How To Play Almost Any Mental Game Over The Net —
Concurrent Composition via Super-Polynomial Simulation

Boaz Barak*
Department of Computer Science
Princeton University
Princeton, New-Jersey
boaz @cs.princeton.edu

Abstract

We construct a secure protocol for any multi-party func-
tionality that remains secure (under a relaxed definition of
security introduced by Prabhakaran and Sahai (STOC "04))
when executed concurrently with multiple copies of itself
and other protocols, without any assumptions on existence
of trusted parties, common reference string, honest majority
or synchronicity of the network. The relaxation of security
is obtained by allowing the ideal-model simulator to run in
quai-polynomial (as opposed to polynomial) time. Quasi-
polynomial simulation suffices to ensure security for most
applications of multi-party computation. Furthermore, Lin-
dell (FOCS ’03, TCC’ 04) recently showed that such a pro-
tocol is impossible fo obtain under the more standard defi-
nition of polynomial-time simulation by an ideal adversary.

Our construction is the first such protocol under reason-
ably standard cryptographic assumptions (i.e., existence of
a hash function collection that is collision resistent with
respect to circuits of subexponential size, and existence of
trapdoor permutations which are secure with respect to cir-
cuits of quasi-polynomial size).

We introduce a new technique: “protocol condensing”.
That is, taking a protocol that has strong security properties
but requires super-polynomial communication and compu-
tation, and then transforming it into a protocol with poly-
nomial communication and computation, that still inherits
the strong security properties of the original protocol. Our
result is obtained by combining this technique with previous
techniques of Canetti, Lindell, Ostrovsky, and Sahai (STOC
’02) and Pass (STOC "04).

*Part of the work was done while in the Institute for Advanced Study
and partially supported by NSF grants DMS-0111298 and CCR-0324906.

This research was supported by generous grants from the NSF ITR
and Cybertrust programs, an equipment grant from Intel, and an Alfred P.
Sloan Foundation Fellowship.

Amit Sahaif
Department of Computer Science

University of California Los Angeles

Los Angeles, California
sahai@cs.ucla.edu

1. Introduction

In the 1980’s a sequence of groundbreaking papers [53,
52,50, 9, 31, 32, 29, 54] led to the rather amazing result of
Goldreich, Micali and Wigderson [28] (henceforth GMW)
that it is possible in principle to obtain a secure protocol
for essentially every cryptographic task one can think of,
whether it is secure electronic elections, auctions, privacy-
preserving data mining, or poker. GMW achieved this result
by constructing a compiler that transformed a naive protocol
that achieves some task with no security whatsoever (e.g., in
the case of elections, a protocol where all parties send their
votes to a party 1" which counts the votes and announces
the results) into a protocol that seemed to obtain the highest
level of security one can hope for. That is, their protocol
guaranteed that every party or coalition of parties, (even if
they cheat and do not follow the protocol), still cannot learn
more information or have a larger effect on the outcome
than they are entitled to obtain by simply following the rules
(e.g., in the example of elections, no party or coalition of
parties can vote more than their number or deduce about
the other votes more than can be deduced from the publicly
announced results).

Although it was always clear that the GMW protocol
is far from being practical in terms of the overhead it in-
curred in computation and communication, it might have
seemed initially that there is not much to improve on its
security. However, with the advent of modern networks,
it became clear that this is not the case. The reason is
that although GMW'’s protocol (and also protocols for sim-
pler tasks such as zero knowledge) guarantees security in
the case of an isolated execution, it does not not guaran-
tee sufficient security in the increasingly common situation
in which parties run the protocol concurrently with other
arbitrary network activity, which can include multiple ex-
ecutions of the same protocol and other cryptographic and
non-cryptographic protocols. In fact, there are examples of
instantiations of GMW and other stand-alone protocols with

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
0-7695-2468-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 21:58 from IEEE Xplore. Restrictions apply.

YF]',F.

COMPUTER

SOCIETY

particular primitives, for which there are known successful
attacks in the concurrent setting [27, 21].

Thus, in the 1990’s, researchers began to work on def-
initions and protocols that are applicable for this “general
network” setting. Although, as we elaborate below, this
very extensive line of research had many successes, it still
fell short of obtaining the corresponding stronger version
of GMW’s theorem: i.e., a general multi-party computation
protocol (or even protocols for specific tasks such as com-
mitment schemes or zero-knowledge proofs) that remains
secure in this setting under standard cryptographic assump-
tions. Even more disturbingly, [12, 14, 16, 38, 39] gave
increasingly stronger negative results, showing that it is ac-
tually impossible to obtain a protocol satisfying the natural
strengthening of the stand-alone definition to the general-
network setting.

As we discuss below (see Section 1.1) there have been
many works suggesting approaches to bypass the negative
results. Recently, Prabhakaran and Sahai [49] suggested a
definition which seemed to bypass the impossibility results
without changing the network model or making any setup
assumptions. Their approach (which we follow here), is to
allow the ideal-world simulator to run in super-polynomial
time (a notion first explicitly suggested by Pass [45]). As
discussed below, this relaxation still provides meaningful
and strong security for the canonical application of multi-
party computation.! However, the result of [49] was under a
highly non-standard computational assumption (see below)
and hence it was not clear whether their definition is in fact
satisfiable.

Our results. In this work we obtain a protocol satisfying
the [49] definition under reasonably standard cryptographic
assumptions (namely, existence of subexponentially strong
hash functions and quasipolynomially strong trapdoor per-
mutations).? For every polynomial-time functionality F we
construct a protocol that securely realizes F in the gen-
eral network setting, without any setup assumptions, with
security defined as existence of an ideal-model simulator
that runs in quasi-polynomial time.? That is, if the adver-
sary runs in time 7', our simulator runs in time 2(1°87)°
for some constant ¢ > 1, and hence we can simulate a
polynomial-time adversary in quasi-polynomial time, and

By “canonical application” we mean using a multi-party computation
protocol to obtain a protocol for a specific task satisfying task-specific se-
curity properties such as privacy, integrity, and input independence. That
is, using simulation as fool to derive security and not an end result. Even
though secure multi-party computation has other applications beyond this,
we believe that the name “canonical application” is appropriate as this is
the application that motivated both the constructions and the definitions of
general secure computation protocols.

