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Abstract We show a new and constructive proof of the following language-
theoretic result: for every context-free language L, there is a bounded context-free
language L′ ⊆ L which has the same Parikh (commutative) image as L. Bounded
languages, introduced by Ginsburg and Spanier, are subsets of regular languages
of the form w∗1w

∗
2 · · ·w∗m for some w1, . . . , wm ∈ Σ∗. In particular bounded context-

free languages have nice structural and decidability properties. Our proof proceeds
in two parts. First, we give a new construction that shows that each context free
language L has a subset LN that has the same Parikh image as L and that can
be represented as a sequence of substitutions on a linear language. Second, we
inductively construct a Parikh-equivalent bounded context-free subset of LN .

We show two applications of this result in model checking: to underapproximate
the reachable state space of multithreaded procedural programs and to underap-
proximate the reachable state space of recursive counter programs. The bounded
language constructed above provides a decidable underapproximation for the orig-
inal problems. By iterating the construction, we get a semi-algorithm for the origi-
nal problems that constructs a sequence of underapproximations such that no two
underapproximations of the sequence can be compared. This provides a progress
guarantee: every word w ∈ L is in some underapproximation of the sequence,
and hence, a program bug is guaranteed to be found. In particular, we show that
verification with bounded languages generalizes context-bounded reachability for
multithreaded programs.
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1 Introduction

Many problems in program analysis reduce to undecidable problems about context-
free languages. For example, checking safety properties of multithreaded recur-
sive programs reduces to checking emptiness of the intersection of context-free
languages [19,3]. Checking reachability for recursive counter programs relies on
context-free languages to describe valid control flow paths.

We study underapproximations of these problems, with the intent of build-
ing tools to find bugs in systems. In particular, we study underapproximations
in which one or more context-free languages arising in the analysis are replaced
by their subsets in a way that (P1) the resulting problem after the replacement
becomes decidable and (P2) the subset preserves “many” strings from the original
language. Condition (P1) ensures that we have an algorithmic check for the un-
derapproximation. Condition (P2) ensures that we are likely to retain behaviors
that would cause a bug in the original analysis.

We show in this paper an underapproximation scheme using bounded languages

[13,12]. A language L is bounded if there exist k ∈ N and finite words w1, w2, . . . , wm
such that L is a subset of the regular language w∗1 · · ·w∗m. In particular, context-
free bounded languages (hereunder bounded languages for short) have stronger
properties than general context-free languages: for example, it is decidable to check
if the intersection of a context-free language and a bounded language is non-empty
[13]. For our application to verification, these decidability results ensure condition
(P1) above.

The key to condition (P2) is the following Parikh-boundedness property: for
every context-free language L, there is a bounded language L′ ⊆ L such that the
Parikh images of L and L′ coincide. (The Parikh image of a word w maps each
letter of the alphabet to the number of times it appears in w, the Parikh image of
a language is the set of Parikh images of all words in the language.) A language
L′ meeting the above conditions is called a Parikh-equivalent bounded subset of L.
Intuitively, L′ preserves “many” behaviors as for every string in L, there is a
permutation of its letters that matches a string in L′.

The Parikh-boundedness property was first proved in [16,2], however, the chain
of reasoning used in these papers made it difficult to see how to explicitly construct
the Parikh-equivalent bounded subset. Our paper gives a direct and constructive
proof of the theorem. We identify three contributions in this paper.

Explicit construction of Parikh-equivalent bounded subsets. Our construc-
tive proof has two parts. First, given a context-free language L, we show how to
compute a subset of L that has the same Parikh image and that can be represented
as a finite sequence of substitutions on a linear grammar. (A linear grammar is
a context-free grammar where each rule has at most one non-terminal on the
right-hand side.)

Second, we provide a direct constructive proof that takes as input such a se-
quence of linear substitutions, and constructs by induction a Parikh-equivalent
bounded subset of the language denoted by the sequence. Our constructions are
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optimal, and construct a bounded expression which is exponential in the size of
the original grammar. We show that the exponential is necessary.

Along the way, for regular languages, we show an analogous Parikh-
boundedness property (where the bounded language is also regular), and give
a construction that is exponential in the size of the alphabet but polynomial in
the size of the regular expression. Again, we show that the construction is optimal
by showing an exponential lower bound in the size of the alphabet.

Reachability analysis of multithreaded programs with procedures. Using
the above construction, we obtain a semi-algorithm for reachability analysis of
multithreaded programs with the intent of finding bugs. To check if configuration
(c1, c2) of a recursive 2-threaded program is reachable, we construct the context-
free languages L0

1 = L(c1) and L0
2 = L(c2) respectively given by the execution paths

whose last configurations are c1 and c2, and check if either L′1∩L0
2 or L0

1∩L′2 is non-
empty, where L′1 = L0

1∩w∗1 · · ·w∗m and L′2 = L0
2∩v∗1 · · · v∗l are two Parikh-equivalent

bounded subsets of L0
1 and L0

2, respectively. If either intersection is non-empty,
we have found a witness trace. Otherwise, we construct L1

1 = L0
1 ∩ w∗1 · · ·w∗m and

L1
2 = L0

2∩v∗1 · · · v∗l in order to exclude, from the subsequent analyses, the execution
paths we already inspected. We continue by rerunning the above analysis on L1

1

and L1
2. If (c1, c2) is reachable, the iteration is guaranteed to terminate; if not,

it could potentially run forever. Moreover, we show our technique subsumes and
generalizes context-bounded reachability [18].

Reachability analysis of programs with counters and procedures. We also
show how to underapproximate the set of reachable states of a procedural pro-
gram that manipulates a finite set of counters. This program is given as a counter
automaton A (see [17] for a detailed definition) together with a context-free lan-
guage L over the transitions of A. Our goal is to compute the states of A that are
reachable using a sequence of transitions in L.

A possibly non terminating algorithm to compute the reachable states of A
through executions in L is to (1) find a Parikh-equivalent bounded subset L′ of
L; (2) compute the states that are reachable using a sequence of transitions in
L′ (as explained in [17], this set is computable if (i) some restrictions on the
transitions of A ensures the set is Presburger definable and (ii) L′ is bounded, i.e.
L′ ⊆ w∗1 · · ·w∗m); and (3) rerun the analysis using for L ∩ w∗1 · · ·w∗m so that runs
already inspected are omitted in every subsequent analyses. Again, every path in
L is eventually covered in the iteration.

Related Work. Bounded languages were introduced and studied by Ginsburg and
Spanier [13] (see also [12]). The existence of a bounded, Parikh-equivalent subset
for a context-free language was shown in [2] using previous results on languages
in the Greibach hierarchy [16]. In an earlier version of our proof [11], we showed
the existence of a language representable as a sequence of linear transformations
of a linear language which is Parikh-equivalent to a context-free language using
Newton’s iterations [9] on the language and Parikh semirings. (Such a construction
was independently done in [8].) In this paper, we give a new, and greatly simplified,
construction using some recent observations by [7,9].

Bounded languages have been proposed by Kahlon for tractable reachability
analysis of multithreaded programs [15]. His observation is that in many practical
instances of multithreaded reachability, the languages are actually bounded. If this
is true, his algorithm checks the emptiness of the intersection (using the algorithm
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in [13]). In contrast, our results are applicable even if the boundedness property
does not hold. Recently, [6] introduced a technique for verification of multithreaded
programs based on patterns which are expressions of the form w∗1 · · ·w∗m.

For multithreaded reachability, context-bounded reachability [18,20] is a popular
underapproximation technique which tackles the undecidability by limiting the
search to those runs where the active thread changes at most k times. Our algo-
rithm using bounded languages subsumes context-bounded reachability, and can
capture unboundedly many synchronizations in one analysis.

For underapproximating reachable states of a counter machine under context-
free restrictions, we are not aware of any other work trying to solve this problem.
Notice that the problem can be analysed with existing techniques by encoding
the stack using counters (after all, counter machines are Turing-powerful). How-
ever we believe that keeping the natural structure of context-free languages and
approximating it through bounded languages allows us to compute reachable con-
figurations which cannot be computed using existing techniques. This is because
bounded languages allows to isolate the control flow from the data in programs.

2 Preliminaries

We assume the reader is familiar with the basics of language theory (see, e.g.,
[14]). An alphabet Σ is a finite non-empty set of letters. The concatenation L�L′
of two languages L,L′ ⊆ Σ∗ is defined using word concatenation as L � L′ =
{l · l′ | l ∈ L ∧ l′ ∈ L′}. For the sake of clarity we sometimes abbreviate w · w′ and
L�L′ as ww′ and LL′, respectively. A bounded expression over Σ is a language of the
form w∗1 · · ·w∗m for some fixed w1, . . . , wm ∈ Σ∗. The size of a bounded expression
w∗1 . . . w

∗
m is defined as

∑m
i=1 |wi|.

Vectors. For p ∈ N, we write Zp and Np for the set of p-dim vectors (or simply
vectors) of integers and naturals, respectively. We write 0 for the vector (0, . . . , 0)
and ei the vector (z1, . . . , zp) ∈ Np such that zj = 1 if j = i and zj = 0 other-
wise. Addition on p-dim vectors is the componentwise extension of its scalar coun-
terpart, that is, given (x1, . . . , xp), (y1, . . . , yp) ∈ Zp (x1, . . . , xp) + (y1, . . . , yp) =
(x1 + y1, . . . , xp + yp). Given λ ∈ N and x ∈ Zp, we write λx as the λ-times sum
x+ · · ·+ x. Using vector addition, we define the operation u on sets of vectors as
follows: given Z,Z′ ⊆ Np, let Z u Z′ = {z + z′ | z ∈ Z ∧ z′ ∈ Z′}.

