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Abstract

We provide the first construction of a concurrent and
non-malleable zero knowledge argument for every language
in NP. We stress that our construction is in the plain model
with no common random string, trusted parties, or super-
polynomial simulation. That is, we construct a zero knowl-
edge protocol Π such that for every polynomial-time adver-
sary that can adaptively and concurrently schedule polyno-
mially many executions of Π, and corrupt some of the ver-
ifiers and some of the provers in these sessions, there is a
polynomial-time simulator that can simulate a transcript of
the entire execution, along with the witnesses for all state-
ments proven by a corrupt prover to an honest verifier.

Our security model is the traditional model for concur-
rent zero knowledge, where the statements to be proven by
the honest provers are fixed in advance and do not depend
on the previous history (but can be correlated with each
other); corrupted provers, of course, can chose the state-
ments adaptively. We also prove that there exists some func-
tionality F (a combination of zero knowledge and obliv-
ious transfer) such that it is impossible to obtain a con-
current non-malleable protocol for F in this model. Pre-
vious impossibility results for composable protocols ruled
out existence of protocols for a wider class of functionali-
ties (including zero knowledge!) but only if these protocols
were required to remain secure when executed concurrently
with arbitrarily chosen different protocols (Lindell, FOCS
2003) or if these protocols were required to remain secure
when the honest parties’ inputs in each execution are cho-
sen adaptively based on the results of previous executions
(Lindell, TCC 2004).

∗Research supported in part by an Alfred P. Sloan Foundation Research
Fellowship, an Intel equipment grant, and NSF ITR/Cybertrust grants
0205594, 0456717 and 0627781.

We obtain an Õ(n)-round protocol under the assump-
tion that one-to-one one-way functions exist. This can
be improved to Õ(k log n) rounds under the assumption
that there exist k-round statistically hiding commitment
schemes. Our protocol is a black-box zero knowledge pro-
tocol.

1. Introduction

In the two decades since their introduction [17], zero-
knowledge proofs have played a central role in the study
of cryptographic protocols. Intuitively speaking, a zero-
knowledge proof is an interactive protocol that allows one
party (a “prover”) to convince another party (a “verifier”)
that some statement is true, without revealing anything else
to the verifier. The zero knowledge property was formalized
in [17] by requiring that the verifier can efficiently simulate
its view of an interaction with the prover, when given only
the statement as input – i.e., without any knowledge of why
the statement is true.

In many settings, however, the above security guarantee
is not sufficient. Consider a situation in which Alice is giv-
ing a zero-knowledge proof of the statement X to Bob, and
at the same time Bob is trying to give a zero-knowledge
proof of some other statement X’ to Charlie. Our intuitive
definition of zero-knowledge tells us that Bob should not
get any “help” in proving X’ to Charlie by means of the
zero-knowledge proof that Bob is getting from Alice – i.e.
Bob should only be able to prove X’ to Charlie if he could
have done it on its own, without any help from Alice. This
property is called non-malleability [14] for zero-knowledge
proofs. It turns out that the standard simulation definition
of zero knowledge does not imply non-malleability, and in
fact, many known zero-knowledge proofs are susceptible
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to this kind of attack. We note that we can describe non-
malleability as security in the following scenario: there are
two executions of zero-knowledge proofs, with the adver-
sary corrupting the verifier in one execution and the prover
in the other.

Another setting considered in the literature is the follow-
ing: Suppose there are many verifiers, all of which are re-
ceiving zero-knowledge proofs from various provers at the
same time. We would like to guarantee that even if many of
these verifiers collude, they still can’t learn anything non-
trivial from the provers – i.e., that it is possible to efficiently
simulate the view of all the colluding verifiers interacting
with the provers, given only the statements being proven by
the provers. This property is called concurrent zero knowl-
edge [15, 36], and here too, the standard definition of zero
knowledge does not imply concurrent zero knowledge.

1.1. Our Results

In this work, we present the first protocol that is provably
simultaneously non-malleable and concurrent zero knowl-
edge in the “plain” cryptographic model without any setup
assumptions. Our protocol allows provers to prove any NP
statement and is based on standard cryptographic assump-
tions – namely, the existence of collision-resistant hash
functions. The assumptions that we use is the existence
of statistically hiding commitment schemes. Such schemes
can be constructed with O(n) rounds under one-way per-
mutations [28] and and even regular (and in particular one-
to-one) one-way functions [19] and in constant rounds un-
der claw-free permutations [18] or collision-resistent hash
functions [13, 20]. Simultaneous non-malleability and con-
currency means that in the setting where there are many ver-
ifiers and provers all interacting concurrently, with schedul-
ing decided by the adversary as well, security is preserved
even if the adversary corrupts an arbitrary subset of both
the provers and the verifiers. The definition of security is
that for any such adversary there exists a polynomial-time
simulator that, given only the statements proven by the hon-
est parties (and not the witnesses), simulates the entire ex-
ecution, and outputs along with the simulated transcript a
list of witnesses corresponding to all statements success-
fully proven in this transcript by corrupted provers to hon-
est verifiers. This definition is the natural combination of
non-malleable zero knowledge [14] and concurrent zero
knowledge [15, 36], and is also similar to the analogous
definitions for non-malleable and concurrent commitments
[14, 32]. We note that the best previous results on zero
knowledge either (1) achieved only concurrent zero knowl-
edge without non-malleability [36, 23, 34], (2) achieved
non-malleability but only with a bounded number of parties
present [14, 2, 33], (3) made use of global setup assump-
tions like a common reference strings [12] or time-delayed
messages [21], or (4) used different security frameworks