2Both these assumptions are implied by the assumption that there’s a
constant € > 0 such that the factoring problem is hard for 27 sized cir-
cuits.

3This is opposed to the standard (impossible to achieve) definition of
polynomial-time simulation.

a subexponential-time adversary (with a low enough expo-
nent) in subexponential time.

At the heart of our construction is a fully concurrent
and non-malleable zero-knowledge protocol using quasi-
polynomial simulation. This protocol has a constant num-
ber of rounds and is based on the assumption that there
exists a hash function collection that is collision-resistent
with respect to 25 -sized circuits (where k is the security
parameter and € > 0 is some constant). Plugging this pro-
tocol into the results of Canetti, Lindell, Ostrovsky, and Sa-
hai [17], we obtain a fully concurrent and non-malleable
protocol for computing any polynomial-time functional-
ity under reasonably standard assumptions (i.e., existence
of quasi-polynomially strong enhanced trapdoor permuta-
tions). Again, security of this protocol is demonstrated by
a quasi-polynomial simulator. Furthermore, our protocol
utilizes only a constant number of communication rounds
and remains secure also with respect to adaptive adversaries
(without using memory erasures). See Section 2 below for
formal statements and more details on our results.

Why is quasi-polynomial simulation good enough? In
the simulation paradigm, we simply define a protocol to
be secure if its execution can be simulated in an ideal
model where a polynomial-time adversary has only access
to “ideal boxes” that implement the functionality. In our
opinion, this standard definition is justified by two points:

1. Ttis the strongest possible, in the sense that it is impos-
sible to prevent an attack that is feasible in this ideal
model.

2. Intuitively, simulation-based security should imply the
actual security concerns of the user such as privacy, in-
tegrity, input independence, etc. (although more often
than not this implication is not explicitly spelled out).

In the definition we and [49] use, the ideal model
is augmented to allow the adversary (some fixed) super-
polynomial computation while accessing these “ideal
boxes”. This means that we no longer enjoy Property 1 of
the standard definition. However, it seems that we still, in
many cases, enjoy Property 2. The reason is that in most
cases, if the security in the ideal model for polynomial-
time adversaries indeed implies privacy, integrity, etc.., then
this will actually hold for all adversaries with running time
at most T'(n) for some explicit super-polynomial function
T (-) that depends on the hardness assumptions used.* Thus,
using quantitatively strong enough hardness assumptions
and large enough security parameter, we can ensure that
T'(n) is larger than the time we allow our simulator to run.
Note that this is not always the case (and hence the “almost”
in the title) — for some functionalities such as the game of

4In fact, in many cases the ideal model is simple enough that this im-
plication holds even if the adversary can run in unbounded time.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
0-7695-2468-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 21:58 from IEEE Xplore. Restrictions apply.

Chess or proof-of-work schemes [19] it is not possible to
make even the ideal model secure against super-polynomial
time. Note however that such functionalities are also prob-
lematic for polynomial-time simulation. We also note that
typically in polynomial-simulation protocols the simulation
time is not just polynomial-time but is actually a fixed ex-
plicitly known polynomial in the adversary’s running time.
This property, which is lost in super-polynomial simula-
tion, has been useful before in applications such as deni-
able protocols [18, 20, 13, 43] and hence our protocol fails
to achieve such applications.’

General composition or ““chosen protocol attack”. An-
other requirement that was considered in the literature
is that a concurrently-composable protocol should re-
main secure even if it is used concurrently with arbitrary
other protocols, including even protocols that were ma-
liciously designed to be insecure when interacting with
the concurrently-composable protocol. This property was
called “chosen protocol attack™ by [34] and general compo-
sition by [38]. Although for this requirement to make sense
the other protocols have to be secure (as otherwise composi-
tion is meaningless), in the case of super-polynomial simu-
lation they have to be “strongly secure” (strong even against
super-polynomial time) and hence our protocols cannot be
said to fully satisfy this notion. Note however that similar
restrictions hold also for protocols such as [17] in the com-
mon reference string model (where the other protocols are
required not to use the reference string), and [33] (where
the other protocols are required to introduce timeout and
delay mechanisms), although such restrictions do not hold
for protocols in the honest majority setting such as [8].

New technique — “condensed protocols”®. To achieve
our result, we introduce a new technique that allows us to
take a protocol II that has super-polynomial communica-
tion and computation requirements (but polynomial-sized
inputs), and “condense” it to obtain a protocol II’ with only
polynomial communication and computation requirements,
while ensuring that the condensed protocol II’ retains the
strong security properties of the super-polynomial proto-
col II. (This is useful since, using the techniques of Pass
[46], it is possible to construct such a super-polynomial
protocol IT with the attractive security properties we need.)
Roughly speaking, the initial idea behind this “condensa-
tion” is to replace every super-polynomially long message

>Note however that deniability is a delicate property that is hard even to
define in the general concurrent network setting, and some previous works
in this area such as [17] also fail to achieve deniability, even when using
setup assumptions (e.g., see [44]).

©We use quite a few known techniques, and introduce several new tech-
niques as well. We discuss in detail our techniques in Section 3, and so in
this paragraph we’ll restrict ourselves to a terse summary of the main new
technique introduced.

m in IT with its short hash h(m), and use Universal Argu-
ments [6] to prove correctness of the hashed value. This
by no means completes our task, as we have two funda-
mental problems: (1) the hashed messages now contain too
little information to allow for the other party to compute a
proper response; and (2) even if one had the long message
to compute with, the computation time required to compute
a response would still be super-polynomial. Solving Prob-
lem (1) involves a few technical tricks and is responsible
for many of this work’s technical complications. To solve
Problem (2), we use the following approach: we “encrypt”
all communication in the protocol, and then provide honest
parties an “honest backdoor” that allows them to success-
fully complete the protocol using their private information.
In the context of a zero-knowledge proof of the statement
x € L, this can be done by allowing the prover to prove that
either the encryption of the super-polynomial protocol 11 is
accepting, or that x € L is true. Since the honest prover
will have a witness to the truth of x € L, it can use this
knowledge to quickly (i.e. in polynomial time) prove the
statement, without ever actually participating in the super-
polynomial protocol. Remarkably, because an adversary
can never be sure of which condition actually holds, we are
able to argue that such a condensed protocol II' retains the
strong security properties of the super-polynomial protocol
II.

