlr}
\mid q_{\ell}(z)- & \prod_{i=1}^{n} z_{i} \left\lvert\, \leqslant 2^{-\frac{\alpha \ell^{2}}{n}+m+1}\right., & |z| \leqslant m \\
\left|q_{\ell}(z)\right| \leqslant 2^{-\frac{\alpha \ell^{2}}{n}+m+1}, & |z|>m \\
\left\|\hat{q}_{\ell}\right\|_{1} & \leqslant\binom{ n}{\leqslant \ell}^{1 / 2} & \tag{3.19}
\end{array}
$$

Proof. Put $q_{\ell}(z)=Q_{\ell}(|z|)$, where Q_{ℓ} is the polynomial from Theorem 3.5. Then (3.17) and (3.18) follow at once. Since q_{ℓ} sends $\{-1,+1\}^{n} \rightarrow[-1,1]$, one infers (3.19) from Parseval's identity (2.17):

$$
\sum_{|S| \leqslant \ell}\left|\hat{q}_{\ell}(S)\right| \leqslant\left(\sum_{|S| \leqslant \ell} \hat{q}_{\ell}(S)^{2}\right)^{\frac{1}{2}}\binom{n}{\leqslant \ell}^{\frac{1}{2}}=\left(\underset{z \in\{-1,+1\}^{n}}{\mathbf{E}}\left[q_{\ell}(z)^{2}\right]\right)^{\frac{1}{2}}\binom{n}{\leqslant \ell}^{\frac{1}{2}}
$$

We are now prepared to prove the key technical lemma that will allow us to obtain direct product theorems for communication and query complexity.

Lemma 3.7. Consider a (possibly partial) Boolean function g_{i} on a finite set X_{i}, for $i=1,2, \ldots, n$. Let $\psi_{i}: X_{i} \rightarrow \mathbb{R}$ be given that obeys (3.7) and (3.8). Define $f_{i}: X_{i} \rightarrow\{-1,+1\}(i=1,2, \ldots, n)$ and $\Psi_{k}: \prod X_{i} \rightarrow \mathbb{R}(k=0,1,2, \ldots, n-1)$ as in Lemma 3.2. For a given (σ, m)-approximant $\left\{\phi_{z}\right\}$ of $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$, let $\Phi_{\ell}: \prod X_{i} \rightarrow$ \mathbb{R} be defined by

$$
\Phi_{\ell}\left(x_{1}, \ldots, x_{n}\right)=\sum_{z \in\{-1,+1\}^{n}} \phi_{z}\left(x_{1}, \ldots, x_{n}\right) q_{\ell}\left(\ldots, z_{i} f_{i}\left(x_{i}\right), \ldots\right) \prod_{i=1}^{n} z_{i}
$$

where q_{ℓ} is the degree- ℓ polynomial from Corollary 3.6. Then

$$
\begin{align*}
& \left\langle\Phi_{\ell}, \Psi_{k}\right\rangle \tag{3.20}\\
& \quad>k!\left(1-\frac{\epsilon}{2}\right)^{n}\left\{2-\left(2-\sigma+2^{-\frac{\alpha \ell^{2}}{n}+m+1}\right)\left(1+\binom{n}{k+1} \frac{\left(\frac{1}{2} \epsilon\right)^{k+1}}{\left(1-\frac{1}{2} \epsilon\right)^{n}}\right)\right\}
\end{align*}
$$

where $\alpha>0$ is the absolute constant from Theorem 3.5.
Proof. In view of (3.15) and the fact that q_{ℓ} sends $\{-1,+1\}^{n} \rightarrow[-1,1]$, we have

$$
\begin{equation*}
\left\|\Phi_{\ell}\right\|_{\infty} \leqslant 1 \tag{3.21}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \left\langle\Phi_{\ell}, \Psi_{k}\right\rangle=\sum_{x \notin \prod \operatorname{dom} g_{i}} \Phi_{\ell}(x) \Psi_{k}(x)+\sum_{x \in \prod \operatorname{dom} g_{i}} \Psi_{k}(x) \prod_{i=1}^{n} g_{i}\left(x_{i}\right) \\
& +\sum_{x \in \prod \operatorname{dom} g_{i}} \Psi_{k}(x)\left\{\Phi_{\ell}(x)-\prod_{i=1}^{n} g_{i}\left(x_{i}\right)\right\} \\
& \geqslant \sum_{x \in \prod \operatorname{dom} g_{i}} \Psi_{k}(x) \prod_{i=1}^{n} g_{i}\left(x_{i}\right)-\sum_{x \notin \prod \operatorname{dom} g_{i}}\left|\Psi_{k}(x)\right| \\
& -\left\|\Psi_{k}\right\|_{1} \max _{x \in \prod_{\operatorname{dom} g_{i}}}\left|\Phi_{\ell}(x)-\prod_{i=1}^{n} g_{i}\left(x_{i}\right)\right| \\
& >k!\left(1-\frac{\epsilon}{2}\right)^{n}\left\{2-\left(1+\max _{x \in \prod \operatorname{dom} g_{i}}\left|\Phi_{\ell}(x)-\prod_{i=1}^{n} g_{i}\left(x_{i}\right)\right|\right) \times\right. \\
& \left.\times\left(1+\binom{n}{k+1} \frac{\left(\frac{1}{2} \epsilon\right)^{k+1}}{\left(1-\frac{1}{2} \epsilon\right)^{n}}\right)\right\},
\end{aligned}
$$

where the second and third steps use (3.21) and (3.9), respectively. It remains to prove that

$$
\begin{equation*}
\left|\Phi_{\ell}(x)-\prod_{i=1}^{n} g_{i}(x)\right| \leqslant 1-\sigma+2^{-\frac{\alpha \ell^{2}}{n}+m+1}, \quad x \in \prod \operatorname{dom} g_{i} \tag{3.22}
\end{equation*}
$$

For this, define $G:\{-1,+1\}^{n} \rightarrow\{-1,0,+1\}$ by

$$
G(z)= \begin{cases}z_{1} z_{2} \cdots z_{n}, & |z| \leqslant m \\ 0, & \text { otherwise }\end{cases}
$$

For every $x \in \prod \operatorname{dom} g_{i}$,

$$
\begin{aligned}
& \mid \Phi_{\ell}(x)- \prod_{i=1}^{n} g_{i}\left(x_{i}\right) \mid \\
&=\left|\Phi_{\ell}(x) \prod_{i=1}^{n} g_{i}\left(x_{i}\right)-1\right| \\
&=\left|\sum_{z \in\{-1,+1\}^{n}} \phi_{z}(x) q_{\ell}\left(\ldots, z_{i} g_{i}\left(x_{i}\right), \ldots\right) \prod_{i=1}^{n} z_{i} g_{i}\left(x_{i}\right)-1\right| \\
& \leqslant\left|\sum_{z \in\{-1,+1\}^{n}} \phi_{z}(x) G\left(\ldots, z_{i} g_{i}\left(x_{i}\right), \ldots\right) \prod_{i=1}^{n} z_{i} g_{i}\left(x_{i}\right)-1\right| \\
& \quad+\sum_{z \in\{-1,+1\}^{n}}\left|\phi_{z}(x)\right|\left\|G-q_{\ell}\right\|_{\infty} \\
&=\underbrace{\left|\sum_{|z| \leqslant m} \phi_{\left(z_{1} g_{1}\left(x_{1}\right), \ldots, z_{n} g_{n}\left(x_{n}\right)\right)}(x)-1\right|}_{\leqslant 1-\sigma}+\left\|G-q_{\ell}\right\|_{\infty} \underbrace{}_{\sum_{z \in\{-1,+1\}^{n}}\left|\phi_{z}(x)\right|},
\end{aligned}
$$

where the indicated bounds in the final step follow by (3.15) and (3.16). Corollary 3.6 guarantees that $\left\|G-q_{\ell}\right\|_{\infty} \leqslant 2^{-\alpha \ell^{2} / n+m+1}$, which settles (3.22) and the lemma.
3.3. Auxiliaries for direct sum theorems. It makes sense to speak of XOR lemmas and direct product theorems only when the given problems $f_{1}, f_{2}, \ldots, f_{n}$ are of comparable complexity. When the relative complexities of the problems vary greatly, the appropriate notion is a direct sum theorem. We develop the needed technical tools below, for communication and query complexity.

Lemma 3.8. Fix finite sets $X_{1}, X_{2}, \ldots, X_{n}$. Let $\mathbb{R}^{X_{1}}, \mathbb{R}^{X_{2}}, \ldots, \mathbb{R}^{X_{n}}$, and $\mathbb{R}^{\Pi X_{i}}$ be normed by $\|\cdot\|$, with C_{1} defined by (3.12). Then for all $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n} \in(0,1)$ and all functions $f_{i}: X_{i} \rightarrow\{-1,+1\}(i=1,2, \ldots, n)$,

$$
\begin{equation*}
\left\|\bigotimes_{i=1}^{n} f_{i}\right\|_{\Pi \epsilon_{i}} \geqslant \frac{1}{C_{1}} \prod_{i=1}^{n}\left\|f_{i}\right\|_{\epsilon_{i}} . \tag{3.23}
\end{equation*}
$$

For all (possibly partial) Boolean functions g_{i} on $X_{i}(i=1,2, \ldots, n)$,

$$
\begin{equation*}
\left\|\bigotimes_{i=1}^{n} g_{i}\right\|_{2 \prod_{\epsilon_{i}-1}} \geqslant \frac{2}{C_{1}} \prod_{i=1}^{n}\left\|g_{i}\right\| \|_{\epsilon_{i}} . \tag{3.24}
\end{equation*}
$$

Proof. By Corollary 2.2 , we can fix $\psi_{i}: X_{i} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left\|f_{i}\right\|_{\epsilon_{i}}=\frac{\left\langle f_{i}, \psi_{i}\right\rangle-\epsilon_{i}\left\|\psi_{i}\right\|_{1}}{\left\|\psi_{i}\right\|^{*}}, \quad i=1,2, \ldots, n \tag{3.25}
\end{equation*}
$$

Then

$$
\begin{array}{rlrl}
\left\|\bigotimes_{i=1}^{n} f_{i}\right\| \|_{\Pi \epsilon_{i}} & \geqslant \frac{\left\langle\otimes f_{i}, \otimes \psi_{i}\right\rangle-\left\|\otimes \psi_{i}\right\|_{1} \prod \epsilon_{i}}{\left\|\bigotimes \psi_{i}\right\|^{*}} & & \text { by Corollary } 2.2 \\
& \geqslant \frac{\prod\left\langle f_{i}, \psi_{i}\right\rangle-\prod \epsilon_{i}\left\|\psi_{i}\right\|_{1}}{C_{1} \prod\left\|\psi_{i}\right\|^{*}} & & \text { by (3.12) } \\
& =\frac{\prod\left\langle f_{i}, \psi_{i}\right\rangle-\prod \epsilon_{i}\left\|\psi_{i}\right\|_{1}}{C_{1} \prod\left(\left\langle f_{i}, \psi_{i}\right\rangle-\epsilon_{i}\left\|\psi_{i}\right\|_{1}\right)} \prod\left\|f_{i}\right\|_{\epsilon_{i}} & & \text { by (3.25) } \\
& \geqslant \frac{1}{C_{1}} \prod\left\|f_{i}\right\|_{\epsilon_{i}} &
\end{array}
$$

where the final step follows from the fact that $\prod A_{i}-\prod a_{i} \geqslant \prod\left(A_{i}-a_{i}\right)$ for any reals $A_{1}, \ldots, A_{n}, a_{1}, \ldots, a_{n}$ with $A_{i} \geqslant a_{i} \geqslant 0, i=1,2, \ldots, n$. This settles (3.23).

The proof of (3.24) is closely analogous. Corollary 2.2 provides $\psi_{i}: X_{i} \rightarrow \mathbb{R}$ with

$$
\begin{equation*}
\left\|g_{i}\right\| \|_{\epsilon_{i}} \leqslant \frac{1}{\left\|\psi_{i}\right\|^{*}}\left\{\sum_{x_{i} \in \operatorname{dom} g_{i}} g_{i}\left(x_{i}\right) \psi_{i}\left(x_{i}\right)-\epsilon_{i}\left\|\psi_{i}\right\|_{1}\right\}, \quad i=1,2, \ldots, n \tag{3.26}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \left\|\bigotimes_{i=1}^{n} g_{i}\right\| \|_{2 \prod \epsilon_{i}-1} \\
& \geqslant \frac{2}{\left\|\bigotimes \psi_{i}\right\|^{*}}\left\{\sum_{\prod \operatorname{dom} g_{i}} \prod_{i} g_{i}\left(x_{i}\right) \psi_{i}\left(x_{i}\right)-\left\|\bigotimes \psi_{i}\right\|_{1} \prod_{i} \epsilon_{i}\right\} \quad \text { by Corollary } 2.2 \\
& \geqslant \frac{2}{C_{1} \prod\left\|\psi_{i}\right\|^{*}}\left\{\sum_{\prod \operatorname{dom} g_{i}} \prod_{i} g_{i}\left(x_{i}\right) \psi_{i}\left(x_{i}\right)-\left\|\bigotimes \psi_{i}\right\|_{1} \prod \epsilon_{i}\right\} \quad \text { by }(3.12) \\
& \begin{aligned}
& \prod_{i}\left\{\sum_{\operatorname{dom} g_{i}} g_{i}\left(x_{i}\right) \psi_{i}\left(x_{i}\right)\right\}-\prod_{i} \epsilon_{i}\left\|\psi_{i}\right\|_{1} \\
& C_{1} \prod_{i}\left\{\sum_{\operatorname{dom} g_{i}} g_{i}\left(x_{i}\right) \psi_{i}\left(x_{i}\right)-\epsilon_{i}\left\|\psi_{i}\right\|_{1}\right\}
\end{aligned} \cdot 2 \prod\left\|g_{i}\right\|_{\epsilon_{i}} \quad \text { by }(3.26) \\
& \geqslant \frac{2}{C_{1}} \prod\left\|g_{i}\right\|_{\epsilon_{i}} .
\end{aligned}
$$

