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Abstract. We construct a function in AC0 that cannot be computed by a depth-2 majority
circuit of size less than exp(Θ(n1/5)). This solves an open problem due to Krause and Pudlák (1997)
and matches Allender’s classic result (1989) that AC0 can be efficiently simulated by depth-3 majority
circuits. To obtain our result, we develop a novel technique for proving lower bounds on commu-
nication complexity. This technique, the Degree/Discrepancy Theorem, is of independent interest.
It translates lower bounds on the threshold degree of any Boolean function into upper bounds on
the discrepancy of a related function. Upper bounds on the discrepancy, in turn, immediately imply
lower bounds on communication and circuit size. In particular, we exhibit the first known function
in AC0 with exponentially small discrepancy, exp(−Ω(n1/5)), thereby establishing the separations
Σcc

2 6⊆ PPcc and Πcc
2 6⊆ PPcc in communication complexity.
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1. Introduction. A natural and important computational model is that of a
polynomial-size circuit of majority gates. This model has been extensively studied
for the past two decades [14, 15, 26, 27, 38, 43–45]. Research has shown that majority
circuits of depth 2 and 3 already possess surprising computational power. Indeed, it is
a longstanding open problem [21] to exhibit a Boolean function that cannot be com-
puted by a depth-3 majority circuit of polynomial size. To illustrate, the arithmetic
operations of powering, multiplication, and division on n-bit integer arguments can
all be computed by depth-3 majority circuits of polynomial size [45]. An even more
striking example is the addition of n n-bit integers, which is computable by a depth-2
majority circuit of polynomial size [45]. Depth-2 majority circuits of polynomial size
can also compute every symmetric function (such as parity) and every DNF and
CNF formula of polynomial size.

This chief goal of this paper is to relate the computational power of majority cir-
cuits to that of AC0, another extensively studied class, which consists of polynomial-
size constant-depth circuits of and, or, not gates. A well-known result due to
Allender [1] states that every function in AC0 can be computed by a depth-3 ma-
jority circuit of quasipolynomial size. For over ten years, it has been an open prob-
lem to determine whether Allender’s simulation is optimal. Specifically, Krause and
Pudlák [21, §6] ask whether every function in AC0 can be computed by a depth-2 ma-
jority circuit of quasipolynomial size. We solve this open problem completely, even
in the more general setting of majority-of-threshold circuits (i.e., depth-2 circuits in
which a majority gate receives inputs from arbitrary linear threshold gates):

Theorem 1.1 (Main Result). There is a function f : {−1, 1}n → {−1, 1}, ex-
plicitly given and computable by an AC0 circuit of depth 3, whose computation requires
a majority vote of exp(Ω(n1/5)) linear threshold gates.

In other words, Allender’s simulation is optimal in a strong sense. The lower
bound in Theorem 1.1 is an exponential improvement over previous work. The best
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previous lower bound [15, 27] was quasipolynomial and followed trivially from the
observation that AC0 can compute inner product modulo 2 on logc n variables,
for any constant c > 1.

1.1. A communication-complexity perspective. A different and perhaps
more revealing view of this work is in terms of communication complexity [23]. The
communication complexity of Boolean functions in different models has long been an
active area of research, due to its inherent appeal as a complexity subject as well
as its numerous applications in theoretical computer science. Our work contributes
a novel and powerful technique for communication lower bounds, which is based on
the representation of a Boolean function as the sign of a real-valued polynomial.
Specifically, fix a Boolean function f : {−1, 1}n → {−1, 1}. Its threshold degree,
deg±(f), is defined as the minimum degree of a polynomial p(x1, x2, . . . , xn) that
represents f in sign: f(x) ≡ sign(p(x)). This concept has played a prominent role
in the study of circuit complexity [2, 21, 22, 26] and has yielded valuable insights in
other areas, including computational learning theory [17, 20]. In many cases [26], it
is straightforward to obtain strong lower bounds on the threshold degree. Since the
threshold degree is a measure of the complexity of a given Boolean function, it is
natural to wonder whether it can yield lower bounds on communication in a suitable
setting. Our work confirms this intuition for every f.

More precisely, fix a Boolean function f : {−1, 1}n → {−1, 1} with threshold
degree d. Let N be a given integer, N > n. We introduce and study the two-party
communication problem of computing

f(x|S),

where the Boolean string x ∈ {−1, 1}N is Alice’s input and the set S ⊂ {1, 2, . . . , N}
of size |S| = n is Bob’s input. The symbol x|S stands for the projection of x onto
the indices in S, in other words, x|S = (xi1 , xi2 , . . . , xin) ∈ {−1, 1}n, where i1 < i2 <
· · · < in are the elements of S. Intuitively, this problem models a situation when Alice
and Bob’s joint computation depends on only n of the inputs x1, x2, . . . , xN . Alice
knows the values of all the inputs x1, x2, . . . , xN but does not know which n of them
are relevant. Bob, on the other hand, knows which n inputs are relevant but does
not know their values. As one would hope, we prove that d gives a lower bound on
the communication requirements of this problem. We phrase our result in terms of
discrepancy, a central quantity in communication complexity that immediately yields
lower bounds on communication in a variety of models (see §2.1):

Theorem 1.2 (Degree/Discrepancy Theorem). Let f : {−1, 1}n → {−1, 1} be
given with threshold degree d > 1. Then for N > n, the matrix M = [f(x|S)]x,S has
discrepancy

disc(M) 6

(
4en2

Nd

)d/2

,

where e = 2.718 . . . .