Parikh Image. Give Σ a fixed linear order: Σ = {a1, . . . , ap}. The Parikh image of
a letter ai ∈ Σ, written ΠΣ(ai), is ei. The Parikh image is extended to words of Σ∗

as follows: ΠΣ(ε) = 0 and ΠΣ(u ·v) = ΠΣ(u)+ΠΣ(v). Finally, the Parikh image of
a language on Σ∗ is the set of Parikh images of its words. Thus, the Parikh image
maps 2Σ

∗
to 2Np

. When it is clear from the context we generally omit the subscript
in ΠΣ . Two languages L1 and L2 are Parikh equivalent if Π(L1) = Π(L2).

The following lemma establishes a simple property Π we need in the sequel.

Lemma 1 (preservation of Π) Let X,Y ⊆ Σ∗ we have Π(X�Y ) = Π(X)uΠ(Y ).
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Proof

Π(X � Y ) = {Π(w) | w ∈ X � Y } def. of Π

= {Π(x · y) | x ∈ X ∧ y ∈ Y } def. of �
= {Π(x) +Π(y) | x ∈ X ∧ y ∈ Y } def. of Π

= {a+ b | a ∈ Π(X) ∧ b ∈ Π(y)}
= Π(X) uΠ(Y ) def. of u

ut

Context-free Languages. A context-free grammar (CFG) G is a tuple (X , Σ,P)
where X is a finite non-empty set of variables (non-terminal letters), Σ is an
alphabet of terminal letters and P ⊆ X × (Σ ∪X )∗ a finite set of productions (the
production (X,w) may also be noted X → w). Given two strings u, v ∈ (Σ ∪ X )∗

we define the derivation relation u⇒ v, if there exists a production (X,w) ∈ P and
some words y, z ∈ (Σ ∪X )∗ such that u = yXz and v = ywz. A partial derivation is
a finite sequence u1 ⇒ u2 ⇒ ul for some l and strings u1, . . . , ul ∈ (Σ∪X )∗. We use
⇒∗ for the reflexive transitive closure of ⇒. A word w ∈ Σ∗ is recognized by the
grammar G from the state X ∈ X if X ⇒∗ w. Given X ∈ X , the language LX(G)
is given by {w ∈ Σ∗ | X ⇒∗ w}. A language L is context-free (CFL) if there exists
a context-free grammar G = (X , Σ,P) and an initial variable X ∈ X such that is
L = LX(G). A linear (resp. regular) grammar G is a CFG where each production is
in X ×Σ∗(X ∪{ε})Σ∗ (resp. X ×Σ∗(X ∪{ε})). A language L is linear (resp. regular)
if L = LX(G) for some linear (resp. regular) grammar G and initial variable X of
G. In what follows we usually write regular grammar as follows R = (Q,Σ, δ). A
CFL L is bounded if it is a subset of some bounded expression.

Proof Plan. The main result of the paper is the following.

Theorem 1 For every CFL L, there is an effectively computable CFL L′ such that (i)
L′ ⊆ L, (ii) Π(L) = Π(L′), and (iii) L′ is bounded.

We actually solve the following related problem in our proof.

Problem 1 Given a language L, compute a bounded expression B such that

Π(L ∩B) = Π(L) .

In this paper we study the particular problem of solving Pb. 1 when the lan-
guage L is a CFL. If we can compute such a bounded expression B, then we can
compute the CFL L′ = B ∩ L which satisfies conditions (i) to (iii) of the Th. 1.
Thus, solving Pb. 1 proves the theorem constructively.

We solve Pb. 1 for a CFL L as follows: (1) we find a CFL L′ such that L′ ⊆ L,
Π(L′) = Π(L), and L′ has a “simple” structure (Sect. 3) and (2) then we show
how to compute a bounded expression B which is a solution to Pb. 1 for instance
L′. Observe that because L′ ⊆ L and Π(L) = Π(L′), we find that if B is a solution
to Pb. 1 for instance L′, then so is B for instance L. Along Sect. 4, we also give
some bounds on the size the smallest bounded expression which solves Pb. 1 for
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various classes of instances like regular, linear and context-free languages. Finally,
Sect. 5 provides applications of the result for program analysis problems.

We conclude this section to point out that the existence of a solution to Pb. 1
is not a trivial property of every class of languages. In fact, the existence of a
solution to Pb. 1 for context-sensitive languages is not guaranteed as shown by
the following example taken from [2]. Consider Pb. 1 for the language

L1 = {10102 . . . 10h | h ≥ 1}

there is no bounded expression which solves Pb. 1, namely Π(L1∩B) 6= Π(L1) for
every bounded expression B. Observe that Π(L1) is not semilinear.

Moreover, consider L2 = L1 ∪ {1i0j | (j, i) /∈ Π(L1)}1. It follows from [2] that
Pb. 1 for instance L2 has no solution. It is worth pointing that Π(L2) = N2 is
semilinear, but L2 ∩ 1∗0∗ is not.

3 A Parikh-Equivalent Representation

This section is devoted to show that given a CFL L, we can compute a language
L′ such that L′ ⊆ L, Π(L′) = Π(L), and L′ has a “simple” representation.

3.1 Derivation tree, yield and dimension

In this section, we follow ideas from [9] and give tree versions of the semantics
of context-free grammars. Let G = (X , Σ,P) be a fixed CFG. In the following, we
will define some ordered unbounded trees with nodes labeled by production rules
(X,α) ∈ P. For a given tree t, define λv(t) = X if the root of t is labeled by
(X,α) ∈ P.

Definition 1 (Derivation tree, yield) The derivation trees of G and their yields

are inductively defined as follows:

– For every production (X,α) ∈ P ∩ (X ×Σ∗), the tree t consisting of one single
node labeled by (X,α) is a derivation tree of G. Its yield Y(t) is equal to α.

– For every production (X,α) ∈ P such that α = a1X1a2X2 · · · akXkak+1 for
some k ≥ 1, let t1, . . . , tk be derivation trees of G such that for every 1 ≤ i ≤ k,
λv(t1) = Xi. Then the tree t with root labelled by (X,α) and having t1, . . . , tk
as (ordered) children is also a derivation tree of G, and its yield Y(t) is equal
to a1Y(t1) · · · akY(tk)ak+1.

The yield Y(T ) of a set T of derivation trees is defined by Y(T ) =
⋃
t∈T Y(t). We

denote by T (G) the set of derivation trees of G, simply writing T if G is clear from
the context. Moreover we define TX(G) to be the subset of all derivation trees
t ∈ T (G) such that λv(t) = X. In what follows, we often abbreviate derivation tree

to tree.

1 Σ = {0, 1} is ordered as 0 ≺ 1
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Observe first that, since every word in LX(G) is the yield of some derivation
tree, we have LX(G) = Y(TX).

We want to find a Parikh-equivalent sublanguage of LX(G) for a fixed X ∈ X .
This will be achieved by showing that a subset of TX is a Parikh-equivalent to
LX(G). This subset of TX is characterized using the notion of dimension of a
derivation tree.

Definition 2 (Dimension) The dimension d(t) of a tree t is inductively defined
as follows:

1. If t is a node with no children, then d(t) = 0.
2. If t has exactly one child t1, then d(t) = d(t1).
3. If t has at least two children, let t1, t2 be two distinct children of t such that

d(t1) ≥ d(t2) and d(t2) ≥ d(t′) for every child t′ 6= t1. Then

d(t) =

{
d(t1) + 1 if d(t1) = d(t2)

d(t1) if d(t1) > d(t2)

We denote by Di(G) (resp. DiX(G)) the set of derivation trees of dimension at
most i (resp. and with λv-labels X). We omit the argument G if it is clear from
the context.

The next lemma states that every tree is Parikh-equivalent to a tree of at most
dimension n where n = |X | is the number of variables in G. This result has been
proved in [9,7] with slightly different notations and in a different context so we do
not reformulate the proof here.

Lemma 2 Let G be a CFG with n variables. For each tree t ∈ T , there is a tree t′ ∈ Dn
such that t and t′ have the same number of nodes, the set of λv-labels in for all subtrees

in t and t′ coincide and Π(Y(t)) = Π(Y(t′)).

We shall use the following simple corollary of this result.

Corollary 1 Let G = (X , Σ,P) be a context-free grammar and n = |X |. For every

variable X ∈ X , the language Y(DnX) is a subset of LX(G) and is Parikh-equivalent

to LX(G).

Given n and a context-free grammar G = (X , Σ,P), we define the context-free
grammar G[n] = (X [n], Σ,P [n]) which annotates the variables of X with a positive
integer superscript bounding the dimension of the underlying derivation tree. We
will then show that for every X ∈ X we have LX[n](G[n]) = Y(DnX).

Our definition is inspired by an example appearing in [9].

Definition 3 Let G = (X , Σ,P) be a CFG and n ∈ N. Define the CFG G[n] =
(X [n], Σ,P [n]) as follows. Define X [n] = {X [i] | 0 ≤ i ≤ n ∧X ∈ X}. Define P [n] as
the smallest set such that (X [i], α) ∈ P [n] if (X, erase(α)) ∈ P and either α ∈ Σ∗
or ∃α1 ∈ (X ∪Σ)∗, α2 ∈ (X ∪Σ)∗, Y ∈ X : α = α1Y

[i]α2 and Sidx(α1) ∪ Sidx(α2) ⊆
{i− 1} where erase(α) removes the superscript from every variable occurrence in
α and Sidx(α) returns the set of superscripts that occurs in α.
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Example 1 Let us define the CFG G and G[1] thereof which are given by:

X → AX ′ | $ X [1] → A[0]X ′[1] | A[1]X ′[0] | $ A[1] → a

X ′ → XB X[0] → $ A[0] → a

A→ a X ′[1] → X [1]B[0] | X [0]B[1] B[1] → b

B → b B[0] → b

Note that there is no rule with left hand side having the decorated variable X ′[0]

by definition.

Lemma 3 Let G = (X , Σ,P) be a CFG, X ∈ X and n ∈ N. Let G[n] be given as in

def. 3, we have LX[n](G[n]) = Y(DnX).