1.1. Related Works.

There has been a very large body of research on multi-
party secure computation and on composition of crypto-
graphic protocols. In this section we will briefly describe
some of the works on concurrent composition of proto-
cols for general multi-party functionalities. We discuss the
works relevant to the techniques of this paper in Section 3.
See the books by Goldreich [25, cuar. 7] and Lindell [37],
and the references therein for a more comprehensive review
of the literature.

As already mentioned above, the natural strengthening
of GMW’s result to the concurrent setting was not obtained,
and in fact some negative results [12, 14, 16, 38, 39] showed
that this is inherent. Thus, previous works considered var-
ious relaxation which included either assumptions on exis-
tence of trusted parties, limits on the concurrency or asyn-
chronicity of the network, or relaxed security. The standard
definition of security under general concurrent composition
was given by Canetti [12] (and is known as UC or ES se-
curity). Some weaker definitions were considered by [18]
and [20] in the context of zero-knowledge proofs and other
specific two-party functionalities.

The CRS model: Canetti, Lindell, Ostrovsky and Sahai
[17] gave a UC-secure protocol for any functionality in
common reference string (CRS) model [10], where the only

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
0-7695-2468-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 21:58 from IEEE Xplore. Restrictions apply.

assumption is that there is a publicly known string that was
chosen once and for all by some completely trusted party.
An approach to distributing some of the trust of choosing
the reference string was recently taken by [5]. Honest ma-
jority: Canetti [12] showed that the protocol of Ben-Or,
Goldwasser and Wigderson [8] is UC-secure under the as-
sumption that a majority of the participating parties can be
trusted. However, this assumption seems to be less rea-
sonable in a general network setting such as the Internet,
and in particular does not allow for 2-party protocols or
subprotocols. Timing assumptions: Taumann-Kalai, Lin-
dell and Prabhakaran gave a UC-secure multi-party proto-
col timing model [20], in which one assumes that all the
parties have clocks with some bounds on the drift between
the clocks and on the time to transmit a message across the
network. The main problem with the protocol of [33] (and
all other protocols in the timing model such as [20, 24])
is that they require that every message in every protocol
running in the network will be delayed by amount of time
that is larger than the latency of the slowest link in the
network. Thus, such protocols do not seem suitable for a
heterogenous network in which some parties have signifi-
cantly faster connections than other parties. Bounded con-
currency: Lindell [36], later improved by Pass and Rosen
and Pass [47, 46, 48] gave bounded-concurrent [1] proto-
cols for any functionality. Such protocols assume that there
is a fixed known polynomial upper-bound M on length of
all the communication throughout the entire network. How-
ever, these protocols use computation and communication
that is larger than M, and this was shown to be necessary
by [36]. Hence, while bounded-concurrent protocols can be
sometimes very useful tools in other constructions (and in-
deed we use techniques from Pass [46] and Pass and Rosen
[48] in this paper), they do not seem suitable as a solution
for obtaining secure computation in the general network set-
ting.

Relaxed security in the standard model. Another ap-
proach, which is the one taken in this work, is not to make
stronger assumptions on the network or trust, but rather
achieve a weaker notion of security. Super-polynomial
simulation: The relaxation considered in this work is to
allow the ideal-model simulator to run in time which not a
polynomial in the running time of the adversary but rather
some super-polynomial (e.g., quasi-polynomial) function in
this time. This notion was implicit in some works (e.g.,
[15]) but was first explicitly put forward in [45], who sug-
gested this notion could be used as a way to obtain con-
currently composable protocols and in particular used this
relaxation to obtain concurrent zero knowledge. The PS
paper: Prabhakaran and Sahai [49] gave a construction of a
concurrently-composable multi-party computation protocol
in the general-network setting under the super-polynomial
simulation definition of security and using non-standard

computational assumptions. Since the previous negative re-
sults were often interpreted that one must either use setup
assumptions, or give up on ideal-model simulation-based
security, [49] offered the exciting possibility of obtaining
secure protocols without giving up either. However, in our
view the weak point of [49] was the computational assump-
tion used, which essentially assumes that there exists a cryp-
tographic hash function (not a collection of functions) that
is a non-malleable commitment scheme. While unlike the
Random Oracle Model [7], the assumptions of [49] are valid
and well-defined mathematical assumptions, they are not
well-studied, and seem to be difficult to analyze because of
their complexity. On a more technical level, although [49]
tackles some major technical difficulties such as getting UC
composition to work in this setting, they essentially do not
tackle non-malleability from a technical standpoint, and in-
stead assume it to be present in the hash function. The cur-
rent work can be seen as subsuming the result of [49] by

obtaining it under standard assumptions’.

2. Model and Results

The network model we consider is the same one as in
[11, 12, 38] . There is a network of point-to-point chan-
nels between a set of parties. Each party has a string that
uniquely identifies it (which we call the party’s ID). The
parties do not need to be aware of each other’s existence.
An adversary can do the following: (1) Control some of
the parties (such parties are said to be “corrupted”), (2) cre-
ate new parties dynamically, (3) view all messages submit-
ted on the network, and (4) fully control the scheduling of
these messages. We denote the strategy that an honest party
P; uses as ;. This strategy models all the activity of P;, in-
cluding all protocols®, cryptographic or non-cryptographic,
that are executed sequentially or concurrently by P;. We
denote the collection of all these strategies for all parties by
. We note that in this model the adversary can control all
scheduling of messages to honest parties, and hence can in-
definitely postpone the delivery of messages to any honest
party. Thus this work (as is the case with [17] and with [28]
in the non honest-majority case) does not guarantee secu-
rity against denial of service attacks or provide the related

7Prabhakaran and Sahai [49], aside from obtaining their result on se-
cure multiparty computation, also put forward a new framework for se-
curity definitions. This is something we do not do in this paper. Our re-
sult can be seen as holding within the “Angel” definitional framework of
[49]. However, for the sake of being as self-contained as possible, we in-
stead prove our result directly in the context of the definitions of [12]. We
also note that recently [40] gave a different construction in the [49] model,
which is based on different non-standard assumptions of a more number-
theoretic nature (they assume some non-malleability of the discrete log
problem).

8 Another equivalent way to model this, following [12], is to have a spe-
cial adversarial entity called an environment that models all other protocols
happening in the system, other than the one being analyzed. We follow this
modeling in the detailed description of our protocol.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
0-7695-2468-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 21:58 from IEEE Xplore. Restrictions apply.

guarantee of fairness [30].