like super-polynomial simulation [35, 6, 27].
As in previous works on concurrent zero knowledge and

non-malleable zero knowledge, our model assumes that the
vector of inputs (statements and witnesses) to all parties
is fixed according to some pre-determined distribution (al-
though corrupted parties of course do not have to use their
given inputs and can choose their inputs and messages adap-
tively). However, our security proof does not extend to the
case of adaptively chosen honest inputs; this is with good
reason, as it was shown by Lindell that there is no con-
current non-malleable zero knowledge protocol for honest
adaptive inputs [26]. Indeed, Lindell’s argument also ruled
out many other functionalities, including oblivious transfer
(OT), in the setting where the inputs for honest parties can
be chosen adaptively based on outputs of previous proto-
cols.

This leads to a natural question: Can we generalize our
positive result on concurrent non-malleable zero knowledge
to obtain a result for any polynomial-time functionality – as
long as the inputs to honest parties are fixed in advance? We
answer this question negatively by exhibiting a simple and
natural functionality that is impossible to realize, even in
the setting where all honest inputs are fixed in advance. Our
negative result is also somewhat surprising since in many
other settings (i.e., UC security in the common reference
string model [12], bounded-concurrent security [24, 31, 30],
super-polynomial simulation [35, 6, 27], and composition in
timing model [21]) obtaining composable zero-knowledge
protocols was the key step to obtaining protocols for all
functionalities1.

Our techniques. Perhaps surprisingly, our protocol does
not use non-black-box techniques, but rather only uses
black-box concurrent zero knowledge and non-malleable
commitments; both tools that have been around for several
years by now [36, 14] (although we do require some tweak-
ing of these protocols, see below and Section 2). We see our
main novelty in our proof of security.

Essentially all known techniques for achieving concur-
rent zero knowledge simulation and non-malleability in the
plain model have relied crucially on proof techniques based
on complex “rewinding” arguments2. A critical component
to many results (e.g. [14, 34, 32, 6]) has been the develop-
ment of new proof techniques to tame the complexity in-
troduced by rewinding, often through new kinds of hybrid

1We do believe that the pattern will still hold true here – that our con-
current non-malleable zero-knowledge protocol will lead to protocols for
all or large classes of functionalities, but just not according to the same def-
inition of security. In the conclusions section, we mention some possible
directions.

2We note that all known non-black-box techniques [1, 2, 29, 31, 33,
32, 6] for achieving concurrent simulation or non-malleability can also be
seen as introducing complexities similar to those that arise with rewinding.
This is one of the reasons that natural generalizations of [1] has not led to
a constant-round concurrent zero-knowledge protocol.
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arguments. At a technical level, we continue in this line and
develop new techniques for dealing with complex rewind-
ing in security proofs.

Our protocol uses the Prabhakaran-Rosen-Sahai
(PRS) [34] concurrent zero knowledge protocol and simu-
lation strategy. We also want to make use of non-malleable
commitment constructions (e.g. [14, 32]) to obtain non-
malleability. This gives rise to two main obstacles: (1) We
need to guarantee that the non-malleability properties of
these commitment schemes remain even in the presence
of our rewinding. Note that in general, this should not
be true – an adversary for a plain-model non-malleable
commitment scheme such as [14, 32] that can rewind
honest parties would always be able to cheat. We develop
a new hybrid argument that shows that we can guarantee
non-malleability by making specific use of the properties of
the PRS rewinding strategy and a statistical zero knowledge
variant of the PRS protocol. (2) The other major obstacle is
that the techniques for non-malleability necessarily involve
rewinding of their own (for extraction). We develop a new
proof technique to show that the extraction methods we
need can work “on top of” the PRS rewinding strategy.

For our impossibility result ruling out concurrent non-
malleable realizations of more general functions, even when
honest party input distributions are fixed, we work as
follows: we start by taking one of the counterexamples
showing that very strongly composable protocols (e.g., UC
security [8] or security against “chosen-protocol attack”
[22, 25]) for, say, zero knowledge, do not exist in the plain
model (where there are no trusted parties or common refer-
ence strings). This basically implies that for every suppos-
edly composable zero-knowledge argument Π, there exists
a protocol Π′, depending on Π, such that their concurrent
execution is not secure. The main novelty in our work is
that in order to get the kind of result we want, we use a
variant of Yao’s garbled circuit technique [38] to “compile”
the protocol Π′ into a protocol using the oblivious transfer
functionality. Thus, we create a scenario where for every
protocol Π implementing the combined zero knowledge and
oblivious transfer functionality (or equivalently, for every
pair of protocols ΠZK and ΠOT each implementing these
two functionalities), there’s an adversary launching a con-
current attack that manages to learn a secret with probability
close to 1 in the real world, but no adversary would only be
able to learn the secret with non-negligible probability in
the ideal model. Note that, unlike its typical use, we’re us-
ing Yao’s technique here to get a negative result. (This is
somewhat similar in spirit to [4].)

