
Universally Composable Two-Party and Multi-party
Secure Computation

(Extended Abstract)

Ran Canetti∗ Yehuda Lindell† Rafail Ostrovsky‡ Amit Sahai§

ABSTRACT
We show how to securely realize any multi-party functional-
ity in a universally composable way, regardless of the number
of corrupted participants. That is, we consider a multi-party
network with open communication and an adversary that
can adaptively corrupt as many parties as it wishes. In this
setting, our protocols allow any subset of the parties (with
pairs of parties being a special case) to securely realize any
desired functionality of their local inputs, and be guaran-
teed that security is preserved regardless of the activity in
the rest of the network. This implies that security is pre-
served under concurrent composition of an unbounded num-
ber of protocol executions, it implies non-malleability with
respect to arbitrary protocols, and more. Our constructions
are in the common reference string model and make general
intractability assumptions.

1. INTRODUCTION
Traditionally, cryptographic protocol problems were con-

sidered in a model where the only involved parties are the
actual participants in the protocol, and only a single exe-
cution of the protocol takes place. This model allowed for
relatively concise problem statements, and simplified the de-
sign and analysis of protocols. Indeed, this relatively simple
model is a natural choice for the initial study of protocols.
Some of the many works in this model are [43, 4, 25, 36, 47,
33, 28, 3, 15, 2, 34, 38, 44, 31].

∗IBM T.J. Watson Research Center, PO Box 704, Yorktown
Heights, NY 10598, USA. email: canetti@watson.ibm.com
†Department of Computer Science, The Weizmann In-
stitute of Science, Rehovot 76100, Israel. email:
lindell@wisdom.weizmann.ac.il
‡Telcordia Technologies, MCC-1C357B, 445 South
Street, Morristown, New Jersey 07960 6438,
USA. email: rafail@research.telcordia.com url:
http://www.argreenhouse.com/bios/rafail/index.shtml
§Department of Computer Science, Princeton University.
email: sahai@cs.princeton.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this n otice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
STOC’02, May 19-21, 2002, Montreal, Quebec, Canada.
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

However, this model of “stand-alone computation” does
not fully capture the security requirements from crypto-
graphic protocols in a modern computer network. In such
networks, a protocol execution may run concurrently with
an unknown number of other protocols. These arbitrary pro-
tocols may be executed by the same parties or other parties,
they may have potentially related inputs and the schedul-
ing of message delivery may be adversarially coordinated.
Furthermore, the local outputs of a protocol execution may
be used by other protocols in an unpredictable way. These
concerns, or “attacks” on a protocol are not captured by the
stand-alone model.
One way to guarantee that protocols withstand some spe-

cific security threats in multi-execution environments is to
explicitly incorporate these threats into the security model
and analysis. Such an approach was taken, for instance, in
the cases of non-malleable commitments and zero-knowledge
[23, 20, 46, 21, 19], and concurrent composition of zero-
knowledge and oblivious transfer protocols [24, 45, 29]. How-
ever, this approach is inherently limited since it needs to
explicitly address each new concern, whereas in a realistic
network setting, the threats may be unpredictable. Further-
more, it inevitably results in definitions with ever-growing
complexity.
In contrast, we take the approach where a protocol is

designed and analyzed as “stand alone”, and security in a
multi-execution environment is guaranteed via a secure com-
position theorem. recently proposed framework of universally
composable security [10] which builds and extends on many
previous works, e.g. [40, 9]. Here a generic definition is given
for what it means for a protocol to “securely realize a given
ideal functionality,” where an “ideal functionality” is a nat-
ural algorithmic way for capturing the desired functionality
of the protocol problem at hand. In addition, it is shown
that security of protocols is preserved under a general com-
position operation called universal composition. This essen-
tially means that any protocol that securely realizes an ideal
functionality when considered as stand-alone, continues to
securely realize the same functionality even when composed
with any other set of protocols that may be running concur-
rently in the same system.
It is known that any ideal functionality can be securely

realized in a universally composable way using standard con-
structions, as long as a majority of the participants remain
uncorrupted [3, 44, 11, 10]. However, this result does not
hold when half or more of the parties may be corrupted. In
particular, it does not hold for the important case of two-
party protocols, where each party wishes to maintain its se-

494

curity even if the other party is corrupted. In fact, it was
shown in [12, 10] that a number of basic two-party function-
alities (such as commitment, zero-knowledge, and common
coin-tossing) cannot be securely realized in this framework
by two-party protocols. Nonetheless, protocols that securely
realize the commitment and zero-knowledge functionalities
in the common reference string (CRS) model were shown in
[12, 19]. (In the CRS model all parties are given a common,
public reference string that was ideally chosen from a given
distribution. This model was originally proposed in the con-
text of non-interactive zero-knowledge proofs [6] and since
then proved useful in other cases as well.)

Our results. We show that any functionality can be real-
ized in a universally composable way, in the CRS model and
under general cryptographic assumptions, regardless of the
number of corrupted parties. More specifically, consider a
multi-party network where the communication is open and
delivery of messages is not guaranteed. The network con-
tains an unbounded (and unspecified) number of parties,
and any number of these parties can be adaptively corrupted
throughout the computation. In this setting, we show how
arbitrary subsets of parties can securely realize any func-
tionality of their inputs in a universally composable way.
The functionality may be reactive, namely it may receive
inputs and generate outputs multiple times throughout the
computation. In addition to a common reference string, our
protocols assume that the participants in each protocol ex-
ecution have an authenticated and synchronous broadcast
channel among themselves. No global synchronization is
otherwise assumed. (Such synchronization and authentica-
tion primitives can be achieved using standard methods, see
discussions in [10, 39]. In particular, in the case of two-
party protocols these assumptions fall back to a standard
asynchronous, pairwise, authenticated network.)

Outline of the construction. Our construction follows
the general outline of the construction of Goldreich, Micali
and Wigderson [33, 31], where the basic primitives are re-
placed with universally composable counterparts. On top of
guaranteeing universal composability, this results in a mod-
ular construction and analysis that highlights the function-
ality and role of each ingredient in the construction. We first
concentrate on the case of two-party functionalities, which
contains most of the cryptographic ideas in a simplified form.
Here, we first consider semi-honest (or, eavesdropping) ad-
versaries. We begin by defining and realizing an ideal Oblivi-
ous Transfer (OT) functionality. Then we show that the [33]
construction, given access to the ideal OT functionality, can
be used to securely realize any two-party ideal functional-
ity in a universally composable way. (No common reference
string is used in the semi-honest case.)
Next we show how to transform any two-party protocol

in the semi-honest model into a protocol that guarantees
equivalent input-output relations in the presence of general,
malicious adversaries. This is done as follows. Our start-
ing point is a new adaptively secure universally compos-
able (UC) commitment protocol in the CRS model, assum-
ing only existence of trapdoor permutations. (UC commit-
ment protocols are protocols that securely realize the ideal
commitment functionality [12]. Existing constructions [12,
17] are based on stronger computational assumptions.) Our
scheme allows multiple commitments, by potentially differ-
ent parties, to use the same copy of the reference string. It
uses tools from [35, 26, 11, 12, 23, 46].