Security definition. If F is some (possibly probabilis-
tic, stateful) functionality, then the F-hybrid model is the
same model augmented by an additional trusted party that
computes F. We say that a protocol p securely com-
putes F with polynomial simulation if the following holds:
for every polynomial-sized adversary Adv there exists an
polynomial-sized adversary Adv’ in the F-hybrid model
such that if 7 is an honest parties strategy that includes
calls to p as a subroutine, then the view of Adv when in-
teracting with 7 is indistinguishable from the view of Adv’
when interacting with 7/, where 7’ is obtained from 7 by
replacing all calls to the p subroutine with calls to the ideal
function F. We say that p securely computes F with quasi-
polynomial simulation if Adv’ is allowed to be of quasi-

o o) fr .
polynomial (i.e. , k'°8 " %) size.

2.1. Our Results.

We consider the zero-knowledge ideal functionality Fzk
(for an NP-complete problem such as SAT) which gets as
input from party P; two strings y and w and the identity of
a party P}, and sends to P; the tuple (ZK,F;, P;,y,) if w is
a satisfying assignment for the formula y, and does nothing
otherwise.

Our main result is a construction of a protocol for se-
curely implementing the Fzk functionality under general
composition. Namely, we prove the following theorem:

Theorem 2.1 (General-concurrent zero knowledge).
Suppose that there exists a hash function collection that is
collision resistent for 2 -sized adversaries (where € > 0 is
a constant and k denote the collection’s security parame-
ter). Then, there exists a protocol that securely realizes the
Fzk functionality with quasi-polynomial simulation.

Canetti et al. [17] showed how to securely compute any
functionality in the Fzk-hybrid model. Thus, by observing
that their results “scale up” and hold in our model, and by
plugging in Theorem 2.1, we obtain the following result:

Theorem 2.2 (General-concurrent secure function eval-
uation). Suppose that there exists a hash function col-
lection that is collision-resistent for 2% -sized adversaries
(where € > 0 is a constant and k denote the collection’s
security parameter). Then, there exists ¢ = c(€) such
that if there is a collection of enhanced trapdoor permuta-
tions which is secure for k'8 ¥-sized adversaries then for
every (possibly probabilistic) polynomial-time functional-
ity F, there is a protocol pr that securely realizes F with
quasi-polynomial simulation.

3. Overview of Our Techniques.

In this section we provide an rough overview of our ap-
proach to obtaining a zero-knowledge protocol that is secure
under general concurrent composition. That is, we describe
our approach to proving Theorem 2.1. We start by briefly
describing some of the primitives and tools we use. We then
present how one can obtain such a protocol by combining
two different approaches that fail with some new techniques
and tricks. We warn the reader that this description is miss-
ing a few important subtleties and issues that make the our
actual construction and proof more complicated. Because
of these subtleties, our actual construction (Protocol 3.1)
does not exactly follow the approach illustrated in this sec-
tion, but follows a more “low level” approach.

3.1. Preliminaries.

We will use the following primitives and sub protocols.
Because this is an overview section, we describe the prim-
itives in an informal way, and also present each primitive
in its simplest variant, even if this variant requires stronger
assumptions than the ones stated in Theorem 2.1. We will
use the following primitives:

Commitment schemes. A non-interactive perfectly bind-
ing and computationally hiding commitment scheme
Com [9, 42].

Zero-Knowledge proofs of knowledge. A constant-
round zero-knowledge proof/argument of knowledge
for NP [22, 26]. We will also sometimes use the
weaker notion of a witness indistinguishable proof,
which we denote by WIP [23]. We note that witness-
indistinguishability, unlike zero-knowledge, is closed
under concurrent composition.

Collision resistant hash functions. A collection Hash
of functions that map arbitrarily long strings into
polynomial-sized strings such that it is hard given a
random h € Hash to find z, y such that h(z) = h(y).
We note that by combining a hash function with a com-
mitment scheme we can obtain a commitment scheme
that allows us to commit to messages of unbounded
size.’

Universal arguments. A constant-round public-coin ar-
gument of knowledge for Ntime(T') for a super-
polynomial function T(+) (e.g., T(k) = k'°&¥). Uni-
versal arguments were first constructed by [35], with
improved analysis in [41] and [6] (with the latter work

9We ignore here the issue of who gets to choose the hash function —
the sender or the receiver. Although intuitively it seems that the receiver
should choose the hash function, it turns out that in some cases we actually
want the sender to choose it. For the sake of this overview, the reader can
assume that each party chooses its own hash function and then they use
the function that on input x returns the concatenation of both functions
applied to «. This function is guaranteed to be collision resistant if one of
the parties is honest.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
0-7695-2468-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 21:58 from IEEE Xplore. Restrictions apply.

showing they are a proof of knowledge). We’ll also
use constructions of universal arguments that are zero
knowledge and witness indistinguishable [35, 6, 3].
Universal arguments have the property that the total
communication and running time of the verifier is al-
ways polynomial, even if the statement proven is not
in NP. Furthermore, the running time of the prover
is polynomial in the time to actually verify the in-
stance being proven. For example, if L € NP and
L' € Ntime(k'°8*) and one is proving using univer-
sal arguments that z € L U L' then if x is in fact in L
and the prover is given a witness to this fact, then the
prover can execute the proof in polynomial time.

Knowledge commitments. We denote by KCom the pro-
tocol in which a sender commits to a string = using
Com(-) and then proves knowledge of the committed
string using a zero-knowledge proof of knowledge. We
denote by UAKCom the same protocol in which the
sender commits to h(x) and proves knowledge of x
using a zero-knowledge universal argument.

Weak commitments. We denote by Com,,, a commit-
ment scheme that can be completely broken in time
that is smaller than the time to violate the security of
all the other primitives we use. Such a commitment
scheme can be constructed under our assumptions us-
ing the complexity leveraging technique of [15].

Brute force breaking opportunity. We denote by BFOP
the protocol in which a verifier sends Com, () and
then the prover sends KCom(r') for some string r’. We
say that the prover broke this instance if 7’ = r. Note
that this protocol can be broken by breaking Com,,e-
Similar tricks were used in several previous works
such as [15, 45].