Theorem 1.2, which we call the Degree/Discrepancy Theorem for obvious rea-
sons, is a separate contribution of our work. Given a function f with threshold
degree d, it generates a communication problem with discrepancy at most 2−d (by
setting N > 16en2/d). This exponentially small upper bound on the discrepancy
immediately translates in an Ω(d) lower bound on communication in a variety of
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models (deterministic, nondeterministic, randomized, quantum with and without en-
tanglement). Moreover, the resulting lower bounds on communication remain valid
when Alice and Bob merely seek to predict the answer with nonnegligible advantage,
a critical aspect for lower bounds against threshold circuits. This contrasts with
other communication-complexity methods [32, 34], that only apply to high-accuracy
computation. Finally, discrepancy arises prominently in contexts beyond communi-
cation complexity, such as estimation of margin complexity [25,40] and approximate
rank [19]. For all these reasons, we believe that the Degree/Discrepancy Theorem
is of considerable interest in its own right. We prove it by a novel application of
Gordan’s Transposition Theorem [37, §7.8], which is a classical result from the theory
of linear inequalities.

We are now in a position to outline the proof of our main result, Theorem 1.1. We
start with a well-known DNF formula Φ, constructed by Minsky and Papert [26], that
has high threshold degree. An application of Theorem 1.2 to Φ yields a communication
problem with low discrepancy. By design, this communication problem can be viewed
as an AC0 circuit of depth 3. Recalling that its discrepancy is exponentially small, we
immediately conclude that it cannot be computed by a depth-2 majority circuit of
subexponential size. This completes the proof.

1.2. On the discrepancy of AC0 circuits. Recall that a key component of
our proof is the construction of an AC0 circuit with exponentially small discrepancy.
Prior to this work, it was not known whether such a circuit existed. In particular,
all previously known functions with exponentially small discrepancy (e.g., [14, 27])
contain parity or majority as a subfunction and therefore cannot be computed in
AC0. In view of the intrinsic value of discrepancy as a complexity measure, we state
this result on its own.

Theorem 1.3 (Discrepancy of AC0 circuits). There is a function f : {−1, 1}n ×
{−1, 1}n → {−1, 1}, explicitly given and computable by an AC0 circuit of depth 3,
that has discrepancy exp(−Ω(n1/5)) with respect to an explicitly given distribution.

Theorem 1.3 is best possible in that every AC0 circuit of depth 1 or 2 has dis-
crepancy at least n−O(1) with respect to all distributions and all partitions of the
variables (see §5). As a direct corollary to Theorem 1.3, we separate communication
classes Σcc

2 and Πcc
2 from PPcc:

Corollary 1.4. Σcc
2 6⊆ PPcc, Πcc

2 6⊆ PPcc.

Here Σcc
2 and Πcc

2 are the second level of the polynomial hierarchy in communication
complexity, whereas PPcc is the class of all communication matrices with nonnegligible
discrepancy. Prior to this work, it was entirely conceivable that PPcc contained both
Σcc

2 and Πcc
2 and the rest of the polynomial hierarchy PHcc. See §6 for further details.

Another AC0 circuit of depth 3 with exponentially small discrepancy was con-
structed independently by Buhrman, Vereshchagin, and de Wolf [5, §3]. Their proof
uses quite different techniques (approximation theory and quantum communication
complexity). The circuit of Buhrman et al. has discrepancy exp(−Ω(n1/3)), which is
a stronger bound than Theorem 1.3. An advantage of the construction in this paper
is that it is self-contained and from first principles, whereas the work of Buhrman et
al. builds on a subtle result of Razborov [35]. In addition, our method is not restricted
to AC0 but, rather, applies to any function with high threshold degree.

1.3. Recent progress. We are pleased to report that the Degree/Discrepancy
Theorem has inspired important progress in communication complexity by several
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researchers, which we briefly survey. The first of these new results is concerned
with bounded-error communication. By combining the method of Theorem 1.2 with
techniques from matrix analysis and approximation theory, the author [41] obtained
strong lower bounds on bounded-error communication for a broad new class of prob-
lems. These lower bounds remain valid in the quantum model (regardless of prior
entanglement) and subsume Razborov’s breakthrough lower bounds for symmetric
functions [35].

In another development [42], we used the method of Theorem 1.2 as a starting
point to derive essentially optimal lower bounds on the unbounded-error communi-
cation complexity of every symmetric function. The unbounded-error model is more
powerful than all the familiar models of communication (both classical and quantum),
and proving lower bounds in it is a substantial challenge. The only previous nontrivial
lower bounds for this model appeared in the groundbreaking work of Forster [12] and
its extensions.

Razborov and Sherstov [36] recently obtained the first exponential lower bound
on the sign-rank of AC0, thereby solving a longstanding open problem due to Babai,
Frankl, and Simon [3]. The results in [36] additionally give strong lower bounds for
PAC learning polynomial-size DNF and CNF formulas (see Remark 8.2). The method
of the Degree/Discrepancy Theorem is one of the starting points in that work.

The Degree/Discrepancy Theorem has also found applications to multiparty com-
munication complexity. The first of these is work by Chattopadhyay [6], who observed
that the method of Theorem 1.2 adapts in a straightforward manner to the multiparty
model. Analogous to this adaptation, Lee and Shraibman [24] and Chattopadhyay and
Ada [7] adapted to the multiparty model the author’s recent work [41] on two-party
bounded-error communication. They thereby obtained improved lower bounds on the
bounded-error communication complexity of disjointness for up to log log n play-
ers. David and Pitassi [9] combined this line of work with the probabilistic method,
establishing a separation of the communication classes NPcc

k and BPPcc
k for up to

k = (1 − ε) log n players. Their construction was derandomized in a follow-up paper
by David, Pitassi, and Viola [10], resulting in an explicit separation. See the survey
article [39] for a unified guide to these results, complete with all the key proofs.