Next, plugging the new scheme into the UC zero-knowledge
protocol of [12] (which assumes access to the ideal com-
mitment functionality), we obtain an adaptively secure UC
zero-knowledge protocol in the CRS model, for any NP re-
lation, and based on any trapdoor permutation. (Alterna-
tively, we could use the protocol of [19]. However, this proto-
col provides security only against non-adaptive adversaries.)
Next, we define and realize a new ideal functionality, called

commit-and-prove. This functionality allows a a party to
commit to values and then prove “in zero knowledge” ar-
bitrary NP-statements about the committed values. (This
notion was implicitly present in the work of Goldreich, Mi-
cali, and Wigderson [33], and explicitly proposed by Kilian
[37]. We formalize it as an ideal functionality in the UC
framework.) We realize the commit-and-prove functionality
given access to (multiple copies of) the ideal zero-knowledge
functionality.
Finally, we cast the protocol compiler of [33] in a model

where the parties have access to the ideal commit-and-prove
functionality, and use the universal composition theorem to
compose all ingredients into a general, UC protocol compiler
in the CRS model. Here we also use universal composition
with joint state [14], which allows several protocol instances
to use the same copy of the reference string.
We also extend our results from the two-party case to

the multi-party case. The semi-honest case is treated as in
[33]. For the case of general adversaries, we first extend the
commitment, zero-knowledge, and commit-and-prove func-
tionalities to allow a prover to commit and prove statements
to a set or parties (rather than to a single party). Next, we
generalize the protocol compiler, which now has ideal access
to the one-to-many version of the commit-and-prove func-
tionality.

Adaptive security. We provide the first general construc-
tion that guarantees security against adaptive adversaries,
both in the two-party case and in the case of multi-party
protocols with honest minority, both for semi-honest and
for malicious adversaries. (We note that no adaptively se-
cure general construction was known in these cases, even
in the traditional stand-alone model.) In the semi-honest
case, guaranteeing adaptively secure OT requires additional
work on top of guaranteeing non-adaptive security. The gen-
eral protocol, given ideal OT, is the same for the adaptive
and non-adaptive cases. In the case of malicious adversaries,
guaranteeing adaptively secure zero-knowledge and commit-
and-prove requires additional work on top of guaranteeing
non-adaptive security. The general protocol compiler given
ideal commit-and-prove is the same for the adaptive and
non-adaptive cases. (We remark that, in contrast to the
case of stand-alone protocols, in our setting adaptive secu-
rity is a relevant concern even for protocols with a small
number of participants, such as two-party protocols. Fur-
thermore, it is important to protect even against adversaries
that eventually break into all the participants in an interac-
tion. This is so since we consider multiple interactions that
take place between different sets of parties in the system.)

Cryptographic assumptions. Overall, our protocols
are based on the following cryptographic assumptions. For
the non-adaptive case (both semi-honest and malicious) we
assume the existence of trapdoor permutations only. For
the adaptive, semi-honest case we additionally assume the
existence of obliviously generatable public-key encryption-
schemes as in [22, 16] where public keys can be generated

495

without knowing the corresponding private keys. Alterna-
tively, if we assume existence of dense cryptosystems [22]
then we can assume that our reference string is distributed
uniformly over {0, 1}k for some large enough k. (Otherwise,
we need a reference string that is taken from a different dis-
tribution.)

Related work. An alternative general construction of two-
party protocols, attributed to Yao [47], has the advantage
that only a small constant number of rounds is required in
order to compute each output value, regardless of the com-
plexity of the evaluated functionality. Potentially, this con-
struction can be used as an alternative to our general con-
struction for semi-honest adversaries given ideal OT (which
is based on [33]). We remark, however, that adaptive secu-
rity seems to be problematic for this specific construction.
In a concurrent and independent work [17], Damgard and

Nielsen consider commit-and-prove composable functional-
ity that has great resemblance to our commit-and-prove
functionality, and propose protocols that realize this func-
tionality under specific number-theoretic assumptions. Our
protocols are based on more general assumptions, though
their protocols have considerably better complexity than the
ones here.

Organization. Section 2 briefly overviews the model of
[10] and the relevant composition theorems. Section 3 presents
our new universally composable commitment scheme. Sec-
tion 5 overviews our construction of general two-party pro-
tocols. Section 6 elaborates on the commit-and-prove func-
tionality, which is a main ingredient in the construction of
Section 5. Section 7 presents the extensions needed for the
multi-party case. Throughout, the presentation is kept in-
formal and high-level, leaving out many essential details.
A more complete presentation, including the proofs of all
claims, can be found in [13].

2. THE MODEL
We overview the framework of [10]. This framework al-

lows defining the security properties of cryptographic tasks
so that security of protocols is preserved under a general
composition operation with an unbounded number of copies
of arbitrary protocols running concurrently in the system.
As in other general definitions (e.g., [34, 40, 1, 42, 9]), the

security requirements of a given task (i.e., the functionality
expected from a protocol that carries out the task) are cap-
tured via a set of instructions for a “trusted party” that ob-
tains the inputs of the participants and provides them with
the desired outputs (in one or more iterations). Informally,
a protocol securely carries out a given task if running the
protocol with a realistic adversary amounts to “emulating”
an ideal process where the parties hand their inputs to a
trusted party with the appropriate functionality and obtain
their outputs from it, without any other interaction. We call
the algorithm run by the trusted party an ideal functionality.
A protocol that realizes a task as described here is said to
securely realize the corresponding ideal functionality.
In order to allow proving the composition theorem, the no-

tion of emulation in this framework is considerably stronger
than previous ones. Traditionally, the model of computation
includes the parties running the protocol and an adversary,
A, that controls the communication channels and poten-
tially corrupts parties. “Emulating an ideal process” means
that for any adversary A there should exist an “ideal pro-

cess adversary” (or, simulator) S that results in similar dis-
tribution on the outputs for the parties. Here an additional
adversarial entity, called the environment Z, is introduced.
The environment generates the inputs to all parties, reads
all outputs, and in addition interacts with the adversary in
an arbitrary way throughout the computation. A protocol
is said to securely realize a given ideal functionality F if for
any “real-life” adversary A that interacts with the protocol
there exists an “ideal-process adversary” S, such that no
environment Z can tell whether it is interacting with A and
parties running the protocol, or with S and parties that in-
teract with F in the ideal process. (In a sense, here Z serves
as an “interactive distinguisher” between a run of the pro-
tocol and the ideal process with access to F .) Note that the
definition requires the “ideal-process adversary” (or, simu-
lator) S to interact with Z throughout the computation.
Furthermore, Z cannot be “rewound”.
Universal Composition. The following universal compo-
sition (UC) operation is considered. Let π be a protocol that
operates in a hybrid model of computation where parties can
communicate as usual, and in addition have ideal access to
an unbounded number of copies of some ideal functionality
F . (This model is called the F-hybrid model.) Let ρ be a
protocol that securely realizes F as sketched above. Then,
let the “composed protocol” πρ be identical to π with the
exception that each interaction with some copy of F is re-
placed with an invocation of an appropriate instance of ρ.
Similarly, ρ-outputs are treated as values provided by the
appropriate copy of F . It is shown that π and πρ have es-
sentially the same input/output behavior. In particular, if π
securely realizes some ideal functionality I in the F-hybrid
model then πρ securely realizes I from scratch. (If ρ is a
protocol in the G-hybrid model for some ideal functionality
G then πρ is also a protocol in the G-hybrid model.)
Universal Composition with joint state. Universal
composition requires that all copies of the “subroutine pro-
tocol” ρ have separate local states and independent local
randomness. This does not allow the subroutine protocols
to have any amount of joint state. Indeed, if protocol ρ is
designed in the CRS model then the protocol πρ obtained
using the UC operation described above uses an independent
copy of the reference string for each copy of ρ. In contrast,
we wish to allow multiple protocol instances to use the same
instance of the reference string. We do this using the fol-
lowing variant of the UC operation, proposed in [14] and
called universal composition with joint state (JUC). Here the
first ingredient, protocol π in the F-hybrid model, remains
unchanged. However, instead of replacing each copy of F
with a different instance of some protocol ρ, we replace all
copies of F with a single instance of some “joint protocol”
ρ̂. The protocol obtained from this composition operation
is denoted π[ρ̂]. (The brackets [] in the notation π[ρ̂] distin-
guish this composition operation from standard UC.)
The following condition (on protocol ρ̂) is shown to suffice