Proof We extend the substitution erase to derivation trees by applying it recur-
sively over every label (X [i], α), mapping it to (erase(X [i]) = X, erase(α)). Then,
we show by induction on h ∈ N that for every derivation tree t of G of height at
most h we have for every n ≤ h (the dimension of a tree is always less or equal
than its height):

t ∈ DnX(G) ⇐⇒ t ∈ erase(TX[n](G
[n]))

For the base case, let h = 0. Let t ∈ D0
X(G) be a tree of height 0. This is a

childless root labelled by (X,α) ∈ P with α ∈ Σ∗. By definition of G[0] we find
that (X [0], erase(α) = α) ∈ P [0]. Hence, the tree t′ consisting of the childless root
labelled (X [0], α) belongs to TX[0](G[0]) and t = erase(t′).

We now suppose that h > 0 and that the result holds for every tree of height
at most h − 1. Let t ∈ DnX(G) with height h. By definition of the dimension, we
have three cases.

– If t has no child, then its height is 0, and we can conclude by the base case.
– If t has exactly one child t1, then d(t1) = d(t). Let Y be such that Y = λv(t1).

Clearly the height of t1 is less than the one of t and so, by induction hypothesis,
there exists t′1 ∈ TY [n](G[n]) with t1 = erase(t′1). Moreover, if (X,α) is the root
of t, we necessarily can decompose α as α1Y α2, with α1, α2 ∈ Σ∗. Then the tree
t′ rooted by (X [n], α1Y

[n]α2) ∈ P [n] with only child t′1 is clearly in TX[n](G[n])
and it further verifies t = erase(t′).

– If t has at least two children, let (X, a1Y1a2 · · · akYkak+1) be the label of the
root of t. The definition of dimension shows that there exists two distinct
subtrees ti, tj of t such that d(ti) ≥ d(tj) and d(tj) ≥ d(t′) for every child
t′ 6= ti. Moreover, we have:

d(t) =

{
d(ti) + 1 if d(ti) = d(tj)

d(ti) if d(ti) > d(tj)

Every child t` has height less or equal than h− 1, so we conclude by induction
hypothesis that for ` 6= i there exists a derivation tree t′` ∈ TY [n−1]

`

(G[n]) (as

G[n−1] is included in G[n]) such that t` = erase(t′`), and that there exists a
derivation tree t′i ∈ TY [n]

`

(G[n]) such that ti = erase(t′i). Then the tree t′ with

root labelled (X [n], a1Y
[n−1]
1 a2 · · ·Y [n−1]

i−1 aiY
[n]ai+1Y

[n−1]
i+1 · · · akY

[n−1]
k ak+1) ∈

P [n] and with children t′1, . . . , t
′
k ∈ T (G[n]) is a derivation tree of G[n] with

t = erase(t′).
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The reverse implication is proved similarly. ut

Lemma 3 and Cor. 1: let L be a CFL given by LX(G) where G = (X , Σ,P)
is a CFG with n variables and X ∈ X , if B be solution to Pb. 1 for the instance
LX[n](G[n]) then so is B for the instance L.

In order to compute the bounded expression B solving Pb. 1, in the following
section, we give an equivalent representation of LX[n](G[n]). Roughly, the idea
is to give a representation in n + 1 layers, such that layer i will simulate the
derivation steps of G[n] where only non-terminals with superscript i are expanded.
Formally each layer will correspond to a linear context-free grammar. In order to
simulate a derivation of LX[n](G[n]), we need the layers to interact with each other.
Interactions will be formally defined using substitutions.

3.2 t-fold composition

A substitution σ from alphabet Σ1 to alphabet Σ2 is a function which maps every
word over Σ1 to a set of words of Σ∗2 such that σ(ε) = {ε} and σ(u ·v) = σ(u) ·σ(v).
A homomorphism h is a substitution such that for each word u, h(u) is a singleton.
We write σ[a/b] : Σ1 ∪ {a} → Σ1 ∪ {b} for the substitution which maps a to b and
leaves all other letters unchanged.

Given X and i ≥ 0, define the set vX (i) = {vX(i) | X ∈ X} of letters. Moreover,
define the substitution τi which replaces each X [i] by vX(i) . Finally, define τ−1 as
the identity.

Definition 4 Given the CFG G[n] = (X [n], Σ,P [n]) define the family
{G(0), . . . , G(n)} of CFGs as follows. For each i ∈ {0, . . . , n}, define G(i) =
(X (i), Σ(i),P(i)) where X (i) = {X(i) | X [i] ∈ X [n]},

Σ(i) = Σ ∪

{
vX (i−1) if i > 0

∅ otherwise

and P(i) is the smallest set given by:

– if (A[i] → α) ∈ P [n] where α ∈ Σ∗ then (A(i) → α) ∈ P(i);
– if (A[i] → α1Y

[i]α2) ∈ P [n] then (A(i) → τi−1(α1)Y (i)τi−1(α2)) ∈ P(i).

We conclude from Definition 4 that each G(i) is a linear CFG, and the grammars
differ to each other by their superscript only (except for G(0)). Informally, they
represent layers of derivations of the grammar G[n]. Our next step is to relate the
layers: we do that iteratively by applying substitutions.

We will use the notions of substitution and linear grammar to define t-fold
compositions. For t ∈ {1, . . . , n}, we define σt : Σ ∪ vX (t) → Σ ∪ vX (t−1) as the
substitution which maps each vX(t) onto LX(t)(G(t)) and leaves Σ unchanged.
Note that for t = 0, the substitution σ0 has the signature Σ ∪ vX (0) → Σ.

Let `, t be such that 0 ≤ ` ≤ t ≤ n. We define σt` to be σ` if t = ` and σt−1
`

◦ σt

otherwise (or equivalently σ` ◦ σ
t
`+1). Hence, σn0 is such that: (Σ ∪ vX (n))∗

σn−−→
(Σ ∪ vX (n−1))∗ · · · (Σ ∪ vX (1))∗

σ1−−→ (Σ ∪ vX (0))∗
σ0−−→ Σ∗.
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Definition 5 Given a CFG G = (X , Σ,P), variable X ∈ X and t ∈ N, define the
t-fold composition to be σt0(vX(t)).

The following lemma establishes equivalence between representations.

Lemma 4 Given a CFG G = (X , Σ,P), variable X ∈ X and t ∈ N, we have

σt0(vX(t)) = LX[t](G
[t]) .

Proof The result is shown by induction on t.

t = 0. We have that σ00(vX(0)) = σ0(vX(0)) = LX(0)(G(0)) which in turn equals
LX[0](G[0]) by definition of G[0].

t > 0. For each word w we have:

w ∈ LX[t](G
[t]) iff X [t] ⇒∗ w def. of derivation (in G[t])

iff ∃αi ϕ(αi) ∧ αi ⇒∗ w derive highest index first

where ϕ(αi) is the property

X [t] ⇒∗ αi−1 ⇒ αi where Sidx(αi−1) ⊆ {t, t− 1},Sidx(αi) ⊆ {t− 1}

Let αi be a word such that ϕ(αi) holds. Then, αi is necessarily of the form

x1A
[t−1]
1 x2 . . . xsA

[t−1]
s xs+1 with xj ∈ Σ∗ for every j. Then,

αi ⇒∗ w iff w ∈ x1LA[t−1]
1

(G[t]) . . . L
A

[t−1]
s

(G[t])xs+1 def. of derivation

iff w ∈ x1LA[t−1]
1

(G[t−1]) . . . L
A

[t−1]
s

(G[t−1])xs+1 only prod. of G[t−1]

iff w ∈ x1σt−1
0 (v

A
[t−1]
1

) . . . σt−1
0 (v

A
[t−1]
s

)xs+1 ind. hyp.

iff w ∈ σt−1
0

(
x1vA[t−1]

1

. . . v
A

[t−1]
s

xs+1

)
prop. of subst.

iff w ∈ σt−1
0

(
x1τt−1(A

[t−1]
1 ) . . . τt−1(A

[t−1]
s )xs+1

)
def. of τt−1

iff w ∈ σt−1
0

(
τt−1(αi)

)
prop. of τt−1

Finally, w belongs to LX[t](G[t]) iff there exists such a αi verifying property ϕ(αi)

such that w ∈ σt−1
0

(
τt−1(αi)

)
. As i is the least value such that t /∈ Sidx(αi), we

have reached the end of a layer of the grammar G(t), so w ∈ LX[t](G[t]) iff w ∈
σt−1
0

(
LX(t)(G(t))

)
, i.e. LX[t](G[t]) = σt−1

0

(
LX(t)(G(t))

)
. By definition of σt(vX(t)),

we get LX[t](G[t]) = σt−1
0

(
σt(vX(t))

)
, and by definition of σt0, we finally have

proved LX[t](G[t]) = σt0(vX(t)). ut
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4 Constructing a Parikh Equivalent Bounded Subset

We now show how to solve Pb. 1 for the class of t-fold compositions. This will
complete the solution to Pb. 1 for the class of CFLs, hence the proof of Th. 1. In
this section, we give an effective construction of a bounded expression that solve
Pb. 1 first for regular languages, then for linear languages, and finally for t-fold
compositions.

First we need to introduce the notion of semilinear sets. Recall that a set
S ⊆ Nk, k ≥ 1, is linear if there is an offset b ∈ Nk and periods p1, . . . ,pj ∈ Nk

such that S = {b +
∑j
i=1 λipi | λ1, . . . , λj ∈ N}. Let P = {p1, . . . ,pj}, we write S

as L(b;P ). A set is semilinear if it is the union of a finite number of linear sets.
Parikh’s theorem (cf. [12]) shows that the Parikh image of every CFL is a semilinear
set that is effectively computable.

4.1 Regular Languages

The construction of a bounded expression that solves Pb. 1 for a regular language
L is known from [16] (see also [17], Lem. 4.1). We give here a proof of this result
inspired by recent development about the computation of Parikh images of regular
languages (see [21]).

In all this subsection, we fix a regular grammar R = (Q,Σ, δ) with Q =
{q1, . . . , qn} and Σ = {a1, . . . , ak}, where we assign Σ a fixed linear order.