1.4. Organization. The remainder of this paper is organized as follows. Sec-
tion 2 provides relevant background on communication complexity and threshold
functions. Section 3 is devoted to the proof of the Degree/Discrepancy Theorem, our
main technical tool. Section 4 studies a particular AC0 circuit Φ with high threshold
degree. Section 5 applies the Degree/Discrepancy Theorem to Φ, yielding an explicit
AC0 circuit f of depth 3 with exponentially small discrepancy. Section 6 uses this
discrepancy result to separate the classes Σcc

2 and Πcc
2 from PPcc in communication

complexity. In Section 7, we derive our main result, an exponential lower bound on
the size of depth-2 majority circuits that compute AC0. Section 8 concludes with an
application of our results to computational learning theory.

2. Preliminaries. Throughout this work, we identify −1 and 1 with “true” and
“false,” respectively. We view Boolean functions as mappings X → {−1, 1}, where X
is a finite set such as X = {−1, 1}n. The symbol [n] stands for the set {1, 2, . . . , n}.
For integers N,n with N > n, the symbol

(
[N ]
n

)
denotes the family of all size-n

subsets of {1, 2, . . . , N}. For a string x ∈ {−1, 1}N and a set S ∈
(
[N ]
n

)
, we define

x|S = (xi1 , xi2 , . . . , xin) ∈ {−1, 1}n, where i1 < i2 < · · · < in are the elements of S.
The notation Rm×n refers to the family of all m × n matrices with real entries. We
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specify matrices by their generic entry, e.g., A = [F (i, j)]i,j . As usual, we denote the
base of the natural logarithm by e = 2.718 . . . .

Recall that AC0 is the family of polynomial-size unbounded-fanin constant-depth
circuits with and, or, not gates. We adopt the standard definition of the sign
function:

sign(t) =


1 if t > 0,

0 if t = 0,

−1 if t < 0.

A linear threshold gate is a Boolean function f : {−1, 1}n → {−1, 1} of the form
f(x) ≡ sign(

∑n
i=1 aixi − θ) for some fixed reals a1, . . . , an, θ. Observe that a linear

threshold gate generalizes the familiar majority gate.

2.1. Communication complexity. We consider Boolean functions f : X ×
Y → {−1, 1}. Typically X = Y = {−1, 1}n, but we also allow X and Y to be ar-
bitrary finite sets. We identify a function f with its communication matrix M =
[f(x, y)]x∈X, y∈Y . In particular, we use the terms “communication complexity of f”
and “communication complexity of M” interchangeably (and likewise for other com-
plexity measures, such as discrepancy). The two communication models of interest
to us are the randomized model and the deterministic model. The randomized com-
plexity R1/2−γ/2(f) of f is the minimum cost of a randomized protocol for f that
computes f(x, y) correctly with probability at least 1

2 + 1
2γ (equivalently, with ad-

vantage γ) on every input (x, y). The public-coin randomized complexity Rpub
1/2−γ/2(f)

is defined analogously with the only difference that the communicating parties now
have a source of shared random bits, i.e., they can observe tosses of a common coin
without communicating. The distributional complexity Dµ

1/2−γ/2(f) is the minimum
cost of a deterministic protocol for f that has error at most 1

2 −
1
2γ (equivalently,

advantage γ) with respect to the distribution µ over the inputs.
A rectangle of X × Y is any set R = A×B with A ⊆ X and B ⊆ Y. For a fixed

distribution µ over X × Y , the discrepancy of f is defined as

discµ(f) = max
R

∣∣∣∣∣∣
∑

(x,y)∈R

µ(x, y)f(x, y)

∣∣∣∣∣∣ ,
where the maximum is taken over all rectangles R. We define disc(f) = minµ discµ(f).
The discrepancy method is a fundamental technique that places a lower bound on the
randomized and distributional complexity in terms of the discrepancy:

Proposition 2.1 (Kushilevitz and Nisan [23, pp. 36–38]). For every Boolean
function f : X × Y → {−1, 1}, every distribution µ on X × Y, and every γ > 0,

R1/2−γ/2(f) > Rpub
1/2−γ/2(f) > Dµ

1/2−γ/2(f) > log2

γ

discµ(f)
.

The above definition of discrepancy is not convenient to work with. The following
well-known lemma bounds the discrepancy in terms of a more analytically pleasing
quantity. For completeness, we include a proof.
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Lemma 2.2 (Discrepancy bound; cf. [4, 8, 11, 33]). Let f : X × Y → {−1, 1} be
given, and let µ be a probability distribution over X × Y. Then

discµ(f)2 6 |X|
∑

y,y′∈Y

∣∣∣∣∣∑
x∈X

µ(x, y)µ(x, y′)f(x, y)f(x, y′)

∣∣∣∣∣ .
Proof. (Adapted from Raz [33].) Let R = A × B be a rectangle over which the

discrepancy is achieved. Define αx = 1 for all x ∈ A, and likewise βy = 1 for all
y ∈ B. For all remaining x and y, let αx and βy be independent random variables
distributed uniformly over {−1, 1}. Passing to expectations,∣∣∣∣∣E

[∑
x,y

αxβyµ(x, y)f(x, y)

]∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(x,y)∈R

E[αxβy︸ ︷︷ ︸
=1

]µ(x, y)f(x, y) +
∑

(x,y) 6∈R

E[αxβy]︸ ︷︷ ︸
=0

µ(x, y)f(x, y)

∣∣∣∣∣∣
= discµ(M).