for security to be preserved under JUC. Intuitively, protocol
ρ̂ should exhibit the same functionality as multiple “inde-
pendent” instances of ρ. A bit more precisely, given an ideal
functionality F , we define F̂ , the multi-session extension of
F , to be the functionality that behaves like multiple inde-
pendent copies of F . (That is, F̂ runs multiple copies of

F . Upon receipt of a query (i, q), F̂ forwards the query q
to the ith copy of F .) It is shown in [14] that if ρ̂ securely

realizes F̂ then protocol π[ρ̂] behaves essentially like π does

496

with ideal access to multiple copies of F . In particular, if π
securely realizes some ideal functionality I in the F-hybrid
model then π[ρ̂] securely realizes I from scratch.
The basic model. The underlying communication net-
work is assumed to be asynchronous without guaranteed
delivery of messages. In addition, we assume a synchronous
and authenticated broadcast channel among each set of in-
teracting parties. (In the two-party case, this falls back to
the standard model of pairwise authenticated communica-
tion.) It is stressed that our model allows the adversary
to disrupt the computation at any time by refraining from
delivering messages. Indeed, our protocols do not protect
against “early stopping” by the corrupted parties.
Also, as usual, the adversary is allowed to corrupt parties.

In the case of non-adaptive adversaries the set of corrupted
parties is fixed at the onset of the computation. In the adap-
tive case the adversary corrupts parties at will throughout
the computation. If the adversary is malicious then cor-
rupted parties follow the instructions of the adversary. In
the semi-honest case even corrupted parties follow the pre-
scribed protocol and the adversary only gets read access to
the states of corrupted parties.

3. UC COMMITMENT
We describe our new universally-composable non-interactive

commitment scheme. Our construction is in the common
reference string model, and assumes only the existence of
trapdoor permutations. (If the common reference string
must come from a uniform distribution, then we require
trapdoor permutations with dense public descriptions [22].)
Recall that UC commitment schemes are protocols that se-
curely realize the many-time ideal commitment functional-
ity, presented in Figure 1. (The fact that Fmcom handles
multiple commitments within a single instance will become
useful in Section 4.)

Functionality Fmcom

Fmcom proceeds as follows, running with parties P1, . . . , Pn

and an adversary S:
• Commit Phase: Upon receiving a message
(commit, sid, cid, Pj , b) from Pi, where b ∈ {0, 1},
record the tuple (cid, Pi, Pj , b) and send the message
(receipt, sid, cid, Pi) to Pj and S. Ignore any future
commit messages with the same cid.

• Reveal Phase: Upon receiving a message
(reveal, sid, cid) from Pi: If a tuple (cid, Pi, Pj , b)
was previously recorded, then send the message
(reveal, sid, cid, Pi, b) to Pj and S. Otherwise, ignore.

Figure 1: The ideal commitment functionality

Informally speaking, in order to achieve universal compos-
ability against adaptive adversaries, our commitment scheme
must have the following two properties:
• Polynomial equivocability: the simulator (i.e., the adver-
sary in the ideal process) should be able to produce com-
mitments for which it can decommit to both 0 and 1 poly-
nomially many times using the same reference string. (An
additional property is needed for adaptive security. See be-
low.) Still, the real committer must be able to decommit to
only a single value.

• Simulation extractability: the simulator should be able to
extract the contents of any valid commitment, even after
having supplied an adversary with an arbitrary number of
equivocable commitments.
We remark that in the equivocable commitment protocols

of [20, 21] each copy of the reference string can be used only
for a single commitment. In contrast, [12] show how to use a
single copy of the reference string for multiple commitments
(though with potentially stronger assumptions).
We describe our construction in phases. First we describe

a new non-interactive variant of the Feige-Shamir trapdoor
commitment scheme [26], which is at the heart of our con-
struction. Then we show how to transform this scheme into
one that is universally composable.

Underlying standard commitment. The basic underly-
ing commitment scheme Com is the standard non-interactive
commitment scheme based on a one-way permutation f and
a hard-core predicate b of f . That is, in order to commit to a
bit σ, one computes Com(σ) = 〈f(Uk), b(Uk)⊕σ〉, where Uk

is the uniform distribution over {0, 1}k. Note that Com is
computationally secret, and produces pseudorandom com-
mitments: that is, the distributions Com(0), Com(1), and
Uk+1 are computationally indistinguishable.

Simplified Feige-Shamir Commitment. We briefly de-
scribe a simplified version of the Feige-Shamir trapdoor com-
mitment scheme [26], which is based on the zero-knowledge
proof for Hamiltonicity of Blum [5]. First, a graph G (with
q nodes) is found, so that it is hard to find a Hamiltonian
cycle in G within polynomial-time. This is achieved as fol-
lows: choose x ∈R {0, 1}k and compute y = f(x), where f
is a one-way function. Then, use the reduction of the lan-
guage {y | ∃x s.t. y = f(x)} to that of Hamiltonicity, to
obtain a graph G so that finding a Hamiltonian cycle in G
is equivalent to finding the preimage x of y. This graph G
is sent from the receiver to the sender. 1 Then, in order to
commit to 0, the committer commits to a random permu-
tation of G using the underlying commitment scheme Com
(and decommits by revealing the entire graph and the per-
mutation). In order to commit to 1, the committer commits
to a graph containing a randomly labeled q-cycle only (and
decommits by opening this cycle only). Note that this com-
mitment scheme is binding because the ability to decommit
to both 0 and 1 implies that the committer knows a Hamil-
tonian cycle in G. On the other hand, given a Hamiltonian
cycle in G, it is possible to generate commitments that are
indistinguishable from legal ones, and yet have the property
that one can decommit to both a 0 and a 1.

A non-interactive, adaptively secure commitment.
We proceed to describe our first step for obtaining adaptive
security. In general, the following additional property is
required of the simulator: Let c be a commitment produced
by the simulator who knows a Hamiltonian cycle in G. Then,
for any b ∈ {0, 1}, the simulator should be able to produce
a random string r, so that the honest committer upon input
b and random-tape r, outputs the commitment c. Thus, the
simulator can provide an “explanation” of its actions, as if
it were an honest committer. (We note that the [26] scheme
does not have this property.)

1
In [26], the graph G is chosen by computing f on two ran-

domly chosen inputs, which is important for making use of witness-
indistinguishability, which underlies the proof of security for [26].
Our construction and proof of security, however, do not require this
property; thus, we can use the simpler method described above.

