
Reducing Energy and Delay Using Efficient Victim Caches*

* This work is in part supported by the NSF Grant ECS-0225379.

Gokhan Memik
Department of Electrical Engineering

UCLA
memik@ee.ucla.edu

Glenn Reinman
Computer Science Department

UCLA
reinman@cs.ucla.edu

William H. Mangione-Smith
Department of Electrical Engineering

UCLA
billms@ee.ucla.edu

ABSTRACT
In this paper, we investigate methods for improving the hit rates
in the first level of memory hierarchy. Particularly, we propose
victim cache structures to reduce the number of accesses to more
power consuming structures such as level 2 caches. We compare
the proposed victim cache techniques to increasing the
associativity or the size of the level 1 data cache and show that the
enhanced victim cache technique yield better energy-delay and
energy-delay-area products. We also propose techniques that
predict the hit/miss behavior of the victim cache accesses and
bypass the victim cache when a miss can be determined quickly.
We report simulation results obtained from SimpleScalar/ARM
modeling a representative Network Processor architecture. The
simulations show that the victim cache is able to reduce the
energy consumption by as much as 17.6% (8.6% on average)
while reducing the execution time by as much as 8.4% (3.7% on
average) for a set of representative applications.
Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures – Design Styles. C.3
[Computer Systems Organization]: Special-Purpose and
Application-Based Systems – Embedded Systems.

General Terms
Design, Measurement, Performance.

Keywords
Victim caches, Miss Detection, Network Processors.

1. INTRODUCTION
In this paper, we present hardware techniques to reduce
microprocessor energy consumption. The proposed techniques
improve the efficiency of first level memory hierarchy by utilizing
victim caches. Therefore, accesses to the larger and more power
consuming structures are prevented, which reduces the execution
time of applications and the power consumption.
The proposed techniques can be applied to various multi-
processor and single core systems. However, we show the effects
of our techniques for a generic chip-multiprocessor representing
Network Processors (NPUs). Power consumption has already
become a first rate design criteria for high-performance
processors. Heat dissipation affects the performance and
reliability of processors. The reasons for selecting NPUs as our
target platform are twofold. First, NPUs have high power
consumption with “power/area” ratios reaching or even surpassing

that of desktop processors. Hence, heat dissipation is likely to
become a very important problem for next generation NPUs.
Second, most NPUs follow the single-chip multiprocessor design
methodology [9]. The architectural details vary widely among
different NPUs. However, most NPUs employ multiple execution
cores and these cores are usually connected by a global system
bus. The system bus usually consumes a significant portion of the
overall energy, because the capacitive load on the core's
input/output drivers is usually much larger than that on the
internal nodes [14]. Such processor configurations can benefit
immensely from the proposed techniques. As the number of cores
in the processor is increased, the need for reducing the bus load
also increases. Therefore, the complexity of utilizing the proposed
techniques is clearly justified in processors with several cores.
For chip-multiprocessors, the area of the local caches is one of the
most important design criteria. Therefore, many NPUs use direct-
mapped caches. Although direct-mapped caches have several
advantages, they may perform poorly due to conflict misses.
Several techniques have been proposed by prior work to improve
the performance of the direct-mapped caches [5]. Arguably, the
most influential of these techniques is the victim cache proposed
by Jouppi [7]. Victim caches may be an attractive alternative
solution for multi-core processor compared to increasing the size
and/or associativity of the local caches because of their area
efficiency. In this paper we present different victim cache
enhancements to improve the level 1 data cache efficiency.
This paper is organized as follows. In the following section, we
summarize the related work, where we also present the victim
cache technique. Section 3 shows the prediction mechanisms. In
Section 4, we present the simulation results. Section 5 concludes
the paper with a summary.

