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ABSTRACT 
In this paper, we investigate methods for improving the hit rates 
in the first level of memory hierarchy. Particularly, we propose 
victim cache structures to reduce the number of accesses to more 
power consuming structures such as level 2 caches. We compare 
the proposed victim cache techniques to increasing the 
associativity or the size of the level 1 data cache and show that the 
enhanced victim cache technique yield better energy-delay and 
energy-delay-area products. We also propose techniques that 
predict the hit/miss behavior of the victim cache accesses and 
bypass the victim cache when a miss can be determined quickly. 
We report simulation results obtained from SimpleScalar/ARM 
modeling a representative Network Processor architecture. The 
simulations show that the victim cache is able to reduce the 
energy consumption by as much as 17.6% (8.6% on average) 
while reducing the execution time by as much as 8.4% (3.7% on 
average) for a set of representative applications.  
Categories and Subject Descriptors 
B.3.2 [Hardware]: Memory Structures – Design Styles. C.3 
[Computer Systems Organization]: Special-Purpose and 
Application-Based Systems – Embedded Systems.  

General Terms 
Design, Measurement, Performance.  

Keywords 
Victim caches, Miss Detection, Network Processors.  

1. INTRODUCTION 
In this paper, we present hardware techniques to reduce 
microprocessor energy consumption. The proposed techniques 
improve the efficiency of first level memory hierarchy by utilizing 
victim caches. Therefore, accesses to the larger and more power 
consuming structures are prevented, which reduces the execution 
time of applications and the power consumption.  
The proposed techniques can be applied to various multi-
processor and single core systems. However, we show the effects 
of our techniques for a generic chip-multiprocessor representing 
Network Processors (NPUs). Power consumption has already 
become a first rate design criteria for high-performance 
processors. Heat dissipation affects the performance and 
reliability of processors. The reasons for selecting NPUs as our 
target platform are twofold. First, NPUs have high power 
consumption with “power/area” ratios reaching or even surpassing 

that of desktop processors. Hence, heat dissipation is likely to 
become a very important problem for next generation NPUs. 
Second, most NPUs follow the single-chip multiprocessor design 
methodology [9]. The architectural details vary widely among 
different NPUs. However, most NPUs employ multiple execution 
cores and these cores are usually connected by a global system 
bus. The system bus usually consumes a significant portion of the 
overall energy, because the capacitive load on the core's 
input/output drivers is usually much larger than that on the 
internal nodes [14]. Such processor configurations can benefit 
immensely from the proposed techniques. As the number of cores 
in the processor is increased, the need for reducing the bus load 
also increases. Therefore, the complexity of utilizing the proposed 
techniques is clearly justified in processors with several cores. 
For chip-multiprocessors, the area of the local caches is one of the 
most important design criteria. Therefore, many NPUs use direct-
mapped caches. Although direct-mapped caches have several 
advantages, they may perform poorly due to conflict misses. 
Several techniques have been proposed by prior work to improve 
the performance of the direct-mapped caches [5]. Arguably, the 
most influential of these techniques is the victim cache proposed 
by Jouppi [7]. Victim caches may be an attractive alternative 
solution for multi-core processor compared to increasing the size 
and/or associativity of the local caches because of their area 
efficiency. In this paper we present different victim cache 
enhancements to improve the level 1 data cache efficiency.  
This paper is organized as follows. In the following section, we 
summarize the related work, where we also present the victim 
cache technique. Section 3 shows the prediction mechanisms. In 
Section 4, we present the simulation results. Section 5 concludes 
the paper with a summary. 

2. RELATED WORK  
Several techniques have been proposed to reduce the energy 
consumption of high-performance processors [1, 4, 8]. Some of 
these techniques use small energy-efficient structures to capture a 
portion of the working set, thereby filtering the accesses to larger 
structures. Others concentrate on restructuring the caches [1]. 
Victim caches are also studied as a means to reduce the energy 
consumption in high-performance processors [3].  
In the context of multiple processor systems, Moshovos et al. [13] 
propose filtering techniques for snoop accesses in the SMP 
servers. We use filtering of the accesses originating from the core 
rather than the bus. Some of the techniques presented in this paper 
were used to detect misses to data caches in a processor with 
multiple cache levels [11]. In this paper, we introduce new 
techniques and enhance some of the previously proposed 
techniques to be utilized to predict misses in victim caches.  
Victim caches were proposed by Jouppi [7] to reduce the conflict 
misses in caches with low degrees of associativity. In the original 
proposal, the victim cache is placed between the primary cache 
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and the next level of memory hierarchy. On a primary cache miss, 
the victim cache is accessed. If the data is found in the victim 
cache, it is promoted to the primary cache and the replaced block 
is placed into the victim cache. If the data is not found in the 
victim cache, the level 2 cache is accessed and the arriving block 
is placed directly into the primary cache. Meanwhile, the block 
evicted from the primary cache (replaced block) is placed into the 
victim cache. Bahar et al. [2] propose concurrent access of the 
primary cache and the victim cache. In our work, this 
configuration is called parallel victim cache (PVC), whereas the 
original configuration is called serial victim cache (SVC).  
Figure 1 shows two execution cores with different victim cache 
configurations. Execution core 1 implements PVC where the 
victim cache and the level 1 cache are accessed concurrently. 
Execution core 2 implements SVC, where the victim cache is 
probed only after level 1 cache misses. It also shows the location 
of our new bypass function, which is used to predict the miss 
accesses to the victim cache and to eliminate the accesses that are 
determined to miss.  
 