1.2. Previous works.

Concurrent zero knowledge. Concurrent zero knowl-
edge (where the adversary corrupts either only provers or
only verifiers) was defined by Dwork, Naor and Sahai [15]

and the first construction in the standard model was given
by Richardson and Kilian [36]. The number of rounds
was improved to Õ(log n) by [23, 34] which is optimal
for black-box simulation [10]. (A constant round proto-
col for bounded-concurrent zero knowledge was given in
[1] using non-black-box simulation.) Non-malleable zero
knowledge. Non-malleable zero knowledge was first de-
fined and constructed by Dolev, Dwork and Naor [14]. Con-
stant round protocols were given in [2, 33]. These latter
works also introduced some more convenient definitions
(which we follow) than the [14] definition (inspired by def-
initions of non-malleable non-interactive zero knowledge
[37]). Non-malleable and concurrent commitments. By
a simple hybrid argument, every commitment scheme re-
mains secure under concurrent composition if the adver-
sary can corrupt either only senders or only receivers. As
in the case of zero knowledge, stand-alone non-malleable
commitments were defined by [14] and constant-round pro-
tocols were given in [2, 33]. Pass and Rosen [32] showed
that the commitment scheme from [33] is actually concur-
rently non-malleable thus giving an O(1) round concurrent
non-malleable commitment scheme. Note: In many pre-
vious works, progress in commitment schemes and zero-
knowledge went hand in hand, where one could obtain a ZK
protocol satisfying security notion X by plugging a com-
mitment scheme satisfying X to a standard standalone pro-
tocol [14, 9, 12, 24]. Thus, one might hope that one could
obtain in this way a concurrent non-malleable ZK protocol
from the [32] scheme. However, an important limitation
of [32] is that security is guaranteed only under the condi-
tion that only the commit protocol and not the reveal proto-
col is executed concurrently. For this reason, such commit-
ment schemes do not automatically imply concurrent non-
malleable zero knowledge proofs. In particular, we do not
know that if we plug in [32]’s commitments in one of the
well known constant-round ZK or honest-verifier ZK pro-
tocols we will get a concurrent non-malleable ZK proto-
col. In fact, that would be quite surprising since in par-
ticular it will yield the first constant round concurrent zero
knowledge protocol. We note that our work here does not
work in this way, and indeed, we can make use of “non-
concurrent” non-malleable commitment protocols like the
original protocol of [14], thus avoiding non-black-box tech-
niques altogether, and reducing our assumptions to just reg-
ular one-way functions. We also don’t know whether it’s
possible make the proof simpler by using concurrently non-
malleable commitments.

Universally composable (UC) security, general and self
composition. In [8], Canetti introduced the notion of uni-
versally composable or UC security for cryptographic pro-
tocols. This is a very strong notion of security and in par-
ticular a UC secure zero-knowledge protocol will be con-
currently non-malleable and in fact will compose with an
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environment that contains executions of arbitrary other pro-
tocols as well (see also [25]). However, this notion, that
essentially implies black-box straightline simulation, is in
some sense “too strong”, and it was shown that in the
“plain” model, without trusted parties, honest majority or
setup, it is impossible to achieve UC-secure zero knowl-
edge and in fact a very wide range of functionalities in-
cluding commitment schemes [8, 9, 11]. (See [7, 8, 12, 3]
for constructions in other models.) Self-composition. As
mentioned above, Lindell [26] showed that for the case of
message passing functionalities (functionalities allowing to
transmit a bit, in particular including zero knowledge), se-
curity for concurrent composition of the same protocol un-
der adaptive input selection essentially implies UC security
and hence it is impossible to obtain a zero knowledge pro-
tocol satisfying this notion of self-composition in the plain
model. Adaptive input selection is defined by having the
inputs supplied by an environment as in the UC model, but
unlike the UC definition, this environment is not allowed to
look at the actual communication of the executions but only
at the outputs of these executions. In contrast, in our secu-
rity model the inputs may be chosen from some distribution
but are supplied in advance to all parties, and so, while we
can’t control the corrupted parties’ behavior, the honest par-
ties do not choose their inputs adaptively based on previous
executions.

Super-polynomial-time simulation. Another sequence
of works considered a setting where the ideal model simu-
lator is allowed to run in super-polynomial time [35, 6, 27].
This allows to bypass the UC impossibility results and yield
protocols for any functionality that seem to supply adequate
security for many applications. However, the definition is
not as intuitive and mathematically clean as polynomial-
time simulation, and the current constructions do suffer
from drawbacks such as requiring stronger complexity as-
sumptions, and a tradeoff between the time of simulation
and the standalone soundness of the protocol. Security for
independent inputs. Garay and MacKenzie [16] show a
protocol for oblivious transfer that is concurrently secure if
the inputs to the parties in each execution is chosen indepen-
dently and at random from a known distribution such as the
uniform distribution. We note that in this paper we consider
the more standard setting where the inputs are arbitrarily
chosen and in particular may be correlated.

1.3. Preliminaries.

We consider only two party protocols in this paper. Our
model is of m parties P1, . . . , Pm (not necessarily aware of
one another) that interact in pairs via some two party pro-
tocol Π. There’s some distribution D on inputs x1, . . . , xm

and each party Pi uses input xi in its interaction (by adding
more parties if necessary, we can assume that each party

participates in at most one interaction of Π). We assume an
adversary Adv that chooses initially to corrupt a set of par-
ties {Pi : i ∈ C}, and receives the inputs for that set, and
completely controls these parties. The adversary can also
schedule concurrently and adaptively all the messages in
the network. We assume that all parties in the network have
unique identities and authenticated communication (follow-
ing [14] this can be relaxed somewhat for the positive re-
sult). We say that Π securely implements an ideal function-
ality F with two inputs and two outputs if for any such Adv
corrupting a set C there’s a simulator Sim that receives the
inputs xi for i ∈ C, and for every pair (i, j) that interacts
via Π with i ∈ C and j 6∈ C, Sim gets one access to the
first output of the function x 7→ F(x, xj) (we have an anal-
ogous definition if the corrupted party is the second in the
pair). The outputs of Sim and the second output should be
computationally indistinguishable from the outputs of Adv
and the outputs of the honest parties in the real execution.
It can be shown that Π is concurrent non-malleable zero
knowledge for an NP-relation R if and only if it secure im-
plements the ZKPOK functionality F defined as follows:
F(x ◦ w) = x iff (x,w) ∈ R and F(x ◦ w) = ⊥ otherwise
(this functionality only uses one of its inputs).