2. RELATED WORK
Several techniques have been proposed to reduce the energy
consumption of high-performance processors [1, 4, 8]. Some of
these techniques use small energy-efficient structures to capture a
portion of the working set, thereby filtering the accesses to larger
structures. Others concentrate on restructuring the caches [1].
Victim caches are also studied as a means to reduce the energy
consumption in high-performance processors [3].
In the context of multiple processor systems, Moshovos et al. [13]
propose filtering techniques for snoop accesses in the SMP
servers. We use filtering of the accesses originating from the core
rather than the bus. Some of the techniques presented in this paper
were used to detect misses to data caches in a processor with
multiple cache levels [11]. In this paper, we introduce new
techniques and enhance some of the previously proposed
techniques to be utilized to predict misses in victim caches.
Victim caches were proposed by Jouppi [7] to reduce the conflict
misses in caches with low degrees of associativity. In the original
proposal, the victim cache is placed between the primary cache

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’03, August 25-27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008…$5.00.

262

and the next level of memory hierarchy. On a primary cache miss,
the victim cache is accessed. If the data is found in the victim
cache, it is promoted to the primary cache and the replaced block
is placed into the victim cache. If the data is not found in the
victim cache, the level 2 cache is accessed and the arriving block
is placed directly into the primary cache. Meanwhile, the block
evicted from the primary cache (replaced block) is placed into the
victim cache. Bahar et al. [2] propose concurrent access of the
primary cache and the victim cache. In our work, this
configuration is called parallel victim cache (PVC), whereas the
original configuration is called serial victim cache (SVC).
Figure 1 shows two execution cores with different victim cache
configurations. Execution core 1 implements PVC where the
victim cache and the level 1 cache are accessed concurrently.
Execution core 2 implements SVC, where the victim cache is
probed only after level 1 cache misses. It also shows the location
of our new bypass function, which is used to predict the miss
accesses to the victim cache and to eliminate the accesses that are
determined to miss.

Figure 1. Overview of the victim cache configurations.

3. BYPASS PREDICTION MECHANISMS
We have presented techniques for detecting cache misses [11]. In
this paper, we enhance some of these techniques for victim
caches. In addition, we present new techniques. There are two
categories of prediction techniques: inclusive and exclusive.
Inclusive techniques store information about the existing blocks in
the victim cache. Exclusive techniques store information about the
blocks that are not in the victim cache. The delay and area
requirements of each design are presented in Section 3.5. In all
the techniques, the decision to bypass the victim cache access is
indicated with a high prediction output.

3.1 HighLow-Bits Technique
The HighLow-Bits technique identifies the accesses that are going
to miss by examining the bit locations that are high (or low) in the
address. Specifically, we store the bit locations of the tags that are
high (or low) in all the stored blocks. When an access comes to
the predictor, we check whether any of the tag bit is set in the new
tag and is not set in the stored positions. If so, we know that the
access is going to miss at the victim cache. For example, if the
victim cache has two blocks with tags 0110 and 1100, then all
the accesses that have the form x0x1 will miss in the cache.
Therefore, by checking the high and low bits, we can quickly
eliminate some of the accesses.
The algorithm is implemented using two registers. The first
register stores the negation of the OR value of all the tag values in
the victim cache. The second register stores the AND value of the
tag values. Then, the accessed address is checked against the first
register and the negation of the accessed address bits is checked
against the second register. If any of the corresponding bits in the
registers and the checked address is high, a miss is detected.

3.2 Sum Technique
Sum technique generates a hash value for every tag value. Then,
instead of comparing the entire tag, these hash values are
compared to the hash value of the accessed address to quickly
determine cache misses. Figure 2 presents the specific hash
function utilized. The result of the function is sum value that is
modified in the for loop. If none of the hash outputs for the cache
entries matches the hash output for the accessed address, we can
conclude that the access will miss in the cache.
for (i = 0; i < SUM_WIDTH; i++) {
 if (tag & 0x1)
 sum += (i + 1);
 tag = tag >> 1; }

Figure 2. Sum hash function
To implement the Sum technique, we utilize an array of flip-flops.
Particularly, for every possible outcome, we implement a D flip-
flop. These flip-flops store the sum value calculated using the
hash function in Figure 2. To check the hit/miss outcome for an
access, we again find the corresponding sum value and check
whether the value in the corresponding D flip-flop is set. If it is
not set, we can determine that the access will miss.