497

The adaptively secure scheme, denoted aHC (for adap-
tive Hamiltonicity Commitment), differs from [26] in two
respects. First, instead of letting the receiver choose the
string y, we place y (which determines the graph G) in a
common reference string. (Note that if we want y to be
uniformly distributed, then we need only ask that f is a
one-way function.) Next, the sender proceeds as follows.
• To commit to a 0, the sender picks a random permuta-
tion π of the nodes of G, and commits to the entries of the
adjacency matrix of the permuted graph one by one, using
Com. To decommit, the sender sends π and decommits to
every entry of the adjacency matrix. The receiver verifies
that the graph it received is π(G).
• To commit to a 1, the sender chooses a randomly labeled
q-cycle, and for all the entries in the adjacency matrix cor-
responding to edges on the q-cycle, it uses Com to commit
to 1 values. For all the other entries, it simply produces
random values from Uk+1 (for which it does not know the
decommitmenet!) That is, the edges that are not on the
q-cycle are not committed to. Instead, random strings are
sent.) To decommit, the sender opens only the entries cor-
responding to the randomly chosen q-cycle in the adjacency
matrix.
This commitment scheme immediately has the property of

being computationally secret, i.e. the distributions aHC(0)
and aHC(1) are computationally indistinguishable for any
graph G. Also, given the opening of any commitment to
both a 0 and 1, one can extract a Hamiltonian cycle in G.
Therefore, the committer cannot decommit to both 0 and 1,
and the binding property holds. Finally, as with the scheme
of [26], given a Hamiltonian cycle in G, a simulator can gen-
erate commitments to 0 and then open those commitments
to both 0 and 1. (This is because the simulator knows a sim-
ple q-cycle in G itself.) However, in contrast to [26], here
the simulator can also produce a random tape for the sender
explaining a commitment as a commitment to either 0 or 1.
Specifically, the simulator generates each commitment string
c as a commitment to 0. If, upon corruption of the sender,
the simulator has to demonstrate that c is a commitment
to 0 then all randomness is revealed. To demonstrate that
c was generated as a commitment to 1, the simulator opens
the commitments to the edges in the q-cycle and claims that
all the unopened commitments are merely uniformly chosen
strings (rather than commitments to the rest of G). This
can be done since commitments produced by the underly-
ing commitment scheme Com are pseudorandom. The key
point here is unlike the schemes of [20, 21], this gives us
polynomial equivocability, where the same reference string
can be reused polynomially-many times.

Achieving simulation extractability. As discussed above,
the commitment scheme aHC has the equivocability prop-
erty, as required. However, our commitment scheme must
also have the simulation extractability property. We must
modify our scheme in such a way that we add extractability
without sacrificing equivocability. Simulation-extractability
alone could be achieved by including a public-key for an
encryption scheme secure against chosen ciphertext attack
(CCA-2) [23, 46, 19] into the common reference string, and
having the committer send an encryption of the decommit-
ment information along with the commitment itself. The
CCA security of the encryption can be used to guarantee
that an adversary cannot use an equivocable commitment
prepared by the simulator to produce a non-extractable com-

mitment. Thus, a simulator knowing the associated decryp-
tion key can decrypt and obtain the decommitment infor-
mation, thereby extracting the committed value from any
adversarially prepared commitment. However, the opera-
tion above – of encrypting decommitment information with
a general CCA-secure encryption scheme – may indeed de-
stroy the equivocability of the overall scheme. In order
to obtain equivocability, we require the encryptions to be
pseudorandom, which is not necessarily the case for known
CCA-secure schemes based on general assumptions [23, 46,
19]. We achieve the security we desire by using double-
encryption: by first encrypting using a CCA2-secure scheme,
which may result in a ciphertext which is not pseudoran-
dom, and then re-encrypting the encryption using a scheme
for which all encryptions look pseudorandom. (The second
scheme needs to be secure only against chosen plaintext at-
tacks.) The key is to show that this combination gives the
right composition, and this is indeed what we show in the
full version [13].
For the CCA-secure scheme, denoted Ecca, we can use

any known scheme based on trapdoor permutation, e.g.,
[23, 46, 19]. For the second encryption scheme, denoted E,
we use the standard encryption scheme based on trapdoor-
permutations and hard-core predicates [32], where the public
key is a trapdoor permutation f , and the private key is f−1.
Here encryption of a bit b is f(x) where x is a randomly
chosen element such that the hard-core predicate of x is b.
Note that encryptions of both 0 and 1 are pseudorandom.
The commitment scheme, called UC Adaptive Hamiltonicity
Commitment uahc, is presented in Figure 2.

Protocol uahc

• Common Reference String: The string consists of a
random string y (which determines the graph G), and
public-keys for the encryption schemes E and Ecca. (The
security parameter k is implicit.)

• Commit Phase:

1. On input (commit, sid, cid, Pj , b ∈ {0, 1}), Pi com-
putes z ← aHC(b). Next, Pi computes Cb =
E(Ecca(Pi, cid, r)) and sets C1−b to a random string
of length |Cb|. Finally, Pi records (cid, r, b), where r
is the randomness used in aHC and the encryptions,
and sends c = (sid, cid, z, C0, C1) to Pj .

2. Pj receives and records c, and outputs
(receipt, sid, cid, Pi,).

• Reveal Phase:

1. On input (Open, sid, cid), Pi retrieves (cid, r, b) and
sends to Pj .

2. Pj verifies the decommitment information and out-
puts (open, sid, cid, Pi, b) if it is correct.

Figure 2: The commitment protocol uahc

Let Fcrs denote the common reference string functional-
ity (that is, Fcrs provides all parties with a common, public
string drawn from the above distribution). Then, we have:

Proposition 1. Protocol uahc securely realizes Fmcom

in the Fcrs-hybrid model, assuming exostence of trapdoor
permutations.

498

4. UC ZERO-KNOWLEDGE
Universally composable zero-knowledge serves as a start-

ing point for our general construction. Specifically, in the
two-party case we present our constructions in the Fzk-
hybrid model, where Fzk is the ideal functionality described
in Figure 3. (In the multi-party case our constructions are
based on an extension of Fzk to the case of single prover
and multiple verifiers. See Section 7.)

Functionality Fzk

Fzk proceeds as follows, running with a prover P , a verifier
V and an adversary S, and parameterized with relation R:

• Upon receiving (ZK-prover, sid, x, w) from P : if R(x, w) =
1, then send (ZK-proof, sid, x) to V and S and halt. Oth-
erwise, ignore.

Figure 3: The ideal zero-knowledge functionality

Note that, in contrast to Fmcom where a single copy of
the functionality handles multiple commitments, Fzk han-
dles only a single proof (i.e., it sends only a single message
before halting). Indeed, our protocols in the Fzk-hybrid
model use multiple copies of Fzk. We then use universal
composition with joint state (JUC) in order to realize all
the copies of Fzk using a single copy of the reference string.
This is done as follows. The JUC theorem states that any
protocol in the Fzk-hybrid model can be composed with
any protocol ρ that securely realizes F̂zk, so that all calls to
Fzk are replaced with a single instance of ρ. (Here F̂zk is
the multi-session extension of Fzk, as described in Section
2.) It thus suffices to demonstrate protocols that securely

realized F̂zk. We point to two such protocols that work for
any NP relation. First is the adaptively secure, three-round
zero-knowledge protocol for graph Hamiltonicity described
in [12]. This protocol operates in the Fmcom-hybrid model,
and use only a single copy of Fmcom. Composing with pro-
tocol uahc from Section 3, we obtain a protocol that uses
a single copy of the reference string. Second is the non-
interactive zero-knowledge protocol of [19]. This protocol
operates in the Fcrs-hybrid model, assumes existence of
trapdoor permutations, and uses only a single copy of the
reference string. It is secure only against non-adaptive ad-
versaries.