In particular, there exists a fixed assignment αx, βy ∈ {−1, 1} for all x, y such that

discµ(f) 6

∣∣∣∣∣∑
x,y

αxβyµ(x, y)f(x, y)

∣∣∣∣∣ .
Squaring both sides and applying the Cauchy-Schwarz inequality,

discµ(f)2 6 |X|
∑

x

(
αx

∑
y

βyµ(x, y)f(x, y)

)2

= |X|
∑
y,y′

βyβy′

∑
x

µ(x, y)µ(x, y′)f(x, y)f(x, y′)

6 |X|
∑
y,y′

∣∣∣∣∣∑
x

µ(x, y)µ(x, y′)f(x, y)f(x, y′)

∣∣∣∣∣ ,
as desired.

A definitive resource for further details is the book of Kushilevitz and Nisan [23].

2.2. Threshold degree. Let f : {−1, 1}n → {−1, 1} be a given Boolean func-
tion. The threshold degree of f, denoted deg±(f), is the least degree of a polynomial
p(x1, x2, . . . , xn) such that f(x) ≡ sign(p(x)). In view of the domain of f, any such
polynomial p can be assumed to be multilinear. Note that any function f that depends
on k or fewer of the n variables has threshold degree at most k. For a set S ⊆ [n],
we write χS =

∏
i∈S xi. In this notation, the threshold degree of f is the smallest d

such that f(x) ≡ sign(
∑

|S|6d aSχS(x)) for some fixed reals aS . Threshold degree is
also known in the literature as “strong degree” [2], “voting polynomial degree” [21],
“PTF degree” [30], and “sign degree” [5].

Crucial to understanding the threshold degree is the following result from the
theory of linear inequalities, which follows in a straightforward manner from linear-
programming duality.
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Theorem 2.3 (Gordan’s Transposition Theorem [37, §7.8]). Let A ∈ Rm×n.
Then exactly one of the following statements holds:

(i) uTA > 0 for some vector u;
(ii) Av = 0 for some nonzero vector v > 0.

The vector notation uTA > 0 and v > 0 above is to be understood entrywise, as
usual. A consequence of Gordan’s Transposition Theorem is the following well-known
result regarding threshold representations:

Theorem 2.4 (see [2, 30]). Let φ1, φ2, . . . , φk : {−1, 1}n → R be arbitrary real
functions, and let f : {−1, 1}n → {−1, 1} be a given Boolean function. Then exactly
one of the following statements holds:

(i) f(x) ≡ sign(
∑k

i=1 aiφi(x)) for some reals a1, a2, . . . , ak;
(ii) there is a distribution µ over {−1, 1}n such that

E
x∼µ

[f(x)φi(x)] = 0, i = 1, 2, . . . , k.

Proof. Consider the k × 2n matrix A = [f(x)φi(x)]i,x. The claim follows from
Theorem 2.3, with u playing the role of a set of coefficients (a1, a2, . . . , ak) ∈ Rk, and
v playing the role of a probability distribution.

Corollary 2.5. Let f : {−1, 1}n → {−1, 1} be arbitrary, d a nonnegative
integer. Then exactly one of the following holds:

(i) deg±(f) 6 d;
(ii) there is a distribution µ over {−1, 1}n such that

E
x∼µ

[f(x)χS(x)] = 0, |S| = 0, 1, . . . , d.

3. The Degree/Discrepancy Theorem. This section marks the beginning of
our proof. Its purpose is to establish Theorem 1.2 (the Degree/Discrepancy Theorem),
which plays a central role in the development to follow.

Theorem 1.2 (Restated from p. 2). Let f : {−1, 1}n → {−1, 1} be given with
threshold degree d > 1. Let N be a given integer, N > n. Define M = [f(x|S)]x,S ,

where the indices range as follows: x ∈ {−1, 1}N , S ∈
(
[N ]
n

)
. Then

disc(M) 6

(
4en2

Nd

)d/2

. (3.1)

Proof. Let µ be a probability distribution over {−1, 1}n with respect to which
Ez∼µ[f(z)p(z)] = 0 for every real-valued function p of d− 1 or fewer of the variables
z1, . . . , zn. The existence of µ is assured by Corollary 2.5. Throughout this proof, the
symbol U shall stand for the uniform distribution over the relevant domain. We will
analyze the discrepancy of M with respect to the distribution

λ(x, S) = 2−N+n

(
N

n

)−1

µ(x|S).

By Lemma 2.2,

discλ(M)2 6 4n E
(S,T )∼U

|Γ(S, T )|, (3.2)
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where we let

Γ(S, T ) = E
x∼U

[
µ(x|S)µ(x|T )f(x|S)f(x|T )

]
.

To analyze this expression, we prove two key claims.
Claim 3.2. Assume that |S ∩ T | 6 d− 1. Then Γ(S, T ) = 0.

Proof. For notational convenience, assume that S = {1, 2, . . . , n}. Then

Γ(S, T ) = E
x∼U

[
µ(x1, . . . , xn)µ(x|T )f(x1, . . . , xn)f(x|T )

]
=

1
2N

∑
x1,...,xn

µ(x1, . . . , xn)f(x1, . . . , xn)
∑

xn+1,...,xN

µ(x|T )f(x|T )

=
1

2N
E

(x1,...,xn)∼µ

f(x1, . . . , xn) ·

 ∑
xn+1,...,xN

µ(x|T )f(x|T )


︸ ︷︷ ︸

∗

 .