3.2. First Attempt: The Brute Force Protocol

Recall that we’re trying to prove Theorem 2.1 by con-
structing a general-concurrent secure zero-knowledge argu-
ment. Here’s a naive attempt at such a protocol (that was
used by Pass [45] in a similar context), which we denote by
IIge: let L be an NP-language with a corresponding rela-
tion R. To prove that x € L, given w such that (z, w) € R,
the prover and verifier interacts as follows:

1. Prover sends Com,,..(w) to the verifier.

2. Prover and verifier interact in a brute-force breaking
opportunity BFOP.

3. Prover proves to verifier in WI that it either committed
to the witness in the first step or that it broke the BFOP
in the second step.

It is not hard to verify that this protocol satisfies com-
pleteness and soundness. In fact, in a real concurrent inter-
action, whenever the verifier is honest, the probability that it

accepts a proof without the weak commitment actually con-
taining a witness is negligible. There is a natural straight-
line black-box simulator for Il [45]: when simulating an
interaction in which the adversary is a verifier, the simula-
tor commits to 0¥ instead of to the witness, and then breaks
BFOP and uses this fact to run the WI proof of Step 3. It is
not hard to prove that the simulator’s output is indeed indis-
tinguishable from a real execution'.

When simulating an interaction in which the adversary
is the prover, the simulator will attempt to extract a witness
by breaking the weak commitment sent by the adversary.
However, in this case, we are not sure that it will succeed.
The property we’re looking for, that even during the sim-
ulation the adversary’s proof must contain a real witness,
is called simulation soundness [51], and this property lies
at the heart of constructing non-malleable zero-knowledge
protocols. Unfortunately, it can be shown that protocol Ig¢
does not satisfy this property (i.e., there is a known attack-
ing strategy on instantiations of Iz with particular primi-
tives).

3.3. Second Attempt: The Condensed Protocol

The problem with the first attempt was that that proto-
col did not satisfy simulation soundness / non-malleability
(it is essentially the same property). There are very few
simulation-sound zero-knowledge protocols without setup
assumptions [18, 2, 46, 48] and most of these are only an-
alyzed in the scenario where there are only two executions
occurring concurrently: one in which the adversary is the
verifier and another in which the adversary is the prover.
Pass [46] constructed the first protocol which remained sim-
ulation sound even when the adversary interacts not just in
two executions but in k (where k is the security parameter)
executions — playing the role of prover in some, and play-
ing the role of verifier in others. Here, k is the security
parameter. However, that protocol used O (k) rounds which
will be problematic in this setting. Nonetheless, it was ob-
served in [4] that using the ideas of Pass and Rosen [48],
it is possible to convert a different protocol of Pass [46] to
a constant-round protocol with this property.!! We denote
this protocol (which is essentially based on [46]) by bgcZK

10Thus, the protocol ITgr is a concurrent zero knowledge protocol with
quasi-polynomial simulation. But note that we need more than just con-
current zero knowledge, because the adversary can also play the role of
prover.

1pass [46] did give a also a constant-round protocol satisfying this
property assuming the ID’s of each party come from a polynomial-sized
domain. Pass and Rosen [48] showed how one can convert this proto-
col to a standard simulation-sound protocol by having a party with ID
a = ai,...,0 run k parallel executions of Pass’s protocol using the
ID (4, «;) for the it" execution. Barak et al.[4] observed that if one first
encodes the ID using an error-correcting code with poly (k) alphabet-size
and relative distance larger than 1 — 1/k then the [48] protocol actually
handles k concurrent sessions. In the full protocol we actually use a differ-
ent trick, based on signature schemes.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
0-7695-2468-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 21:58 from IEEE Xplore. Restrictions apply.

(for bounded general-concurrent zero knowledge).

A strange idea. This leads us to the following strange
idea - why don’t we try to use Protocol bgcZK, but set
the security parameter to super-polynomial size? Unfor-
tunately there is a good reason cryptographers do not set
the security parameter to super-polynomial values: because
this yields a protocol with super-polynomial communica-
tion and computation even for the honest parties. Can we
overcome this difficulty? We do have a way to compress
at least the communication, using hash functions combined
with universal arguments. That is, we define Il ygenses tO
be the protocol that is the result of executing bgcZK with
security parameter k'°2* (where k is our “true” security pa-
rameter), but replacing each message m in bgcZK (k'8 *)
which is of super-polynomial size with h(m) followed by a
universal argument proving knowledge of m. Now, it is not
at all clear that this protocol makes sense, because if a party
needs to change its action in bgcZK(k'°&*) according to
the contents of a super-polynomially sized message m, then
during an interaction in IT ,enseq, this party won’t be able to
recover m regardless of its computation powers (indeed, the
polynomial-sized transcript simply does not contain enough
information about m).

Thus we are left with two problems: (1) I gngenses 1S NOt
a valid protocol since the parties needs to run in super-
polynomial time, if they can work at all and (2) Even though
k'°e* concurrent sessions of bgcZK(k'°8¥) can be simu-
lated, that does not mean that the same holds for Il genseq>
since now the simulator needs to rewind to extract the long
messages sent and rewinding in a concurrent setting is no-
toriously problematic. Both problems are rather serious but
can be resolved by moving to a third protocol that tries to
combine the good properties of Iz and Il genseq-

3.4. The Combined Protocol: Two Protocols with
Two Simulators.

We now present our third protocol, which will ac-
tually be (almost) a concurrently simulation-sound zero-
knowledge protocol.'? The idea is the following: we will
run both Il and Il ngensed, DUt We’ll run Il o genseq 1N an “en-
crypted” form, that is replacing every message m of bgcZK
by KCom(m) if m is of polynomial size and UAKCom(m)
if m is of super-polynomial size. At the end, we will prove
in a witness indistinguishable way that one of these pro-
tocols succeeded. That is, our combined protocol, which
we denote by Il ,pnes Will operate as follows, when proving
x € L with w a witness for x:

1. Prover sends to verifier Com,,e (w).

2The qualifier “almost” is because there are still some subtleties that
we ignore here. Some of these are discussed below, while others are only
handled in the full proof presented in the full version of this work.

2. Prover and verifier engage in a brute-force breaking
opportunity BFOP.

3. Prover and verifier engage in “encrypted and con-
densed” version of bgcZK(k'°8%): any message m is
replaced with KCom(m) if m is polynomial size and
UAKCom(m) if m is of super-polynomial size.