The partial derivation τ ≡ p0 ⇒ u1 · p1 ⇒ u1u2 · p2 ⇒∗ u1 . . . ur · pr, with
p1, . . . , pr ∈ Q and u1, . . . , ur ∈ Σ∗, is said elementary if there is no 0 ≤ i < j ≤ r

such that pi = pj . We say that τ is a cycle if p0 = pr, and finally that τ is an
elementary cycle if it is a cycle but its prefix p0 ⇒∗ ur−1 · pr−1 is elementary. We
extend the notion of elementary to the derivations of R.

Definition 6 Given q ∈ Q we define the set Wq = {w | q ⇒∗ w · q ∧ |w| ≤ n}. More-
over, for every language L, we define [L]Π to be a Parikh-equivalent subset of L
such that, for every vector b ∈ Π(L), there is exactly one word w ∈ [L]Π such that
Π(w) = b. Then we inductively define the set of bounded expressions {Bi}i≥0 over
Σ as follows:

B0 =
⊙

q∈Q
{w∗ | w ∈ [Wq]Π}

Bi = Bi−1 �
(⊙

a∈Σ
a∗
)
�B0 .

Lemma 5 Let R = (Q,Σ, δ) be a regular grammar and let q ∈ Q, the bounded expres-

sion B = B(n−1)2 solves Pb. 1 for the instance Lq(R).

Proof We assume wlog that q does not occur on the right-hand side of any pro-
ductions of δ. We have to prove that Π(B(n−1)2 ∩ Lq(R)) ⊇ Π(Lq(R)). In order
to prove it, let w ∈ Lq(R), and τ ≡ q = p0 ⇒ u1 · p1 ⇒ u1u2 · p2 ⇒ · · · ⇒
u1 . . . ur · pr ⇒ u1 . . . urur+1 = w be a derivation of w. We denote the subderiva-
tion u1 . . . ui · pi ⇒∗ u1 . . . uj · pj of τ by τ [i, j] in the sequel.
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We associate to each state p occurring in τ , the maximum index i ∈ {0, . . . , r}
such that pi = p. We can order all these indexes increasingly: i0 < i1 < · · · < is
with s < n. Observe that is = r and also that, since q does not occur on the
right-hand side of any productions of δ, i0 = 0. Using techniques of graph theory,
we can easily decompose for every j ∈ {0, . . . , s− 1} each subderivation τ [ij , ij+1]
of τ as the interleaving of

– an elementary partial derivation τj ≡ pij ⇒
∗ vj · pij+1

of length at most n− 1,

– finitely many elementary cycles C
(j)
1 ≡ p

(j)
1 ⇒∗ w(j)

1 · p(j)1 , . . . , C
(j)
hj
≡ p

(j)
hj
⇒∗

w
(j)
hj
· p(j)hj

, producing words w
(j)
1 , . . . , w

(j)
hj

each of length at most n,

such that Π(uij+1 . . . uij+1
) = Π(vj) +

∑hj

i=1Π(w
(j)
i ).

Observe that w
(j)
i ∈ W

p
(j)
i

for every j ∈ {0, . . . , s} and i ∈ {1, . . . , hj}. We will

moreover assume wlog that w
(j)
i ∈

[
W
p
(j)
i

]
Π

.

Such a decomposition result, however, does not guarantee that every C
(j)
i for

i ∈ {1, · · · , hj} meet with τj (see [21, Fact 7.3.3]) , which means that some p
(j)
i

may not appear in the partial derivation τj . On the other hand, C
(j)
i must visit

states from pi0 , . . . , pis as this sequence contains all states in τ .
Therefore, we can conclude that there exists a derivation τ ′ given by some inter-

leaving of τ0 · · · τs−1 with the elementary cycles in C
(0)
1 , . . . , C

(0)
h0
, . . . , C

(s)
1 , . . . , Cshs

such that for w′, the word generated by τ ′, we have Π(w′) = Π(w). Moreover, since

every w
(j)
i belongs to

[
W
p
(j)
i

]
Π

, we conclude from the definition of B0, s < n and

the fact that each τj is no more than n− 1 steps, that w′ ∈ (Bn−1)n−1 ⊆ B(n−1)2 .
This proves that Π(w) ∈ Π(B(n−1)2 ∩ Lq(R)). ut

We now derive a bound on the size of B(n−1)2 . We start by bounding the size of

B0. First, for a fixed alphabet size k, we have |Σ≤n| = kn, but
∣∣∣
[
Σ≤n

]
Π

∣∣∣ ≤ (n+kk ).

This is because the latter is the number of solutions to the equation x1+· · ·+xk ≤ n
for non-negative integers x1, . . . , xk. The term (n+kk ) = 2O(k logn) is polynomial in
n for each fixed k.

By definition of the operator [·]Π , the number of words in [Wq]Π is bounded

above by
[
Σ≤n

]
Π

, and hence
∣∣[Wq]Π

∣∣ ≤ (n+kk ). Moreover, each word in Wq has

length at most n. So, the concatenation
⊙
{w∗ | w ∈ [Wq]Π} has size at most

n · (n+kk ). The size of the bounded expression B0 is then bounded by

n · n ·

(
n+ k

n

)
= n2 · 2O(k logn) = 2O(k logn) .

Thus, for a fixed value of k the size of B0 is polynomial in n. From the definition
of Bi, for each polynomial P , we have BP (n) is polynomial in n (and exponential
in k). To compute B(n−1)2 , inspired again by [21, Lem. 7.3.6], we will use dynamic
programming. Note that we just have to compute the bounded expression B0, and
then repeat it (n− 1)2 times interleaved with

⊙
a∈Σ a

∗ to compute B(n−1)2 .
We denote by � the lexicographic order over Σ∗. Let ⊥ be a fresh letter, and

let W = {⊥} ∪ Σ∗: we can extend the order � to W by w � ⊥ for every w ∈ Σ∗.
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For every vector b ∈ Nk, we define Mb = (mb
i,j)1≤i,j≤n the matrix over W where

mb
i,j is the minimal word w ∈ Σ∗ with Parikh image Π(w) = b such that there

exists a partial derivation τ ≡ qi ⇒∗ w · qj , if such a word exists, and ⊥ otherwise.
We can define a minimization operation ∨ : W ×W →W defined for w,w′ ∈W

by ∨(w,w′) the minimal element in {w,w′} for the order �. We can extend this
operation over the finite sets of elements of W : hence, if S ⊆W ,

∨
S is the unique

minimal element in S, for the order �. Moreover, we can extend the concatenation
� of words to elements of W by defining for w ∈ Σ∗, ⊥�w = w�⊥ = ⊥�⊥ = ⊥.
These two operations make possible to multiply matrices over W . Finally, let ≤ be
the partial order over Nk defined by b ≤ b′ if and only if for every i ∈ {1, . . . , k},
bi ≤ b′i.

Lemma 6 Let b = (r1, r2, . . . , ri−1, ri + 1, ri+1, . . . , rk) with each ri ∈ N. Then, the

following identity holds

Mb =
∨

c,d

Mc �Mei �Md (1)

where (ei)1≤i≤k is the standard basis for Rk, c ranges over all vectors ≤ b whose i-th

entry is 0, and d is the vector b− ei − c.

Proof Let i, j ∈ {1, . . . , n}. Any partial derivation qi ⇒∗ u · qj with Π(u) = b is
uniquely decomposed into three partial derivations τ1 ≡ qi ⇒∗ v · p, τ2 ≡ p ⇒
ai · p′, τ3 ≡ p′ ⇒∗ w · qj with the word v containing no letter ai. Thus, the vector
c = Π(v) is ≤ b and its i-th entry is 0, Π(ai) = ei and d = Π(w) = b − ei − c.
Hence, the coefficient mb

i,j is � than the coefficient of index (i, j) of the matrix

N =
∨

c,dM
c �Mei �Md.

Reciprocally, the concatenation of three compatible partial derivations leading
to words v, ai, w verifying Π(v) ≤ b with i-th entry equal to 0, and Π(w) =
b− ei−Π(v), is a partial derivation from qi to qj leading to a word u with Parikh

image Π(u) = b. Hence, mb
i,j is � than the coefficient of index (i, j) of the matrix

N . ut

Applying this lemma and dynamic programming, we get

Lemma 7 We can compute the matrices Mb for vector b such that b1 + . . .+ bk ≤ n
in time 2O(k logn). Hence, for every state qi ∈ Q, we can compute the set [Wq]Π =⋃
b1+...+bk=n

{mb
i,i} in time 2O(k logn).

Finally, we show that the exponential dependency on k cannot be improved.

Lemma 8 There is a family {Lk}k∈N of regular languages, where each Lk is over an

alphabet of size 2k, such that every bounded expression Bk solving Pb. 1 for instance

Lk has size 2Ω(k).

Proof Define Lk to be a regular language over alphabet {a1, b1, . . . , ak, bk} given
by the regular expression

(
(a1 | b1) · (a2 | b2) · · · (ak | bk)

)∗
.

We show that every bounded Bk such that Π(Lk ∩ Bk) = Π(Lk) must be of size
exponential in k by contradiction.



14 P. Ganty, R. Majumdar, B. Monmege

Fix a k. Assume that B = w∗1 . . . w
∗
m solves Pb. 1 for instance Lk. Let L̂k =

(a1 | b1) · (a2 | b2) . . . (ak | bk). Since for all y, z ∈ L̂k, we have Π(y) = Π(z) implies

z = y, we have that for each i ≥ 0 and for each z ∈ L̂k, the word zi is in B.
Pick z ∈ L̂k. For each iz ≥ 0, we know that

ziz = wiz1
1 wiz2

2 . . . wizmm

for some iz1, iz2, . . . , izm, and further, by picking iz big enough, we can ensure that
izj > 1 for some j. Then, wj � wj contains z as a subword (since z does not have

any letters repeated). Also, for any y ∈ L̂k \{z}, it cannot be that wj�wj contains
y as a subword, even though by the same argument as for z, there is some j′ such
that wj′ � wj′ contains y as a subword. This means that m ≥ 2k. ut

4.2 Linear Languages

We now extend the previous construction to the case of linear languages. Recall
that linear languages are the main ingredient of t-fold compositions. Lemma 9 gives
a characterization of linear languages based on regular languages, homomorphism,
and some additional structures.