Since |S ∩T | 6 d− 1, the starred expression is a real-valued function of at most d− 1
variables. The claim follows by the definition of µ.

Claim 3.3. Assume that |S ∩ T | = k. Then |Γ(S, T )| 6 2k−2n.

Proof. For notational convenience, assume that

S = {1, 2, . . . , n},
T = {1, 2, . . . , k} ∪ {n + 1, n + 2, . . . , n + (n− k)}.

We have:

|Γ(S, T )| 6 E
x∼U

∣∣∣µ(x|S)µ(x|T )f(x|S)f(x|T )
∣∣∣

= E
x1,...,x2n−k

[µ(x1, . . . , xn)µ(x1, . . . , xk, xn+1, . . . , x2n−k)]

6 E
x1,...,xn

[µ(x1, . . . , xn)]︸ ︷︷ ︸
=2−n

· max
x1,...,xk

E
xn+1,...,x2n−k

[µ(x1, . . . , xk, xn+1, . . . , x2n−k)]︸ ︷︷ ︸
62−(n−k)

.

The bounds 2−n and 2−(n−k) follow because µ is a probability distribution.
In view of Claims 3.2 and 3.3, inequality (3.2) simplifies to

discλ(M)2 6
n∑

k=d

2k P[|S ∩ T | = k].

Since

P[|S ∩ T | = k] =
(

n

k

)(
N − n

n− k

)(
N

n

)−1

6

(
n

k

)( n

N

)k

6

(
en2

Nk

)k

,

and since the discrepancy cannot exceed 1, we conclude that

discλ(M)2 6 min

{
1,

n∑
k=d

(
2en2

Nk

)k
}

6

(
4en2

Nd

)d

.
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This completes the proof of Theorem 1.2.
Remark 3.4. The proof above analyzes the discrepancy of M = [f(x|S)]x,S with

respect to a certain distribution λ, derived directly from a distribution µ under which
f is uncorrelated with every function of fewer than deg±(f) variables. Therefore, the
discrepancy bound (3.1) is achieved with respect to an explicitly given distribution
whenever µ is explicitly given.

Remark 3.5. The discrepancy bound (3.1) holds not only for M but also for
any sign matrix that contains M. This observation is immediate from the definition
of discrepancy. It allows a considerable degree of flexibility in applying Theorem 1.2,
as will become apparent in §5.

Remark 3.6. The discrepancy bound in Theorem 1.2 is not tight. In subse-
quent work [41, Thm. 7.3], the author strengthened it to: disc(M) 6 (4n/N)d/2.
Moreover, this new bound continues to hold when Bob’s input S is restricted to
have a particularly simple form. This stronger Degree/Discrepancy Theorem leads
to quantitative improvements on this paper’s Theorems 1.1 and 1.3; see [41, §7] for
details. These improvements are built around a matrix-analytic approach to estimat-
ing the discrepancy, as opposed to the combinatorial derivation above. However, the
proof of the Degree/Discrepancy Theorem in this paper has the advantage that it
easily adapts to the multiparty model and is the foundation of the recent multiparty
results [6,7,9,10,24]. The matrix-analytic approach does not seem to extend to three
or more communicating parties.

4. A function with high threshold degree. Consider the Boolean function
MPm on n = 4m3 variables, given by

MPm(x) =
m∨

i=1

4m2∧
j=1

xi,j .

A moment’s reflection shows that the threshold degree of MPm is at most m. Indeed,

MPm(x) = sign

{
−1

2
+

m∏
i=1

(4m2 + xi,1 + xi,2 + · · ·+ xi,4m2)

}
.

(Recall that xi,j ∈ {−1, 1}, where −1 corresponds to “true.”) Minsky and Papert [26],
who originally defined this function, proved that this upper bound is tight.

Theorem 4.1 (Minsky and Papert [26]). MPm has threshold degree m.

Minsky and Papert’s proof, while short and elegant, does not yield an explicit
distribution over {−1, 1}4m3

with respect to which MPm is orthogonal to all func-
tions of fewer than m variables. The existence of such a distribution is assured by
Corollary 2.5. The purpose of this section is to construct it. While this construction
is not needed for our circuit lower bound (Theorem 1.1), it yields additional insight
into the discrepancy of AC0 (Theorem 1.3).

We shall construct the desired distribution by extending an earlier argument, due
to O’Donnell and Servedio [29], that makes the crux of the Minsky-Papert construc-
tion explicit. A starting point in our discussion is the following fact.

Proposition 4.2 (O’Donnell and Servedio [29]). Let ν be the binomial distribu-
tion over {0, 1, . . . , 2m}, i.e., ν(t) = 2−2m

(
2m
t

)
. Then for every polynomial p of degree

at most 2m− 1,

E
t∼ν

[(−1)tp(t)] = 0.
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Proof. We present the proof from [29]. The claim holds for the monomials
p = 1, t, t2, . . . , t2m−1 in view of the combinatorial identity

2m∑
t=0

(
2m

t

)
(−1)ttd = 0, d = 0, 1, . . . , 2m− 1.

By linearity of expectation, this completes the proof.
O’Donnell and Servedio used Proposition 4.2 to obtain an explicit distribution

over {0, 1, . . . , 2m} under which every low-degree symmetric polynomial has zero cor-
relation with MPm. However, what we seek is an explicit distribution over {−1, 1}4m3

.
To this end, we take the argument of O’Donnell and Servedio a step further. The
technical exposition follows.