2. A concurrent non-malleable zero knowledge
protocol

Definition. The formal definition of a Concurrent Non-
Malleable Zero Knowledge (CNMZK) argument of knowl-
edge for membership in an NP language is provided in
the full version [5]. Informally, it is an interactive proof
protocol with the usual completeness property and a con-
current non-malleable security property. The latter states
that for every (non-uniform PPT) adversary A interacting
with honest provers P1, . . . , PmL

in mL “left sessions” and
with honest verifiers V1, . . . , VmR

in mR “right sessions”
of the protocol (with A controlling the scheduling of all
the sessions), there exists a (non-uniform PPT) simulator
S such that for every set of “left inputs” y1, . . . , ymL

, we
have S(y1, . . . , ymL

) = (ν, z1, . . . , zmR
), where ν is a sim-

ulated view of A,3 and z1, . . . , zmR
are valid witnesses to

the statements proven byA to V1, . . . , VmR
according to the

view ν. (We let zi = ⊥ if Vi does not accept according to
ν.)

Note that the above security property subsumes both
zero-knowledge and proof-of-knowledge properties. This
definition is in the same spirit as security definitions using
ideal functionalities (as, for instance, in the UC model [8]):
the witnesses that S produces (i.e., extracts from A) can be
considered what it sends to the ideal functionality. We re-
mark that security only requires that the extracted witnesses

3Here, and elsewhere, by the view of a party we mean the sequence
of its internal states during the execution, including the messages received
and sent by it.
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be valid, and makes no reference to what witnesses A “ac-
tually uses.”

Result from [34]. We heavily rely on techniques from
[34]. First we sketch the “protocol preamble” used there.

1. PRS Commitment: The verifier picks a (sufficiently
long) random string σ, commits to σ and many secret
sharings of σ, using a statistically binding commitment
scheme ComPRS.

2. PRS Challenge-Response: This is followed by
(super-logarithmically) many rounds of random chal-
lenges by the prover. In response, the verifier must
open some of the PRS commitments (without reveal-
ing σ).

3. The prover considers the preamble to have “con-
cluded.”

4. PRS Opening: The verifier opens all the commit-
ments made in the PRS Commitment step, and the
prover verifies consistency.

5. The prover “accepts” the preamble.

There can be other messages in the protocol between the
prover concluding the preamble and the verifier opening the
commitments.

The PRS simulator (for our purposes) is the following
program which “simulates” multiple (polynomially many in
the security parameter) concurrent sessions of the protocol
between honest provers and a combined adversarial verifier,
APRS. The simulator gets inputs of all the parties in all the
sessions, and it runs the honest provers and the adversarial
verifier internally.4 In the end it produces an ordered list of
“threads of execution.” A thread of execution consists of
views5 of all the parties, such that the following hold.
• Each thread of execution is a perfect simulation of a

prefix of an actual execution.
• The last thread, called the main thread, is a perfect

simulation of a complete execution (i.e., until all the
parties terminate); all other threads are called look-
ahead threads.

• Each thread shares a (possibly empty) prefix with the
previous thread, and is derived by running the honest
parties with fresh randomness after that point.

The aim of the PRS simulator is, for each PRS commit-
ment that it comes across in any session in any thread, to ex-
tract the committed value σ (referred to as the “PRS secret”)
before the preamble is concluded in that thread. The extrac-
tion is achieved by observing the adversary’s messages in

4Note that the “simulator” as described here is given all the inputs to
all the parties. Later, after introducing this simulator into the sequence of
hybrids in our proof, we shall show how to get rid of these inputs.

5Here, and elsewhere, by the view of a party we mean the sequence
of its internal states during the execution, including the messages received
and sent by it.

multiple previous threads. If it fails to extract the PRS se-
cret in any session in a thread, and the execution goes on to
accept the preamble of that session in that thread, then the
simulation is said to “get stuck.” [34] guarantees that the
probability of the PRS simulation getting stuck is negligi-
ble.

Lemma 2.1. (Adapted from [34]) Consider provers
P1, . . . , Pm and an adversarial verifier APRS running m
sessions of a protocol with the PRS preamble as described
above, where m is any polynomial in the security param-
eter k. Then except with negligible probability, in every
thread of execution output by the PRS simulator, if the sim-
ulation reaches a point where the prover Pi accepts the
PRS preamble with σ as the secret in the preamble, then at
the point when the preamble was concluded, the simulator
would have already recorded the value σ.

In fact [34] prove a refinement of this lemma (that we
too will need): instead of the simulator running each thread
exactly as in the original execution, if each thread (individ-
ually) is executed in an indistinguishable way, the lemma
still holds. It is important that here we require the indis-
tinguishability requirement only on a per thread basis. In
particular the joint distribution of the threads in the latter
simulation is allowed to be distinguishable from the joint
distribution of the threads in the original simulation.