5. UC TWO-PARTY COMPUTATION
This section presents an outline of our protocols for se-

curely realizing any two-party ideal functionality in a uni-
versally composable way. In high level, our construction is
similar to that of Goldreich, Micali and Wigderson [33, 31].
Recall that the GMW construction proceeds in two stages.
First, they present a protocol for securely realizing any func-
tionality in the semi-honest adversarial model (where the
adversary follows the protocol specification exactly, yet at-
tempts to learn more than is intended from the execution
transcript). Next, they construct a protocol compiler that
transforms any semi-honest protocol into a protocol that has
the same functionality in the malicious adversarial model.

5.1 The case of semi-honest adversaries
Let us first briefly recall the [33, 31] construction for se-

curely evaluating a function of the inputs of two parties. The

parties have access to an arithmetic circuit over GF (2) for
evaluating the given functionality. Furthermore they hold
shares of the input lines of the circuit. That is, for each
input line l, party A holds a value al and party B holds a
value bl, such that both al and bl are random under the re-
striction that al + bl equals the value of this line. Next, the
parties evaluate the circuit gate by gate, where for each gate
they compute shares of the output value of the gate, given
their shares of the input values. Addition gates are evalu-
ated by having each party locally add its shares of the input
values. Multiplication gates are evaluated using 1-out-of-4
Oblivious Transfer. Once the parties obtain shares of the
output gates of the circuit, they reveal their shares to the
prescribed party.
Our general construction, given idealized Oblivious Trans-

fer, is that of GMW. That is, we define an ideal Oblivi-
ous Transfer functionality, Fot, and show that in the Fot-
hybrid model the GMW protocol securely realizes any two-
party functionality in the presence of semi-honest, adaptive
adversaries. This holds unconditionally and even if the ad-
versary and environment are computationally unbounded.
(In fact, our construction is somewhat more general in that
it deals with reactive functionalities. This is done by al-
lowing the parties to hold shares of the state of the ideal
functionality between activations. See details in [13].)
Next we present protocols that securely realizes Fot in

the semi-honest case. In the non-adaptive case the protocol
of [25, 33, 31] suffices. In the adaptive case our protocol
uses non-committing encryption (as in [11]), with the addi-
tional property that there is an alternative key generation
algorithm that generates only public encryption keys with-
out the corresponding decryption key. (Following [16], we
call this the oblivious generation property. All known non-
committing encryption schemes have this property. Such
schemes exist under either the RSA assumption or the DDH
assumption.) In all, we show:

Proposition 2. Assume that trapdoor permutations and
two-party non-committing encryption protocols with the obliv-
ious generation property exist. Then, for any two-party ideal
functionality F , there exists a protocol Π that securely real-
izes F in the presence of semi-honest, adaptive adversaries.

5.2 Security against malicious adversaries
Having constructed a protocol that is universally compos-

able when the adversary is limited to semi-honest behavior,
we construct a protocol compiler to transform this protocol
into one that is secure even against malicious adversaries.
From here on, we refer to the protocol that is secure against
semi-honest adversaries as the “basic protocol”. In order to
obtain a protocol secure against malicious adversaries, we
need to enforce potentially malicious corrupted parties to
behave in a semi-honest manner. First and foremost, this
involves forcing the parties to follow the prescribed proto-
col. However, this only makes sense relative to a given input
and random tape. Furthermore, a malicious party must be
forced into using a uniformly chosen random tape. This is
because the security of the basic protocol depends on the
fact that the party has no freedom in setting its own ran-
domness. We begin with a description of the GMW com-
piler.

An informal description of the GMW compiler. In
light of the above discussion regarding enforcing semi-honest

499

behavior, the GMW compiler begins by having each party
commit to its input. Next, the parties run a coin-tossing
protocol in order to fix their random tapes. A simple coin-
tossing protocol in which both parties receive the same uni-
formly distributed string is not sufficient here. This is be-
cause the parties’ random tapes must remain secret. In-
stead, an augmented protocol is used, where one party re-
ceives a uniformly distributed string (to be used as its ran-
dom tape) and the other party receives a commitment to
that string. Now, each party holds its own input and uni-
formly distributed random-tape, and a commitment to the
other party’s input and random-tape. Therefore, each party
can be “forced” into behaving consistently with the commit-
ted input and random-tape.
We now describe how this behavior is enforced. A proto-

col specification is a deterministic function of a party’s view
consisting of its input, random tape and messages received
so far. As we have seen, each party holds a commitment to
the input and random tape of the other party. Furthermore,
the messages sent so far are public. Therefore, the assertion
that a new message is computed according to the protocol is
an NP-statement (and the party sending the message knows
an adequate NP-witness to it). Thus, the parties can use
zero-knowledge proofs to show that their steps are indeed
according to the protocol specification. Therefore, in the
protocol emulation phase, the parties send messages accord-
ing to the instructions of the basic protocol, while proving
at each step that the message they sent is correct. The key
point is that, due to the soundness of the proofs, even a
malicious adversary cannot deviate from the protocol spec-
ification without being detected. Therefore, the adversary
is limited to semi-honest behavior. Furthermore, since the
proofs are zero-knowledge, nothing “more” is revealed in the
compiled protocol than in the basic protocol. We conclude
that the security of the compiled protocol (against malicious
adversaries) is derived from the security of the basic protocol
(against semi-honest adversaries).
In summary, the GMW compiler has three components:

input commitment, coin-tossing and protocol emulation (in
which the parties prove that their steps are according to the
protocol specification).

Universally Composable Protocol Compilation. A
natural way of adapting the GMW compiler to the setting
of universally composable secure computation would be to
take the same compiler, but use universally composable com-
mitments, coin-tossing and zero-knowledge as sub-protocols.
However, such a strategy fails because, in contrast to GMW
where NP assertions can be stated and proven with respect
to the publicly known commitment string, in the Fmcom-
hybrid model no such string is available.
We thus follow a different strategy for constructing a uni-

versally composable compiler. Observe that in GMW the
use of a commitment scheme is not standard. Specifically,
although both parties commit to their inputs etc., they never
decommit. Rather, they prove NP-statements relative to
their committed values. Thus, a natural primitive to use
would be a “commit-and-prove” functionality, which is com-
prised of two phases. In the first phase, a party “commits”
(or is bound) to a specific value. In the second phase, this
party proves (in zero-knowledge) NP-statements relative to
the committed value. We formulate this notion in a univer-
sally composable commit-and-prove functionality, denoted
Fcp, and then use this functionality to implement all three

phases of the compiler. More specifically, our protocol com-
piler uses the “commit” phase of the Fcp functionality in or-
der to execute the input and coin-tossing phases of the com-
piler. The “prove” phase of the Fcp functionality is then
used to force the adversary to send messages according to
the protocol specification and consistent with the input and
the random-tape resulting from the coin-tossing (as fixed in
the commit phase of Fcp). The result is a universally com-
posable analog to the GMW compiler. We remark that in
the Fcp-hybrid model the compiler is unconditionally se-
cure against adaptive adversaries, even if the adversary and
the environment are computationally unbounded.
In Section 6, we show how to securely realize Fcp in the

Fzk-hybrid model. Furthermore, as noted in Section 4, Fzk

itself can be securely realized in the Fcrs-hybrid model,
assuming the existence of trapdoor permutations. We thus
have:

Theorem 3. Assume that trapdoor permutations and two-
party non-committing encryption protocols with the oblivious
sampling property exist. Then, for any two-party ideal func-
tionality F , there exists a protocol Π that securely realizes
F in the Fcrs-hybrid model in the presence of malicious,
adaptive adversaries.