For t = 0, 1, . . . , 2m, define

Xt =

x :
4m2∑
j=1

1− xi,j

2
= 4m2 − (t− (2i− 1))2 for i = 1, 2, . . . ,m

 . (4.1)

Thus, X0, X1, . . . , X2m are disjoint sets of inputs. The same sets of inputs figure in
previous analyses [26,29]. It is easy to verify that for t = 0, 1, . . . , 2m,

x ∈ Xt =⇒ MPm(x) = (−1)t. (4.2)

Let ν be the distribution from Proposition 4.2. We will work with the following
distribution µ over {−1, 1}4m3

:

µ(x) =



ν(0)/|X0| if x ∈ X0,

ν(1)/|X1| if x ∈ X1,
...

ν(2m)/|X2m| if x ∈ X2m,

0 otherwise.

(4.3)

We are now in a position to prove the main result of this section.

Theorem 4.3 (Explicit distribution for MPm). Let µ be given by (4.3). Then

E
µ
[MPm · χS ] = 0, |S| = 0, 1, . . . ,m− 1.

Proof. Let χS be arbitrary with |S| 6 m−1. Call the variables xi,1, xi,2, . . . , xi,4m2

the ith block of x. Let σ1, σ2, . . . , σm be fixed permutations for blocks 1, 2, . . . ,m,
respectively. The theorem follows immediately from the following two claims.

Claim 4.4. Eµ[MPm · (χS ◦ (σ1, . . . , σm))] = Eµ[MPm · χS ] for all σ1, . . . , σm.
Claim 4.5.

∑
σ1,...,σm

Eµ[MPm · (χS ◦ (σ1, . . . , σm))] = 0.
We prove these claims below. This completes the proof of the theorem.

Proof of Claim 4.4. The functions MPm(x) and µ(x) depend only on the sum of
the bits in each block. Formally, MPm ≡ MPm◦(σ1, . . . , σm) and µ ≡ µ◦(σ1, . . . , σm).
The claim follows.
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Proof of Claim 4.5. Write χS = χS1χS2 · · ·χSm , where

Si = S ∩ {(i, 1), . . . , (i, 4m2)}, i = 1, 2, . . . ,m.

Then,

∑
σ1,...,σm

E
µ
[MPm · (χS ◦ (σ1, . . . , σm))] =

∑
σ1,...,σm

E
µ

[
MPm ·

m∏
i=1

(χSi ◦ σi)

]

= E
µ

[
MPm ·

m∏
i=1

(∑
σi

χSi ◦ σi

)]

= E
µ

[
MPm ·

m∏
i=1

pi(xi,1 + xi,2 + · · ·+ xi,4m2)

]
,

where p1, p2, . . . , pm are polynomials of degree at most |S1|, |S2|, . . . , |Sm|, respec-
tively. We now use the definition of µ to simplify the last equation.

E
µ

[
MPm ·

m∏
i=1

pi(xi,1 + xi,2 + · · ·+ xi,4m2)

]

=
∑

x

µ(x)MPm(x)
m∏

i=1

pi(xi,1 + xi,2 + · · ·+ xi,4m2)

=
2m∑
t=0

∑
x∈Xt

ν(t)
|Xt|

MPm(x)
m∏

i=1

pi(xi,1 + xi,2 + · · ·+ xi,4m2)

=
2m∑
t=0

∑
x∈Xt

ν(t)
|Xt|

(−1)t
m∏

i=1

pi(2[t− (2i− 1)]2 − 4m2)︸ ︷︷ ︸
call this p(t)

by (4.1), (4.2)

=
2m∑
t=0

ν(t)(−1)tp(t)

= 0,

where the last equality follows by Proposition 4.2 since p(t) has degree at most
2
∑

i |Si| = 2|S| 6 2m− 2.

5. Discrepancy of AC0 circuits. This section proves an exponentially small
upper bound on the discrepancy of an explicit function in AC0.

Theorem 1.3 (Rephrased from p. 3). There exists a function f : {−1, 1}N ×
{−1, 1}N → {−1, 1}, explicitly given and computable by an AC0 circuit of depth 3,
that has discrepancy exp(−Ω(N1/5)) with respect to an explicitly given distribution.

Proof. Consider the function MPm on n = 4m3 variables. Theorem 4.1 states
that deg±(MPm) = m. Put N = d16en2/me = d256em5e and define the matrix
M = [MPm(x|S)]x,S , where x ∈ {−1, 1}N and S ∈

(
[N ]
n

)
. By Theorem 1.2,

discλ(M) 6 2−m = e−Θ(N1/5)
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for a certain distribution λ. By Remark 3.4 and Theorem 4.3, the distribution λ is
given explicitly in terms of (4.3).

Represent a set S ⊂ [N ] with elements i1 < i2 < · · · < in by the Boolean string
(y(1), y(2), . . . , y(n)) ∈ ({−1, 1}log N )n, where y(k) is the binary encoding of the integer
ik. We define F : {−1, 1}N × ({−1, 1}log N )n → {−1, 1} by

F (x, y(1), y(2), . . . , y(n)) = MPm(x|S),

where S is the set corresponding to y(1), y(2), . . . , y(n). In the event that the strings
y(1), y(2), . . . , y(n) do not specify a legal set S (e.g., they are not all distinct or ordered),
the value of F is irrelevant. By construction,

discλ(F ) = discλ(M) 6 e−Θ(N1/5).

It remains to show that F is computable by an AC0 circuit of depth 3. For this,
observe that

F (x, y) = MPm(φ(x, y(1)), . . . , φ(x, y(n))),

where φ(x, y(i)) computes xdecimal(y(i)), i.e., computes xa with a being the decimal
integer whose binary representation is y(i). Each φ(x, y(i)) is clearly computable by a
CNF formula of size O(N). Hence, F is computable by an AC0 circuit of depth 3 (by
collapsing the two middle layers of and gates).