An analogous result holds for polynomial approximation:
Lemma 3.9. Fix finite sets $X_{1}, X_{2}, \ldots, X_{n} \subset \mathbb{R}^{m}$. Then for all $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n} \in$ $(0,1)$ and all functions $f_{i}: X_{i} \rightarrow\{-1,+1\}(i=1,2, \ldots, n)$,

$$
\begin{equation*}
\operatorname{deg}_{\prod \epsilon_{i}}\left(\bigotimes_{i=1}^{n} f_{i}\right) \geqslant \sum_{i=1}^{n} \operatorname{deg}_{\epsilon_{i}}\left(f_{i}\right) \tag{3.27}
\end{equation*}
$$

For all (possibly partial) Boolean functions g_{i} on $X_{i}(i=1,2, \ldots, n)$,

$$
\begin{equation*}
\operatorname{deg}_{2} \prod_{\epsilon_{i}-1}\left(\bigotimes_{i=1}^{n} g_{i}\right) \geqslant \sum_{i=1}^{n} \operatorname{deg}_{\epsilon_{i}}\left(g_{i}\right) \tag{3.28}
\end{equation*}
$$

Proof. We may clearly assume that each f_{i} is nonconstant. By Theorem 2.4, for each i there exists $\psi_{i}: X_{i} \rightarrow \mathbb{R}$ with

$$
\left\langle f_{i}, \psi_{i}\right\rangle>\epsilon_{i}\left\|\psi_{i}\right\|_{1}
$$

and $\sum_{x_{i} \in X_{i}} \psi_{i}\left(x_{i}\right) p\left(x_{i}\right)=0$ for every polynomial p of degree less than $\operatorname{deg}_{\epsilon_{i}}\left(f_{i}\right)$. Then $\left\langle\bigotimes f_{i}, \otimes \psi_{i}\right\rangle>\left\|\otimes \psi_{i}\right\|_{1} \prod \epsilon_{i}$ and $\sum_{\prod X_{i}} p\left(\ldots, x_{i}, \ldots\right) \prod \psi_{i}\left(x_{i}\right)=0$ for every polynomial p of degree less than $\sum \operatorname{deg}_{\epsilon_{i}}\left(f_{i}\right)$. Again by Theorem 2.4, the proof of (3.27) is complete.

The proof of (3.28) is similar. We may assume that each g_{i} is nonconstant. By Theorem 2.4, for each i there exists $\psi_{i}: X_{i} \rightarrow \mathbb{R}$ with

$$
\sum_{x_{i} \in \operatorname{dom} g_{i}} g_{i}\left(x_{i}\right) \psi_{i}\left(x_{i}\right)>\epsilon_{i}\left\|\psi_{i}\right\|_{1}
$$

and $\sum_{x_{i} \in X_{i}} \psi_{i}\left(x_{i}\right) p\left(x_{i}\right)=0$ for every polynomial p of degree less than $\operatorname{deg}_{\epsilon_{i}}\left(g_{i}\right)$. Letting $\psi=\bigotimes \psi_{i}$, we have

$$
\sum_{x \in \prod \operatorname{dom} g_{i}} \psi(x) \prod_{i=1}^{n} g_{i}\left(x_{i}\right)>\|\psi\|_{1} \prod_{i=1}^{n} \epsilon_{i}
$$

and $\sum_{\Pi X_{i}} p\left(\ldots, x_{i}, \ldots\right) \prod \psi_{i}\left(x_{i}\right)=0$ for every polynomial p of degree less than $\sum \operatorname{deg}_{\epsilon_{i}}\left(g_{i}\right)$. By Corollary 2.5, the proof of (3.28) is complete.
4. Quantum communication. This section is devoted to our results on quantum communication complexity. In Section 4.1, we prove XOR lemmas and direct product theorems for any approximate norm whose dual exhibits submultiplicative behavior. In the subsections that follow, we specialize our results to γ_{2}, obtaining XOR lemmas, direct product theorems, and direct sum theorems for communication complexity.
4.1. Solution for arbitrary norms. In what follows, $\|\|\cdot\|\|$ stands for any norm on Euclidean space. The results below are meaningful as long as the dual norm behaves nicely under tensor product, viz., a reasonable bound can be placed on $\left\|\otimes \psi_{i}\right\|^{*}$ in terms of $\prod\left\|\psi_{i}\right\|^{*}$. We start with an XOR lemma.

THEOREM 4.1. Fix finite sets $X_{1}, X_{2}, \ldots, X_{n}$. Let $\mathbb{R}^{X_{1}}, \mathbb{R}^{X_{2}}, \ldots, \mathbb{R}^{X_{n}}$, and $\mathbb{R}^{\Pi X_{i}}$ be normed by $\|\cdot\| \|$, with C_{1}, C_{2} defined by (3.12) and (3.13). Fix a (possibly partial) Boolean function g_{i} on $X_{i}(i=1,2, \ldots, n)$. Then for every $\epsilon, \delta \in(0,1)$ and $k=$ $0,1,2, \ldots, n-1$,

$$
\left\|\bigotimes_{i=1}^{n} g_{i}\right\| \|_{\delta} \geqslant \frac{\prod_{i=1}^{n}\left\|g_{i}\right\|_{1-\epsilon}}{\underset{|S|=k}{\mathbf{E}}\left[\prod_{i \in S}\left\|g_{i}\right\|_{1-\epsilon}\right]} \cdot \frac{1-\delta-(1+\delta)\binom{n}{k+1} \frac{\left(\frac{1}{2} \epsilon\right)^{k+1}}{\left(1-\frac{1}{2} \epsilon\right)^{n}}}{\frac{\epsilon^{n-k}}{\left(1-\frac{1}{2} \epsilon\right)^{n}}\binom{n+k}{k} C_{1} C_{2}^{k}}
$$

Proof. By Corollary 2.2, for each i there exists $\psi_{i}: X_{i} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\left\|g_{i}\right\|_{1-\epsilon}=\frac{1}{\left\|\psi_{i}\right\|^{*}}\left\{\sum_{x_{i} \in \operatorname{dom} g_{i}} g_{i}\left(x_{i}\right) \psi_{i}\left(x_{i}\right)-\sum_{x_{i} \notin \operatorname{dom} g_{i}}\left|\psi_{i}\left(x_{i}\right)\right|-(1-\epsilon)\left\|\psi_{i}\right\|_{1}\right\} \tag{4.1}
\end{equation*}
$$

In particular, the expression in braces is positive for all i. By homogeneity, we may assume that $\left\|\psi_{i}\right\|_{1}=1$ for all i. Define $\Psi_{k}: \prod X_{i} \rightarrow \mathbb{R}$ as in Lemma 3.2. By Corollary 2.2 ,

$$
\left\|\bigotimes_{i=1}^{n} g_{i}\right\|_{\delta} \geqslant \frac{1}{\left\|\Psi_{k}\right\|^{*}}\left\{\sum_{x \in \prod \operatorname{dom} g_{i}} \Psi_{k}(x) \prod_{i=1}^{n} g_{i}\left(x_{i}\right)-\sum_{x \notin \prod \operatorname{dom} g_{i}}\left|\Psi_{k}(x)\right|-\delta\left\|\Psi_{k}\right\|_{1}\right\} .
$$

In view of (3.9), it remains to prove that

$$
\begin{equation*}
\left\|\Psi_{k}\right\|^{*} \leqslant k!\binom{n+k}{k} \epsilon^{n-k} C_{1} C_{2}^{k} \underset{|S|=n-k}{\mathbf{E}}\left[\prod_{i \in S} \frac{1}{\left\|g_{i}\right\|_{1-\epsilon}}\right] \tag{4.2}
\end{equation*}
$$

For this, note first that (4.1) gives

$$
\begin{equation*}
\left\|\psi_{i}\right\|^{*} \leqslant \frac{\epsilon\left\|\psi_{i}\right\|_{1}}{\left\|g_{i}\right\|_{1-\epsilon}}=\frac{\epsilon}{\left\|g_{i}\right\|_{1-\epsilon}}, \quad i=1,2, \ldots, n \tag{4.3}
\end{equation*}
$$

Let $\mathscr{C}_{0}, \mathscr{C}_{1}, \ldots, \mathscr{C}_{n}$ be as defined in Lemma 3.3. In light of (3.2) and the symmetry of the polynomial p_{k} from Lemma 3.1, one has

$$
\begin{equation*}
p_{k}\left(\ldots, f_{i}\left(x_{i}\right) \operatorname{sgn} \psi_{i}\left(x_{i}\right), \ldots\right) \in k!\binom{n+k}{k} \mathscr{C}_{k} \tag{4.4}
\end{equation*}
$$

for all Boolean functions f_{i} on $X_{i}(i=1,2, \ldots, n)$. Lemma 3.3 now implies that

$$
\left\|\Psi_{k}\right\|^{*} \leqslant k!\binom{n+k}{k} C_{1} C_{2}^{k} \underset{|S|=n-k}{\mathbf{E}}\left[\prod_{i \in S}\left\|\psi_{i}\right\|^{*}\right]
$$

which settles (4.2) in view of (4.3).
We now prove a direct product theorem, again in the context of an arbitrary norm. More specifically, the theorem places a lower bound on the norm of any (σ, m) approximant for a given set of functions, as formalized in the following definition.

Definition 4.2. Fix finite sets $X_{1}, X_{2}, \ldots, X_{n}$ and a norm $\|\cdot\|$ on $\mathbb{R}^{\Pi X_{i}}$. For a (possibly partial) Boolean function g_{i} on $X_{i}(i=1,2, \ldots, n)$, let

$$
\left\|g_{1}, g_{2}, \ldots, g_{n}, \sigma, m\right\|=\min _{\left\{\phi_{z}\right\}} \max _{z \in\{-1,+1\}^{n}}\left\|\phi_{z}\right\|,
$$

where the minimum is over all (σ, m)-approximants $\left\{\phi_{z}\right\}$ of $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$.
Theorem 4.3. Fix finite sets $X_{1}, X_{2}, \ldots, X_{n}$. Let $\mathbb{R}^{X_{1}}, \mathbb{R}^{X_{2}}, \ldots, \mathbb{R}^{X_{n}}$, and $\mathbb{R}^{\Pi X_{i}}$ be normed by $\|\cdot\| \|$, with C_{1}, C_{2} defined by (3.12), (3.13). Fix a (possibly partial) Boolean function g_{i} on $X_{i}(i=1,2, \ldots, n)$. Then for all $\epsilon, \sigma \in(0,1)$, and all nonnegative integers k, ℓ, m with $k+\ell \leqslant n$, one has:

$$
\begin{aligned}
& \left\|g_{1}, g_{2}, \ldots, g_{n}, \sigma, m\right\| \geqslant \\
& \frac{\prod_{i=1}^{n}\left\|g_{i}\right\|_{1-\epsilon}}{\underset{|S|=k+\ell}{\mathbf{E}}\left[\prod_{i \in S}\left\|g_{i}\right\|_{1-\epsilon}\right]} \cdot \frac{\sigma-2^{-\frac{\alpha \ell^{2}}{n}+m+1}-2\binom{n}{k+1} \frac{\left(\frac{1}{2} \epsilon\right)^{k+1}}{\left(1-\frac{1}{2} \epsilon\right)^{n}}}{\frac{2^{n} \epsilon^{n-k-\ell}}{\left(1-\frac{1}{2} \epsilon\right)^{n}}}\binom{n+k}{k}\binom{n}{\leqslant \ell}^{1 / 2} C_{1} C_{2}^{k+\ell}
\end{aligned}
$$

where $\alpha>0$ is the absolute constant from Theorem 3.5.
Proof. By Corollary 2.2, for all i there exists $\psi_{i}: X_{i} \rightarrow \mathbb{R}$ that obeys (4.1). Clearly the expression in braces in (4.1) is positive for all i. By homogeneity, we may assume that $\left\|\psi_{i}\right\|_{1}=1$. Fix a (σ, m)-approximant $\left\{\phi_{z}\right\}$ for $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ and define $\Psi_{k}, \Phi_{\ell}: \prod X_{i} \rightarrow \mathbb{R}$ as in Lemma 3.7. Define $\Psi_{k, \ell, z}: \prod X_{i} \rightarrow \mathbb{R}$ by

$$
\Psi_{k, \ell, z}\left(\ldots, x_{i}, \ldots\right)=\Psi_{k}\left(\ldots, x_{i}, \ldots\right) q_{\ell}\left(\ldots, z_{i} f_{i}\left(x_{i}\right), \ldots\right) \prod_{i=1}^{n} z_{i}
$$

where $f_{1}, f_{2}, \ldots, f_{n}$ are as defined in Lemma 3.7 and q_{ℓ} is the degree- ℓ polynomial guaranteed in Corollary 3.6.