4. Prover and verifier engage in a witness indistinguish-
able universal argument that either: (a) the commit-
ment in Step 1 is indeed a witness or (b) prover broke
BFOP or (c) there exists a transcript for bgcZK (k'8)
that the honest verifier of that protocol accepts, and this
transcript is consistent with the “encrypted condensed”
transcript of Step 2.

What is this good for? First of all note that, unlike
Tlcongensed> 1N Heomoines DOth parties can be implemented us-
ing only polynomial time computation, and so at least we
got rid of one of our problems. Like IIg:, Protocol I1 e
has a simple straight-line black-box simulator. However,
our intention is that unlike in the case IIg this simulator
will enjoy the simulation soundness property and further-
more that we will be able to prove that this is the case. Our
idea is to prove simulation soundness using what we call a
virtual simulator. The virtual simulator will have two prop-
erties: (1) it will satisfy the simulation-soundness property
and (2) it will be strongly indistinguishable from the out-
put of the straight-line simulator, in the sense that it will be
indistinguishable even for algorithms with enough running
time to break Com,,. These two properties together will
imply that our straight-line simulator must also satisfy the
simulation soundness requirement.

Why do we need the straight-line simulator? If the vir-
tual simulator already satisfies the simulation soundness
condition, why do we need to use the straight-line simu-
lator at all? The reason is that the virtual simulator will ac-
tually use the witness as part of its input. This is OK since
the virtual simulator is not the “real” simulator and is only
used as part of the security proof. Note that it is not at all
clear that using the witness helps the virtual simulator as we
can’t commit to the witness in Step 1 without destroying the
strong indistinguishability property.

The operation of the virtual simulator. The virtual
simulator will try to run the simulator of the protocol
bgcZK(k'°8*), which does enjoy the simulation-soundness
property. The question is how do we solve our second prob-
lem above — namely, how do can we use the simulator of
bgcZK(k'°8*) when we are unable to rewind in a concur-
rent setting. The trick is that we are able to rewind using
the witnesses. That is, in order to produce the auxiliary ses-
sions we need for rewinding we actually use the witness to
perform a straight-line simulation. The reason we can get
away with using the witness in these auxiliary sessions is

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
0-7695-2468-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 21:58 from IEEE Xplore. Restrictions apply.

that the auxiliary sessions don’t need to be strongly indis-
tinguishable from the main simulation, but rather only need
to be indistinguishable “enough” to ensure successful ex-
traction. The reason we can’t use the breaking opportunity
is that in order to ensure the simulation soundness we need
to make sure that the running time of the virtual simulator
is less even than the time to break Com,eu.

3.5. Some issues and subtleties.

Witness-based continuation: To actually implement this
idea, we need to make sure that regardless at which point we
are in the simulation, we can always continue in a straight-
line fashion using the witness alone, without requiring the
internal state of any of the parties. Toward this end, we
use a compiler, which we call a witness-based-continuation
(WBC) compiler that transforms the protocol to a protocol
that satisfies this property. Loosely speaking, we first make
sure that the only prover messages that unavoidably depend
on internal state are the last messages sent in some proof
system used as a sub-protocol. We then change the prover
to have these messages not sent in the clear but rather in
a weak commitment, along with a weak commitment to a
string w’ and a WI proof that either the committed message
causes the verifier to accept or w’ is a witness.'3

“Forcing” scheduling constraints on adversary: An-
other point is that when we transformed bgcZK into its con-
densed version, we converted each message into an inter-
active universal argument, thus ruining the “atomicity” of
individual messages. The security proof of bgcZK actually
relies on this atomicity and hence we need to do something
to restore it. Our solution is to use brute force breaking
opportunities as “buffers” between individual messages. It
turns out that if during a session in which the adversary
is a verifier, it schedules the universal arguments for two
messages during the same time as it schedules the univer-
sal argument for a single message in the session where it is
a prover, then in this case it is actually “safe” for the vir-
tual simulator to break the BFOP (even though this requires
more running time than the virtual simulator is officially
“allowed”). Thus, we can use the straight-line simulator
in the cases where the adversary’s scheduling violates the
atomicity condition.

3.6. Guide to the actual protocol and proof.

Our general-concurrent zero knowledge argument
scheme is Protocol 3.1. This protocol follows broadly the
approach sketched above, but its analysis and design are
more “low level”. That is, instead of combining “generic”
components such as Iz and bgcZK and proving something

13We use a variant of this compiler with trapdoor commitments a la
[22, 17] to obtain security with respect to adaptive adversaries.

about the composition of any two such components, we
use the ideas behind Ilg and bgcZK to construct our pro-
tocol which we then analyze. The reason is that there are
some subtleties, especially involving the ability of the ad-
versary to dynamically schedule messages and choose the
statements to be proven, that make the low level approach
preferable. Some points in which we deviate from the de-
scription above include using more complexity levels than
just two, and using verification keys of digital signatures to
avoid issues with dynamically chosen statements.

Under our assumptions we have for every constant i a
super-polynomial function 75 (k) such that, by using an ap-
propriately scaled security parameter, we can get a variant
of each of the primitives above that is secure against T; (k)-
sized adversaries but completely broken by T .1 (k)-sized
adversaries."* We use a subscript 4 to denote such primi-
tives. A full description of this protocol and its analysis can
be found in the full version of this work.

4. Conclusions and future directions.

We presented a general feasibility result for secure multi-
party computation in the general-concurrent setting, under
well-studied assumptions. In some sense, this work brings
provable security closer to practice, since the security prop-
erties, which are proven under standard assumptions, are
strong enough to model what happens in realistic networks.
However, in terms of efficiency our constructions leaves
much room for improvement. Even though polynomial sim-
ulation is impossible, there is also room for improvement on
our protocol in terms of the simulation overhead. We hope
that the ideas presented here will prove useful in obtaining
more practical protocols, which still can be proven secure
in the general concurrent setting under well-understood as-
sumptions. An example for such a problem is obtaining a
practical fully concurrent and non-malleable commitment
scheme under such well-known number-theoretic assump-
tions such as the hardness of factoring or the discrete loga-
rithm problem.