Lemma 9 (from [14]) Let G = (X , Σ,P) be a linear CFG. There exist an alphabet A

and its distinct copy Ã, an homomorphism h : (A ∪ Ã)∗ → Σ∗ and a regular language

R = (X , A, δ) such that for every X ∈ X we have LX(G) = h(LX(R)Ã∗) ∩ S where

S = {ww̃−1 | w ∈ A∗} and w−1 denotes the reverse image of the word w. Moreover

there is an effective procedure to construct h, A, and R.

Proof Define the alphabet A to be {ap | p ∈ P}. Define the regular CFG R =
(X , A, δ) such that

δ = {(X, apY ) | p = (X,αY β) ∈ P ∧ p ∈ X ×Σ∗XΣ∗}
∪ {(X, ap) | p = (X,α) ∈ P ∧ p ∈ X ×Σ∗} .

Note that δ ⊆ X × A(X ∪ ε) shows that for every X ∈ X , LX(R) is a regular
language. Next we define the homomorphism, h which, for each p = (X,αY β) ∈ P,
maps ap and ãp to α and β, respectively. By construction and induction on the
length of a derivation, it is easily seen that the result holds. ut

Next, we have a technical lemma which relates homomorphism and the Parikh
image operator.

Lemma 10 Let X,Y ⊆ Σ∗ and a homomorphism h : Σ∗ → A∗, we have:

Π(X) = Π(Y ) implies Π(h(X)) = Π(h(Y )) .

Proof It suffices to show that the result holds for = replaced by ⊆. Let x′ ∈ h(X).
We know that there exists x ∈ X such that x′ = h(x). The equality Π(X) = Π(Y )
shows that there exists y ∈ Y such that Π(y) = Π(x). It is clear by property of
homomorphism that Π(h(y)) = Π(h(x)). ut
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The next result shows that a bounded expression that solves Pb. 1 can be
effectively constructed for every linear language L.

Proposition 1 For every linear language L = h(RÃ∗ ∩ S) where h and R are given,

there is an effective procedure which solves Pb. 1 for the instance L.

Proof Since R is a regular language, we can use the result of Prop. 5 to effectively
compute the set {w1, . . . , wm} of words such that for R′ = R ∩ w∗1 · · ·w∗m we have
Π(R′) = Π(R). Also, we observe that for every language Z ⊆ A∗ we have ZÃ∗∩S =
{ww̃−1 | w ∈ Z}.

Π(R′) = Π(R) by above

only if Π(R′Ã∗ ∩ S) = Π(RÃ∗ ∩ S) by above

only if Π(h(R′Ã∗ ∩ S)) = Π(h(RÃ∗ ∩ S)) Lem. 10

only if Π(h(R′Ã∗ ∩ S)) = Π(L) def. of L

only if Π(h(RÃ∗ ∩ S) ∩ w∗1 · · ·w∗mw̃−1
m

∗
· · · w̃−1

1

∗
) = Π(L) def. of R′

only if Π(h(RÃ∗ ∩ S) ∩ h(w∗1 · · ·w∗mw̃−1
m

∗
· · · w̃−1

1

∗
)) = Π(L)

only if Π(L ∩ h(w∗1 · · ·w∗mw̃−1
m

∗
· · · w̃−1

1

∗
)) = Π(L) def. of L

only if Π(L ∩ h(w1)∗ · · ·h(wm)∗h(w̃−1
m )∗ · · ·h(w̃−1

1 )∗) = Π(L)

which concludes the proof since h(w) ∈ Σ∗ if w ∈ (A ∪ Ã)∗. ut

From the proof, and the construction for regular languages, it is clear that the
bounded expression B is exponential in the size of the alphabet k but polynomial
in n. The exponential dependence on k is inevitable and follows from the lower
bound for regular languages.

4.3 Linear languages with substitutions

Our goal is to solve Pb. 1 for the class of t-fold compositions, i.e. for languages of
the form σt0(vX(t)). Prop. 1 gives an effective procedure for the case σ``(vX(`)) since
it is a linear language. Prop. 2 generalizes to the case σ`t (vX(`)) where t < `: given
a solution to Pb. 1 for the instance σ`t+1(vX(`)), there is an effective procedure for

Pb. 1 for the instance σt ◦ σ
`
t+1 = σ`t (vX(`)).

But prior to that we need the following result.

Lemma 11 Let L and B be respectively a CFL and a bounded expression over Σ such

that B solves Pb. 1 for instance L, i.e. Π(L ∩ B) = Π(L). There is an effectively

computable bounded expression B′ which solves Pb. 1 for instance L∗, i.e. Π(Lr∩B′) =
Π(Lr) for all r ∈ N.

Proof By Parikh’s theorem, we know that Π(L) is a computable semilinear set⋃`
i=1 L(ci;Pi) where each Pi = {pi1, . . . ,piki}. Let us consider u1, . . . , u` ∈ L such

that ΠΣ(ui) = ci for i ∈ {1, . . . , `}.
Let B′ = u∗1 · · ·u∗`B

`. We see that B′ is a bounded expression. Let r > 0 be a
natural integer. We have to prove that Π(Lr) ⊆ Π(Lr ∩B′).
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case r ≤ `. We conclude from the preservation of Π (Lem. 1) and the hypothesis
Π(L) = Π(L ∩B) that

Π(Lr) = Π((L ∩B)r)

⊆ Π(Lr ∩Br) monotonicity of Π

⊆ Π(Lr ∩B`) Br ⊆ B` since ε ∈ B

⊆ Π(Lr ∩B′) def. of B′

case r > `. Let us consider w ∈ Lr. For every i ∈ {1, . . . , `} and j ∈ {1, . . . , ki},
there exist some positive integers λij and µi, with

∑`
i=1 µi = r such that

Π(w) =
∑̀

i=1

µici +
∑̀

i=1

ki∑

j=1

λijpij .

We define a new variable for each i ∈ {1, . . . , `}: αi =

{
µi − 1 if µi > 0

0 otherwise.
.

For each i ∈ {1, . . . , `}, we also consider zi a word of L ∪ {ε} such that zi = ε if

µi = 0 and Π(zi) = ci +
∑ki
j=1 λijpij else.

Let w′ = uα1
1 . . . uα`

` z1 . . . z`. Clearly, Π(w′) = Π(w) and w′ ∈ u∗1 · · ·u∗` (L∪{ε})
`.

For each i ∈ {1, . . . , `}, Π(L∩B) = Π(L) shows that there is z′i ∈ (L∩B)∪{ε} such
that Π(z′i) = Π(zi). Let w′′ = uα1

1 . . . uα`

` z′1 . . . z
′
`. We find that Π(w′′) = Π(w),

w′′ ∈ B′ and we can easily verify that w′′ ∈ Lr. ut

Proposition 2 Let

1. L be a CFL over Σ;

2. B a bounded expression such that Π(L ∩B) = Π(L);

3. σ and τ be two substitutions over Σ such that for each a ∈ Σ, (i) σ(a) and τ(a)
are respectively a CFL and bounded expression and (ii) Π(σ(a)∩ τ(a)) = Π(σ(a)).

Then, there is an effective procedure that computes B′ such that B′ solves Pb. 1 for the

instance σ(L).

Proof Let w1, . . . , wm ∈ Σ∗ be the words such that B = w∗1 · · ·w∗m. Let Li =
σ(wi) for each i ∈ {1, . . . ,m}. Since σ(a) is a CFL so is σ(wi) by property of the
substitutions and the closure of CFLs by finite concatenations. For the same reason,
τ(wi) is a bounded expression. Next, Lem. 11 where the bounded expression is
given by τ(wi), shows that we can construct a bounded expression Bi such that
for all r ∈ N, Π(Lri ∩ Bi) = Π(Lri ). Define B′ = B1 . . . Bm that is a bounded
expression. We have to prove the inclusion Π(σ(L)) ⊆ Π(σ(L) ∩ B′) since the
reverse one trivially holds. So, let w ∈ σ(L). Since Π(L∩w∗1 · · ·w∗m) = Π(L), there
is a word w′ ∈ σ(L ∩ w∗1 · · ·w∗m) such that Π(w) = Π(w′). Then we have

w′ ∈ σ(L ∩ w∗1 · · ·w∗m)

∈ σ(wr11 . . . wrmm ) for some r1, . . . , rm

∈ σ(wr11 ) . . . σ(wrmm ) property of subst.

∈ σ(w1)r1 . . . σ(wm)rm property of subst.

∈ Lr11 . . . Lrmm σ(wi) = Li
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Algorithm 1: Bounded Sequence

Data: Linear CFGs {G(0), . . . , G(n)}
Data: A set of regular CFGs {B̃(0), . . . , B̃(n)} such that

∀i ∈ {0, . . . , n}∀X ∈ X : LX(B̃(i)) solves Pb. 1 for instance LX(i) (G(i))

Result: A set of regular CFGs {B(0), . . . , B(n)} such that

∀i ∈ {0, . . . , n}∀X ∈ X : LX(B(i)) solves Pb. 1 for instance σni (vX(n) )

Let B(n) = B̃(n);1

for i = n− 1, n− 2, . . . , 0 do

Let τi be the substitution which maps each vX(i) onto LX(B̃(i)) and leaves each
letter of Σ unchanged;
foreach X ∈ X do

Let LX(B(i)) be the language returned by Prop. 2 on the languages

σni+1(vX(n) ) and LX(B(i+1)), and the substitutions σi, τi;2

For each i ∈ {1, . . . ,m}, we have Π(Lrii ∩ Bi) = Π(Lrii ), so we can find w′′ ∈
(Lr11 ∩ B1) . . . (Lrmm ∩ Bm) such that Π(w′′) = Π(w′). Definition of B′ also shows
that w′′ ∈ B′. Moreover

w′′ ∈ (Lr11 ∩B1) . . . (Lrmm ∩Bm)

∈ Lr11 . . . Lrmm

∈ σ(w1)r1 . . . σ(wm)rm σ(wi) = Li

∈ σ(wr11 ) . . . σ(wrmm ) property of subst.