Claim 4.4. For each $z \in\{-1,+1\}^{n}$,

$$
\left\|\Psi_{k, \ell, z}\right\|^{*} \leqslant k!\binom{n+k}{k}\binom{n}{\leqslant \ell}^{1 / 2} C_{1} C_{2}^{k+\ell} \underset{|S|=n-k-\ell}{\mathbf{E}}\left[\prod_{i \in S}\left\|\psi_{i}\right\|^{*}\right] .
$$

Proof. Let $\mathscr{C}_{0}, \mathscr{C}_{1}, \ldots, \mathscr{C}_{n}$ be as defined in Lemma 3.3. Let p_{k} be the degree- k polynomial defined in Lemma 3.1. We have

$$
\begin{gathered}
p_{k}\left(\ldots, f_{i}\left(x_{i}\right) \operatorname{sgn} \psi_{i}\left(x_{i}\right), \ldots\right) \in k!\binom{n+k}{k} \mathscr{C}_{k}, \\
q_{\ell}\left(\ldots, z_{i} f_{i}\left(x_{i}\right), \ldots\right) \in\binom{n}{\leqslant \ell}^{1 / 2} \mathscr{C}_{\ell} .
\end{gathered}
$$

The first of these memberships was shown earlier in (4.4), and the second is immediate from (3.19) and the symmetry of q_{ℓ}. The product of these two functions therefore lies in $k!\binom{n+k}{k}\binom{n}{\leqslant \ell}^{1 / 2} \mathscr{C}_{k+\ell}$. Since

$$
\Psi_{k, \ell, z}\left(\ldots, x_{i}, \ldots\right)=p_{k}\left(\ldots, f_{i}\left(x_{i}\right) \operatorname{sgn} \psi_{i}\left(x_{i}\right), \ldots\right) q_{\ell}\left(\ldots, z_{i} f_{i}\left(x_{i}\right), \ldots\right) \prod_{i=1}^{n} z_{i} \psi_{i}\left(x_{i}\right)
$$

by definition, the proof is complete by Lemma 3.3.
Note that (4.1) forces

$$
\begin{equation*}
\left\|\psi_{i}\right\|^{*} \leqslant \frac{\epsilon\left\|\psi_{i}\right\|_{1}}{\left\|g_{i}\right\|_{1-\epsilon}}=\frac{\epsilon}{\left\|g_{i}\right\|_{1-\epsilon}}, \quad i=1,2, \ldots, n \tag{4.5}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\left\langle\Phi_{\ell}, \Psi_{k}\right\rangle & =\sum_{z \in\{-1,+1\}^{n}}\left\langle\phi_{z}, \Psi_{k, \ell, z}\right\rangle \\
& \leqslant \sum_{z \in\{-1,+1\}^{n}}\left\|\phi_{z}\right\|\| \| \Psi_{k, \ell, z} \|^{*} \\
& \leqslant k!2^{n}\binom{n+k}{k}\binom{n}{\leqslant \ell}^{1 / 2} C_{1} C_{2}^{k+\ell}{\underset{|S|=n-k-\ell}{\mathbf{E}}\left[\prod_{i \in S}\left\|\psi_{i}\right\|^{*}\right] \max _{z}\left\|\phi_{z}\right\| \|,}^{\text {m }} .
\end{aligned}
$$

where the last step follows by Claim 4.4. Now (4.5) shows that $\left\langle\Phi_{\ell}, \Psi_{k}\right\rangle$ cannot exceed

$$
k!2^{n} \epsilon^{n-k-\ell}\binom{n+k}{k}\binom{n}{\leqslant \ell}^{1 / 2} C_{1} C_{2}^{k+\ell} \underset{|S|=n-k-\ell}{\mathbf{E}}\left[\prod_{i \in S} \frac{1}{\left\|g_{i}\right\|_{1-\epsilon}}\right] \max _{z}\left\|\phi_{z}\right\| .
$$

In view of (3.20) and the fact that the theorem is void for $\sigma<2^{-\alpha \ell^{2} / n+m+1}$, we obtain the claimed lower bound on $\max \left\|\phi_{z}\right\|$.
4.2. XOR lemmas. We now specialize the above results to the γ_{2} norm and quantum communication complexity. For this, we recall a multiplicative property of the dual norm γ_{2}^{*}, established by Cleve, Slofstra, Unger, and Upadhyay [17].

Theorem 4.5 (Cleve et al.). For all real matrices A, B,

$$
\gamma_{2}^{*}(A \otimes B)=\gamma_{2}^{*}(A) \gamma_{2}^{*}(B)
$$

We note in passing that Lee, Shraibman, and Špalek [40, Thm. 17] recently revisited Theorem 4.5, additionally proving multiplicativity for the primal norm γ_{2}. For our purposes, only the upper bound in Theorem 4.5 is needed.

THEOREM 4.6. Let $\epsilon_{0}>0$ be a sufficiently small absolute constant. Then for all (possibly partial) sign matrices $F_{1}, F_{2}, \ldots, F_{n}$ and all $\epsilon \in\left(0, \epsilon_{0}\right)$,

$$
\gamma_{2,1-\epsilon^{n / 101}}\left(\bigotimes_{i=1}^{n} F_{i}\right) \geqslant \min _{|S|=\lceil 0.99 n\rceil}\left\{\prod_{i \in S} \gamma_{2,1-\epsilon}\left(F_{i}\right)\right\}
$$

Proof. By Theorem 4.5 and Fact 2.3 (iv), the norm $\|\cdot\| \|=\gamma_{2}$ satisfies (3.12) with $C_{1} \leqslant 1$ and (3.13) with $C_{2} \leqslant 1$. Hence, invoking Theorem 4.1 with $\|\cdot\| \|=\gamma_{2}$, $k=\lfloor 0.01 n\rfloor, \quad \delta=1-\epsilon^{n / 101}$, and $g_{i}=F_{i}$ gives

$$
\gamma_{2,1-\epsilon^{n / 101}}\left(\bigotimes_{i=1}^{n} F_{i}\right) \geqslant \frac{\prod_{i=1}^{n} \gamma_{2,1-\epsilon}\left(F_{i}\right)}{\max _{|S|=\lfloor 0.01 n\rfloor}\left\{\prod_{i \in S} \gamma_{2,1-\epsilon}\left(F_{i}\right)\right\}}=\min _{|S|=\lceil 0.99 n\rceil}\left\{\prod_{i \in S} \gamma_{2,1-\epsilon}\left(F_{i}\right)\right\}
$$

as was to be shown.
Theorem 4.6 gives the desired XOR lemma for quantum communication. We will now show how to improve the dependence on ϵ in the more interesting case of total communication problems. A base case in our analysis is given by:

Proposition 4.7. Let $F_{1}, F_{2}, \ldots, F_{n}$ be sign matrices, each of rank at least 2. Then

$$
\begin{equation*}
\gamma_{2,1-\epsilon}\left(\bigotimes_{i=1}^{n} F_{i}\right) \geqslant \epsilon 2^{n / 2} \quad(0 \leqslant \epsilon \leqslant 1) \tag{4.6}
\end{equation*}
$$

Proof. Let H be given by (2.8). We claim that each F_{i} contains some signature scaling of H as a submatrix. To see this, signature scale F_{i} such that the first row and first column feature only +1 entries and conclude from $\mathrm{rk} F_{i}>1$ the existence of a -1 entry elsewhere in the resulting matrix. Now (4.6) is immediate from Fact 2.3 (i), (ii), (xi).

Theorem 4.8. For a small enough constant $c>0$ and every sign matrix F,

$$
\begin{array}{ll}
\gamma_{2,1-\left(\frac{3}{4}\right)^{n}}\left(F^{\otimes n}\right)=\left(\gamma_{2, \frac{1}{4}}(F)\right)^{n} & (\text { rk } F=1) \\
\gamma_{2,1-\left(\frac{3}{4}\right)^{n}}\left(F^{\otimes n}\right) \geqslant\left(\gamma_{2, \frac{1}{4}}(F)\right)^{c n} & (\text { rk } F>1) \tag{4.8}
\end{array}
$$

Proof. In the trivial case when rk $F=1$, Fact 2.3 (i), (x) gives $\gamma_{2,1-(3 / 4)^{n}}\left(F^{\otimes n}\right)=$ $(3 / 4)^{n}$ and $\gamma_{2,1 / 4}(F)=3 / 4$, proving (4.7).

In the remainder of the proof, we assume that $\operatorname{rk} F>1$. By Theorem 4.5 and Fact 2.3 (iv), the norm $\|\cdot\|=\gamma_{2}$ satisfies (3.12) with $C_{1} \leqslant 1$ and (3.13) with $C_{2} \leqslant 1$. As a result, letting $k=\lfloor 0.96 n\rfloor, \epsilon=3 / 4, \delta=1-(3 / 4)^{n}$, and $g_{1}=g_{2}=\cdots=g_{n}=F$ in Theorem 4.1 yields

$$
\gamma_{2,1-\left(\frac{3}{4}\right)^{n}}\left(F^{\otimes n}\right)>\gamma_{2, \frac{1}{4}}(F)^{n / 25} \cdot \alpha^{n}
$$

for some constant $\alpha>0$. Proposition 4.7 gives an alternate lower bound of $(3 \sqrt{2} / 4)^{n}$. One now obtains (4.8) as a geometric mean of these two lower bounds: for small $\beta>0$,

$$
\gamma_{2,1-\left(\frac{3}{4}\right)^{n}}\left(F^{\otimes n}\right) \geqslant\left\{\gamma_{2, \frac{1}{4}}(F)^{n / 25} \cdot \alpha^{n}\right\}^{\beta}\left\{\left(\frac{3 \sqrt{2}}{4}\right)^{n}\right\}^{1-\beta} \geqslant \gamma_{2, \frac{1}{4}}(F)^{\beta n / 25}
$$

Theorem 4.8 readily generalizes to n distinct sign matrices:
Theorem 4.9. Fix sign matrices $F_{1}, F_{2}, \ldots, F_{n}$, each of rank at least 2. Then

$$
\begin{equation*}
\gamma_{2,1-\left(\frac{3}{4}\right)^{n}}\left(\bigotimes_{i=1}^{n} F_{i}\right) \geqslant\left(\min _{|S|=\lceil n / 25\rceil}\left\{\prod_{i \in S} \gamma_{2,1 / 4}\left(F_{i}\right)\right\}\right)^{c} \tag{4.9}
\end{equation*}
$$

for a small enough constant $c>0$. In particular,

$$
\begin{equation*}
\gamma_{2,1-2^{-c n}}\left(\bigotimes_{i=1}^{n} F_{i}\right) \geqslant\left(\min _{|S|=\lceil 0.99 n\rceil}\left\{\prod_{i \in S} \gamma_{2,1 / 4}\left(F_{i}\right)\right\}\right)^{c} \tag{4.10}
\end{equation*}
$$

for a small enough constant $c>0$.
Proof. The proof of (4.9) is analogous to Theorem 4.8. It remains to show (4.10).
At first sight, (4.9) seems much weaker than (4.10). After all, the former gives a lower bound in terms of the cumulative complexity of the easiest 4% of the problems, and the latter in terms of the easiest 99%. A moment's reflection reveals, however, that (4.10) follows easily from (4.9). Specifically, one first discards the easiest 99% of the problems $F_{1}, F_{2}, \ldots, F_{n}$ and then applies (4.9) to the remaining 1%. This merely results in a smaller constant $c>0$ in the latter case.

This establishes the XOR results in Theorems 1.1 and 1.3 of the introduction.
4.3. Direct product theorems. We will now derive direct product theorems for quantum communication, corresponding to the XOR lemmas just obtained. Recall that the symbol $Q_{1-\sigma, m}^{*}\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ stands for the least cost of a quantum protocol that solves with probability σ at least $n-m$ of the communication problems $F_{1}, F_{2}, \ldots, F_{n}$. The meaningful case is when the ratio m / n is a sufficiently small constant. In this setting, a protocol that simply outputs a random answer $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in\{-1,+1\}^{n}$ without any communication achieves error probability $1-2^{-n}\binom{n}{\leqslant m}=1-2^{-\Omega(n)}$. All communication lower bounds below allow the protocol to err with probability $1-2^{-\Omega(n)}$.

For Boolean functions $F_{i}: X_{i} \times Y_{i} \rightarrow\{-1,+1\}, i=1,2, \ldots, k$, and a gadget $g:\{-1,+1\}^{k} \rightarrow\{-1,+1\}$, the symbol $g\left(F_{1}, \ldots, F_{k}\right)$ stands as usual for their composition, which is a function $\prod X_{i} \times \prod Y_{i} \rightarrow\{-1,+1\}$. We will mostly be interested in $g=\wedge$ and $g=\oplus$ below. We will usually view $g\left(F_{1}, \ldots, F_{k}\right)$ as a sign matrix, with rows
indexed by elements of $\prod X_{i}$ and columns indexed by elements of $\prod Y_{i}$. For (possibly partial) sign matrices F_{1}, \ldots, F_{n}, define $\gamma_{2}\left(F_{1}, \ldots, F_{n}, \sigma, m\right)$ to be $\left\|F_{1}, \ldots, F_{n}, \sigma, m\right\|$ with $\|\cdot\| \cdot \|$ taken to be the γ_{2} norm on the matrix family $\mathbb{R} \Pi X_{i} \times \Pi Y_{i}$.

Proposition 4.10. For all (possibly partial) sign matrices F_{1}, \ldots, F_{n},

$$
2^{Q_{1-\sigma, m}^{*}\left(F_{1}, \ldots, F_{n}\right)} \geqslant \gamma_{2}\left(F_{1}, \ldots, F_{n}, \sigma, m\right) .
$$

Proof. For a protocol Π with cost c that solves with probability σ at least $n-m$ of the problems F_{1}, \ldots, F_{n}, define

$$
\phi_{z}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\mathbf{P}\left[\Pi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=z\right]
$$

where the probability is taken over the operation of the protocol on a fixed input. Then $\left\{\phi_{z}\right\}$ is a (σ, m)-approximant for $\left(F_{1}, \ldots, F_{n}\right)$. Viewed as an element of $\mathbb{R} \Pi X_{i} \times \Pi Y_{i}$, each ϕ_{z} is the matrix of acceptance probabilities of a quantum protocol with onebit output and cost c (namely, the quantum protocol that accepts if and only if Π outputs z). Thus, $\gamma_{2}\left(\phi_{z}\right) \leqslant 2^{c}$ by Theorem 2.6.

Recall from Theorem 4.5 and Fact 2.3 (iv) that the norm $\|\cdot\|=\gamma_{2}$ satisfies (3.12) with $C_{1} \leqslant 1$ and (3.13) with $C_{2} \leqslant 1$. We will use this fact without further mention whenever we invoke our main technical tool here, Theorem 4.3. We have:

Theorem 4.11. Fix (possibly partial) sign matrices $F_{1}, F_{2}, \ldots, F_{n}$. Then for a sufficiently small constant $\epsilon>0$,

$$
Q_{1-2^{-\epsilon n}, \epsilon n}^{*}\left(F_{1}, F_{2}, \ldots, F_{n}\right) \geqslant \epsilon \min _{|S|=\lceil 0.99 n\rceil}\left\{\sum_{i \in S} \log \left(\gamma_{2,1-\epsilon}\left(F_{i}\right)\right)\right\}-1 .
$$

Proof. A protocol that solves $\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ with probability 0.99 can solve each F_{i} individually with probability 0.99 . Hence, for n up to any given constant, the theorem follows trivially from Theorem 2.7 by choosing $\epsilon>0$ correspondingly small. For n larger than a certain constant, the theorem follows by taking $k=\ell=\lfloor 0.005 n\rfloor$, $m=\lfloor\epsilon n\rfloor$, and $\sigma=2^{-\epsilon n}$ in Theorem 4.3 and applying Proposition 4.10.