Remark 5.1. The function F in Theorem 1.3 can be viewed as a communication
problem in which Alice is given an input x ∈ {−1, 1}N , Bob is given a polynomial-size
DNF formula f : {−1, 1}N → {−1, 1} (from a restricted set), and their objective is
to evaluate f(x). The proof of Theorem 1.3 shows that the communication matrix of
this problem has discrepancy exp(−Ω(N1/5)). We will revisit this observation in §8.

Theorem 1.3 exhibits an AC0 circuit of depth 3 with exponentially small discrep-
ancy. At the same time, the discrepancy of every AC0 circuit of depth 2 is at least
n−O(1). To our knowledge, this fact has not been noted down in the literature, and
we present its proof below.

Proposition 5.2. Let f : {−1, 1}n × {−1, 1}n → {−1, 1} be an AC0 circuit of
depth 1 or 2. Then discµ(f) > n−O(1) for every distribution µ.

Proof. By assumption, f is a polynomial-size DNF or CNF formula. Without
loss of generality, assume the former, i.e., f = T1 ∨ T2 ∨ · · · ∨ Ts, where s = nO(1) and
each of T1, T2, . . . , Ts is a conjunction of literals. Observe that

f = majority(T1, . . . , Ts, Ts+1, . . . , T2s−1),

where we define Ts+1 = Ts+2 = · · · = T2s−1 = −1 (identically true). Consider
the public-coin randomized protocol in which the parties pick i ∈ {1, 2, . . . , 2s − 1}
uniformly at random, evaluate Ti using constant communication, and output the
result. This protocol evaluates f correctly with probability at least 1

2 + Ω
(

1
s

)
. Thus,

Rpub
1/2−Ω(1/s)(f) = O(1).

Proposition 2.1 now implies that discµ(f) > Ω(1/s) > n−O(1) for all µ.
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6. Discrepancy and the polynomial hierarchy. In this section, we will
briefly digress from the main development and explore the consequences of Theo-
rem 1.3 in the study of communication complexity classes PPcc, Σcc

2 , Πcc
2 .

Throughout this section, the symbol {fn} shall stand for a family of functions
f1, f2, . . . , fn, . . . , where fn : {−1, 1}n × {−1, 1}n → {−1, 1}.

Babai, Frankl, and Simon [3] originally defined the class PPcc as the class of
communication problems that have an efficient protocol with nonnegligible bias. For
our purposes, it will be more convenient to use an equivalent characterization of PPcc

in terms of discrepancy, obtained by Klauck [16].
Theorem 6.1 (Klauck [16]). A family {fn} is in PPcc if and only if for some

constant c > 1 and all n,

disc(fn) > 2− logc n.

We now define classes Σcc
2 and Πcc

2 , which represent the second level of the polyno-
mial hierarchy in communication complexity. A function fn : {−1, 1}n × {−1, 1}n →
{−1, 1} is called a rectangle if there exist subsets A,B ⊆ {−1, 1}n such that

fn(x, y) = −1 ⇔ x ∈ A, y ∈ B.

We call fn the complement of a rectangle if the negated function ¬fn = −fn is a
rectangle.

Definition 6.2 (Babai, Frankl, and Simon [3, §4]).
(1) A family {fn} is in Πcc

0 if each fn is a rectangle. A family {fn} is in Σcc
0 if

{¬fn} is in Πcc
0 .

(2) Fix an integer k = 1, 2, . . . . A family {fn} is in Σcc
k if for some constant

c > 1 and all n,

fn =
2logc n∨
i1=1

2logc n∧
i2=1

2logc n∨
i3=1

· · ·
2logc n⊙
ik=1

gi1,i2,...,ik
n ,

where
⊙

=
∨

(resp.,
⊙

=
∧

) for k odd (resp., even); and each gi1,i2,...,ik
n is

a rectangle (resp., the complement of a rectangle) for k odd (resp., even). A
family {fn} is in Πcc

k if {¬fn} is in Σcc
k .

(3) The polynomial hierarchy is given by PHcc =
⋃

k Σcc
k =

⋃
k Πcc

k , where k =
0, 1, 2, 3, . . . ranges over all constants.

Thus, the zeroth level (Σcc
0 and Πcc

0 ) of the polynomial hierarchy consists of
rectangles and complements of rectangles, the simplest functions in communication
complexity. The first level is easily seen to correspond to functions with efficient
nondeterministic or co-nondeterministic protocols: Σcc

1 = NPcc and Πcc
1 = coNPcc.

The circuit class AC0 is related to the polynomial hierarchy PHcc in communica-
tion complexity in the obvious way. Specifically, if fn : {−1, 1}n×{−1, 1}n → {−1, 1},
n = 1, 2, 3, 4, . . . , is an AC0 circuit family of depth k with an or gate at the top (resp.,
and gate), then {fn} ∈ Σcc

k−1 (resp., {fn} ∈ Πcc
k−1). In particular, the depth-3 cir-

cuit family {fn} in Theorem 1.3 is in Σcc
2 , whereas {¬fn} is in Πcc

2 . In this light,
Theorems 1.3 and 6.1 have the following corollary:

Corollary 1.4 (Restated from p. 3). Σcc
2 6⊆ PPcc, Πcc

2 6⊆ PPcc.