3.3 Table Technique
The final inclusive prediction technique is the Table technique.
The Table method stores the least significant N bits of the tag
values in the victim cache. If the least significant N bits of the tag
of the access do not match any one of the stored values, then the
access can be bypassed.
The values are stored in an array of size 2N bits and the least
significant N bits of the tags are used as an address to access the
array. The locations corresponding to the victim cache tag values
are set to 0 and the remaining locations are set to 1. During an
access, the least significant N bits of the tag are used to address
this table. The value stored at the corresponding location is used
as the prediction (0 means the access should be completed, 1
means the access can be bypassed). In Section 4, we present
results for a configuration (8x1) that uses a single table of size 28
(N is set to 8).

3.4 Exclusive Predictor Technique
Exclusive predictors store information about the blocks that are
not in the victim cache. When a block is accessed in the victim
cache and the access results in a miss, the address is stored in an
exclusive prediction table. For the PVC, if a block is in the
primary cache, accesses to the block will result in victim cache
misses. Hence, after the first access, the address is stored in the
exclusive prediction table and the consecutive misses to the same
block can be captured and prevented.
When a block is placed into the victim cache, the exclusive
prediction table should be traversed and if the block address is in
the table, it should be removed from it, so that following accesses
will not be marked as a miss. In Section 4, we report results for a
32 entry exclusive prediction table.

3.5 Discussion
The prediction techniques discussed in this section are accurate
for cache miss predictions. In other words, if the prediction is a
miss, then the block certainly does not exist in the victim cache.
However, if the prediction is a hit then the access might still miss
in the victim cache. The miss predictions should be reliable
because the cost of predicting an access will miss when the data is
actually in the victim cache is very high, whereas the cost of a hit
misprediction is relatively less.

L 2 C a c h e

C o r e 1 C o r e 2L e v e l 1
c a c h e

G lo b a l B u s

B y p a s s

S V C

L e v e l 1
c a c h e

B y p a s s

P V C

263

We have measured the delay, energy, and area requirements of
each technique. The results are summarized in Table 1. For the
HighLow-Bits and Sum techniques, we have implemented RTL
level descriptions of the circuits and measured the properties
using the Synopsys Design Compiler. For the Table and Exclusive
prediction techniques, the CACTI tool is used to find the optimal
cache configuration and HSpice is used to simulate the delay. In
all calculations, the tag addresses are 32-bit wide.
Table 1. Properties of bypassing mechanisms. The ‘gates’ for
area in HighLow-Bits and Sum techniques corresponds to an
inverter.

Technique Delay [ns] Energy [nJ] Area
HighLow-Bits 0.1984 0.0044 118 gates
Sum 0.3118 0.0125 367 gates
Table 0.3967 0.0231 0.0676 mm2
Exclusive Pred. 0.4468 0.0220 0.0469 mm2

4. EXPERIMENTS
We present results for a single core processor much like
StrongARM SA-110. The SimpleScalar/ARM is used in the
experiments. The necessary modifications to the simulators have
been implemented to measure the effects of the victim cache and
various bypassing methods.

4.1 Simulation Parameters
The processor is modeled after the StrongARM SA-110 with in-
order execution and an issue width of 2. We have selected the
cache configurations to model execution cores in NPUs. The base
processor does not use victim caches and has 4 KB, direct-
mapped L1 data and instruction caches and a 128 KB, 4-way set-
associative unified L2 cache. The latency for all L1 caches is set
to 1 cycle, and the L2 cache latency is set to 12 cycles. We
simulate the applications in the NetBench suite [10].
The victim caches are 8-entry fully associative with 32-byte block
size. We report the improvement over the base processor without
any victim cache for the serial victim cache (SVC), parallel victim
cache (PVC), the base processor with a 2-way set-associative
level 1 data cache (2-way), and the base processor with twice the
size of the original level 1 data cache (8 KB).