Theorem 4.11 gives the desired direct product theorem for quantum communication. As we did for XOR lemmas, we will now take a closer look at the more interesting case of total functions, improving several constants. The base case in our analysis is given by the following statement.

Lemma 4.12. Let $\beta>0$ be a sufficiently small absolute constant. Then:
(i) $Q_{1-2^{-\beta n}, \beta n}^{*}\left(F_{1}, \ldots, F_{n}\right)>\beta n$ for any Hadamard matrices F_{1}, \ldots, F_{n} of order 2.
(ii) $Q_{1-2-\beta n, \beta n}^{*}\left(F_{1}, \ldots, F_{n}\right)>\beta n$ for any sign matrices F_{1}, \ldots, F_{n} of rank at least 2.

Proof.
(i) Let $K \geqslant 1$ be a sufficiently large integer constant and H_{1}, \ldots, H_{r} Hadamard matrices of order 2^{K}. Then $\gamma_{2,1-\epsilon}\left(H_{i}\right)=\epsilon 2^{K / 2}$ for each i, by Fact 2.3 (xi). As a result, choosing a sufficiently small absolute constant $\beta^{\prime}>0$ and letting $n=r$, $k=\lfloor 0.96 r\rfloor, \quad \ell=\lfloor 0.01 r\rfloor, \epsilon=3 / 4$, and $\sigma=(3 / 4)^{r}+2^{-\alpha \ell^{2} / r+\beta^{\prime} r+1}$ in Theorem 4.3 give $\gamma_{2}\left(H_{1}, \ldots, H_{r}, 2^{-\beta^{\prime} r}, \beta^{\prime} r\right)>2^{\beta^{\prime} r}$, whence $Q_{1-2^{-\beta^{\prime} r, \beta^{\prime} r}}^{*}\left(H_{1}, \ldots, H_{r}\right)>\beta^{\prime} r$ by Proposition 4.10.
Now, given order-2 Hadamard matrices F_{1}, \ldots, F_{n}, let $r=\lfloor n / K\rfloor$ and consider the order- 2^{K} Hadamard matrices $H_{i}=F_{K(i-1)+1} \otimes F_{K(i-1)+2} \otimes \cdots \otimes F_{K i}$ for $i=1,2, \ldots, r$.

We have $Q_{1-2^{-\beta^{\prime} r, \beta^{\prime} r}}^{*}\left(H_{1}, \ldots, H_{r}\right)>\beta^{\prime} r$ by the above, which proves the claim since trivially $Q_{1-\sigma, \beta^{\prime} r}^{*}\left(F_{1}, \ldots, F_{n}\right) \geqslant Q_{1-\sigma, \beta^{\prime} r}^{*}\left(H_{1}, \ldots, H_{r}\right)$ for all σ.
(ii) As argued earlier in Proposition 4.7, each F_{i} contains a Hadamard matrix of order 2 . The proof is now complete by (i).

Using the previous lemma, we will now derive the sought direct product theorems.
Theorem 4.13. Fix sign matrices $F_{1}, F_{2}, \ldots, F_{n}$, each of rank at least 2. Then for some absolute constant $\beta>0$,

$$
\begin{equation*}
Q_{1-2-\beta n, \beta n}^{*}\left(F_{1}, F_{2}, \ldots, F_{n}\right) \geqslant \beta \min _{|S|=[0.99 n]}\left\{\sum_{i \in S} \log \left(\gamma_{2, \frac{1}{4}}\left(F_{i}\right)\right)\right\} . \tag{4.11}
\end{equation*}
$$

Proof. As explained in the proof of Theorem 4.11, we may assume that n is larger than a constant of our choice. Then choosing a sufficiently small absolute constant $\beta^{\prime}>0$, letting $k=\lfloor 0.96 n\rfloor, \ell=\lfloor 0.01 n\rfloor, \epsilon=3 / 4$, and $\sigma=(3 / 4)^{n}+2^{-\alpha \ell^{2} / n+\beta^{\prime} n+1}$ in Theorem 4.3, and invoking Proposition 4.10 give

$$
Q_{1-2^{-\beta^{\prime} n, \beta^{\prime} n}}^{*}\left(F_{1}, \ldots, F_{n}\right) \geqslant-n \log 18+\min _{|S|=\lceil 0.03 n\rceil}\left\{\sum_{i \in S} \log \left(\gamma_{2,1 / 4}\left(F_{i}\right)\right)\right\} .
$$

Lemma 4.12 (ii) gives an alternate lower bound of

$$
\begin{equation*}
Q_{1-2^{-\beta^{\prime \prime n}, \beta^{\prime \prime} n}}^{*}\left(F_{1}, \ldots, F_{n}\right)>\beta^{\prime \prime} n \tag{4.12}
\end{equation*}
$$

for some absolute constant $\beta^{\prime \prime}>0$. Taking a weighted arithmetic average of these bounds yields

$$
\begin{equation*}
Q_{1-2^{-\beta n}, \beta n}^{*}\left(F_{1}, \ldots, F_{n}\right) \geqslant \beta \min _{|S|=\lceil 0.03 n\rceil}\left\{\sum_{i \in S} \log \left(\gamma_{2,1 / 4}\left(F_{i}\right)\right)\right\} \tag{4.13}
\end{equation*}
$$

for a constant $\beta>0$.
We are now in a situation that we have already faced in the proof of Theorem 4.9. Specifically, (4.13) seems much weaker than (4.11) in that the former gives a lower bound on $Q_{1-2-\beta n, \beta n}^{*}\left(F_{1}, \ldots, F_{n}\right)$ in terms of the cumulative complexity of the easiest 3% of the problems, and the latter in terms of the easiest 99%. A moment's reflection shows that in fact, (4.11) and (4.13) are logically equivalent. To obtain (4.11), one first discards the easiest 99% of the problems $F_{1}, F_{2}, \ldots, F_{n}$ and then applies (4.13) to the remaining 1%. This merely decreases the unnamed constant $\beta>0$.

The lower bound (4.11) establishes the direct product results in Theorems 1.1 and 1.3 of the introduction.

The XOR of any sign matrices $F_{1}, F_{2}, \ldots, F_{n}$ of rank 1 is computable with a single bit of communication. In particular, it is meaningless to speak of an XOR lemma in that case. Direct product theorems, however, remain meaningful even for rank-1 matrices. While this case is of minor interest, we include its simple solution for completeness. Call a matrix column-constant if its columns are all identical, and similarly for row-constant.

THEOREM 4.14. Fix rank-1 sign matrices $F_{1}, F_{2}, \ldots, F_{n}$, of which c are not column-constant and r are not row-constant. Then for some absolute constant $\beta>0$,

$$
Q_{1-2-\beta t, \beta t}^{*}\left(F_{1}, F_{2}, \ldots, F_{n}\right) \geqslant \beta t,
$$

where $t=\min \{r, c\}$. The bound is tight in that a one-way classical deterministic protocol can simultaneously solve $F_{1}, F_{2}, \ldots, F_{n}$ using t bits of communication.

In the theorem above, "one-way protocol" refers to a communication protocol in which one of the parties sends a message to the other party who then announces the answer. The identity of the sender, Alice or Bob, depends on the parameters of the problem (whether $r \leqslant c$ or vice versa).

Proof. Since each matrix has rank 1, there can be at most two distinct rows and at most two distinct columns per matrix. This gives the deterministic upper bound: if $c \leqslant r$, the column player identifies his entire input by sending one bit for each of the matrices that are not column-constant, and similarly if $r<c$.

The quantum lower bound follows from Lemma 4.12 (ii). Namely, select disjoint subsets $I, J \subset\{1,2, \ldots, n\}$ with $|I|=|J| \geqslant \min \{\lfloor c / 2\rfloor,\lfloor r / 2\rfloor\}$ such that none of $\left\{F_{i}: i \in I\right\}$ are column-constant and none of $\left\{F_{j}: j \in J\right\}$ are row-constant. Then for all $i \in I$ and $j \in J$, the sign matrix $F_{i} \wedge F_{j}$ has rank at least 2. As a result, any protocol for $\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ can be turned into a protocol for $|I|=|J|$ sign matrices of rank at least 2 , with the same performance guarantees.

As a final remark, Theorems 4.13 and 4.14 can be strengthened with respect to the protocol's error probability by providing a sharper approximant than what is guaranteed in Theorem 3.5. We will illustrate this point by deriving, for an arbitrarily small constant $\xi>0$, a strong direct product theorem for protocols with error probability $1-2^{-(1-\xi) n}$. This bound essentially matches the error probability $1-2^{-n}$ achieved by a trivial, communication-free protocol. The approximant in Theorem 3.5 is no longer sufficient for this purpose, and we obtain the necessary statement via a more careful analysis of an earlier approximant due to Kahn, Linial, and Samorodnitsky [29].

Lemma 4.15. Let $\xi \in(0,1)$ be a given constant. Then Theorem 3.5 holds with $m=0$ and $\alpha=1-\xi$ provided that $\ell \geqslant\left(1-\xi^{\prime}\right) n$, where $\xi^{\prime}=\xi^{\prime}(\xi)>0$ is another constant.

Proof. Following [29], we put $r=\lfloor\ell / 2\rfloor$ and define

$$
Q_{\ell}(t)=\frac{(-1)^{r}}{r!r!}\binom{n}{r}^{-1} \prod_{i=0}^{r-1}(t-1-i)(n-t-i)
$$

Then

$$
\begin{aligned}
Q_{\ell}(t) & =0, & t \in\{1, \ldots, r\} \cup\{n-r+1, \ldots, n\} \\
\left|Q_{\ell}(t)\right| & =\frac{\binom{t-1}{r}\binom{n-t}{r}}{\binom{n}{r}} \leqslant \frac{\binom{n-r}{r}^{2}}{\binom{n}{r}}, & t \in\{r+1, \ldots, n-r\} \\
Q_{\ell}(0) & =1, &
\end{aligned}
$$

where the bound on $\left|Q_{\ell}(t)\right|$ follows directly from the fact that the real function $x \mapsto\binom{x}{r}$ is nondecreasing on (r, ∞). Thus,

$$
\begin{equation*}
\max _{t=1, \ldots, n}\left|Q_{\ell}(t)\right| \leqslant 2^{-n\left\{H\left(\frac{r}{n}\right)-2 H\left(\frac{r}{n-r}\right)\right\}(1-o(1))} \tag{4.14}
\end{equation*}
$$

where H is the binary entropy function. In particular, for any $\xi>0$, the right-hand side of (4.14) is bounded by $2^{-(1-\xi) n}$ provided that $\ell \geqslant\left(1-\xi^{\prime}\right) n$ for some constant $\xi^{\prime}=\xi^{\prime}(\xi)>0$.

We now prove the desired direct product theorem.

Theorem 4.16. Let $\xi>0$ be a constant and $F_{1}, F_{2}, \ldots, F_{n}$ sign matrices. Then

$$
Q_{1-2^{-(1-\xi) n}}^{*}\left(F_{1}, \ldots, F_{n}\right) \geqslant \min _{|S|=\lfloor\epsilon n\rfloor}\left\{\sum_{i \in S} \log \left(\gamma_{2,1-\epsilon}\left(F_{i}\right)\right)\right\}
$$

for a sufficiently small constant $\epsilon=\epsilon(\xi)>0$.
Proof. By Lemma 4.15, for $m=0$, the constant $\alpha \in(0,1)$ in Theorems 3.5 and 4.3 can be taken to be arbitrarily close to 1 provided that the ratio ℓ / n is larger than a corresponding constant in $(0,1)$. Thus, the claim follows by taking $\|\cdot\|=\gamma_{2}$, $m=0, k=\lfloor(n-\ell) / 2\rfloor, \sigma=2^{-(1-\xi) n}$, and $\ell=\left\lfloor\left(1-\xi^{\prime}\right) n\right\rfloor$ for a small enough constant $\xi^{\prime}=\xi^{\prime}(\xi)>0$ in Theorem 4.3, and applying Proposition 4.10.
4.4. Direct sum theorems. In a final result on quantum communication complexity, we prove a direct sum theorem for approximation in the γ_{2} norm. In view of Theorem 2.7, this translates to a direct sum theorem for quantum communication whenever the original lower bounds were obtained using the generalized discrepancy method. As explained in the introduction, this result is incomparable with the direct product theorems derived in the previous subsection. We start with a technical fact.

Proposition 4.17. Let $a_{1}, a_{2}, \ldots, a_{n}$ be nonnegative real numbers. Define $a=$ $\max \left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Partition $\{1,2, \ldots, n\}=S_{1} \cup S_{2} \cup S_{3} \cup \ldots$, where $S_{i}=\{j:$ $\left.2^{-i} a<a_{j} \leqslant 2^{-i+1} a\right\}$. Then

$$
\sum_{i:\left|S_{i}\right| \geqslant i / 8}\left|S_{i}\right| \min \left\{a_{j}: j \in S_{i}\right\} \geqslant \frac{1}{4} \sum_{i=1}^{n} a_{i}
$$

Proof. Define $M_{i}=\max \left\{a_{j}: j \in S_{i}\right\}$ and $m_{i}=\min \left\{a_{j}: j \in S_{i}\right\}$. Then

$$
\begin{aligned}
\sum_{i:\left|S_{i}\right| \geqslant i / 8}\left|S_{i}\right| m_{i} & \geqslant \sum_{i:\left|S_{i}\right| \geqslant i / 8}\left|S_{i}\right| \cdot \frac{a}{2^{i}} \geqslant \sum_{i \geqslant 1}\left(\left|S_{i}\right|-\frac{i}{8}\right) \frac{a}{2^{i}} \geqslant a\left(\sum_{i \geqslant 1} \frac{\left|S_{i}\right|}{2^{i}}-\frac{1}{4}\right) \\
& \geqslant \frac{a}{2} \sum_{i \geqslant 1} \frac{\left|S_{i}\right|}{2^{i}},
\end{aligned}
$$

where the last step follows because $\left|S_{1}\right| \geqslant 1$. The final expression is bounded from below by $\frac{1}{4} \sum_{i \geqslant 1}\left|S_{i}\right| M_{i} \geqslant \frac{1}{4} \sum_{i=1}^{n} a_{i}$.