∈ σ(wr11 . . . wrmm ) property of subst.

∈ σ(L ∩ w∗1 . . . w∗m) wr11 . . . wrmm ∈ L ∩ w∗1 . . . w∗m
∈ σ(L)

Finally, w′′ ∈ B′ and w′′ ∈ σ(L) and Π(w′′) = Π(w′), which in turn equals Π(w),
prove the inclusion. ut

We use the above result inductively to solve Pb. 1 for t-fold composition as
follows: fix L to be σt`+1(vX(t)), B to be the solution of Pb. 1 for the instance L,
σ to be σ` and τ a substitution which maps every vX(`) to a solution of Pb. 1 for
the instance σ`(vX(`)). Then B′ is the solution of Pb. 1 for the instance σt`(vX(t)).

4.4 t-fold compositions

Let L be a CFL such that L = LX(G) where G = (X , Σ,P) is a CFG with n = |X |
and X ∈ X . Let us now solve Pb. 1 where the instance is given by the n-fold
composition σn0 (vX(n)). To do so, we compute, following def. 4, the linear CFGs
{G(0), . . . , G(n)} which define the n-fold composition σn0 (vX(n)) of def. 5. With the
result of Prop. 1, we inductively construct the regular CFG B(0), . . . , B(n) each of
which is such that ∀X ∈ X : LX(B(`)) solves Pb. 1 for instance σn` (vX(n)). The
above reasoning is formally explained in Alg. 1 for which we prove the following
invariant.

Lemma 12 When Alg. 1 returns we have:

∀i ∈ {0, . . . , n}∀X ∈ X : LX(B(i)) solves Pb. 1 for instance σni (vX(n)) .
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Proof By induction on i:
Base case. (i = n) Algorithm 1, line 1 shows that B(n) is initialized with B̃(n).
Therefore by property of B̃(n) we find that for every X ∈ X LX(B̃(n)) solves
Pb. 1 for instance LX(n)(G(n)), hence for instance σn(vX(n)) by definition of σn
and finally for instance σnn(vX(n)) because σn = σnn .
Inductive case. (0 ≤ i < n) At line 1, LX(B(i)) coincide with the language of the
bounded expression returned by Prop. 2 provided some assumptions are satisfied.
Let us show that those assumptions hold: (1) σni+1(vX(n)) is a CFL (CFLs are

closed by context-free substitutions), (2) LX(B(i+1)) coincides with the language
of a bounded expression which, by induction hypothesis, solves Pb. 1 for instance
σni+1(vX(n)), (3) for every variable X ∈ X we have σi(vX(i)) = LX(i)(G(i)) is a CFL,

τi(vX(i)) = LX(B̃(i)) coincides with the language of a bounded expression such
that τi(vX(i)) solves Pb. 1 for instance σi(vX(i)). Hence by Prop. 2 we find that
for every X ∈ X , LX(B(i)) solves Pb. 1 for instance σi

(
σni+1(vX(n))

)
, hence for

instance σni (vX(n)) because σni = σi ◦ σ
n
i+1. ut

Finally the procedure which solves Pb. 1 for CFL instances, hence the proof of
Th. 1, goes as follows.

Proof (of Th. 1) Let G = (X , Σ,P) be a CFG with initial variable X ∈ X where
|X | = n. Moreover let B be a bounded expression, Cor. 1 shows that B solves Pb. 1
for instance LX(G) iff so does B for instance Y(DnX) iff so does B for instance
LX[n](G[n]) (by Lem. 3) iff so does B for instance σn0 (vX(n)) (by Lem. 4). Moreover
the CFGs {G(0), . . . , G(n)} which represent σn0 (vX(n)) are effectively constructible
given G and n. Finally the Alg. 1 and the result of Lem. 12 shows that there exists
an effective procedure to solve Pb. 1 for σn0 (vX(n)). ut

This concludes the proof of Th. 1. Unfortunately, as the example below illus-
trates, the bounded expression can be exponential in the size of the grammar even
when the alphabet is held to a fixed size.

Lemma 13 There is a family {Gn}n∈N of CFG each of which defined over the alphabet

Σ = {0, 1} such that every bounded expression Bn solving Pb. 1 for LS(Gn) has size

2Ω(n).

Proof Define Gn to have variables {S} ∪ {A0, . . . , An}, and productions:

S → ε An → An−1An−1 A0 → 0

S → 1AnS
...

A1 → A0A0

The definition of Gn shows that LS(Gn) = (102n

)∗. A possible (and trivial)
bounded expression Bn solving Pb. 1 for instance LS(Gn) is (102n

)∗, which is
exponential in the size of n (note that the size of Bn is given by the number of
letters in its words). We now show that any bounded expression which solves Pb. 1
for instance LS(Gn) must be exponential n.
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First, note that there is at most one word of any length in LS(Gn), and so for
any i, j ∈ N, we have that Π(wi) = Π(wj) implies i = j. Thus, B must contain
every word wi, i ≥ 0.

Suppose that B = w∗1 . . . w
∗
m is a bounded expression solving Pb. 1 for instance

LS(Gn). Clearly, at least one of w1, . . . , wm must have the letter 1. Since m is fixed,
for large enough i (indeed, i > m suffices), we will have that wi = wi11 w

i2
2 . . . wimm

such that there is a j with the following properties: (1) wj contains the letter 1,
and (2) ij > 1. This is because wi has exactly i occurrences of 1, and all these
occurrences must be “captured” by B. However, in wi, any two occurrences of 1
has exactly 2n occurrences of 0 between them. This implies that the length of wj
must be at least 2n. ut

Iterative Algorithm. We conclude this section by showing a result related to the
notion of progress if the result of Th. 1 is applied repeatedly.

Lemma 14 Given a CFL L, define two sequences (Li)i∈N, (Bi)i∈N such that (1) L0 =
L, (2) Bi is a bounded expression and Π(Li ∩Bi) = Π(Li), (3) Li+1 = Li ∩Bi. For

every w ∈ L, there exists i ∈ N such that w /∈ Li. Moreover, given L0, there is an

effective procedure to compute Li for every i > 0.

Proof Let w ∈ L and let v = Π(w) be its Parikh image. We conclude from Π(L0 ∩
B0) = Π(L0) that there exists a word w′ ∈ B0 such that Π(w′) = v. Two cases
arise: either w′ = w and we are done; or w′ 6= w. In that case L1 = L0 ∩ B0

shows that w′ /∈ L1. Intuitively, at least one word with the same Parikh image
as w has been selected by B0 and then removed from L0 by definition of L1.
Repeatedly applying the above reasoning shows that at each iteration there exists
a word w′′ such that Π(w′′) = v, w′′ ∈ Bi and w′′ /∈ Li+1 since Li+1 = Li ∩ Bi.
Because there are only finitely many words with Parikh image v we conclude that
there exists j ∈ N, such that w /∈ Lj . The effectiveness result follows from the
following arguments: (1) as we have shown above (our solution to Pb. 1), given a
CFL L there is an effective procedure that computes a bounded expression B such
that Π(L ∩ B) = Π(L); (2) the complement of B is a regular language effectively
computable; and (3) the intersection of a CFL with a regular language is again a
CFL that can be effectively constructed (see [14]). ut

Intuitively this result shows that given a context-free language L, if we re-
peatedly compute and remove a Parikh-equivalent bounded subset of L (L ∩ B is
effectively computable since B is a regular language), then each word w of L is
eventually removed from it.

5 Application I: Multithreaded Procedural Programs

A common programming model consists of multiple recursive threads communi-
cating via shared memory. Formally, we model such systems as pushdown net-
works [20]. Let k be a positive integer, a pushdown network is a triple N =
(G,Γ, (∆i)1≤i≤k) where G is a finite non-empty set of globals, Γ is the stack al-

phabet, and for each 1 ≤ i ≤ k, ∆i is a finite set of transition rules of the form
〈g, γ〉 ↪→

〈
g′, α

〉
for g, g′ ∈ G, γ ∈ Γ , α ∈ Γ ∗.
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A local configuration of N is a pair (g, α) ∈ G × Γ ∗ and a global configuration

of N is a tuple (g, α1, . . . , αk), where g ∈ G and α1, . . . , αk ∈ Γ ∗ are individual
stack content for each thread. Intuitively, the system consists of k threads, each
of which with its own stack, and the threads can communicate by reading and
manipulating the global storage represented by g.

We define the local transition relation of the i-th thread, written→i, as follows:
(g, γβ)→i (g′, αβ) iff 〈g, γ〉 ↪→

〈
g′, α

〉
in ∆i and β ∈ Γ ∗. The transition relation of

N , denoted→, is defined as follows: (g, α1, . . . , αi, . . . , αk)→ (g′, α1, . . . , α
′
i, . . . , αk)

iff (g, αi)→i (g′, α′i) for some i ∈ {1, . . . , k}. By→∗i ,→
∗, we denote the reflexive and

transitive closure of these relations. Let C0 and C be two global configurations, the
reachability problem asks whether C0 →∗ C holds. An instance of the reachability
problem is denoted by a triple (N , C0, C).

A pushdown system is a pushdown network where k = 1, namely (G,Γ,∆).
A pushdown acceptor is a pushdown system extended with an initial configuration

c0 ∈ G×Γ ∗, labeled transition rules of the form 〈g, γ〉
λ
↪→
〈
g′α
〉

for g, g′, γ, α defined
as above and λ ∈ Σ∪{ε}. A pushdown acceptor is given by a tuple (G,Γ,Σ,∆, c0).
The language of a pushdown acceptor is defined as expected where the acceptance
condition is given by the empty stack.