On a technical level, we introduced a new technique for
“condensing” protocols to achieve stronger security. We
believe this technique may have many other applications.
In particular, we believe there is hope for using such tech-
niques to obtain a concurrent zero-knowledge protocol us-
ing a constant number of communication rounds, with poly-
nomial simulation overhead. Such a protocol is known if we
allow super-polynomial simulation, but it would be nice to
obtain it using polynomial simulation, since, unlike the case
of general computation, super-polynomial simulation does
not seem necessary in this case.

4For example, if we have hardness against 2k sized circuits, we can
1/¢)304
use T;(k) = glog(Tp (k)) (/) .

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
0-7695-2468-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 21:58 from IEEE Xplore. Restrictions apply.

Public input: 1*: security parameter , z € {0, 1} (statement to be proved is
“r e L7)
Prover’s auxiliary input: w € {0, 1}% (a witness that z € L)

Step V1.1 (Verifier’s hash): Verifier chooses a random hash function h «
Hashg and sends h.

Steps P,V1.2 (Prover’s “verification key’”): Prover chooses VK = 0% and
sends cyx = Com1 (V K) to the verifier.

h < Hashg
v TR A6

e = Comy (VK [=0bw])

Steps V,P2.x (Verifier’s first challenge): Verifier chooses r1 = 0¥, computes
¢r, = Coms(h(ry)) and proves knowledge of r1 using a ZKUA.

Slot 1 h
¢r, =UAKComg (1 [= 0%])

Steps P,V3.x (Breaking opportunities): Prover and verifier engageinaT3(k),
and T5(k)-secure brute force breaking opportunities.

“Unsafe ”r_period
Beasy =B OP2;Bhard = BFOP3

Steps V,P4.x (Verifier’s second challenge): Verifier chooses 7, = 0, com-
putes ¢, = Coms(h(r2)) and proves knowledge of r5 using a ZKUA.

Slot 2 A
¢r, = UAKComg (12 [= 0%])

Step P,V5.x (Commitment to “Signature”): Prover lets 0 = 09 and sends
sy = KComs (o) to the verifier.

Cs9=Comj (o [= 0%0])

Steps P,V6.x (‘‘committed” universal argument): Prover and veri-
fier run Tg(k)-sound universal argument UA for [KOLM] where
prover sends 7T5-strong commitments to its messages . Hon-
est prover uses commitments to “junk” (i.e. 0%) in this stage.

Statement [KOLM]: Let M = 2T0.1(k). Forj € [bw]let€; = (VK;)-bu+j
(i.e., £; € [20w]) and let £; = £; - M and £ = (4y + 1 — £;) M. Then, for every
J € [w] there exist s € {1,2}, a TM II; of description size < £; — k and a string
rs such that: (a) I, outputs rs within < T4 4(k) steps and (b) 75 is consistent with
cr,. Thatis, h(rs) € Com™'(c,,).

cua = ComsUAg of [KOLM]

Step P.7.1 (Commitment to Witness): Prover sends ¢,; = Comy(w) to the
verifier.

Steps P,V7.2.x (WI proof): Prover proves to verifier using a T5(k)-WI proof
that one of the following holds: either

[WIT] Comfl(cwn) is a witness for or
[BFOP] Broke B,.q or

[UA] Com™*! (cua) is accepting transcript. or
[SIG] Broke B.., and cy, is commit to sig on x.

cwir=Comy(w)

WIP5 that [WIT] / [BFOP] /
[UA]/[SIG]

(The WBC compiler changes a last prover message m of a sub-proof systems (i.€., Beasy,Bhara and the final WIP) to Comy(m) , Comy(w’ [= Ofwil}) and

W I-proof that either m convinces the verifier or w’ is a witness for x.)

Protocol 3.1. Non-Malleable Concurrent Zero Knowledge (before WBC-compiler)

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
0-7695-2468-0/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER
SOCIETY

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 21:58 from IEEE Xplore. Restrictions apply.