We have:
Theorem 4.18. For a sufficiently small constant $\epsilon>0$ and arbitrary (possibly partial) sign matrices $F_{1}, F_{2}, \ldots, F_{n}$,

$$
\begin{equation*}
\gamma_{2,1 / 4}\left(\bigotimes_{i=1}^{n} F_{i}\right) \geqslant \frac{3}{4}\left(\prod_{i=1}^{n} \gamma_{2,1-\epsilon}\left(F_{i}\right)\right)^{1 / 5} \tag{4.15}
\end{equation*}
$$

Proof. Let $\epsilon>0$ be sufficiently small in the sense of Theorem 4.6. There are two cases to consider. If $\gamma_{2,1-\epsilon}\left(F_{i}\right)<1$ for every i, the theorem holds trivially because

$$
\gamma_{2,1 / 4}\left(\bigotimes_{i=1}^{n} F_{i}\right) \geqslant \gamma_{2,1 / 4}(J)=\frac{3}{4}
$$

by Fact 2.3 (ii), (x).

In the complementary case when $\gamma_{2,1-\epsilon}\left(F_{i}\right) \geqslant 1$ for some i, we may assume that $\gamma_{2,1-\epsilon}\left(F_{i}\right) \geqslant 1$ for every i since any offending matrices decrease the right-hand side of (4.15) without decreasing the left-hand side. Let $a_{i}=\ln \left\{\gamma_{2,1-\epsilon}\left(F_{i}\right)\right\}$ and define $S_{1}, S_{2}, S_{3}, \ldots$ as in Proposition 4.17. Theorem 4.6 shows that

$$
\begin{equation*}
\gamma_{2,1-M^{-k}}\left(\bigotimes_{i=1}^{k} G_{i}\right) \geqslant\left(\min _{i=1,2, \ldots, k}\left\{\gamma_{2,1-\epsilon}\left(G_{i}\right)\right\}\right)^{\lceil 0.99 k\rceil} \tag{4.16}
\end{equation*}
$$

for all k and all (possibly partial) sign matrices $G_{1}, G_{2}, \ldots, G_{k}$, where $M=M(\epsilon)>1$ is a constant that can be made as large as desired by choosing $\epsilon>0$ sufficiently small. For large enough M, we have

$$
\delta=2 \prod_{i=1}^{\infty}\left\{1-\frac{1}{M^{i / 8}}\right\}-1>\frac{1}{4}
$$

and

$$
\begin{array}{rlr}
\gamma_{2, \delta}\left(\bigotimes_{i=1}^{n} F_{i}\right) \geqslant \gamma_{2, \delta}\left(\bigotimes_{i:\left|S_{i}\right| \geqslant i / 8} \bigotimes_{j \in S_{i}} F_{j}\right) & \text { by Fact } 2.3 \text { (ii) } \\
& \geqslant \prod_{i:\left|S_{i}\right| \geqslant i / 8} \gamma_{2,1-M^{-\left|S_{i}\right|}}\left(\bigotimes_{j \in S_{i}} F_{j}\right) & \text { by Lemma } 3.8 \text { with } C_{1} \leqslant 1 \\
& \geqslant \prod_{i:\left|S_{i}\right| \geqslant i / 8} \exp \left(0.99\left|S_{i}\right| \cdot \min \left\{a_{j}: j \in S_{i}\right\}\right) & \text { by (4.16) } \\
& =\exp \left(0.99 \sum_{i:\left|S_{i}\right| \geqslant i / 8}\left|S_{i}\right| \min \left\{a_{j}: j \in S_{i}\right\}\right) & \\
& \geqslant \exp \left(\frac{0.99}{4} \sum_{i=1}^{n} a_{i}\right) & \text { by Proposition } 4.17 \\
& \geqslant\left(\prod_{i=1}^{n} \gamma_{2,1-\epsilon}\left(F_{i}\right)\right)^{1 / 5} &
\end{array}
$$

The appeal to Lemma 3.8 with $C_{1} \leqslant 1$ is legitimate by Theorem 4.5. \quad.
In the remainder of this subsection, we will take a more careful look at the case of total functions and improve the dependence on ϵ. For this, we need a standard error-reduction property for uniform approximation out of the unit ball of γ_{2} :

FACT 4.19. Fix a sign matrix F with $\mathrm{rk} F \geqslant 2$ and a constant $\epsilon \in(0,1 / 4)$. Then

$$
\gamma_{2, \frac{1}{4}}(F) \geqslant \gamma_{2, \epsilon}(F)^{\epsilon^{\prime}}
$$

for some constant $\epsilon^{\prime}=\epsilon^{\prime}(\epsilon)>0$.
This fact follows easily by applying an approximating polynomial to the matrix entries as was done in earlier papers, e.g., [3, 35]. Details follow.

Proof of Fact 4.19. Take a real matrix A with $\|F-A\|_{\infty} \leqslant 1 / 4$ and $\gamma_{2}(A)=$ $\gamma_{2,1 / 4}(F)$. By basic approximation theory [47], there is a univariate polynomial $p(t)=$
$\sum_{i=1}^{d} a_{i} t^{i}$ of degree $d=O(1 / \epsilon)$ that sends $[-5 / 4,-3 / 4] \rightarrow[-1-\epsilon,-1+\epsilon]$ and $[3 / 4,5 / 4] \rightarrow[1-\epsilon, 1+\epsilon]$. Then $\|F-B\|_{\infty} \leqslant \epsilon$ for

$$
B=\sum_{i=1}^{d} a_{i} \underbrace{A \circ A \circ \cdots \circ A}_{i \text { times }}
$$

Now Fact 2.3 (xiii) gives $\gamma_{2}(B) \leqslant \sum_{i=1}^{d}\left|a_{i}\right| \gamma_{2}(A)^{i}$, which is bounded by $\gamma_{2}(A)^{\Theta(1)}$ since $\gamma_{2}(A)=\gamma_{2,1 / 4}(F)>1.06$ by Proposition 4.7.

We now arrive at the desired direct sum theorem.
Theorem 4.20. There is an absolute constant $c>0$ such that for any sign matrices $F_{1}, F_{2}, \ldots, F_{n}$,

$$
\begin{equation*}
\gamma_{2,1 / 4}\left(\bigotimes_{i=1}^{n} F_{i}\right) \geqslant \frac{3}{4}\left(\prod_{i=1}^{n} \gamma_{2,1 / 4}\left(F_{i}\right)\right)^{c} \tag{4.17}
\end{equation*}
$$

Proof. As before, we have two cases to consider. If $F_{1}, F_{2}, \ldots, F_{n}$ all have rank 1, we obtain

$$
\gamma_{2,1 / 4}\left(\bigotimes_{i=1}^{n} F_{i}\right)=\gamma_{2,1 / 4}\left(F_{1}\right)=\gamma_{2,1 / 4}\left(F_{2}\right)=\cdots=\gamma_{2,1 / 4}\left(F_{n}\right)=\gamma_{2,1 / 4}(J)=\frac{3}{4}
$$

by Fact (i), (x). As a result, the theorem holds trivially in this case.
In the complementary case when $\mathrm{rk} F_{i} \geqslant 2$ for some i, we may assume that rk $F_{i} \geqslant 2$ for every i since by Fact 2.3 (i), (iii) the presence of rank- 1 matrices does not affect the left-hand side of (4.17) but by Fact 2.3 (x) decreases the right-hand side. So, let $a_{i}=\ln \left\{\gamma_{2,1 / 4}\left(F_{i}\right)\right\}$. Then $a_{i}>0$ for all i, by Proposition 4.7. Define $S_{1}, S_{2}, S_{3}, \ldots$ as in Proposition 4.17. Define

$$
\delta=\prod_{i=1}^{\infty}\left\{1-\left(\frac{3}{4}\right)^{i / 8}\right\}>0
$$

Fact 4.19 tells us that

$$
\gamma_{2,1 / 4}\left(\bigotimes_{i=1}^{n} F_{i}\right) \geqslant \gamma_{2, \delta}\left(\bigotimes_{i=1}^{n} F_{i}\right)^{\delta^{\prime}}
$$

for some constant $\delta^{\prime}=\delta^{\prime}(\delta)>0$. Therefore, it suffices to prove a lower bound on $\gamma_{2, \delta}\left(\otimes F_{i}\right)$. We do so in a manner closely analogous to Theorem 4.18:

$$
\begin{array}{rlr}
\gamma_{2, \delta}\left(\bigotimes_{i=1}^{n} F_{i}\right) \geqslant \gamma_{2, \delta}\left(\bigotimes_{i:\left|S_{i}\right| \geqslant i / 8} \bigotimes_{j \in S_{i}} F_{j}\right) & \text { by Fact } 2.3 \text { (ii) } \\
& \geqslant \prod_{i:\left|S_{i}\right| \geqslant i / 8} \gamma_{2,1-\left(\frac{3}{4}\right)^{\left|S_{i}\right|}\left(\bigotimes_{j \in S_{i}} F_{j}\right)} & \text { by Lemma } 3.8 \text { with } C_{1} \leqslant 1 \\
& \geqslant \exp \left\{c^{\prime} \sum_{i:\left|S_{i}\right| \geqslant i / 8}\left|S_{i}\right| \min \left\{a_{j}: j \in S_{i}\right\}\right\} & \\
& \text { by Theorem } 4.9 \\
& \geqslant\left(\prod_{i=1}^{n} \gamma_{2,1 / 4}\left(F_{i}\right)\right)^{c^{\prime} / 4} & \text { by Proposition 4.17, }
\end{array}
$$

where $c^{\prime}>0$ is a small enough constant. The above appeal to Lemma 3.8 with $C_{1} \leqslant 1$ is legitimate by Theorem 4.5.

In light of Theorem 2.7, this establishes Theorem 1.2 from the introduction.
5. Quantum query complexity. This section is devoted to our results on query complexity. We prove XOR lemmas, direct product theorems, and direct sum theorems for polynomial approximation and thereby obtain the claimed consequences for quantum query complexity.
5.1. XOR lemmas. We start with an XOR lemma for polynomial approximation. The development here closely parallels our earlier proof of an XOR lemma for norm-based computation.

Theorem 5.1. Let $g_{1}, g_{2}, \ldots, g_{n}$ be arbitrary (possibly partial) Boolean functions on finite sets $X_{1}, X_{2}, \ldots, X_{n} \subset \mathbb{R}^{m}$, respectively. Then for every $\epsilon \in(0,1)$ and every $k=0,1, \ldots, n-1$,

$$
\operatorname{deg}_{1-2\binom{n}{k+1} \frac{(\epsilon / 2)^{k+1}}{(1-\epsilon / 2)^{n}}}\left(\bigotimes_{i=1}^{n} g_{i}\right) \geqslant \min _{|S|=n-k}\left\{\sum_{i \in S} \operatorname{deg}_{1-\epsilon}\left(g_{i}\right)\right\}
$$

Proof. For $i=1,2, \ldots, n$, Theorem 2.4 provides $\psi_{i}: X_{i} \rightarrow \mathbb{R}$ that obeys (3.7), (3.8), and

$$
\begin{equation*}
\sum_{x_{i} \in X_{i}} \psi_{i}\left(x_{i}\right) p\left(x_{i}\right)=0 \tag{5.1}
\end{equation*}
$$

for every polynomial p of degree less than $\operatorname{deg}_{1-\epsilon}\left(g_{i}\right)$. Define $\Psi_{k}: \Pi X_{i} \rightarrow \mathbb{R}$ as in Lemma 3.2. Then (5.1) shows that $\sum_{\Pi X_{i}} \Psi_{k}\left(\ldots, x_{i}, \ldots\right) p\left(\ldots, x_{i}, \ldots\right)=0$ for every polynomial p of degree less than $\min _{|S|=n-k}\left\{\sum_{i \in S} \operatorname{deg}_{1-\epsilon}\left(g_{i}\right)\right\}$. Applying (3.9) with $\delta=1-2\binom{n}{k+1}\left(\frac{\epsilon}{2}\right)^{k+1}\left(1-\frac{\epsilon}{2}\right)^{-n}$ results in

$$
\begin{aligned}
& \sum_{x \in \prod \operatorname{dom} g_{i}} \Psi_{k}(x) \prod_{i=1}^{n} g_{i}\left(x_{i}\right)-\sum_{x \notin \prod \operatorname{dom} g_{i}}\left|\Psi_{k}(x)\right| \\
&-\left\{1-2\binom{n}{k+1} \frac{\left(\frac{1}{2} \epsilon\right)^{k+1}}{\left(1-\frac{1}{2} \epsilon\right)^{n}}\right\}\left\|\Psi_{k}\right\|_{1}>0 .
\end{aligned}
$$

By Theorem 2.4, the proof is complete.
Corollary 5.2. Let $g_{1}, g_{2}, \ldots, g_{n}$ be arbitrary (possibly partial) Boolean functions on finite sets $X_{1}, X_{2}, \ldots, X_{n} \subset \mathbb{R}^{m}$, respectively. Then for every constant $\beta>0$,

$$
\operatorname{deg}_{1-\beta^{n}}\left(\bigotimes_{i=1}^{n} g_{i}\right) \geqslant \Omega\left(\min _{|S|=\lceil 0.99 n\rceil}\left\{\sum_{i \in S} \operatorname{deg}_{1 / 3}\left(g_{i}\right)\right\}\right)
$$

Proof. Recall from (2.11) that $\operatorname{deg}_{\epsilon}(g)=\Theta\left(\operatorname{deg}_{\epsilon^{\prime}}(g)\right)$ for any partial or total Boolean function g and any constants $\epsilon, \epsilon^{\prime} \in(0,1)$. Thus, the corollary follows from Theorem 5.1 by taking $k=\lfloor 0.01 n\rfloor$ and a sufficiently small constant $\epsilon>0$.