Observe that the separations in Corollary 1.4 are achieved for explicit functions,
constructed in Theorem 1.3. Corollary 1.4 is tight in that PPcc trivially contains Σcc

0 ,
Σcc

1 , Πcc
0 , Πcc

1 .



14 ALEXANDER A. SHERSTOV

7. Lower bounds for majority-of-threshold circuits. At last, we are in a
position to prove the main result of this paper. We will follow an established argu-
ment, due to Nisan [27], that relates discrepancy to the size of majority-of-threshold
circuits. The key piece of the argument is the following statement.

Theorem 7.1 (Nisan [27]). Let f : {−1, 1}n → {−1, 1} be a linear threshold
function. Then Rpub

ε (f) = O(log n+log 1
ε ), for any partition of the variables and any

ε = ε(n).
We have:
Theorem 1.1 (Rephrased from p. 1). There exists a function f : {−1, 1}N ×

{−1, 1}N → {−1, 1}, explicitly given and computable by an AC0 circuit of depth 3,
whose computation requires a majority vote of exp(Ω(N1/5)) linear threshold gates.

Proof. Nisan [27, Thm. 4] proved an analogous statement for the function inner
product modulo 2, and we merely adapt his argument to our setting. Let F
be the function in the statement of Theorem 1.3, with disc(F ) = exp(−Ω(N1/5)).
Proposition 2.1 implies that for any γ > 0,

Rpub
1/2−γ/2(F ) = Ω(N1/5)− log

1
γ

. (7.1)

On the other hand, suppose that F = majority(h1, h2, . . . , hs), where each hi is
a linear threshold function. Then the parties can randomly pick i ∈ {1, 2, . . . , s},
evaluate hi correctly with probability 1− 1/(4s) using Theorem 7.1, and output the
result. This protocol would have communication cost O(log N + log s) and would
predict F correctly with probability at least ( 1

2 + 1
2s )− 1

4s = 1
2 + 1

4s on every input.
Thus,

Rpub
1/2−1/4s(F ) = O(log N + log s). (7.2)

Comparing (7.1) and (7.2), we see that s = exp(Ω(N1/5)).

8. An application to learning DNF formulas. We conclude with an ap-
plication of our results to computational learning theory. Let C be an arbitrary set
of Boolean functions {−1, 1}n → {−1, 1}. Suppose it is possible to fix polynomial-
time computable Boolean functions h1, . . . , hd : {−1, 1}n → {−1, 1} such that every
function f ∈ C can be represented as

f(x) ≡ sign

(
d∑

i=1

aihi(x)

)

for some integers a1, . . . , ad with |a1|+· · ·+|ad| 6 W. The obvious complexity measures
of this representation are d and W . If d and W are polynomial in n, simple and efficient
algorithms exist for learning C from random examples under every distribution, e.g.,
the classic Perceptron algorithm [26, 28]. Such classes C admit learning with large
margin and therefore possess a variety of desirable characteristics [18].

Given C, it is thus natural to ask whether it is possible to choose h1, . . . , hd

such that d = poly(n) and W = poly(n). The question is particularly intriguing
for polynomial-size DNF and CNF formulas, a concept class that has eluded every
attempt at an efficient, distribution-free learning algorithm. Our machinery yields a
strong negative answer to this question. We restrict our attention to DNF formulas,
the CNF case being closely analogous.
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Theorem 8.1. Let C denote the concept class of polynomial-size DNF formulas.
Let h1, . . . , hd : {−1, 1}n → {−1, 1} be arbitrary Boolean functions such that every
f ∈ C can be expressed as f(x) ≡ sign(

∑d
i=1 aihi(x)) for some integers a1, . . . , ad with

|a1|+ · · ·+ |ad| 6 W. Then

dW > eΩ(n1/5).

Proof. Consider the communication problem F in which Alice is given an input
x ∈ {−1, 1}n, Bob is given a function f ∈ C, and their objective is to compute f(x).
By Remark 5.1, the communication matrix of this problem has discrepancy

disc(F ) 6 e−Ω(n1/5).

We will construct a cost-2 public-coin randomized protocol for the problem, with
advantage 1/(dW ) on every input. Proposition 2.1 will then imply that

1
dW

6 4 disc(F ),

and the proof will be complete.
The idea behind the protocol is not original; see [13, 14, 25, 31] for similar work.

First, the parties pick an index i ∈ {1, . . . , d} uniformly at random. Then Alice sends
hi(x) to Bob. Bob retrieves the representation of f as f(x) ≡ sign(

∑d
i=1 aihi(x))

for some integers a1, . . . , ad. With probability 1
2 + 1

2 ·
|ai|

|a1|+···+|ad| , Bob announces
hi(x) · sign(ai) as the output. With the remaining probability, he announces
−hi(x) · sign(ai). Thus, Bob’s expected output is aihi(x)

|a1|+···+|ad| . As a result, the protocol
achieves the desired advantage:

f(x) ·
d∑

i=1

1
d
· aihi(x)
|a1|+ · · ·+ |ad|

=
1
d
· |a1h1(x) + · · ·+ adhd(x)|

|a1|+ · · ·+ |ad|
>

1
dW

.

Remark 8.2. Using subtle techniques, Razborov and Sherstov [36] have recently
proved the following substantially stronger result. Let h1, . . . , hd : {−1, 1}n → R be
arbitrary real functions such that every DNF formula f of linear size is representable
as f(x) ≡ sign(

∑d
i=1 aihi(x)) for some reals a1, . . . , ad. Then d > exp(Ω(n1/3)). This

lower bound on d is essentially optimal [17] and rules out the possibility of PAC
learning DNF formulas in the important dimension complexity framework; see [36]
for details.
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