We note that in the case of non-adaptive adversaries, non-
committing encryption is not needed, and trapdoor permu-
tations suffice.

6. TWO-PARTY COMMIT-AND-PROVE
We define the two-party “commit-and-prove” functional-

ity, Fcp, and present a protocol for securely realizing it. As
discussed in Section 5, this functionality, which is a gen-
eralization of the commitment functionality, is central for
constructing the general protocol compiler. As in the case
of Fzk, the Fcp functionality is parameterized by a rela-
tion R. The first stage is a commit phase in which the
receiver obtains a commitment to some value w. However,
the second phase is more general than plain decommitment.
Rather than revealing the committed value, the functional-
ity receives some value x from the committer, sends x to the
receiver, and asserts whether R(x, w) = 1. To see that this
is indeed a generalization of a commitment scheme, take R
to be the identity relation and x = w. Then, following the
prove phase, the receiver obtains w and is assured that this
is the value that was indeed committed to in the commit
phase.
In fact, Fcp is slightly more general, in the following two

ways. First it allows the committer to commit to multiple
secret values w�, and then have the relation R depend on
all these values in a single proof. (This extension is needed
to deal with reactive protocols, where inputs may be re-
ceived over time.) Second, the committer may ask to prove
multiple statements with respect to the same set of secret
values. Thus, when receiving a new (commit, sid, w) request
from the committer, Fcp will add the current w to the al-
ready existing list w of committed values. When receiving
a (CP-prover, sid, x) request, Fcp evaluates R on x and the
list w. Functionality Fcp is presented in Figure 4.
The Fcp functionality is defined so that only correct state-

ments (i.e., values x such that R(x, w) = 1) are received by
Pj in the prove phase. Incorrect statements are ignored by
the functionality, and the receiver Pj receives no notifica-
tion that an attempt at cheating in a proof took place. This

500

Functionality Fcp

Fcp proceeds as follows, running with a committer A, a re-
ceiver B and an adversary S, and with security parameter k:

• Commit Phase: Upon receiving a message
(commit, sid, B, w) from A where w ∈ {0, 1}k, ap-
pend the value w to the list w, and send the message
(receipt, sid, A) to B and S. (Initially, the list w is
empty.)

• Prove Phase: Upon receiving a message
(CP-prover, sid, x) from A, where x ∈ {0, 1}poly(k),
compute R(x, w): If R(x, w) = 1, then send B and S the
message (CP-proof, sid, x). Otherwise, ignore.

Figure 4: The commit-and-prove functionality

convention simplifies the description and analysis of our pro-
tocols. We note, however, that this is not essential. Error
messages can be added to the functionality (and realized) in
a straightforward way.

6.1 Securely Realizing Fcp

We present a protocol for securely realizing the Fcp func-
tionality in the Fzk-hybrid model. The commit phase in-
volves an interactive version of the aHC commitment scheme
of Section 3, and the prove phase of the protocol involves a
single invocation of Fzk.
We begin by describing the commit phase of the proto-

col. Notice that similarly to universally composable commit-
ments, the commitment used here must have the extractabil-
ity property. That is, a simulator must be able to extract
the committed value from the committer. The usual way of
obtaining such a property is by having the committer prove
in zero-knowledge that it knows the decommitment value.
Here, we do the same, utilizing the ideal Fzk functionality.
We note that the use of Fzk guarantees extractability re-
gardless of the commitment scheme in use. In particular, in
the case of non-adaptive adversaries the simple commitment
based on any one-way function and hard-core predicates suf-
fices. However, in order to achieve security against adaptive
adversaries, we require that the simulator be able to gener-
ate a simulated commitment that can be “explained” as a
commitment to any value (recall the discussion in Section
3). We thus base ourselves on scheme aHC presented there.
However, as presented there, aHC relies on the existence of
a common reference string, whereas here we only have ac-
cess to Fzk. We thus use an interactive version of aHC
where the receiver B choose the random string y and sends
y to the sender using Fzk, while proving that it knows a
preimage of y w.r.t. the one permutation f . (By extracting
this preimage, the simulator obtains the “trapdoor informa-
tion” it needs; see Section 3). In summary, B chooses a
random value x in the domain of the one way permutation
f , and sends (ZK-prover, sid, y = f(x), x)) to Fzk with
the appropriate relation. Then, in order to commit to w,
the committer A computes c = aHC(w) using randomness
r, and sends (ZK-prover, sid, (c, y), (w, r)) (the relation used
here is that c is a commitment to w by aHC, using random-
ness r). When B receives c, it adds c to its list c of accepted
commitments. In addition, the committer A keeps the list
w of all the values w committed to, and the lists r and c of

the corresponding random values and commitment values.
We now proceed to describe the prove phase of the proto-

col. As is to be expected, this phase involves a single invo-
cation of Fzk. Let R be the relation parameterizing Fcp.
Then, the relation RP parameterizing the Fzk functionality
that is used in the prove phase is defined by:

RP
def
= {((x, c, y), (w, r)) | ∀�, c� = aHC(w�; r�) & R(x, w) = 1}

where aHC(w; r) denotes a commitment to w using random-
coins r and based on the string y. Thus, the prove phase
consists of the committer proving some NP-statement re-
garding the values committed to previously. (The value
x is the NP-statement and the values committed to, plus
the randomness used, comprise the “witness” for x). Upon
receiving the proof message: (ZK-proof, sid, Pi, Pj , (x, c, y))
from Fzk, the receiver accepts if y is the string that it ini-
tially sent and c agrees with the list of commitments it has
previously received in this session. Note that if R ∈ NP,
then so too is RP .
The above-described protocol invokes Fzk three times,

each time for a different relation. For simplicity, we assume
that there are three different Fzk functionalities, each one
parameterized by the appropriate relation. That is, let F1

zk

be an Fzk functionality parameterized by the one-way func-
tion f . Let F2

zk be an Fzk functionality parameterized by
R2 = {((c, y), (w, r)) | c = aHC(w; r)}. Finally, let F3

zk

be an Fzk functionality parameterized by RP as described
above. The protocol is presented in Figure 5. We have:

Proposition 4. Protocol cp securely realizes Fcp in the
Fzk-hybrid model.

Proposition 4 is proven by utilizing the power of the ideal
zero-knowledge functionality Fzk. The key point is that the
ideal-model simulator receives all values sent by corrupted
parties to the Fzk functionalities. In particular, this means
that the simulator easily obtains the committed value from
a corrupted A, because A sends w and r to F2

zk in order
to commit. On the other hand, the security against adap-
tive adversaries is derived immediately from the fact that
aHC is adaptively secure, if the simulator knows a preim-
age of y. However, once again, the simulator can obtain
such a preimage from a corrupted B because B must send
this preimage to F1

zk. Finally, the prove messages are also
easily simulated. That is, upon receiving a message of the
form (CP-proof, sid, x) from Fcp, the simulator generates
the message that B would have seen in Protocol cp, which
is (ZK-proof, sid, (x, c, y)) (where y is the string sent earlier
by B and the vector c contains simulated commitments that
were sent earlier in the simulation). See details in [13].
Finally, we note that the commitment scheme aHC can be

implemented using one-way functions only. In order for this
to be the case, the underlying Com commitment used in
aHC is replaced by the commitment scheme of [41], that can
be based on any one-way function. Indeed, the [41] scheme
produces random-looking commitments, as required by aHC.
In addition, we modify the protocol so that B also sends the
receiver message from the [41] commitment in Step 1.