In view of the relationship between query complexity and polynomial approximation (Theorem 2.8), Corollary 5.2 gives an XOR lemma for the polynomial method in quantum query complexity:

Theorem 5.3. Let $f_{1}, f_{2}, \ldots, f_{n}$ be arbitrary (possibly partial) Boolean functions on $\{-1,+1\}^{m}$. Then

$$
T_{\frac{1}{2}-2^{-n}}\left(\bigotimes_{i=1}^{n} f_{i}\right) \geqslant \Omega\left(\min _{|S|=\lceil 0.99 n\rceil}\left\{\sum_{i \in S} \operatorname{deg}_{1 / 3}\left(f_{i}\right)\right\}\right)
$$

This proves the XOR result in Theorem 1.5 of the introduction.
5.2. Direct product theorems. We now study the direct product phenomenon for polynomial approximation. Analogous to the earlier development for quantum communication, we prove a lower bound on the complexity of a (σ, m)-approximant for a given set of functions.

DEFINITION 5.4. Let $g_{1}, g_{2}, \ldots, g_{n}$ be arbitrary (possibly partial) Boolean functions on finite sets $X_{1}, X_{2}, \ldots, X_{n} \subset \mathbb{R}^{m}$, respectively. Define

$$
\operatorname{deg}\left(g_{1}, g_{2}, \ldots, g_{n}, \sigma, m\right)=\min _{\left\{\phi_{z}\right\}} \max _{z \in\{-1,+1\}^{n}} \operatorname{deg} \phi_{z}
$$

where the minimum is over all (σ, m)-approximants $\left\{\phi_{z}\right\}$ of $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$.
The relevance of this definition to quantum query complexity is straightforward:
Proposition 5.5. For arbitrary (possibly partial) Boolean functions $g_{1}, g_{2}, \ldots, g_{n}$ on $\{-1,+1\}^{m}$,

$$
T_{1-\sigma, m}\left(g_{1}, g_{2}, \ldots, g_{n}\right) \geqslant \frac{1}{2} \operatorname{deg}\left(g_{1}, g_{2}, \ldots, g_{n}, \sigma, m\right)
$$

Proof. Given any query algorithm A with cost T that solves with probability σ at least $n-m$ of the problems $g_{1}, g_{2}, \ldots, g_{n}$, define

$$
\phi_{z}\left(x_{1}, \ldots, x_{n}\right)=\mathbf{P}\left[A\left(x_{1}, \ldots, x_{n}\right)=z\right]
$$

where the probability is taken over the operation of the algorithm on a fixed input. Then $\left\{\phi_{z}\right\}$ is a (σ, m)-approximant for $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$. Each ϕ_{z} is the function of acceptance probabilities of a quantum query algorithm with one-bit output and cost T (namely, the algorithm that accepts if and only if A outputs z). Thus, each ϕ_{z} is a real polynomial of degree at most $2 T$, by Theorem 2.8.

We have:
THEOREM 5.6. Let $g_{1}, g_{2}, \ldots, g_{n}$ be arbitrary (possibly partial) Boolean functions on finite sets $X_{1}, X_{2}, \ldots, X_{n} \subset \mathbb{R}^{m}$, respectively. Then for every $\epsilon \in(0,1)$ and all integers $k, \ell, m \geqslant 0$ with $k+\ell \leqslant n$,

$$
\begin{aligned}
& \operatorname{deg}\left(g_{1}, g_{2}, \ldots, g_{n}, 2\binom{n}{k+1} \frac{\left(\frac{1}{2} \epsilon\right)^{k+1}}{\left(1-\frac{1}{2} \epsilon\right)^{n}}+2^{-\frac{\alpha \ell^{2}}{n}+m+1}, m\right) \\
& \geqslant \min _{|S|=n-k-\ell}\left\{\sum_{i \in S} \operatorname{deg}_{1-\epsilon}\left(g_{i}\right)\right\}
\end{aligned}
$$

where $\alpha>0$ is the absolute constant from Theorem 3.5.
Proof. For each $i=1,2, \ldots, n$, Theorem 2.4 provides $\psi_{i}: X_{i} \rightarrow \mathbb{R}$ that obeys (3.7), (3.8), and (5.1) for every polynomial p of degree less than $\operatorname{deg}_{1-\epsilon}\left(g_{i}\right)$. Fix a (σ, m) approximant $\left\{\phi_{z}\right\}$ for $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ with $\operatorname{deg} \phi_{z}<\min _{|S|=n-k-\ell}\left\{\sum_{i \in S} \operatorname{deg}_{1-\epsilon}\left(g_{i}\right)\right\}$
for all z. Define functions $\Psi_{k}, \Phi_{\ell}: \prod X_{i} \rightarrow \mathbb{R}$ as in Lemma 3.7. By (5.1) and the assumption on the degrees of all ϕ_{z}, we infer that $\left\langle\Phi_{\ell}, \Psi_{k}\right\rangle=0$. It follows that

$$
\sigma<2\binom{n}{k+1} \frac{\left(\frac{1}{2} \epsilon\right)^{k+1}}{\left(1-\frac{1}{2} \epsilon\right)^{n}}+2^{-\frac{\alpha \ell^{2}}{n}+m+1}
$$

because by (3.20) larger values of σ force $\left\langle\Phi_{\ell}, \Psi_{k}\right\rangle>0$.
COROLLARY 5.7. Let $g_{1}, g_{2}, \ldots, g_{n}$ be arbitrary (possibly partial) Boolean functions on finite sets $X_{1}, X_{2}, \ldots, X_{n} \subset \mathbb{R}^{m}$, respectively. Let $\beta>0$ be a sufficiently small absolute constant. Then

$$
\operatorname{deg}\left(g_{1}, g_{2}, \ldots, g_{n}, 2^{-\beta n}, \beta n\right) \geqslant \Omega\left(\min _{|S|=\lceil 0.99 n\rceil}\left\{\sum_{i \in S} \operatorname{deg}_{1 / 3}\left(g_{i}\right)\right\}\right)
$$

Proof. For n up to any given constant, the corollary holds trivially by choosing $\beta>0$ suitably small and noting that a $(0.99,0)$-approximant for $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ gives an approximating polynomial for each of $g_{1}, g_{2}, \ldots, g_{n}$. For n larger than a certain absolute constant, the corollary follows from Theorem 5.6 by letting $k=\ell=\lfloor 0.005 n\rfloor$ and $\epsilon \in(0,1)$ a small enough constant, keeping in mind (2.11).

In view of Proposition 5.5, Corollary 5.7 gives the desired direct product theorem for quantum query complexity:

ThEOREM 5.8. Let $\beta>0$ be a sufficiently small absolute constant. Then for all (possibly partial) Boolean functions $f_{1}, f_{2}, \ldots, f_{n}$ on $\{-1,+1\}^{m}$,

$$
T_{1-2^{-\beta n}, \beta n}\left(f_{1}, f_{2}, \ldots, f_{n}\right) \geqslant \Omega\left(\min _{|S|=\lceil 0.99 n\rceil}\left\{\sum_{i \in S} \operatorname{deg}_{1 / 3}\left(f_{i}\right)\right\}\right)
$$

This settles the direct product result in Theorem 1.5 of the introduction. As remarked earlier in the context of quantum communication, the constant β can be improved by providing a sharper approximant than what is given in Theorem 3.5.
5.3. Direct sum theorems. We close with a direct sum theorem for polynomial approximation. In view of the relationship between quantum query complexity and polynomial approximation (Theorem 2.8), this gives a direct sum theorem for query complexity, incomparable with the direct product theorems derived earlier. The development here closely mirrors the setting of quantum communication and is in fact shorter and simpler.

Theorem 5.9. Fix a (possibly partial) Boolean function g_{i} on $X_{i}(i=1,2, \ldots, n)$, for some finite sets $X_{1}, X_{2}, \ldots, X_{n} \subset \mathbb{R}^{m}$. Then

$$
\operatorname{deg}_{1 / 3}\left(\bigotimes_{i=1}^{n} g_{i}\right) \geqslant \Omega\left(\sum_{i=1}^{n} \operatorname{deg}_{1 / 3}\left(g_{i}\right)\right)
$$

Proof. Let $a_{i}=\operatorname{deg}_{1 / 3}\left(g_{i}\right)$ and define $S_{1}, S_{2}, S_{3}, \ldots$ as in Proposition 4.17. For a sufficiently small constant $\beta>0$, we have

$$
\delta=2 \prod_{i=1}^{\infty}\left(1-\beta^{i / 8}\right)-1>\frac{1}{3}
$$

The remainder of the argument is similar to the proofs of Theorems 4.18 and 4.20:

$$
\begin{array}{rlr}
\operatorname{deg}_{\delta}\left(\bigotimes_{i=1}^{n} g_{i}\right) & \geqslant \operatorname{deg}_{\delta}\left(\bigotimes_{i:\left|S_{i}\right| \geqslant i / 8} \bigotimes_{j \in S_{i}} g_{j}\right) & \\
& \geqslant \sum_{i:\left|S_{i}\right| \geqslant i / 8} \operatorname{deg}_{1-\beta}\left|S_{i}\right|\left(\bigotimes_{j \in S_{i}} g_{j}\right) & \\
& \geqslant \Omega\left(\sum_{i:\left|S_{i}\right| \geqslant i / 8}\left|S_{i}\right| \min \left\{a_{j}: j \in S_{i}\right\}\right) & \\
& \text { by Lemma Corollary } 5.2 \\
& \geqslant \Omega\left(\sum_{i=1}^{n} \operatorname{deg}_{1 / 3}\left(g_{i}\right)\right) &
\end{array}
$$

In view of Theorem 2.8, this settles Theorem 1.4 from the introduction.
6. Generalization to composed functions. In this section, we study the direct product problem in the broader context of polynomial approximation. Here, one is given Boolean functions $f_{1}, f_{2}, \ldots, f_{n}$ and a combining function $F:\{-1,+1\}^{n} \rightarrow$ $\{-1,+1\}$ and is asked to provide an approximating polynomial for the composition $F\left(f_{1}, f_{2}, \ldots, f_{n}\right)$. A natural solution [14] is to compose suitable approximants for the functions in question: $\tilde{F}\left(\tilde{f}_{1}, \tilde{f}_{2}, \ldots, \tilde{f}_{n}\right)$. The object of this section is to show that for various F, including random functions, this construction is optimal. The techniques of Section 3, in particular the polynomial construction of Lemma 3.1, will play an essential role in the proof.

For simplicity of exposition, we will focus here on total Boolean functions, although the proofs carry over readily to partial functions. The general result that will yield our consequences on polynomial approximation is as follows.

Theorem 6.1. Fix nonconstant Boolean functions $F:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ and $f_{i}: X_{i} \rightarrow\{-1,+1\}, i=1,2, \ldots, n$, for some finite sets $X_{1}, X_{2}, \ldots, X_{n} \subset \mathbb{R}^{m}$. Then for every $\epsilon, \delta \in(0,1)$ and every even integer $k \geqslant 0$,

$$
\operatorname{deg}_{\delta-\binom{n}{k+1} \frac{2 \epsilon^{k+1}}{(1-\epsilon)^{n}}}\left(F\left(f_{1}, \ldots, f_{n}\right)\right) \geqslant \min _{|S|=\operatorname{deg}_{\delta}(F)-k}\left\{\sum_{i \in S} \operatorname{deg}_{1-\epsilon}\left(f_{i}\right)\right\}
$$

Proof. Put $D=\operatorname{deg}_{\delta}(F)$. Since $F, f_{1}, f_{2}, \ldots, f_{n}$ are nonconstant, we have $D \geqslant 1$ and $\operatorname{deg}_{1-\epsilon}\left(f_{i}\right) \geqslant 1$ for all i. By Theorem 2.4, there exists a function $\Psi:\{-1,+1\}^{n} \rightarrow$ \mathbb{R} such that

$$
\begin{align*}
\|\Psi\|_{1} & =1 \tag{6.1}\\
\langle\Psi, F\rangle & >\delta, \tag{6.2}\\
\hat{\Psi}(S) & =0, \quad|S|<D \tag{6.3}
\end{align*}
$$

Analogously, there exist functions $\psi_{i}: X_{i} \rightarrow \mathbb{R}, i=1,2, \ldots, n$, such that

$$
\begin{gather*}
\left\|\psi_{i}\right\|_{1}=1 \\
\left\langle\psi_{i}, f_{i}\right\rangle>1-\epsilon \tag{6.4}\\
\sum_{x_{i} \in X_{i}} \psi_{i}\left(x_{i}\right) p\left(x_{i}\right)=0 \tag{6.5}
\end{gather*}
$$

for every polynomial p of degree less than $\operatorname{deg}_{1-\epsilon}\left(f_{i}\right)$. Let μ be the product distribution on $\prod X_{i}$ given by $\mu\left(\ldots, x_{i}, \ldots\right)=\prod\left|\psi_{i}\left(x_{i}\right)\right|$. Put

$$
\begin{aligned}
\epsilon_{i,+1} & =\underset{\mu}{\mathbf{P}}\left[f_{i}\left(x_{i}\right) \neq \operatorname{sgn} \psi_{i}\left(x_{i}\right) \mid \psi_{i}\left(x_{i}\right)>0\right], \\
\epsilon_{i,-1} & =\underset{\mu}{\mathbf{P}}\left[f_{i}\left(x_{i}\right) \neq \operatorname{sgn} \psi_{i}\left(x_{i}\right) \mid \psi_{i}\left(x_{i}\right)<0\right] .
\end{aligned}
$$

It is clear from (6.5) that $\mathbf{P}_{\mu}\left[\psi_{i}\left(x_{i}\right)>0\right]=\mathbf{P}_{\mu}\left[\psi_{i}\left(x_{i}\right)<0\right]=\frac{1}{2}$ for all i, whence (6.4) gives $\frac{1}{2}\left(1-2 \epsilon_{i,+1}\right)+\frac{1}{2}\left(1-2 \epsilon_{i,-1}\right)>1-\epsilon$ and in particular

$$
\max \left\{\epsilon_{i,+1}, \epsilon_{i,-1}\right\}<\epsilon
$$

Define $\alpha_{i}: X_{i} \rightarrow[-1,1], i=1,2, \ldots, n$, by

$$
\alpha_{i}\left(x_{i}\right)= \begin{cases}\left(1-2 \epsilon+\epsilon_{i,+1}\right) /\left(1-\epsilon_{i,+1}\right) & \text { if } f_{i}\left(x_{i}\right)=\operatorname{sgn} \psi_{i}\left(x_{i}\right)=+1 \\ \left(1-2 \epsilon+\epsilon_{i,-1}\right) /\left(1-\epsilon_{i,-1}\right) & \text { if } f_{i}\left(x_{i}\right)=\operatorname{sgn} \psi_{i}\left(x_{i}\right)=-1 \\ -1 & \text { otherwise }\end{cases}
$$

For $z \in\{-1,+1\}^{n}$, let μ_{z} denote the probability distribution induced by μ on the set of tuples $\left(\ldots, x_{i}, \ldots\right)$ with $\operatorname{sgn} \psi_{i}\left(x_{i}\right)=z_{i}, i=1,2, \ldots, n$. The above definition of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ serves to ensure that $\mathbf{E}_{\mu_{z}}\left[\alpha_{i}\left(x_{i}\right)\right]=1-2 \epsilon$ for all $z \in\{-1,+1\}^{n}$ and $i=1,2, \ldots, n$.