In what follows, we reduce the reachability problem for a pushdown network
of k threads to a language problem for k pushdown acceptors. The pushdown
acceptors obtained by reduction from the pushdown network settings have a special
global ⊥ that intuitively models an inactive state. The reduction also turns the
globals into input letters which label transitions. The firing of a transition labeled
with a global models a context switch. When such transition fires, every pushdown
acceptor synchronizes on the label. The effect of such a synchronization is that
exactly one acceptor will change its state from inactive to active by updating the
value of its global (i.e. from ⊥ to some g ∈ G) and exactly one acceptor will change
from active to inactive by updating its global from some g to ⊥. All the others
acceptors will synchronize and stay inactive.

Given an instance of the reachability problem, that is a pushdown network
(G,Γ, (∆i)1≤i≤k) with k threads, two global configurations C0 and C (assume
wlog that C is of the form (g, ε, . . . , ε)), we define a family of pushdown acceptors
{(G′, Γ,Σ,∆′i, c

i
0)}1≤i≤k, where:

– G′ = G ∪ {⊥}, Γ is given as above, and Σ = G× {1, . . . , k},
– ∆′i is the smallest set such that:

– 〈g, γ〉
ε
↪→
〈
g′, α

〉
in ∆′i if 〈g, γ〉 ↪→

〈
g′, α

〉
in ∆i;

– 〈g, γ〉
(g,j)
↪→ 〈⊥, γ〉 for j ∈ {1, . . . , k} \ {i}, g ∈ G, γ ∈ Γ ;

– 〈⊥, γ〉
(g,j)
↪→ 〈⊥, γ〉 for j ∈ {1, . . . , k} \ {i}, g ∈ G, γ ∈ Γ ;

– 〈⊥, γ〉
(g,i)
↪→ 〈g, γ〉 for g ∈ G, γ ∈ Γ .

– let C0 = (g, α1, . . . , αi, . . . , αk), ci0 is given by (⊥, αi) if i > 1; (g, α1) else.

Proposition 3 Let k be a positive integer, and (N , C0, C) be an instance of the reach-

ability problem with k threads, one can effectively construct CFLs (L1, . . . , Lk) (as push-

down acceptors) such that C0 →∗ C iff L1 ∩ · · · ∩ Lk 6= ∅.

The converse of the proposition is also true, and since the emptiness problem
for intersection of CFLs is undecidable [14], so is the reachability problem. We will
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now compare two underapproximation techniques for the reachability problem:
context-bounded switches [18] and bounded languages, which we first detail below.

Let L1, . . . , Lk be CFLs, and consider the problem to decide if
⋂

1≤i≤k Li 6= ∅.
We give a decidable sufficient condition: given an bounded expression B, we define

the intersection modulo B of the languages {Li}i as
⋂(B)
i Li =

(⋂
i Li
)
∩B. Clearly,⋂(B)

i Li 6= ∅ implies
⋂
i Li 6= ∅. Below we show that the problem

⋂(B)
i Li 6= ∅ is

decidable .

Lemma 15 Given a bounded expression B = w∗1 · · ·w∗n and CFLs L1, . . . , Lk, it is

decidable to check if
⋂(B)

1≤i≤k Li 6= ∅.

Proof Define the alphabet A = {a1, . . . , an} disjoint from Σ. Let h be the homo-
morphism that maps the letters a1, . . . , an to the words w1, . . . , wn, respectively.

We show that
⋂

1≤i≤kΠA
(
h−1(Li ∩B) ∩ a∗1 · · · a∗n

)
6= ∅ iff

⋂(B)
1≤i≤k Li 6= ∅.

We conclude from w ∈
⋂(B)

1≤i≤k Li that w ∈ B and w ∈ Li for every

1 ≤ i ≤ k, hence there exist t1, . . . , tn ∈ N such that w = wt11 . . . wtnn by defini-
tion of B. Then, we find that (t1, . . . , tn) ∈ ΠA(h−1(w) ∩ a∗1 · · · a∗n), hence that
(t1, . . . , tn) ∈ ΠA(h−1(Li ∩ B) ∩ a∗1 · · · a∗n) for every 1 ≤ i ≤ k by above and finally
that (t1, . . . , tn) ∈

⋂
1≤i≤kΠA

(
h−1(Li ∩B) ∩ a∗1 · · · a∗n

)
.

For the other implication, consider (t1, . . . , tn) a vector of
⋂

1≤i≤kΠA
(
h−1(Li∩

B) ∩ a∗1 · · · a∗n
)

and let w = wt11 . . . wtnn . For every 1 ≤ i ≤ k, we will show that

w ∈ Li ∩ B. As (t1, . . . , tn) ∈ ΠA
(
h−1(Li ∩ B) ∩ a∗1 · · · a∗n

)
, there exists a word

w′ ∈ a∗1 · · · a∗n such that ΠA(w′) = (t1, . . . , tn) and h(w′) ∈ Li ∩ B. We conclude
from ΠA(w′) = (t1, . . . , tn), that w′ = at11 . . . atnn and finally that, h(w′) = w belongs
to Li ∩B.

The class of CFLs is effectively closed under inverse homomorphism and inter-
section with a regular language [14]. Moreover, given a CFL, we can compute its
Parikh image which is a semilinear set. Finally, we can compute the semilinear
sets ΠA

(
h−1(Li∩B)∩a∗1 · · · a∗n

)
and the emptiness of the intersection of semilinear

sets is decidable [12]. ut

While Lem. 15 shows decidability for bounded expression language, in practice,
we want to select B “as large as possible”. We select B using Th. 1. We first

compute for each language Li the bounded expression Bi = w
(i)
1

∗
· · ·w(i)

ni

∗
such

that Π(Li ∩Bi) = Π(Li). Finally, we choose B = B1 · · ·Bk.
By repeatedly selecting and removing a bounded language B from each Li

where 1 ≤ i ≤ k we obtain a sequence {Lji}j≥0 of languages such that Li = L0
i ⊇

L1
i ⊇ . . . The result of Lem. 14 shows that for each word w ∈ Li, there is some

j such that w /∈ Lji , hence that the above sequence is strictly decreasing, that
is Li = L0

i ) L1
i ) . . . , and finally that if

⋂
1≤i≤k Li 6= ∅ then the iteration is

guaranteed to terminate.
Alg. 2 gives the pseudocode for the special case of the intersection of two CFLs.

Comparison with Context-Bounded Reachability. A well-studied under-
approximation for multithreaded reachability is given by context-bounded reach-
ability [18]. We need a few preliminary definitions. We define the global reach-
ability relation ; as a reachability relation where all the moves are made by a
single thread: (g, α1, . . . , αi, . . . , αn) ; (g′, α1, . . . , α

′
i, . . . , αn) iff (g, αi) →∗i (g′, α′i)

for some 1 ≤ i ≤ n. The relation ; holds between global configurations reachable
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Algorithm 2: Intersection

Data: L0
1, L0

2 : CFLs
L1 ← L0

1, L2 ← L0
2;

repeat forever
if Π(L1) ∩Π(L2) = ∅ then

return L0
1 ∩ L0

2 is empty
else

Compute B1 and B2 which solves Pb. 1 for instance L1 and L2, respectively;
Compute B = B1 �B2 /* B solves Pb. 1 for instance L1 ∪ L2 */;

if L1 ∩(B) L2 6= ∅ then
return L0

1 ∩ L0
2 is not empty

L1 ← L1 ∩B, L2 ← L2 ∩B

from each other in a single context. Furthermore we denote by ;j , where j ≥ 0,
the reachability relation within j contexts: ;0 is the identity relation on global
configurations, and ;i+1= ;i ◦;.

Given a pushdown network, global configurations C0 and C, and a number
k ≥ 1, the context-bounded reachability problem asks whether C0 ;k C holds, i.e.
if C can be reached from C0 in k context switches. This problem is decidable
[18]. Context-bounded reachability has been successfully used in practice for bug
finding. We show that underapproximations using bounded languages (Lem. 15)
subsumes the technique of context-bounded reachability in the following sense.

Proposition 4 Let N be a pushdown network, C0, C global configurations of N , and

(L1, . . . , Ln) CFLs over alphabet Σ such that C0 →∗ C iff ∩iLi 6= ∅. For each k ≥ 1,

there is an bounded expression Bk such that C0 ;k C only if
⋂(Bk)
i Li 6= ∅. Also,⋂(Bk)

i Li 6= ∅ only if C0 →∗ C.

Proof Consider all sequences C0 ; C1 · · ·Ck−1 ; Ck of k switches. By the CFL

encoding (Prop. 3) each of these sequences corresponds to a word in Σk. If C0 ;k

C, then there is a word w ∈
⋂
i Li and w ∈ Σk. Let Σ = {a1, . . . , an}, define Bk to

be (a∗1 · · · a∗n)k. We conclude from w ∈ Σk and the definition of Bk that w ∈ Bk,

hence that
⋂(Bk)
i Li 6= ∅ since w ∈

⋂
i Li. For the other direction we conclude from⋂(Bk)

i Li 6= ∅ that
⋂
i Li 6= ∅, hence that C0 →∗ C. ut

However, underapproximation using bounded languages can be more power-
ful than context-bounded reachability in the following sense. There is a fam-
ily {(Nk, C0k, Ck)}k∈N of pushdown network reachability problems such that
C0k ;k Ck but C0k 6;k−1 Ck for each k, but there is a single bounded expression

B such that
⋂(B)
i Lik 6= ∅ for each k, where again (L1k, . . . , Lnk) are CFLs such

that C0k ; Ck iff ∩iLik 6= ∅ (as in Prop. 3).
For clarity, we describe the family of pushdown networks as a family of two-

threaded programs whose code is shown in Fig. 1. The programs in the family dif-
fers from each other by the value to which k is instantiated: k = 0, 1, . . . Each pro-
gram has two threads. Thread one maintains a local counter c starting at 0. Before
each increment to c, thread one sets a global bit. Thread two resets bit. The target
configuration Ck is given by the exit point of p1. We conclude from the program
code that hitting the exit point of p1 requires c ≥ k to hold. For every instance, Ck
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is reachable, but it requires at least k context switches. Thus, there is no fixed con-
text bound that is sufficient to check reachability for every instance in the family. In
contrast, the bounded expression given by

(
(bit == true, 2) · (bit == false, 1)

)∗
is sufficient to show reachability of the target for every instance in the family.

thread p1() {
int c=0;

L:bit=true;
if bit == false { ++c; }
if c<k { goto L; }

}

thread p2() {
L1:bit = false;

goto L1;
}

Fig. 1: The family of pushdown network with global bit.