We shall adapt the PRS simulator to our setting in which
an adversary A is engaged in concurrent left hand side ses-
sions as the verifier, while concurrently playing the prover
in multiple right hand sessions. In (unshared parts of) the
different threads, the simulator uses fresh randomness for
all the honest parties, but uses the same random tape for
A in all the threads. This is important for us because in
our simulation we will need to use fresh randomness for the
right hand side verifiers in different threads (except during
the shared prefixes).

Non-Malleable Commitment. Another ingredient we
need is a perfect (or statistically) binding, non-malleable
(not necessarily concurrent non-malleable) commitment
with a “stand-alone extractability” property. The non-
malleability property is similar to that defined in [32], but
needs to hold when there is one left and right executions
each. The construction in [14] also satisfies this prop-
erty. The “extractability” property is that there is an effi-
cient extractor which, given a randomly generated view of
a stand-alone committer committing a value to an honest
receiver, can extract the committed value except with negli-
gible probability. We also impose a technical condition that
the receiver should be public coin up to a “knowledge deter-
mining message” in the protocol. Protocols in [14] and [32]
can be easily modified to have these properties, as shown in
the full version [5].

5
Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00  © 2006

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 21:56 from IEEE Xplore.  Restrictions apply. 



Other ingredients. The other ingredients we use are
a statistically (or perfectly) hiding commitment scheme
ComSH and a statistical (or perfect) ZK argument of knowl-
edge sZKAOK, for proving knowledge of witness for mem-
bership in any NP language.

We note that all our ingredients are realizable under the
assumption that regular one-way functions exist [28, 19].

2.1. Our Protocol

Consider an NP-complete language L with a witness
relationship R. The prover and verifier receive a com-
mon input y and the prover receives a witness w such that
R(y, w) = 1. The protocol CNMZK is described below.
Phase I: PRS preamble up to the point where the prover

concludes the preamble.
Phase II: Prover commits to the all-zero string using

ComSH. Then it uses sZKAOK to prove the knowl-
edge of the randomness and inputs to this execution of
ComSH.

Phase III: Continue the PRS preamble until the prover ac-
cepts the preamble. Let the secret in the preamble (as
revealed by the verifier) be σ.

Phase IV: Prover commits to the witness w using ComNM.

Phase V: Prover proves the following statement using
sZKAOK: either the value committed to in Phase IV
is w such that R(y, w) = 1, or the value committed to
in Phase II is σ. It uses the witness corresponding to
the first part of the statement.

Theorem 2.2. Protocol CNMZK is a black-box concurrent
non-malleable zero knowledge argument for membership in
the NP language L.

Proof Sketch: It is easy to see that the protocol satisifies the
completeness condition. Below we sketch how to build a
simulator-extractor, as required by the definition.

We build the simulator S in stages, via intermediate sim-
ulators Hi, for i = 1, . . . , 4. Hi outputs a simulated view
ν(i). (S will in addition output a list of witnesses.) We
define 2mR random variables {b(i)

` , α
(i)
` }mR

`=1, where b
(i)
` is

a bit denoting whether according to ν(i), V` accepted the
proof from the adversary or not, and α

(i)
` is the value con-

tained in the Phase IV commitment ComNM received by V`

(as determined by the determining message; if there is no
unique value, then it is defined to be ⊥).
Stage 1: H1 gets all the inputs to P1, . . . , PmL

as well as
the inputs to A. It internally runs the (honest) programs of
P1, . . . , PmL

, as well the honest program for the verifiers
V1, . . . , VmR

, to generate A’s view ν(1). The simulation is
perfect.

Also one can show that due to the knowledge soundness
of the sZKAOK scheme used in Phase II and Phase V, if

V` accepts the proof in the `-th right hand session in the
simulated view ν, then, except with negligible probability,
the Phase IV commitment in that session indeed contains a
valid witness z` to the statement x`. That is, except with
negligible probability,

∀`
(
b
(1)
` = 1

)
=⇒

(
R(x`, α

(1)
` ) = 1

)
. (1)

Stage 2: H2 works just like H1, but it also does the PRS
look-aheads and records the PRS secrets. Recall that this
means that the simulator runs many perfect simulations of
the execution with shared prefixes (but using fresh random-
ness in the unshared parts), and records the PRS secrets
for each preamble concluded in any thread. H2 aborts if
the PRS simulation gets stuck. Otherwise it outputs the
view of the adversary in the main thread of this simula-
tion as ν(2). By Lemma 2.1 we know that the probability
of aborting is negligible. Hence, we have ν(1) ≡S ν(2) and
∀` (b(1)

` , α
(1)
` , y`) ≡S (b(2)

` , α
(2)
` , y`).

Stage 3: H3 works like H2, except that in all the sim-
ulated left hand side sessions, the prover commits to the
PRS secrets in the Phase II ComSH, and follows up with an
honest execution of sZKAOK for this commitment. Since
ComSH is a statistically hiding commitment scheme, and
sZKAOK is statistical zero knowledge we get ν(2) ≡S ν(3)

and ∀` (b(2)
` , α

(2)
` , y`) ≡S (b(3)

` , α
(3)
` , y`).

Stage 4: The heart of the proof is in building H4, which
does not need the left provers’ inputs wj any more. It
works likeH3, except that in all the simulated left hand side
sessions, the prover commits to the all zeros string in the
Phase IV ComNM, and uses the ComSH commitment as the
witness in the Phase V sZKAOK instead of the witnesses
wj . We delay the main part of the proof, which requires
the non-malleability property of the commitment scheme
ComNM, and instead state the following claim first.