7. MULTI-PARTY UC-COMPUTATION
We discuss how the two-party construction of Theorem 3

is extended to the setting of multi-party computation, where
any number of parties may be corrupted. (Again, see [13]

501

Protocol cp

• Auxiliary Input: A security parameter k, and a session
identifier sid.

• Commit phase:

1. On input (Commit, sid, B, w), A sends sid to B.

2. . Upon receiving sid from A, B chooses x ∈R {0, 1}k,
computes y = f(x) (where f is a one-way function),
and sends (ZK-prover, sid, y, x) to F1

zk
.

3. Upon receiving (ZK-proof, sid, y) from F1
zk

, A
computes c = aHC(w; r) for a random r, and
using the y it just received. A then sends
(ZK-proof, sid, (c, y), (w, r)) to F2

zk
. In addition, A

stores in a vector w the list of all the values w that
were sent, and in vectors r and c the corresponding
lists of random strings and commitment values.

4. Upon receiving (ZK-proof, sid, (c, y′)) from F2
zk

, B
verifies that y′ equals the string y that it sent in
Step 1, outputs (receipt, sid) and adds the value c to
the list c. (This list is initially empty.) If verification
fails then B ignores the message.

• Prove phase:

1. On input (CP-prover, sid, x), A first checks that
R(x, w) = 1. If not, then it sends nothing. If yes,
then it sends (ZK-prover, sid, (x, c, y), (w, r)) to F3

zk
,

where w, r, c are the values described above.

2. Upon receiving (ZK-proof, sid, (x, c, y′)) from F3
zk

,
B verifies that y′ is the string that it sent above,
and that its list of commitments equals c. If so, then
it outputs (CP-proof, sid, x). Otherwise, it ignores
the message.

Figure 5: A protocol for realizing Fcp

for details.) We consider a multi-party network where arbi-
trary subsets of the parties wish to realize arbitrary (possibly
reactive) functionalities of their local inputs. For this pur-
pose, any set of parties that engage in a protocol execution
are assumed to have access to an authenticated, synchronous
broadcast channel among them. That is, each message car-
ries a round number and all messages of round i are delivered
before any message of round j > i. (We stress that these
guarantees are local to each protocol execution. No global
synchronization or broadcast is assumed.) The broadcast
channel is modeled by the following ideal broadcast func-
tionality, Fbc. All communication among the parties is done
via Fbc.

Functionality Fbc

Upon receiving a message (broadcast, sid,P, x) from Pi, where

P is a set of parties, send (broadcast, sid, Pi, x) to all parties

in P and to S, and halt.

Figure 6: The ideal broadcast functionality

The outline of our construction is as follows. Similarly
to the two-party case, we first construct a multi-party pro-
tocol that is secure against semi-honest adversaries. Then,
we construct a protocol compiler (like that of GMW), that
transforms semi-honest protocols into ones that are secure
even against malicious adversaries. This protocol compiler is

constructed using a one-to-many extension of the commit-
and-prove functionality, denoted F1:M

cp . In this brief out-
line, we focus exclusively on how the extension to F1:M

cp is
achieved. See Figure 7 for a formal definition of F1:M

cp .

Multi-party Functionality F1:M
cp

F1:M
cp

proceeds as follows, running with parties P1, . . . , Pn and
an adversary S, and with security parameter k:

• Commit Phase: Upon receiving a message
(commit, sid,P, w) from Pi where P is a set of par-
ties and w ∈ {0, 1}k, append the value w to the list w,
record P, and send the message (receipt, sid, Pi) to the
parties in P and S. (Initially, the list w is empty.)

• Prove Phase: Upon receiving a message
(CP-prover, sid, x) from Pi, where x ∈ {0, 1}poly(k),
compute R(x, w): If R(x, w) = 1, then send the message
(CP-proof, sid, Pi, x) to the parties in P and to S.
Otherwise, ignore.

Figure 7: Multi-party commit-and-prove

To realize F1:M
cp , we first realize the multi-party exten-

sions of Fmcom and Fzk. These functionalities, denoted
F1:M
mcom and F1:M

zk , are defined analogously to F1:M
cp . Re-

alizing F1:M
mcom is easy, since the commitment protocol of

Section 3 is non-interactive. Therefore, a committer Pi

can commit to all parties by simply broadcasting its com-
mitment string, and F1:M

mcom, the multi-party extension of
Fmcom, is immediately obtained. Realizing F1:M

zk is a bit
more involved, since we do not know how to securely realize
zero-knowledge for adaptive adversaries without interaction.
Nevertheless, a multi-party zero-knowledge protocol can be
achieved as follows, using the methodology of [31]. The
prover runs a copy of the three-round protocol of [12] with
each receiver over the broadcast channel, using F1:M

mcom for
all the commitments. (Using F1:M

mcom guarantees that all
parties receive all the commitments). Furthermore, each
verifying party checks that the proofs of all the other par-
ties are also accepting (this is possible because the proof of
Hamiltonicity is publicly verifiable and because all parties
receive all the commitments). Thus, at the end of the proto-
col, all honest parties agree (without any additional commu-
nication) on whether the proof was successful or not. (Note
also that the adversary cannot cause an honest prover’s
proof to be rejected.) We note that this protocol (denoted

mzk) can in fact be used to realize F̂1:M
zk , the multi-session

extension of F1:M
zk , using a single copy of F1:M

mcom, and thus
a single copy of the reference string. Consequently, we can
now use universal composition with joint state to compose
any protocol in the F1:M

zk -hybrid model (that potentially uses
multiple copies of F1:M

zk) with a single instance of protocol
mzk.
It remains to describe how to realize F1:M

cp in the F1:M
zk -

hybrid model. We present the following protocol, mcp. The
prove phase of mcp is the same as in protocol cp, except
that F1:M

zk is used instead of Fzk. The commit phase of mcp

proceeds as follows. Let Pi be the committer. Then, for
every j �= i, party Pj first chooses a value xj in the domain
of the one-way function f , and computes yj = f(xj). Next,
Pj broadcasts yj and proves that it knows a preimage xj for
yj , using F1:M

zk with the appropriate relation. Finally, the
committer Pi separately commits to w using every yj and

502

proves (using a single instance of F1:M
zk with the appropriate

relation) that: (1) it knows all the decommitments, and (2)
all the commitments are to the same w.
Finally, we note that, as in the two-party case, a multi-

party protocol compiler can be constructed in the F1:M
cp -

hybrid model, with no further assumptions. We conclude
with the following theorem:

Theorem 5. Assume that trapdoor permutations and multi-
party non-committing encryption protocols with the oblivi-
ous sampling property exist. Then, for any multi-party ideal
functionality F , there exists a protocol Π that securely re-
alizes F in the (Fbc,Fcrs)-hybrid model in the presence
of malicious, adaptive adversaries, and for any number of
corruptions.