 
 
 
 
 

Figure 1. Overview of the victim cache configurations.  

3. BYPASS PREDICTION MECHANISMS 
We have presented techniques for detecting cache misses [11]. In 
this paper, we enhance some of these techniques for victim 
caches. In addition, we present new techniques. There are two 
categories of prediction techniques: inclusive and exclusive. 
Inclusive techniques store information about the existing blocks in 
the victim cache. Exclusive techniques store information about the 
blocks that are not in the victim cache. The delay and area 
requirements of each design are presented in Section 3.5. In all 
the techniques, the decision to bypass the victim cache access is 
indicated with a high prediction output.  

3.1 HighLow-Bits Technique 
The HighLow-Bits technique identifies the accesses that are going 
to miss by examining the bit locations that are high (or low) in the 
address. Specifically, we store the bit locations of the tags that are 
high (or low) in all the stored blocks. When an access comes to 
the predictor, we check whether any of the tag bit is set in the new 
tag and is not set in the stored positions. If so, we know that the 
access is going to miss at the victim cache. For example, if the 
victim cache has two blocks with tags 0110 and 1100, then all 
the accesses that have the form x0x1 will miss in the cache. 
Therefore, by checking the high and low bits, we can quickly 
eliminate some of the accesses. 
The algorithm is implemented using two registers. The first 
register stores the negation of the OR value of all the tag values in 
the victim cache. The second register stores the AND value of the 
tag values. Then, the accessed address is checked against the first 
register and the negation of the accessed address bits is checked 
against the second register. If any of the corresponding bits in the 
registers and the checked address is high, a miss is detected.   

3.2 Sum Technique 
Sum technique generates a hash value for every tag value. Then, 
instead of comparing the entire tag, these hash values are 
compared to the hash value of the accessed address to quickly 
determine cache misses. Figure 2 presents the specific hash 
function utilized. The result of the function is sum value that is 
modified in the for loop. If none of the hash outputs for the cache 
entries matches the hash output for the accessed address, we can 
conclude that the access will miss in the cache.   
for (i = 0; i < SUM_WIDTH; i++) { 
 if (tag & 0x1) 
  sum += (i + 1); 
 tag = tag >> 1;           } 

Figure 2. Sum hash function  
To implement the Sum technique, we utilize an array of flip-flops. 
Particularly, for every possible outcome, we implement a D flip-
flop. These flip-flops store the sum value calculated using the 
hash function in Figure 2. To check the hit/miss outcome for an 
access, we again find the corresponding sum value and check 
whether the value in the corresponding D flip-flop is set. If it is 
not set, we can determine that the access will miss.  

3.3 Table Technique 
The final inclusive prediction technique is the Table technique. 
The Table method stores the least significant N bits of the tag 
values in the victim cache. If the least significant N bits of the tag 
of the access do not match any one of the stored values, then the 
access can be bypassed.  
The values are stored in an array of size 2N bits and the least 
significant N bits of the tags are used as an address to access the 
array. The locations corresponding to the victim cache tag values 
are set to 0 and the remaining locations are set to 1. During an 
access, the least significant N bits of the tag are used to address 
this table. The value stored at the corresponding location is used 
as the prediction (0 means the access should be completed, 1 
means the access can be bypassed). In Section 4, we present 
results for a configuration (8x1) that uses a single table of size 28 
(N is set to 8).  

3.4 Exclusive Predictor Technique 
Exclusive predictors store information about the blocks that are 
not in the victim cache. When a block is accessed in the victim 
cache and the access results in a miss, the address is stored in an 
exclusive prediction table. For the PVC, if a block is in the 
primary cache, accesses to the block will result in victim cache 
misses. Hence, after the first access, the address is stored in the 
exclusive prediction table and the consecutive misses to the same 
block can be captured and prevented. 
When a block is placed into the victim cache, the exclusive 
prediction table should be traversed and if the block address is in 
the table, it should be removed from it, so that following accesses 
will not be marked as a miss. In Section 4, we report results for a 
32 entry exclusive prediction table.  