Claim 2.3. ν(3) ≡C ν(4) and ∀` (b(3)
` , α

(3)
` , y`) ≡C

(b(4)
` , α

(4)
` , y`).

Stage 5: Finally we describe the simulator-extractor S.
First it runs H4 to produce a view of the adversary, ν(4).
Then it extracts the values α

(4)
` , for ` = 1, . . . ,mR. For ex-

tracting thus, for each `, S will consider H4 as a standalone
adversary A∗

` making a single commitment to an external
receiver, and then invokes the extractor with (appropriately
reformatted) view ν(4) and A∗

` as the committer which pro-
duced this view.

Unfortunately this is complicated by the fact that in the
PRS simulation, H4 needs to run look-ahead threads and
rewind before it can run the main thread. Thus a straight-
forward construction of A∗

` will require it to be able to
rewind the external receiver. Nevertheless, using the con-
dition that the receiver in the ComNM protocol uses no pri-
vate coins till the knowledge determining message, we show
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how the PRS simulation can be continued without having to
rewind the external receiver.

The final output of S is (ν, β1, . . . , βmR
) where β` are

the values extracted as described above. By the extraction
guarantee, if according to ν, V` accepted the proof, and in
particular accepted the Phase IV commitment, then β` =
α

(4)
` except with negligible probability.

From the above, we get ν(4) ≡C ν(1), where the former
is the view generated by S and the latter is identical to that
of the adversary A in an actual execution. Further, we have
∀`

(
b
(4)
` = 1

)
=⇒

(
R(x`, α

(4)
` ) = 1

)
except with negli-

gible probability. This follows from Equation 1, the fact that
(b(4)

` , α
(4)
` ) ≡C (b(1)

` , α
(1)
` ) as implied by the above, and the

fact that the condition
(
b
(·)
` = 1

)
=⇒

(
R(x`, α

(·)
` ) = 1

)
can be efficiently checked.

This completes the proof except for the proof of
Claim 2.3.

2.1.1 Proof of Claim 2.3

This is the most delicate part of the proof, which reduces
the concurrent non-malleability of our zero-knowledge pro-
tocol to (non-concurrent) non-malleability of the commit-
ment scheme ComNM. The goal is to show that in mov-
ing from the hybrid H3, which uses the real left hand side
witnesses in the simulation, to H4 which uses the alternate
PRS witnesses and commits to all-zeros strings instead of
the witnesses, the values committed to by the adversary do
not change adversely. Conceptually the difficulty is in sep-
arating the effect of the modifications in the left sessions
from those in the right sessions. The technical difficulties
stem from the somewhat intricate nature of PRS simula-
tion which causes change at some point in the simulation
to propagate in subtle ways.

Before proceeding we point out, intuitively, why we do
not require concurrent non-malleability for ComNM: all we
require is that, in H4, for each right hand session, the com-
mitment made using ComNM continues to be a witness, if it
used to be a witness in H3; we do not require that the entire
set of committed values remain indistinguishable jointly.

We move from H3 to H4 using a carefully designed se-
ries of hybrid simulators H̃i:1 and H̃i:2. To describe these
hybrids, first we introduce some notation. In the PRS simu-
lation consider numbering (in order) all the occurrences of
the first message (FM) in the Phase IV ComNM in the left
hand side sessions. Note that in a full PRS execution, due
to the look-aheads, we may have multiple FMs being sent
by the same left hand side prover (though only one in each
thread). Further, in the simulation, for any i, the left hand
prover sending FMi is a random variable with support on
all mL provers: this is because in each thread, the adver-
sary dynamically schedules the protocol sessions based on

the history of messages in the thread (and its random tape,
which we have fixed). We shall denote the index of the left
hand prover sending FMi by p(i). We will refer to the in-
stances of sZKAOK provided by Pp(i) in threads passing
through FMi, as “belonging” to FMi.

We define H̃0:2 to be H3 and let H4 be H̃N :2, where N
is an upperbound on the number of FMs in the PRS sched-
ule. For i = 1, . . . , N , the simulators H̃i:1 and H̃i:2 are as
follows:
H̃i:1: Exactly like H̃i−1:2, except that for all the sZKAOK

belonging to FMi, the prover will use the correspond-
ing PRS secret as the witness (instead of using wp(i)).
If the PRS secret is not available, then the simulator
fails6.

H̃i:2: Exactly like H̃i:1, except that in FMi the prover com-
mits to the all-zeros string (instead of wp(i)) and con-
tinues the execution accordingly.

For i = 1, . . . , N we define random variables ν̃(i:1) and
{b̃(i:1)

` , α̃
(i:1)
` }mR

`=1 and ν̃(i:2) and {b̃(i:2)
` , α̃

(i:2)
` }mR

`=1 analo-
gous to ν(1) and {b(1)

` , α
(1)
` }mR

`=1. Note that we need to
show that ν̃(0:2) ≡C ν̃(N :2) and ∀` (b̃(0:2)

` , α̃
(0:2)
` , y`) ≡C

(b̃(N :2)
` , α̃

(N :2)
` , y`). We do this via the following sequence:

ν̃(i−1:2) ≡C ν̃(i:1) (2)

ν̃(i:1) ≡C ν̃(i:2) (3)

∀` (b̃(i−1:2)
` , α̃

(i−1:2)
` , y`) ≡C (b̃(i:1)

` , α̃
(i:1)
` , y`) (4)