4.2 Performance Impact of Victim Caches
First, we investigate the performance impact of victim caches. The
results are summarized in Table 2. Overall, increasing the
associativity to 2 gives the best results reducing the number of
execution cycles by 5.1%. The PVC reduces the execution cycles
by 3.6% on average. For most applications, we see that the
improvement achieved by PVC is close to the 2-way
configuration. For applications such as nat and drr-l, on the other
hand, 2-way significantly outperforms the PVC. The reason for
this lies in the number of cache misses for these applications.
Since they have relatively large number of cache misses, the
victim cache is polluted.

4.3 Bypass Prediction Mechanisms
The success of a bypass prediction mechanism is measured in
coverage. Coverage is the fraction of the victim cache miss
accesses that are avoided (bypassed) using the mechanism. The
results for the bypass mechanisms for the PVC are summarized in
Table 2. In Table 2, we report the coverage for four techniques:
HighLow-Bits, Sum (using two arrays, both with SUM_WIDTH
set to 10), Table (using a table of 28 bits), and Exclusive (using an
exclusive prediction table of 32 entries) techniques. On average,
the sum technique reduces the number of miss accesses by 98.2%.

The HighLow-Bits technique prevents 59.2% of the miss accesses
on average, whereas the Table technique prevents the miss
accesses by 81.5%. The exclusive prediction mechanisms are also
successful in filtering access; on average 90.0% of the miss
accesses are prevented by it.
Table 2. Performance improvement for simulated
configurations, coverage for bypassing techniques, and reduction in
L2 accesses in the embedded processor. The coverages for four
bypassing techniques: HighLow-Bits (HighL.), Sum, Table, and
Exclusive Predictor (Exclu.), and reduction in the L2 accesses (L2).

Appls. 2-way
[%]

8KB
[%]

PVC
[%]

High
L.[%]

Sum
[%]

Table
[%]

Exclu
. [%]

L2
[%]

crc 1.6 0.8 1.4 12.1 96.7 97.3 96.2 56.8
dh 0.0 0.0 0.0 95.4 98.9 95.6 99.9 0.0
drr 7.9 10.4 5.2 62.1 99.2 88.5 91.1 15.4
drr-l 10.4 0.3 6.1 84.2 99.7 95.9 88.6 5.8
ipchains 1.2 0.6 1.2 59.1 95.8 69.9 88.4 10.5
md5 4.5 1.8 4.4 31.0 95.1 83.7 97.7 27.8
nat 11.4 0.2 6.5 83.3 99.5 93.8 88.6 5.4
nat-l 8.2 4.6 4.9 67.5 99.3 91.8 91.9 9.7
rou 1.1 2.3 0.7 81.1 99.5 97.1 88.6 6.1
rou-l 9.3 4.1 5.8 61.5 99.5 95.8 91.6 16.6
snort-l 3.9 5.0 3.6 25.9 97.9 46.7 93.6 19.0
snort-n 1.6 2.0 1.4 50.0 98.4 50.8 91.9 9.1
ssl-m 2.9 5.3 5.1 55.2 99.4 56.1 71.3 23.2
ssl-s 3.8 0.0 2.5 38.8 95.3 47.4 93.0 12.3
ssl-w 2.7 5.4 2.9 53.6 97.2 79.2 92.1 12.0
tl 5.3 0.6 4.0 87.7 99.7 96.8 88.1 5.5
tl-l 13.5 7.8 8.4 76.4 99.7 98.5 90.8 15.7
url 3.0 2.1 1.7 40.2 96.2 82.4 75.9 19.9
average 5.1 3.0 3.7 59.2 98.2 81.5 90.0 15.0