3.5 Discussion 
The prediction techniques discussed in this section are accurate 
for cache miss predictions. In other words, if the prediction is a 
miss, then the block certainly does not exist in the victim cache. 
However, if the prediction is a hit then the access might still miss 
in the victim cache. The miss predictions should be reliable 
because the cost of predicting an access will miss when the data is 
actually in the victim cache is very high, whereas the cost of a hit 
misprediction is relatively less.  
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We have measured the delay, energy, and area requirements of 
each technique. The results are summarized in Table 1. For the 
HighLow-Bits and Sum techniques, we have implemented RTL 
level descriptions of the circuits and measured the properties 
using the Synopsys Design Compiler. For the Table and Exclusive 
prediction techniques, the CACTI tool is used to find the optimal 
cache configuration and HSpice is used to simulate the delay. In 
all calculations, the tag addresses are 32-bit wide.  
Table 1. Properties of bypassing mechanisms. The ‘gates’ for 
area in HighLow-Bits and Sum techniques corresponds to an 
inverter.  

Technique Delay [ns] Energy [nJ] Area 
HighLow-Bits 0.1984 0.0044 118 gates 
Sum 0.3118 0.0125 367 gates 
Table 0.3967 0.0231 0.0676 mm2  
Exclusive Pred. 0.4468 0.0220 0.0469 mm2 

4. EXPERIMENTS 
We present results for a single core processor much like 
StrongARM SA-110. The SimpleScalar/ARM is used in the 
experiments. The necessary modifications to the simulators have 
been implemented to measure the effects of the victim cache and 
various bypassing methods. 

4.1 Simulation Parameters  
The processor is modeled after the StrongARM SA-110 with in-
order execution and an issue width of 2. We have selected the 
cache configurations to model execution cores in NPUs. The base 
processor does not use victim caches and has 4 KB, direct-
mapped L1 data and instruction caches and a 128 KB, 4-way set-
associative unified L2 cache. The latency for all L1 caches is set 
to 1 cycle, and the L2 cache latency is set to 12 cycles. We 
simulate the applications in the NetBench suite [10].  
The victim caches are 8-entry fully associative with 32-byte block 
size. We report the improvement over the base processor without 
any victim cache for the serial victim cache (SVC), parallel victim 
cache (PVC), the base processor with a 2-way set-associative 
level 1 data cache (2-way), and the base processor with twice the 
size of the original level 1 data cache (8 KB).  

4.2 Performance Impact of Victim Caches  
First, we investigate the performance impact of victim caches. The 
results are summarized in Table 2. Overall, increasing the 
associativity to 2 gives the best results reducing the number of 
execution cycles by 5.1%. The PVC reduces the execution cycles 
by 3.6% on average. For most applications, we see that the 
improvement achieved by PVC is close to the 2-way 
configuration. For applications such as nat and drr-l, on the other 
hand, 2-way significantly outperforms the PVC. The reason for 
this lies in the number of cache misses for these applications. 
Since they have relatively large number of cache misses, the 
victim cache is polluted. 

4.3 Bypass Prediction Mechanisms 
The success of a bypass prediction mechanism is measured in 
coverage. Coverage is the fraction of the victim cache miss 
accesses that are avoided (bypassed) using the mechanism. The 
results for the bypass mechanisms for the PVC are summarized in 
Table 2. In Table 2, we report the coverage for four techniques: 
HighLow-Bits, Sum (using two arrays, both with SUM_WIDTH 
set to 10), Table (using a table of 28 bits), and Exclusive (using an 
exclusive prediction table of 32 entries) techniques. On average, 
the sum technique reduces the number of miss accesses by 98.2%. 

The HighLow-Bits technique prevents 59.2% of the miss accesses 
on average, whereas the Table technique prevents the miss 
accesses by 81.5%. The exclusive prediction mechanisms are also 
successful in filtering access; on average 90.0% of the miss 
accesses are prevented by it.  
Table 2. Performance improvement for simulated 
configurations, coverage for bypassing techniques, and reduction in 
L2 accesses in the embedded processor. The coverages for four 
bypassing techniques: HighLow-Bits (HighL.), Sum, Table, and 
Exclusive Predictor (Exclu.), and reduction in the L2 accesses (L2).  