Acknowledgements Both authors’ understanding of the [24] O. Goldreich. Concurrent zero-knowledge with timing, revisited. In Proc.
i rrounding multi- m ion h in 34th STOC, pages 332-340, 2002.
S.SUCS Siu ou d g multi-party computatio WaS' s aped [25] O.Goldreich. Foundations of Cryptography: Basic Applications. Cambridge
discussions with many colleagues. We are especially grate- University Press, 2004.
ful to Ran Canetti, Oded Goldreich, Shafi Goldwasser, [26] O. Goldreich and A. Kahan. How to construct constant-round zero-
Yehuda Lindell, Silvio Micali, Moni Naor, Rafael Pass, l;?;’:{i‘ﬁegg;m’f systems for NP. - Journal of Crypiology, 9(3):167-189,
Manoj Prabhakaran, Omer Reingold, Alon Rosen and Salil [27] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge
Vadhan. proof systems. SIAM J. Comput., 25(1):169-192, Feb. 1996. Preliminary
version appeared in ICALP” 90.
[28] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game.
References In ACM, editor, Proc. 19th STOC, pages 218-229. ACM, 1987. See [25,
Chap. 7] for more details.
[1] B.Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd [29] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
FOCS, pages 106115, 2001. their validity or all languages in NP haivei zero—knowlen‘:lge proo)f systems.
[2] B. Barak. Constant-round coin-tossing with a man in the middle or realizing 3 J. ACM, 38(3):691-729, Jl'lly 19?] . Prellmlpary version in FOCS 8§'
the shared random string model. In Proc. 43rd FOCS. TEEE, 2002. [30] S. Goldvfiasser and L: L‘evm. Fair coml?utatlon of general functions in pres-
[3] B. Barak. Non-Black-Box Techniques in Cryptography. PhD thesis, Depart- ;'S‘C; of immoral majority. In Crypto "90, pages 77-93, 1990. LNCS No.
f i and Applied Mathematics, Weizmann Insti f ;
rSnceiZLCOe C;;Eg ::ir ISS i::ﬁczggj pplied Mathematics, Weizmann Institute o [31] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
[4] B Barai(R Can:etti Y. ’Lindel.l R. Pass, and T. Rabin. Secure computation 28(2):270-299, Apr. 1984. Preliminary version appeared in STOC” 82.
"th ! ’ ﬂ; " t‘, 'C . ’,05' 2005’ ! : P [32] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
without authentication. Crypto ’05, . : : vstems 186 imi-
[5] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable ;naf;zf;:oir;og;}g?i; SIAM J. Comput., 18(1):186-208, 1989. Prelimi
protocols with relaxed set-up assumptions. In Proc. 45th FOCS, pages 186— [33] Y.T.Kalai, Y. Lindell, and M. Prabhakaran. Concurrent general composition
195. IEEE, 2004. . . . L of secure protocols in the timing model. In Proc. 37th STOC, pages 644—
[6] B. Barak and O. Goldreich. Universal arguments and their applications. In 653. 2005
Annual IEEE Conference on Computational Complexity (CCC), volume 17, [34] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the chosen
2002. protocol attack. In Proc. 1997 Security Protocols Workshop, pages 91-104,
[7] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for 1997. Appeared in LNCS vol. 1361
designing efficient protocols. In Proceedings of the First Annual Conference [35] J. Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
on Computer and Communications Security, pages 62-73. ACM, November tended abstract). In Proc. 24th STOC, pages 723-732. ACM, 1992.
1993. [36] Y. Lindell. Bounded-concurrent secure two-party computation without setup
[8] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems assumptions. In Proc. 35th STOC, pages 683-692. ACM, 2003.
for non-cryptographic fault-tolerant distributed computation. In Proc. 20th [371 Y. Lindell. Composition of Secure Multi-Party Protocols: a comprehensive
STOC, pages 1-10, 1988. study, volume 2815 of Lecture Notes in Computer Science. Springer-Verlag
[9] M. Blum. Coin flipping by phone. In Proc. 24th IEEE Computer Conference Inc., New York, NY, USA, 2003.
(CompCon), pages 133-137, 1982. See also SIGACT News, Vol. 15, No. 1, [38] Y. Lindell. General composition and universal composability in secure
1983. multi-party computation. In Proc. 44th FOCS, pages 394-403, 2003.
[10] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and [39] Y. Lindell. Lower bounds for concurrent self composition. In Theory of
its applications. In Proc. 20th STOC, pages 103112, 1988. Cryptography Conference (TCC), volume 1, pages 203-222, 2004.
[11] R. Canetti. Security and composition of multiparty cryptographic protocols. (401 T. Mal;(m, R. Mgrla:;y’ anc'l N. YakO\fenko.zoGOgneirahzed eneronmental se-
' - 13(1):143-202. 2000. curity from number theoretic assumptions, . In preparation.
121 JRO”(;”‘;[Z C&f}.’;”fg-‘]i S(H)‘ blo ’ Og? A new oaradiem for crynt [41] S. Micali. CS proofs. In Proc. 35th FOCS, pages 436-453. IEEE, 1994,
) a. et crsally composable secunty: ew paradigm 10 ,C YP 0 [42] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
graphic protocols. In Proc. 42nd FOCS, pages 136—147, 2001. Preliminary 4(2):151-158, 1991. Preliminary version in CRYPTO’ 89
full version available as Cryptology ePrint Archive Report 2000/067. [43] M. Naor. De,niable ring authentication. In Crypto '02, 2002. LNCS No.
[13] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In 2442
Crypto *97, pages 90-104, 1997. LNCS No. 1294. [44] R. Pass. On deniability in the common reference string and random oracle
[14] R. Canetti and M. Fischlin. Universally composable commitments. Re- model. In Crypto 03, 2003.
port 2001/055, Cryptology ePrint Archive, July 2001. Extended abstract [45] R.Pass. Simulation in quasi-polynomial time, and its application to protocol
appeared in CRYPTO 2001. composition. In Eurocrypt 03, 2003. LNCS No. 2656.
[15] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero- [46] R.Pass. Bounded-concurrent secure multi-party computation with a dishon-
knowledge. In Proc. 32th STOC, pages 235-244. ACM, 2000. est majority. In Proc. 36th STOC, pages 232-241, 2004.
[16] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally [47] R.Passand A. Rosen. Bounded-concurrent secure two-party computation in
composable two-party computation without set-up assumptions. In Euro- a constant number of rounds. In Proc. 44th FOCS, 2003.
crypt "03, 2003 LNCS No. 2656. [48] R. Pass and‘A‘ Rosen. New and improved constructions of non-malleable
[17] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable 2 K/YIYIIJJO.%J}?P?C Pm“()jcj)\lsé IT}]‘ Proc. 37th STOCvaOOi_ - achioi) '
two-party computation. In Proc. 34th STOC, pages 494-503, 2002. (491 M. Pra akaran and A. Sahal. New nOthﬂS({ security: achieving universal
[18] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. composability without trusted setup. In Proc. 36th STOC, pages 242-251,
Comput., 30(2):391-437 (electronic), 2000. Prelimi ion in STOC 2004.
190;’?)“ 2 (€lectronic) feliminary version [50] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report
[19] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In (51] XR-St?;}’lEmvggnﬁirﬁ?eSl?l?ﬁ]lgztiizl:e;ﬁ?vr:tzre}:ol?(iz).wle dge and adaptive
Crypto *92, pages 139-147, 1992. LNCS No. 740.) . .
[20] C. Dwork, M. Naor, and A. Sahai. Concurrent zero knowledge. In Proc. Ttgl(;sgen»mpherlexl security. In Proc. 40th FOCS, pages 543-553. IEEE,
30th STOC, pages 409-418. ACM, 1998. , _ [52] A. Shamir. How to share a secret. Communications of the ACM, 22(11),
[21] U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. PhD Nov. 1979
thesis, Department of Computer Science and Applied Mathematics, Weiz- [53] A. Shamir, R. L. Rivest, and L. M. Adleman. Mental poker. In D. Klarner.
mannilnstitute of Scie.nce, Rehovot, Israel, 1990.] editor, The Mathematical Gardner, pages 37-43. Wadsworth, Belmont, Cal-
[22] U.Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds. ifornia, 1981. Preliminary version as MIT TM-125, 1978
In Crypto ’89, pages 526-545, 1989. LNCS No. 435. [54] A.C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS,
[23] U. Feige and A. Shamir. Witness indistinguishable and witness hiding pro-

tocols. In Proc. 22nd STOC, pages 416-426. ACM, 1990.

pages 162-167. IEEE, 1986.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05)
0-7695-2468-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 21:58 from IEEE Xplore. Restrictions apply.