∀` (b̃(i:1)
` , α̃

(i:1)
` , y`) ≡C (b̃(i:2)

` , α̃
(i:2)
` , y`) (5)

It is not hard to argue that going from H̃i−1:2 to H̃i:1,
the main thread remains statistically indistinguishable. One
subtlety here is that though the Phase V sZKAOK remains
statistically indistinguishable when the alternate witness
is used, indistinguishability does not hold when multiple
threads are considered together. But the only way a thread
can affect subsequent threads is through the availability of
the PRS secrets at the right points in the simulation. Then,
by the refinement mentioned after Lemma 2.1, it will hold
that the PRS secrets will continue to be available as re-
quired except with negligible probability. Thus each indi-
vidual thread, and in particular the main thread, continues
to be statistically indistinguishable between the simulations
by H̃i−1:2 and H̃i:1. This in turn implies both equations (2)
and (4).

Equation (3) follows from the hiding property of
ComNM. However to prove equation (5), this is not enough,
because only the right hand side commitments appear in the
simulated view and not the committed values themselves
(which can be distinguishable even when the commitments
themselves are indistinguishable). So now we build a ma-
chine M` which will “expose” the incoming left hand side

6as it would have already failed in H3
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commitment from Pp(i) and the outgoing right hand side
commitment to V`. That is, M` will interact with an exter-
nal sender and an external receiver for these commitments,
while internally simulating the rest. Then we shall use the
non-malleability property of ComNM to argue that the val-
ues committed to by M` in two experiments – one in which
Pp(i) commits to wp(i) and another in which to the all-zeros
string – are indistinguishable, and hence so will be the val-
ues committed to V` by H̃i:1 and H̃i:2.

But the precise argument is more involved, because we
need to take into account whether the right hand commit-
ment to V` occurs before, after or overlapping with FMi

(which is the first message of Pp(i)). The most interest-
ing case is when FMi occurs in the main thread, before the
first message (or more precisely the determining message)
of the commitment to V` is sent. The key step in building
M` is being able to run the main thread of the PRS simula-
tion in H̃i:1 and H̃i:2 without having to rewind the external
receiver or the committer. We show that given the way we
have defined the ordering on the FMs and the hybrids H̃i:1

and H̃i:2, M` can run the part of the main thread after FMi

without running any further look-ahead threads.
Once we build M` it is routine to show that the non-

malleability condition on ComNM implies equation (5).

3. Impossibility result for concurrent non-
malleable general functionalities.

In this section we sketch our negative result, showing
that it is impossible to extend our result for zero knowledge
to every functionality. We will only sketch the proofs here,
and refer the reader to the full version [5] for further details.

We need to show that there is some polynomial-time
function F , such that for every protocol implementing F ,
there’s a concurrent attack that can be carried in the real
model and cannot be carried in the ideal mode, even in the
case where all honest parties’ inputs are chosen according
to some (correlated) distribution and fixed in advance. Our
function F will take two inputs and have one output. We
call the party supplying the first input the sender and the
party supplying the second input the receiver. By our con-
vention only the receiver gets the output of the combina-
tion. We will define F to be a combination of the zero
knowledge and the oblivious transfer (OT) functionalities
(an equivalent way to state our results is that there are no
pairs of protocols for zero knowledge and OT that compose
with another). More formally, let f : {0, 1}k → {0, 1}k

be a one-way function (where k is some security parame-
ter) and Rf be the NP-relation {(x,w) : w = f(x)}. We
let FZK(x ◦ w, x) = 1 if (x,w) ∈ R and zero otherwise.
We let FOT (x1 ◦ x2, b) = xb where x1, x2 ∈ {0, 1}k (that
is, we use the variant of OT known as

(
2
1

)
string OT). The

functionality F will simply be a combination of FZK and

FOT . That is, we will have an for F additional input bit
specified by each party, and if both parties use zero for this
bit F will apply FZK on the rest of the inputs, if both use
one F will apply FOT , and otherwise (if they don’t agree
on this bit) F will output ⊥.

Our main theorem of this section is the following

Theorem 3.1. Assume that f is a one-way function and let
F be defined as above.Let Π be any polynomial-time two
party protocol that computes F if both parties are honest.
Then, there’s a polynomial t(·) such that for any k there
exists distribution D on 2t = t(k) inputs for Π, a concur-
rent scheduling S of t executions of Π, a polynomial-time
adversary A, and a polynomial function SECRET that maps
the inputs into {0, 1}k.
• In a concurrent execution of t copies of Π according

to the schedule S with the honest parties and the cor-
rupted parties receiving inputs chosen from the distri-
bution D, the adversary A outputs the value of SECRET
on the inputs with probability 1.

• In an ideal model, for any polynomial-time adversary
Â that gets access to the t copies of the ideal OT func-
tionality, with the honest parties’ inputs in these copies
coming from D, (and Â receiving the inputs corre-
sponding to the corrupted parties) the probability that
Â outputs the value of SECRET on the inputs is negli-
gible, where this probability is taken over D and the
coins of Â.

We note that since standalone OT implies the existence
of one-way functions, andF subsumes OT, this theorem im-
plies unconditionally that no protocol can realize the func-
tionalityF and be self-composable, even when honest-party
inputs are from a fixed distribution.

This is the first result ruling out composable protocols in
the plain model for general (possibly non-black-box) sim-
ulation, honest inputs fixed in advance, and without requir-
ing composability also with other arbitrary protocols. It’s
somewhat surprising since in many previous settings, (UC-
security [12], bounded composition [24, 30], timing [21],
super-polynomial simulation [35, 6]) obtaining a compos-
able zero knowledge protocol implied obtaining a compos-
able protocol for general functionalities.