As in the two-party setting, for the case of non-adaptive
adversaries, non-committing encryption protocols are not
needed, and secure protocols are obtained assuming only
the existence of trapdoor permutations.

8. REFERENCES
[1] D. Beaver Secure Multi-party Protocols and

Zero-Knowledge Proof Systems Tolerating a Faulty
Minority, Journal of Cryptology, Vol. 4, pp. 75–122, 1991.

[2] D. Beaver, and S. Goldwasser, Multiparty Computation
with Faulty Majority, FOCS 89.

[3] M. Ben-Or, S. Goldwasser and A. Wigderson,
“Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation”, STOC 1998.

[4] M. Blum, “Coin flipping by telephone”, IEEE Spring
COMPCOM, pp. 133-137, Feb. 1982.

[5] M. Blum How to Prove a Theorem So No One Else Can
Claim It. Proceedings of the International Congress of
Mathematicians, Berkeley, California, USA, 1986, pp.
1444-1451.

[6] M. Blum, P. Feldman and S. Micali, Non-interactive
zero-knowledge and its applications. STOC 88.

[7] M. Blum, A. De Santis, S. Micali and G. Persiano,
Non-Interactive Zero-Knowledge Proofs. SIAM Journal
on Computing, vol. 6, December 1991, pp. 1084–1118.

[8] G. Brassard, D. Chaum and C. Crépeau, Minimum
Disclosure Proofs of Knowledge, JCSS, v. 37, pp 156-189.

[9] R. Canetti Security and composition of multi-party
cryptographic protocols”, Journal of Cryptology, Vol. 13,
No. 1, winter 2000.

[10] R. Canetti, “Universally Composable Security: A New
paradigm for Cryptographic Protocols”, 42nd FOCS,
2001. Full version at http://eprint.iacr.org/2000/067.

[11] R. Canetti, U. Feige, O. Goldreich and M. Naor.
Adaptively Secure Multi-Party Computation. STOC 96.

[12] R. Canetti and M. Fischlin. Universally Composable
Commitments. CRYPTO 01.

[13] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai.
Universally Composable Two-Party and Multiparty
Secure Computation. In the ePrint archive:
http://eprint.iacr.org.

[14] R. Canetti and T. Rabin. Universal Composition with
Joint State. IACR’s Eprint archive,
http://eprint.iacr.org/2002/.

[15] D. Chaum, C. Crepeau, and I. Damgard, Multiparty
Unconditionally Secure Protocols, STOC 88.

[16] I. Damgard and J. Nielsen. Improved non-committing
encryption schemes based on general complexity
assumption. CRYPTO 2000.

[17] I. Damgard and J. Nielsen Perfect Hiding or Perfect
Binding Universally Composable Commitment Schemes
with Constanst Expansion Factor. Manuscrtipt on
Damgard homepage, 2001.

[18] Y. Dodis and S. Micali Secure Computation, CRYPTO
2000.

[19] A. DeSantis, G. DiCrescenzo, R. Ostrovsky, G. Persiano,
A. Sahai. Robust Non-interactive Zero-Knowledge.
CRYPTO 2001.

[20] G. DiCrescenzo, Y. Ishai, and R. Ostrovsky.
Non-Interactive and Non-Malleable Commitment. STOC
98.

[21] G. DiCrescenzo, J. Katz, R. Ostrovsky and A. Smith
Efficient and Non-interactive Non-malleable
Commitment, Eurocrypt 2001.

[22] A. DeSantis and G. Persiano. Zero-Knowledge Proofs of
Knowledge Without Interaction. FOCS 1992

[23] D. Dolev, C. Dwork and M. Naor, Non-malleable
cryptography, SIAM. J. Computing, Vol. 30, No. 2, 2000,
pp. 391-437.

[24] C. Dwork, M. Naor, and A. Sahai. Concurrent
Zero-Knowledge. STOC 1998.

[25] S. Even, O. Goldreich and A. Lempel, A randomized
protocol for signing contracts, CACM, vol. 28, No. 6,
1985, pp. 637-647.

[26] U. Feige and A. Shamir. Zero-Knowledge Proofs of
Knowledge in Two Rounds. CRYPTO 1989.

[27] U. Feige, D. Lapidot, and A. Shamir, Multiple
non-interactive zero knowledge proofs based on a single
random string. FOCS 1990.

[28] Z. Galil, S, Haber, and M. Yung Cryptographic
Computation: Secure Fault-Tolerant Protocols and the
Public-Key Model, Crypto 1987.

[29] J. Garay and P. MacKenzie Concurrent Oblivious
Transfer, FOCS 2000.

[30] O. Goldreich, S. Micali and A. Wigderson, Proofs that
Yield Nothing but their Validity or All Languages in NP
Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No.
1, pages 691–729, 1991.

[31] O. Goldreich. Secure Multi-Party Computation.
Manuscript. Preliminary version, 1998.
www.wisdom.weizmann.ac.il/∼oded/pp.html.

[32] O. Goldreich and L. Levin, A Hard Predicate for All
One-way Functions. STOC 1989.

[33] O. Goldreich, S. Micali and A. Wigderson. How to Play
any Mental Game – A Completeness Theorem for
Protocols with Honest Majority. STOC 1987. For details
see [31].

[34] S. Goldwasser, and L. Levin, Fair Computation of
General Functions in Presence of Immoral Majority,
CRYPTO 1990.

[35] S. Goldwasser and S. Micali. Probabilistic Encryption. In
JCSS 28(2), pages 270-299, 1984.

[36] S. Goldwasser, S. Micali and C. Rackoff, The Knowledge
Complexity of Interactive Proof Systems, SIAM Journal
on Comput., Vol. 18, No. 1, 1989, pp. 186-208.

[37] J. Kilian Uses of Randomness in Algorithms and
Protocols, Chapter 3, The ACM Distinghished
Dissertation 1989, MIT press.

[38] E. Kushilevitz, S. Micali and R. Ostrovsky, Reducibility
and Completeness In Multi-Party Private Computations,
FOCS 94.

[39] Y. Lindell, A. Lysyanskaya and T. Rabin, On the
composition of authenticated Byzantine agreement,
STOC 2002.

[40] S. Micali and P. Rogaway, Secure Computation,
unpublished manuscript, 1992. Preliminary version in
CRYPTO ’91, LNCS 576, Springer-Verlag, 1991.

[41] M. Naor, Bit Commitment using Pseudorandom
Generators. Journal of Cryptology, Vol. 4, pages
151–158, 1991.

[42] B. Pfitzmann and M. Waidner, Composition and integrity
preservation of secure reactive systems, 7th ACM Conf.
on Computer and Communication Security, 2000, pp.
245-254.

[43] M. Rabin, How to exchange secrets by oblivious transfer,
Tech. Memo TR-81, Aiken Computation Laboratory,
Harvard U., 1981.

[44] T. Rabin and M. Ben-Or Verifiable Secret Sharing and
Multi-party Protocols with Honest Majority, STOC 1989.

[45] R. Richardson and J. Kilian On the Concurrent
Composition of Zero-Knowledge Proofs. Eurocrypt 1999.

[46] A. Sahai Non-Malleable Non-Interactive Zero-Knowledge
and Adaptive Chosen-Ciphertext Security. FOCS 1999.

[47] A. Yao How to generate and exchange secrets, FOCS
1986.

503