We refer the interested reader to [6] for a treatment in depth of the underap-
proximation of the reachability problem using bounded expressions and in partic-
ular its complexity. Also see http://software.imdea.org/~pierreganty/vanocka.

html for a prototype implementation.

6 Application II: Recursive Counter Machines

In verification, counting is a powerful abstraction mechanism. Often, counting
abstractions are used to show decidability of the verification problem. Counting
abstractions have been applied on a wide range of applications from parametrized
systems specified as concurrent java programs to cache coherence protocols (see
[22]) and to programs manipulating complex data structures like lists (see for in-
stance [5]). In those works, counting not only implies decidability, it also yields pre-
cise abstractions of the underlying verification problem. However, in those works
recursion (or equivalently the call stack) is not part of the model. One option is to
abstract the stack using additional counters, hence abstracting away the stack dis-
cipline. Because counting abstractions for the stack yields too much imprecision,
we prefer to use a precise model of the call stack and perform an underapproxi-
mating analysis. This is what is defined below for a model of recursive programs
that manipulate counters.

Counter Machine: Syntax and Semantics. An n-dimensional counter machine

M = (Q,T, α, β, {Gt}t∈T ) consists of the finite non-empty sets Q and T of locations
and transitions, respectively; two mappings α : T 7→ Q and β : T 7→ Q, and a family
{Gt}t∈T of semilinear (or Presburger definable) sets over N2n.

A M-configuration (q, x) consists of a location q ∈ Q and a vector x ∈ Nn; we
define CM as the set of M-configurations. For each transition t ∈ T , its semantics
is given by the reachability relation RM (t) over CM defined as (q, x)RM (t)(q′, x′)
iff q = α(t), q′ = β(t), and (x, x′) ∈ Gt. The reachability relation is naturally
extended to words of T ∗ by defining RM (ε) = {((q, x), (q, x)) | (q, x) ∈ CM} and
RM (u ·v) = RM (u) ◦ RM (v). Also, it extends to languages as expected. Finally, we
write (M,D) for a counter machine M with an initial set D ⊆ CM of configurations.
Note that semilinear sets carry over subsets of CM using a bijection from Q to
{1, . . . , |Q|}.

http://software.imdea.org/~pierreganty/vanocka.html
http://software.imdea.org/~pierreganty/vanocka.html
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• γ′ = γ + (k + 1)n

• Q′ = {qi}0≤i≤k ∪ {qij}
1≤j≤n
0≤i≤k ∪ {qf}

• T ′ = {t0} ∪ {ti, tsi }1≤i≤k ∪ {tij , t
s
ij}

1≤j≤n
0≤i≤k

• α′ and β′ are given by the automaton
• Let i ∈ {0, . . . , k} and j ∈ {1, . . . , n}

Gti =

{
G+
λ01
◦ . . . ◦ G+

λ0n
if i = 0

{(x, x) ∈ N2γ′} else

Gtsi = G+
λi1
◦ . . . ◦ G+

λin
,

Gtsij = G(w
pij
j ) ◦ G−λij

, and

Gtij = {
(
(x, v), (x, v)

)
| vi∗n+j = 0}

tk−1

q01

q11

q21

qk1

t01

t11

ts01

ts11

ts21

tsk1

q0n

q1n

q2n

qkn

t0n

t1n

ts0n

ts1n

ts2n

tskn

q02

q12

q22

qk2

t02

t12

ts02

ts12

ts22

tsk2

tkn

qf

tk1

tk2

q0

q1

q2

qk

t0

t1

ts1

ts2

tsk

tk

tk−1,1 tk−1,2 tk−1,n

︸ ︷︷ ︸
w1

︸ ︷︷ ︸
w2

︸ ︷︷ ︸
wn

λ1





λ2





λk





Let # ∈ {+,−}, G#
λij

= {
(
(x, v), (x, v′)

)
∈ N2γ′ | v′ = v#ei∗n+j}.

Let w ∈ T ∗, G(w) is s.t. G(ε) = {(x, x) ∈ N2γ′}, G(t) = {
(
(x, v), (x′, v)

)
∈ N2γ′ | (x, x′) ∈ Gt},

and G(wp · ws) = G(wp) ◦ G(ws) if w = ε, t and ws · wp, respectively.

Fig. 2: The γ′-dim counter machine M ′ = (Q′, T ′, α′, β′, {Gt}t∈T ′).

Computing the Reachable Configurations. Let R ⊆ CM × CM
and D ⊆ CM , we define the set of configurations post[R](D) as
{(q, x) | ∃(q0, x0) ∈ D ∧ (q0, x0)R(q, x)}. Given a n-dim counter machine M =
(Q,T, α, β, {Gt}t∈T ), a semilinear set D of configurations and a CFL L ⊆ T ∗ (en-
coding execution paths), we want to underapproximate post[RM (L)](D): the set
of M-configurations reachable from D along words of L. Our underapproximation
computes the set post[RM (L′)](D) where L′ is a Parikh-equivalent bounded subset
L such that L′ = L ∩B where B = w∗1 · · ·w∗n.

We will construct, given (M,D), L and B (we showed above how to effectively
compute such a B), a pair (M ′, D′) such that the set of M-configurations reachable
from D along words of L∩B can be constructed from the set of M ′-configurations
reachable from D′. Without loss of generality, we assume M is such that Q is a
singleton. (One can encode locations using counters.)

Let M = (Q,T, α, β, {Gt}t∈T ) a γ-dim counter machine with Q = {qf} and
B = w∗1 · · ·w∗n such that Π(L ∩ B) = Π(L). Let h be the homomorphism that
maps some fresh letters a1, . . . , an to the words w1, . . . , wn, respectively. We com-
pute the language L′A = h−1(L ∩ B) ∩ a∗1 · · · a∗n. Let S = Π{a1,...,an}(L

′
A), and

note that S is a semilinear set. For clarity, we first consider a linear set H where
p0 = (p01, . . . , p0n) denotes the constant and {pi = (pi1, . . . , pin)}i∈I\{0} the set of
periods of H and I = {0, . . . , k}. Let J = {1, . . . , n}. In the following, for every
pair of vectors x = (x1, . . . , xr) and y = (y1, . . . , ys), we denote by (x, y) the vector
(x1, . . . , xr, y1, . . . , ys). The machine M ′ is defined in Fig. 2.

Between q0 and q01, M ′ non-deterministically picks values for all the additional
counters which we denote {λij}i∈I,j∈J . When M ′ fires tk, we have for all i ∈ I and

j, j′ ∈ J : λij = λij′ and λ0i = 1. Below, for every i ∈ I, we denote by λi the common
value of the counters {λij}j∈J . Then, M ′ simulates the behavior of M for the

sequence of transitions given by wp01+λ1p11+···+λkpk1

1 . . . wp0n+λ1p1n+···+λkpkn
n the

Parikh image of which is p0 +
∑
i∈I λipi. Let us define the set D′ of configurations

of CM ′ as {(q0, (x, v)) | (qf , x) ∈ D ∧ v = 0(k+1)n}.
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A sufficient condition for the set of reachable configurations of M ′ starting from
D′ to be effectively computable is that for each t in {tsi }i∈I\{0} ∪ {t

s
ij}i∈I,j∈J (i.e.

the loops in Fig. 2), it holds that t∗ is computable and Presburger definable. Given
t the problem of deciding if t∗ is Presburger definable is undecidable [1]. However,
there exist some subclasses C of Presburger definable sets such that if t ∈ C then
t∗ is Presburger definable and effectively computable, hence the set of reachable
configurations of (M ′, D′) can be computed by quantifier elimination in Presburger
arithmetic. A known subclass is that of guarded command Presburger relations.
An n-dimensional guarded command is given by the closure under composition of
{(x, x′) ∈ N2n | x′ = x+ ei} (increment), {(x, x′) ∈ N2n | x′ = x− ei} (decrement)
and {(x, x) ∈ N2n | x = (x1, . . . , xn) ∧ xi = 0} (0-test) for 1 ≤ i ≤ n.

Other subclasses are given in [4,10]. Note that if for each t ∈ T of M , Gt is
given by a guarded command then so is each Gt′ for t′ ∈ T ′ of M ′ by definition.

Hence, we find that the set post[RM ′(T
′∗)](D′) of reachable configura-

tions of (M ′, D′) is Presburger definable, effectively computable and relates to
post[RM (L′)](D) for the bounded language L′ as follows.

Lemma 16 Let (qf , x) ∈ CM . We have (qf , x) ∈ post[RM (L′)](D) iff there exists

v ∈ N(k+1)n such that (qf , (x, v)) ∈ post[RM ′(T
′∗)](D′).

We can easily compute the intersection of the two semilinear sets S and {qf}×Nγ
over Q′ × Nγ , because of the way we have carried the notion of semilinear set
over Q′ × Nγ . We take a bijection η from Q′ to {1, . . . , |Q|}, so a configuration
(q, x) ∈ Q′ ×Nγ is represented by (p1, . . . , p|Q|, x)T with

pj =

{
1 if η(q) = j

0 otherwise

Hence, the intersection consists of all the vectors of S with the component of qf
equal to one and the others equal to zero. Lem. 14 shows that by iterating the
construction we obtain a semi-algorithm for a context-free language.
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