Fix an even integer $k \geqslant 0$ and let $p_{k}:[-1,1]^{n} \rightarrow[0, \infty)$ be the degree- k multilinear polynomial given by Lemma 3.1. By the above property of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and multilinearity,

$$
\begin{equation*}
\underset{\mu_{z}}{\mathbf{E}}\left[p_{k}\left(\ldots, \alpha_{i}\left(x_{i}\right), \ldots\right)\right]=p_{k}(\ldots, 1-2 \epsilon, \ldots), \quad z \in\{-1,+1\}^{n} \tag{6.6}
\end{equation*}
$$

Consider the function $\zeta: \prod X_{i} \rightarrow \mathbb{R}$ given by

$$
\zeta\left(\ldots, x_{i}, \ldots\right)=\Psi\left(\ldots, \operatorname{sgn} \psi_{i}\left(x_{i}\right), \ldots\right) p_{k}\left(\ldots, \alpha_{i}\left(x_{i}\right), \ldots\right) \prod_{i=1}^{n}\left|\psi_{i}\left(x_{i}\right)\right|
$$

It follows from (6.3) and (6.5) that

$$
\begin{equation*}
\sum_{X_{1} \times \cdots \times X_{n}} \zeta\left(\ldots, x_{i}, \ldots\right) p\left(\ldots, x_{i}, \ldots\right)=0 \tag{6.7}
\end{equation*}
$$

for every polynomial p of degree less than $\min _{|S|=D-k}\left\{\sum_{i \in S} \operatorname{deg}_{1-\epsilon}\left(f_{i}\right)\right\}$.
CLAIM 6.2. $\|\zeta\|_{1}=2^{-n} p_{k}(\ldots, 1-2 \epsilon, \ldots)$.
Claim 6.3.

$$
\begin{aligned}
\sum_{X_{1} \times \cdots \times X_{n}} \zeta\left(\ldots, x_{i}, \ldots\right) F(\ldots, & \left.f_{i}\left(x_{i}\right), \ldots\right) \\
& >2^{-n} p_{k}(\ldots, 1-2 \epsilon, \ldots)\left\{\delta-\frac{2 \epsilon^{k+1}}{(1-\epsilon)^{n}}\binom{n}{k+1}\right\} .
\end{aligned}
$$

In view of (6.7) and Claims 6.2 and 6.3 , the proof is complete by Theorem 2.4.
We now prove the required claims.

Proof of Claim 6.2. As mentioned earlier, $\mathbf{P}_{\mu}\left[\psi_{i}\left(x_{i}\right)>0\right]=\mathbf{P}_{\mu}\left[\psi_{i}\left(x_{i}\right)<0\right]=\frac{1}{2}$ for all i, so that the string $\left(\ldots, \operatorname{sgn} \psi_{i}\left(x_{i}\right), \ldots\right)$ is distributed uniformly on $\{-1,+1\}^{n}$ as $\left(\ldots, x_{i}, \ldots\right) \sim \mu$. Therefore,

$$
\begin{array}{rlrl}
\|\zeta\|_{1} & =\sum_{X_{1} \times \cdots \times X_{n}}\left|\Psi\left(\ldots, \operatorname{sgn} \psi_{i}\left(x_{i}\right), \ldots\right)\right|\left|p_{k}\left(\ldots, \alpha_{i}\left(x_{i}\right), \ldots\right)\right| \prod_{i=1}^{n}\left|\psi_{i}\left(x_{i}\right)\right| \\
& =\sum_{z \in\{-1,+1\}^{n}}|\Psi(z)| \underset{\mu_{z}}{\mathbf{E}}\left[\left|p_{k}\left(\ldots, \alpha_{i}\left(x_{i}\right), \ldots\right)\right|\right] \cdot 2^{-n} & \\
& =\sum_{z \in\{-1,+1\}^{n}}|\Psi(z)| \underset{\mu_{z}}{\mathbf{E}}\left[p_{k}\left(\ldots, \alpha_{i}\left(x_{i}\right), \ldots\right)\right] \cdot 2^{-n} & & \text { by nonnegativity of } p_{k} \\
& =2^{-n} p_{k}(\ldots, 1-2 \epsilon, \ldots) \sum_{z \in\{-1,+1\}^{n}}|\Psi(z)| & & \text { by }(6.6) \\
& =2^{-n} p_{k}(\ldots, 1-2 \epsilon, \ldots) & & \text { by }(6.1) .
\end{array}
$$

Proof of Claim 6.3. Let $z \in\{-1,+1\}^{n}$ be arbitrary. By the definition of μ_{z}, if a string $\left(\ldots, x_{i}, \ldots\right)$ is picked according to μ_{z}, then $f_{i}\left(x_{i}\right)=z_{i}$ with probability exactly $1-\epsilon_{i, z_{i}}$, independently for each i. Letting $\nu=\Pi\left(\ldots,\left(\epsilon-\epsilon_{i, z_{i}}\right) /\left(1-\epsilon_{i, z_{i}}\right), \ldots\right)$ gives:
$\underset{\mu_{z}}{\mathbf{E}}\left[p_{k}\left(\ldots, \alpha_{i}\left(x_{i}\right), \ldots\right) \mathbf{I}\left[\left(\ldots, f_{i}\left(x_{i}\right), \ldots\right)=z\right]\right]$

$$
=p_{k}\left(\ldots, \frac{1-2 \epsilon+\epsilon_{i, z_{i}}}{1-\epsilon_{i, z_{i}}}, \ldots\right) \underset{\mu_{z}}{\mathbf{P}}\left[\left(\ldots, f_{i}\left(x_{i}\right), \ldots\right)=z\right]
$$

$$
=p_{k}\left(\ldots, \frac{1-2 \epsilon+\epsilon_{i, z_{i}}}{1-\epsilon_{i, z_{i}}}, \ldots\right) \prod_{i=1}^{n}\left(1-\epsilon_{i, z_{i}}\right)
$$

$$
=\underset{w \sim \nu}{\mathbf{E}}\left[p_{k}(w)\right] \prod_{i=1}^{n}\left(1-\epsilon_{i, z_{i}}\right) \quad \quad \text { by multilinearity of } p_{k}
$$

$$
\geqslant \nu\left(1^{n}\right) p_{k}\left(1^{n}\right) \prod_{i=1}^{n}\left(1-\epsilon_{i, z_{i}}\right) \quad \quad \text { by nonnegativity of } p_{k}
$$

$$
\begin{equation*}
=(1-\epsilon)^{n} p_{k}\left(1^{n}\right) \tag{6.8}
\end{equation*}
$$

Now,

$$
\begin{align*}
\mid \underset{\mu_{z}}{\mathbf{E}}\left[p_{k}(\ldots,\right. & \left.\left.\alpha_{i}\left(x_{i}\right), \ldots\right) F\left(\ldots, f_{i}\left(x_{i}\right), \ldots\right)\right]-p_{k}(\ldots, 1-2 \epsilon, \ldots) F(z) \mid \\
& =\left|\underset{\mu_{z}}{\mathbf{E}}\left[p_{k}\left(\ldots, \alpha_{i}\left(x_{i}\right), \ldots\right)\left\{F\left(\ldots, f_{i}\left(x_{i}\right), \ldots\right)-F(z)\right\}\right]\right| \quad \text { by }(6.6) \\
\leqslant & 2 \underset{\mu_{z}}{\mathbf{E}}\left[p_{k}\left(\ldots, \alpha_{i}\left(x_{i}\right), \ldots\right)\left(1-\mathbf{I}\left[\left(\ldots, f_{i}\left(x_{i}\right), \ldots\right)=z\right]\right)\right] \\
= & 2 \underset{\mu_{z}}{\mathbf{E}}\left[p_{k}\left(\ldots, \alpha_{i}\left(x_{i}\right), \ldots\right)\right] \\
& \quad-2 \underset{\mu_{z}}{\mathbf{E}}\left[p_{k}\left(\ldots, \alpha_{i}\left(x_{i}\right), \ldots\right) \mathbf{I}\left[\left(\ldots, f_{i}\left(x_{i}\right), \ldots\right)=z\right]\right] \\
\leqslant & 2 p_{k}(\ldots, 1-2 \epsilon, \ldots)-2(1-\epsilon)^{n} p_{k}\left(1^{n}\right) \tag{6.9}
\end{align*}
$$

where the last step follows by (6.6) and (6.8). Since k is even and p_{k} nonnegative, we have $\mathbf{E}_{\Pi(\epsilon, \ldots, \epsilon)}\left[\left|p_{k}(w)\right|\right]=\mathbf{E}_{\Pi(\epsilon, \ldots, \epsilon)}\left[p_{k}(w)\right]=p_{k}(\ldots, 1-2 \epsilon, \ldots)$, whence Lemma 3.1
gives

$$
\begin{equation*}
p_{k}(\ldots, 1-2 \epsilon, \ldots) \leqslant p_{k}\left(1^{n}\right)(1-\epsilon)^{n}\left\{1+\frac{\epsilon^{k+1}}{(1-\epsilon)^{n}}\binom{n}{k+1}\right\} \tag{6.10}
\end{equation*}
$$

We are now in a position to complete the proof of the claim. As mentioned before, the string $\left(\ldots, \operatorname{sgn} \psi_{i}\left(x_{i}\right), \ldots\right)$ is distributed uniformly on $\{-1,+1\}^{n}$ as $\left(\ldots, x_{i}, \ldots\right) \sim \mu$. Thus,

$$
\begin{aligned}
& \sum_{X_{1} \times \cdots \times X_{n}} \zeta\left(\ldots, x_{i}, \ldots\right) F\left(\ldots, f_{i}\left(x_{i}\right), \ldots\right) \\
& =2^{-n} \sum_{z \in\{-1,+1\}^{n}} \Psi(z) \underset{\mu_{z}}{\mathbf{E}}\left[p_{k}\left(\ldots, \alpha_{i}\left(x_{i}\right), \ldots\right) F\left(\ldots, f_{i}\left(x_{i}\right), \ldots\right)\right] \\
& \geqslant 2^{-n} \sum_{z \in\{-1,+1\}^{n}} \Psi(z) F(z) p_{k}(\ldots, 1-2 \epsilon, \ldots) \\
& \quad-2^{-n} \sum_{z \in\{-1,+1\}^{n}}|\Psi(z)|\left\{2 p_{k}(\ldots, 1-2 \epsilon, \ldots)-2(1-\epsilon)^{n} p_{k}\left(1^{n}\right)\right\} \\
& \quad>2^{-n} \delta p_{k}(\ldots, 1-2 \epsilon, \ldots)-2^{-n}\left\{2 p_{k}(\ldots, 1-2 \epsilon, \ldots)-2(1-\epsilon)^{n} p_{k}\left(1^{n}\right)\right\},
\end{aligned}
$$

where the next-to-last step uses (6.9) and the last step uses (6.1) and (6.2). In view of (6.10), the proof is complete.

This completes the proof of Theorem 6.1. We will now derive several results on polynomial approximation by setting the parameters in Theorem 6.1 in various ways.

Theorem 6.4. Fix nonconstant Boolean functions $F:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ and $f_{i}: X_{i} \rightarrow\{-1,+1\}, i=1,2, \ldots, n$, for some finite sets $X_{1}, X_{2}, \ldots, X_{n} \subset \mathbb{R}^{m}$. Fix $\epsilon, \delta \in(0,1)$ with $\operatorname{deg}_{\delta}(F) \geqslant 30 \epsilon n$. Then

$$
\operatorname{deg}_{\delta-2^{-\epsilon n}}\left(F\left(f_{1}, \ldots, f_{n}\right)\right) \geqslant \min _{|S|=\left\lceil\operatorname{deg}_{\delta}(F) / 2\right\rceil}\left\{\sum_{i \in S} \operatorname{deg}_{1-\epsilon}\left(f_{i}\right)\right\}
$$

Proof. Apply Theorem 6.1 with $k=2\lfloor 7.5 \epsilon n\rfloor$.
Anthony [6] and Saks [48] show that almost every function $F:\{-1,+1\}^{n} \rightarrow$ $\{-1,+1\}$ obeys $\operatorname{deg}_{ \pm}(F) \geqslant n / 2$. Therefore, recalling (2.11) and (2.13) gives the following corollary to Theorem 6.4:

Corollary 6.5. Fix nonconstant functions $f_{i}: X_{i} \rightarrow\{-1,+1\}, i=1,2, \ldots, n$, for some finite sets $X_{1}, X_{2}, \ldots, X_{n} \subset \mathbb{R}^{m}$. Then

$$
\operatorname{deg}_{1-2^{-n / 61}}\left(F\left(f_{1}, \ldots, f_{n}\right)\right) \geqslant \Omega\left(\min _{|S|=\lceil n / 4\rceil}\left\{\sum_{i \in S} \operatorname{deg}_{1 / 3}\left(f_{i}\right)\right\}\right)
$$

for almost every function $F:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$.
In particular, the corollary shows that

$$
\operatorname{deg}_{1-2^{-n / 61}}(F(f, f, \ldots, f))=\Omega\left(n \operatorname{deg}_{1 / 3}(f)\right)
$$

for almost all Boolean functions $F:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$. This lower bound is tight in a strong sense: Buhrman, Newman, Röhrig, and de Wolf [14, Thm. 6] show that

$$
\operatorname{deg}_{1 / 3}(F(f, f, \ldots, f))=O\left(n \operatorname{deg}_{1 / 3}(f)\right)
$$

for every $F:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$. We derive one additional result, valid for all functions F.