Appls. 2-way 
[%] 

8KB 
[%] 

PVC  
[%] 

High
L.[%] 

Sum 
[%] 

Table 
[%] 

Exclu
. [%]

L2 
[%] 

crc 1.6 0.8 1.4 12.1 96.7 97.3 96.2 56.8 
dh 0.0 0.0 0.0 95.4 98.9 95.6 99.9 0.0 
drr 7.9 10.4 5.2 62.1 99.2 88.5 91.1 15.4 
drr-l 10.4 0.3 6.1 84.2 99.7 95.9 88.6 5.8 
ipchains 1.2 0.6 1.2 59.1 95.8 69.9 88.4 10.5 
md5 4.5 1.8 4.4 31.0 95.1 83.7 97.7 27.8 
nat 11.4 0.2 6.5 83.3 99.5 93.8 88.6 5.4 
nat-l 8.2 4.6 4.9 67.5 99.3 91.8 91.9 9.7 
rou 1.1 2.3 0.7 81.1 99.5 97.1 88.6 6.1 
rou-l 9.3 4.1 5.8 61.5 99.5 95.8 91.6 16.6 
snort-l 3.9 5.0 3.6 25.9 97.9 46.7 93.6 19.0 
snort-n 1.6 2.0 1.4 50.0 98.4 50.8 91.9 9.1 
ssl-m 2.9 5.3 5.1 55.2 99.4 56.1 71.3 23.2 
ssl-s 3.8 0.0 2.5 38.8 95.3 47.4 93.0 12.3 
ssl-w 2.7 5.4 2.9 53.6 97.2 79.2 92.1 12.0 
tl 5.3 0.6 4.0 87.7 99.7 96.8 88.1 5.5 
tl-l 13.5 7.8 8.4 76.4 99.7 98.5 90.8 15.7 
url 3.0 2.1 1.7 40.2 96.2 82.4 75.9 19.9
average 5.1 3.0 3.7 59.2 98.2 81.5 90.0 15.0

4.4 Energy Measurements 
In this section, we report energy improvements for several 
configurations of the proposed techniques. We report the 
improvement in overall energy consumption. To find the total 
energy consumption of the processor, we use the energy 
distribution of the StrongARM components presented by 
Montanaro et al. [12]. We use the CACTI tool to find the energy 
consumption of the simulated caches. The energy consumption of 
the bus is estimated with the model established by Zhang and 
Irwin [16]. The total energy is the sum of the energy consumed by 
the level 1 caches (data, instruction and victim), the reminder of 
the cores, level 2 cache and the system bus.  
Figure 3 presents the results for the overall energy reduction. The 
energy reduction is mostly due to the reduced number of L2 and 
bus accesses. For each simulated application, the fraction of L2 
accesses prevented using the victim cache is presented in the 
right-most column of Table 2. Overall, the PVC with the Sum 
bypassing technique is the most efficient in terms of energy 
consumption, reducing the overall energy consumption by 8.6%. 
Note that, although the HighLow-Bits mechanism has lower 
coverage than the Table method, the energy consumption is less 
with the HighLow-Bits mechanism, because this method 
consumes the least power among the techniques. Using the energy 
consumption and the execution time, we first calculate the energy-
delay product. The PVC using the Sum technique for bypassing 
reduces the energy-delay product by 11.8% on average, whereas 
the 2-way and 8K configurations reduce the energy-delay product 
by 8.6% and 5.9%, respectively. Finally, we calculate the energy-
delay-area product. The area is of the most important design 
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criteria for chip multiprocessors, hence energy-delay-area product 
is a good measure for comparing performance of different 
techniques. According to Montanaro et al. [12], approximately 
30% of the area in StrongARM is dedicated to the data caches. 
We calculate the increase in the total cache size for the different 
configurations using CACTI. On average, the PVC with the 
simulated Sum technique reduces the energy-delay-area product 
by 2.4%, whereas the 2-way and 8 KB configurations increase the 
energy-delay-area product by 5.4% and 16.8%, respectively. 
5. CONCLUSION 
Thermal dissipation is becoming one of the most important 
bottlenecks for high-performance processors. In this paper, we 
have presented victim cache techniques to improve the efficiency 
of first level memory hierarchy. By increasing the efficiency of 
lowest level of hierarchy, the accesses to the global structures that 
consume large amounts of power are reduced. Although the 
proposed techniques are most useful in bus-based multi-core 
systems (such as NPUs), they can be utilized in almost all types of 
programmable systems. We have also presented techniques to 
filter victim cache accesses that will result in a victim cache miss. 
If the victim cache and the primary cache are accessed in parallel, 
the hit ratio on the victim cache becomes significantly lower. By 
predicting the victim cache misses, the energy consumption 
during the misses is prevented. We have presented four different 
techniques of varying complexity. The simulation results reveal 
that the techniques are quite successful in filtering misses, 
reducing the number of misses by as much as 99.9%. These 
bypassing techniques along with the victim cache reduces the 
energy consumption of a representative embedded processor by as 
much as 17.6% and 8.6% on average. This on average 
corresponds to a reduction of 11.8% in energy-delay product and 
2.4% reduction in energy-delay-area product. 
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Figure 3. Reduction in Energy Consumption for the embedded processor. (SVC: serial victim cache, PVC: parallel victim cache, HL: HighLow-
Bits, SUM: Sum bypassing technique, TAB: Table bypassing technique, EXC: Exclusive prediction technique). 

265