3.1. Proof sketch of Theorem 3.1

The proof of Theorem 3.1 proceeds in two stages:

First stage. First, (as warm-up) we prove that for every
protocol ΠZK for the zero knowledge functionality (for the
relation Rf above), there exists an ideal two-party deter-
ministic function FΠ (that depends on the protocol ΠZK)
such that a single instance of ΠZK executed concurrently
with several ideal calls to copies of FΠ will not be secure.
We start by considering the following scenario:
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1 Alice and David are honest, Bob and Charlie are ma-
licious and coordinate. A value x is public and Alice
and David share w such that x = f(w).

2 Alice proves to Bob using ΠZK that she knows w.
3 Charlie and David interact using the following pro-

tocol P : the protocol P tells David that if Charlie
manages to run protocol ΠZK as the prover showing
knowledge of w, then David should send w to Char-
lie.7

4 Clearly, if ΠZK and P are executed concurrently in
this scenario than the malicious Bob and Charlie can
learn w, even though they would not have been able to
learn w if ΠZK was replaced with an ideal call to the
FZK functionality.

Our main tool in transforming P into a non-interactive
functionality FΠ is to use Message Authentication Codes
(MACs) to force the adversary to make calls to FΠ in a cer-
tain order, imitating an interactive protocol. Thus, instead
of having one execution of the protocol P , we will have
` executions of a non-reactive function FΠ (where ` is the
number of prover messages in ΠZK). The sender of FΠ will
have as input a secret MAC key, randomness for the proto-
col P above, and the secret input w. If the receiver’s input
is a partial transcript p of P (with the last message being
David’s) with a valid tag on p, and an additional message m
of Charlie’s, then FΠ will compute David’s next message
m′ on the transcript p ◦ m, and will output the transcript
p ◦ m ◦ m′ and a tag on this message. One can see that
getting access to ideal calls for F is not more (and not less)
helpful than interacting with P .

Second stage. The reason we’re not finished is not just
because FΠ is a “less natural” functionality than F , but also
– and more importantly – because the function FΠ can (and
will) depend on ΠZK in its definition, its complexity and
its input size. To get the negative result that we want, we
need to go further and exhibit a functionality F that cannot
be implemented by any Π.

The second conceptual stage is to take this scenario of
the protocol ΠZK and functionality FΠ and compile this
into a scenario where the only thing executed in the net-
work is one copy of a zero knowledge protocol and many
copies of an OT protocol, with the honest parties’ inputs for
these copies chosen from a set of predefined distributions.
We then argue that the previous real-world attack remains
viable in this scenario and (more subtly) that it is still infea-
sible to perform this attack if all these copies were replaced
by ideal calls to the OT/ZK functionalities. Since F is a
combination of these functionalities, the result follows.

For this stage we will use a variant of Yao’s garbled cir-
cuit technique [38]. Note that unlike its typical usage, we

7The notations above assume that f is one-to-one, but this makes no
difference in the proof.

use here this technique to get a negative result (this is some-
what similar to what was done in [4]’s negative results for
software obfuscation).

The overall idea is as follows: We will set up a situation
– in both the ideal and real worlds – which could potentially
allow for the evaluation of any function, using a variant of
the garbled circuit technique and ideal calls to an OT func-
tionality. But, we will set up the honest party inputs in such
a way that the only functions that can be evaluated mimic
the functionality FΠ described above. So here, the only
functionalities are the ZK and OT functionalities, but the
predetermined honest party inputs depend on the specific
protocol ΠZK . Then, in the real world, the adversary will
always be able to win, whereas in the ideal world (where
ΠZK is not being executed), the adversary cannot win. The
garbled circuits will not be sent out by any party (as we’re
not allowed to do anything on the network except run the
protocol for F , and honest parties are not allowed to adap-
tively choose their inputs) but rather will be supplied to both
parties as a correlated input. See [5] for more details on
how this step is implemented.

4. Conclusions

In this paper, we show how to construct the first con-
current non-malleable zero-knowledge protocol, assuming
only that regular one-way functions exist. We also provide
a new impossibility result regarding general functionalities,
which together with [25, 26], gives us a better idea of where
the border is between what is and is not possible in the
plain model. An unfortunate consequence of the impossi-
bility results is that we must move to alternative definitions
of security for general functionalities if we want to obtain
composable protocols for broader classes of functionality in
the setting where there are no trusted parties or setup. One
such definition was proposed in [35], by allowing super-
polynomial time simulation. The main limitation of this
definitional framework concerns functionalities whose def-
initions involve cryptographic primitives (or otherwise rely
on computational complexity assumptions to be meaning-
ful). For such functionalities, building on our techniques,
one could hope to define and achieve security in a setting
that a polynomial-time simulator is given extra powers, such
as limited rewinding of the ideal model. (Of course, when
relaxing security care must be taken that the definition still
provides meaningful security guarantees for applications.)
In fact, one may hope for a general clean definition that
would provide the best of all worlds: for functionalities such
as zero-knowledge provide full self composition, for func-
tionalities where this is not possible provide some relaxed
notions of security, and perhaps for functionalities that take
as extra inputs a common reference string or input for a hard
problem provide UC security or quasi-polynomial security.
That is, there is hope for a clean meta-theorem from which
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one could derive results such as [12, 6] and our current re-
sult by just plugging in the appropriate functionality.
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