Theorem 6.6. Fix nonconstant Boolean functions $F:\{-1,+1\}^{n} \rightarrow\{-1,+1\}$ and $f_{i}: X_{i} \rightarrow\{-1,+1\}, i=1,2, \ldots, n$, for some finite sets $X_{1}, X_{2}, \ldots, X_{n} \subset \mathbb{R}^{m}$. Then

$$
\begin{align*}
\operatorname{deg}_{1 / 3}\left(F\left(f_{1}, \ldots, f_{n}\right)\right) & \geqslant \Omega\left(\operatorname{deg}_{1 / 3}(F) \min _{i=1, \ldots, n}\left\{\operatorname{deg}_{1-\frac{1}{30 n} \operatorname{deg}_{0.99}(F)}\left(f_{i}\right)\right\}\right) \tag{6.11}\\
& \geqslant \Omega\left(\frac{\operatorname{deg}_{1 / 3}(F)^{2}}{n} \cdot \min _{i=1, \ldots, n}\left\{\operatorname{deg}_{1 / 3}\left(f_{i}\right)\right\}\right) \tag{6.12}
\end{align*}
$$

In particular, taking $f_{1}=f_{2}=\cdots=f_{n}=f$,

$$
\begin{equation*}
\operatorname{deg}_{1 / 3}(F(f, f, \ldots, f)) \geqslant \Omega\left(\frac{\operatorname{deg}_{1 / 3}(F)^{2}}{n} \cdot \operatorname{deg}_{1 / 3}(f)\right) \tag{6.13}
\end{equation*}
$$

Proof. To get (6.11), invoke Theorem 6.4 with $\delta=0.99$ and $\epsilon=\operatorname{deg}_{\delta}(F) /(30 n)$, and use (2.11). To obtain (6.12), apply (2.11) and (2.12).

The quoted result by Buhrman et al. [14] shows that (6.13) is tight for any function F with $\operatorname{deg}_{1 / 3}(F)=\Theta(n)$, including familiar functions such as majority, parity, and the random functions.

In view of the relationship between polynomial approximation and query complexity (Theorem 2.8), the results of this section immediately translate into lower bounds for quantum query complexity. More explicitly, Theorems 6.1, 6.4, 6.6, and Corollary 6.5 give lower bounds on the quantum query complexity of composed functions $F\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ in terms of the approximate degrees of the constituent functions $F, f_{1}, f_{2}, \ldots, f_{n}$.

Further extensions. As remarked earlier, the proof of Theorem 6.1 carries over to the setting of partial Boolean functions. After minor changes, it also gives lower bounds on the communication complexity of composed problems $F\left(F_{1}, F_{2}, \ldots, F_{n}\right)$, where F is a (possibly partial) Boolean function on $\{-1,+1\}^{n}$ and $F_{1}, F_{2}, \ldots, F_{n}$ are (possibly partial) sign matrices.

REFERENCES

[1] Scott Aaronson, Limitations of quantum advice and one-way communication, Theory of Computing, 1 (2005), pp. 1-28.
[2] Scott Aaronson and Yaoyun Shi, Quantum lower bounds for the collision and the element distinctness problems, J. ACM, 51 (2004), pp. 595-605.
[3] Noga Alon, Problems and results in extremal combinatorics, Part I, Discrete Mathematics, 273 (2003), pp. 31-53.
[4] Andris Ambainis, Quantum lower bounds by quantum arguments, J. Comput. Syst. Sci., 64 (2002), pp. 750-767.
[5] Andris Ambainis, Robert Špalek, and Ronald de Wolf, A new quantum lower bound method, with applications to direct product theorems and time-space tradeoffs, Algorithmica, 55 (2009), pp. 422-461.
[6] Martin Anthony, Classification by polynomial surfaces, Discrete Applied Mathematics, 61 (1995), pp. 91-103.
[7] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar, An information statistics approach to data stream and communication complexity, J. Comput. Syst. Sci., 68 (2004), pp. 702-732.
[8] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao, How to compress interactive communication, in Proceedings of the Forty-Second Annual ACM Symposium on Theory of Computing (STOC), 2010, pp. 67-76.
[9] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf, Quantum lower bounds by polynomials, J. ACM, 48 (2001), pp. 778-797.
[10] Paul Beame, Toniann Pitassi, Nathan Segerlind, and Avi Wigderson, A strong direct product theorem for corruption and the multiparty communication complexity of disjointness, Computational Complexity, 15 (2006), pp. 391-432.
[11] Mihir Bellare, Oded Goldreich, and Madhu Sudan, Free bits, PCPs, and nonapproximability - towards tight results, SIAM J. Comput., 27 (1998), pp. 804-915.
[12] Avraham Ben-Aroya, Oded Regev, and Ronald de Wolf, A hypercontractive inequality for matrix-valued functions with applications to quantum computing and LDCs, in Proceedings of the Forty-Ninth Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2008, pp. 477-486.
[13] Harry Buhrman, Richard Cleve, Ronald de Wolf, and Christof Zalka, Bounds for small-error and zero-error quantum algorithms, in Proceedings of the Fortieth Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1999, pp. 358-368.
[14] Harry Buhrman, Ilan Newman, Hein Röhrig, and Ronald de Wolf, Robust polynomials and quantum algorithms, Theory Comput. Syst., 40 (2007), pp. 379-395.
[15] Harry Buhrman and Ronald de Wolf, Communication complexity lower bounds by polynomials, in Proceedings of the Sixteenth Annual IEEE Conference on Computational Complexity (CCC), 2001, pp. 120-130.
[16] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao, Informational complexity and the direct sum problem for simultaneous message complexity, in Proceedings of the Forty-Second Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2001, pp. 270-278.
[17] Richard Cleve, William Slofstra, Falk Unger, and Sarvagya Upadhyay, Perfect parallel repetition theorem for quantum XOR proof systems, Computational Complexity, 17 (2008), pp. 282-299.
[18] Andrew Drucker, Improved direct product theorems for randomized query complexity, in Proceedings of the Twenty-Sixth Annual IEEE Conference on Computational Complexity (CCC), 2010, pp. 1-11.
[19] Alexandre Eremenko and Peter YuditskiI, Uniform approximation of $\operatorname{sgn}(x)$ by polynomials and entire functions, J. d'Analyse Mathématique, 101 (2007), pp. 313-324.
[20] Tomás Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan, Amortized communication complexity, SIAM J. Comput., 24 (1995), pp. 736-750.
[21] Johan HÅstad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798-859.
[22] Rahul Jain, New strong direct product results in communication complexity, in Electronic Colloquium on Computational Complexity (ECCC), 2011. Report TR11-024.
[23] Rahul Jain and Hartmut Klauck, New results in the simultaneous message passing model via information theoretic techniques, in Proceedings of the Twenty-Fourth Annual IEEE Conference on Computational Complexity (CCC), 2009, pp. 369-378.
[24] Rahul Jain, Hartmut Klauck, and Ashwin Nayak, Direct product theorems for classical communication complexity via subdistribution bounds, in Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC), 2008, pp. 599-608.
[25] Rahul Jain, Attila Pereszlényi, and Penghui Yao, A direct product theorem for boundedround public-coin randomized communication complexity. Available at http://arxiv.org/ abs/1201.1666, 2012.
[26] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen, A direct sum theorem in communication complexity via message compression, in Proc. of the 30th International Colloquium on Automata, Languages, and Programming (ICALP), 2003, pp. 300-315.
[27] ——, Prior entanglement, message compression and privacy in quantum communication, in Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC), 2005, pp. 285-296.
[28] Stasys Jukna, Extremal Combinatorics with Applications in Computer Science, SpringerVerlag, Berlin, 2001.
[29] Jeff Kahn, Nathan Linial, and Alex Samorodnitsky, Inclusion-exclusion: Exact and approximate, Combinatorica, 16 (1996), pp. 465-477.
[30] Mauricio Karchmer, Ran Raz, and Avi Wigderson, Super-logarithmic depth lower bounds via the direct sum in communication complexity, Computational Complexity, 5 (1995), pp. 191-204.
[31] Hartmut Klauck, Quantum and classical communication-space tradeoffs from rectangle
bounds, in Proc. of the 24th International Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 2004, pp. 384-395.
[32] —, Lower bounds for quantum communication complexity, SIAM J. Comput., 37 (2007), pp. 20-46.
[33] - A strong direct product theorem for disjointness, in Proceedings of the Forty-Second Annual ACM Symposium on Theory of Computing (STOC), 2010, pp. 77-86.
[34] Hartmut Klauck, Robert Špalek, and Ronald de Wolf, Quantum and classical strong direct product theorems and optimal time-space tradeoffs, SIAM J. Comput., 36 (2007), pp. 1472-1493.
[35] Adam R. Klivans and Alexander A. Sherstov, Lower bounds for agnostic learning via approximate rank, Computational Complexity, 19 (2010), pp. 581-604. Preliminary version in Proceedings of the Twentieth Annual Conference on Computational Learning Theory (COLT), 2007.
[36] I. Kremer, Quantum communication, master's thesis, Hebrew University, Computer Science Department, 1995.
[37] Eyal Kushilevitz and Noam Nisan, Communication complexity, Cambridge University Press, 1997.
[38] Troy Lee and Jérémie Roland, A strong direct product theorem for quantum query complexity, in Proceedings of the Twenty-Seventh Annual IEEE Conference on Computational Complexity (CCC), 2012. To appear.
[39] Troy Lee and Adi Shraibman, Lower bounds in communication complexity, Foundations and Trends in Theoretical Computer Science, 3 (2009), pp. 263-398.
[40] Troy Lee, Adi Shraibman, and Robert Špalek, A direct product theorem for discrepancy, in Proceedings of the Twenty-Third Annual IEEE Conference on Computational Complexity (CCC), 2008, pp. 71-80.
[41] Nati Linial, Shahar Mendelson, Gideon Schechtman, and Adi Shraibman, Complexity measures of sign matrices, Combinatorica, 27 (2007), pp. 439-463.
[42] Nati Linial and Adi Shraibman, Lower bounds in communication complexity based on factorization norms, Random Struct. Algorithms, 34 (2009), pp. 368-394.
[43] Noam Nisan, Steven Rudich, and Michael E. Saks, Products and help bits in decision trees, SIAM J. Comput., 28 (1999), pp. 1035-1050.
[44] Itzhak Parnafes, Ran Raz, and Avi Wigderson, Direct product results and the GCD problem, in old and new communication models, in Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing (STOC), 1997, pp. 363-372.
[45] Ran Raz, A parallel repetition theorem, SIAM J. Comput., 27 (1998), pp. 763-803.
[46] Alexander A. Razborov, Quantum communication complexity of symmetric predicates, Izvestiya of the Russian Academy of Sciences, Mathematics, 67 (2002), pp. 145-159.
[47] Theodore J. Rivlin, An Introduction to the Approximation of Functions, Dover Publications, New York, 1981.
[48] Michael E. Saks, Slicing the hypercube, Surveys in Combinatorics, (1993), pp. 211-255.
[49] Ronen Shaltiel, Towards proving strong direct product theorems, Computational Complexity, 12 (2003), pp. 1-22.
[50] Alexander A. Sherstov, Communication lower bounds using dual polynomials, Bulletin of the EATCS, 95 (2008), pp. 59-93.
[51] ——, Approximate inclusion-exclusion for arbitrary symmetric functions, Computational Complexity, 18 (2009), pp. 219-247. Preliminary version in Proceedings of the TwentyThird Annual IEEE Conference on Computational Complexity (CCC), 2008.
[52] ——, The pattern matrix method, SIAM J. Comput., 40 (2011), pp. 1969-2000. Preliminary version in Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC), 2008.
[53] —, The multiparty communication complexity of set disjointness, in Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing (STOC), 2012, pp. 525544.
[54] Yaoyun Shi and Yufan Zhu, Quantum communication complexity of block-composed functions, Quantum Information \& Computation, 9 (2009), pp. 444-460.
[55] Robert Śsalek, The multiplicative quantum adversary, in Proceedings of the Twenty-Third Annual IEEE Conference on Computational Complexity (CCC), 2008, pp. 237-248.
[56] Emanuele Viola and Avi Wigderson, Norms, XOR lemmas, and lower bounds for polynomials and protocols, Theory of Computing, 4 (2008), pp. 137-168.
[57] Ronald de Wolf, Quantum Computing and Communication Complexity, PhD thesis, University of Amsterdam, 2001.
[58] -, A note on quantum algorithms and the minimal degree of ϵ-error polynomials for
symmetric functions, Quantum Information and Computation, 8 (2008), pp. 943-950.
[59] Andrew Chi-Chit Yao, Theory and applications of trapdoor functions, in Proceedings of the Twenty-Third Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1982, pp. 80-91.
[60] —, Quantum circuit complexity, in Proceedings of the Thirty-Fourth Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1993, pp. 352-361.

[^0]: *An extended abstract of this paper appeared in Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, pages 41-50, 2011. This work was completed while the author was a postdoctoral researcher at Microsoft Research, New England.
 ${ }^{\dagger}$ Computer Science Department, UCLA, Los Angeles, California 90095 (sherstov@cs.ucla.edu).