4.4 Energy Measurements
In this section, we report energy improvements for several
configurations of the proposed techniques. We report the
improvement in overall energy consumption. To find the total
energy consumption of the processor, we use the energy
distribution of the StrongARM components presented by
Montanaro et al. [12]. We use the CACTI tool to find the energy
consumption of the simulated caches. The energy consumption of
the bus is estimated with the model established by Zhang and
Irwin [16]. The total energy is the sum of the energy consumed by
the level 1 caches (data, instruction and victim), the reminder of
the cores, level 2 cache and the system bus.
Figure 3 presents the results for the overall energy reduction. The
energy reduction is mostly due to the reduced number of L2 and
bus accesses. For each simulated application, the fraction of L2
accesses prevented using the victim cache is presented in the
right-most column of Table 2. Overall, the PVC with the Sum
bypassing technique is the most efficient in terms of energy
consumption, reducing the overall energy consumption by 8.6%.
Note that, although the HighLow-Bits mechanism has lower
coverage than the Table method, the energy consumption is less
with the HighLow-Bits mechanism, because this method
consumes the least power among the techniques. Using the energy
consumption and the execution time, we first calculate the energy-
delay product. The PVC using the Sum technique for bypassing
reduces the energy-delay product by 11.8% on average, whereas
the 2-way and 8K configurations reduce the energy-delay product
by 8.6% and 5.9%, respectively. Finally, we calculate the energy-
delay-area product. The area is of the most important design

264

criteria for chip multiprocessors, hence energy-delay-area product
is a good measure for comparing performance of different
techniques. According to Montanaro et al. [12], approximately
30% of the area in StrongARM is dedicated to the data caches.
We calculate the increase in the total cache size for the different
configurations using CACTI. On average, the PVC with the
simulated Sum technique reduces the energy-delay-area product
by 2.4%, whereas the 2-way and 8 KB configurations increase the
energy-delay-area product by 5.4% and 16.8%, respectively.
5. CONCLUSION
Thermal dissipation is becoming one of the most important
bottlenecks for high-performance processors. In this paper, we
have presented victim cache techniques to improve the efficiency
of first level memory hierarchy. By increasing the efficiency of
lowest level of hierarchy, the accesses to the global structures that
consume large amounts of power are reduced. Although the
proposed techniques are most useful in bus-based multi-core
systems (such as NPUs), they can be utilized in almost all types of
programmable systems. We have also presented techniques to
filter victim cache accesses that will result in a victim cache miss.
If the victim cache and the primary cache are accessed in parallel,
the hit ratio on the victim cache becomes significantly lower. By
predicting the victim cache misses, the energy consumption
during the misses is prevented. We have presented four different
techniques of varying complexity. The simulation results reveal
that the techniques are quite successful in filtering misses,
reducing the number of misses by as much as 99.9%. These
bypassing techniques along with the victim cache reduces the
energy consumption of a representative embedded processor by as
much as 17.6% and 8.6% on average. This on average
corresponds to a reduction of 11.8% in energy-delay product and
2.4% reduction in energy-delay-area product.

REFERENCES
1. Albonesi, D. H. Selective cache ways. In Proceedings of Int.
Symposium of Microarchitecture, Nov. 1999, Haifa / Israel.
2. Bahar, R. I., B. Calder, and D. Grunwald. A Comparison of
Software Code Reordering and Victim Buffers. In Proceedings of
3rd Workshop on Interaction Between Compilers and Computer
Architecture, Oct. 1998.
3. Bahar, R. I., G. Albera, and S. Manne. Power and Performance
Tradeoffs using Various Caching Strategies. In Proceedings of
International Symposium on Low Power Electronics and Design,
1998.

4. Bellas, N., I. Hajj, C. Polychronopoulos, and G. Stamoulis.
Architectural and compiler support for energy reduction in the
memory hierarchy of high performance processors. In Proceedings
of Intl. Symposium on Low Power Electronics and Design, 1998.
5. Hennessy, J. L. and D. A. Patterson, Computer Architecture: A
Quantitative Approach. 1990, San Mateo, CA: Morgan
Kaufmann.
6. Intel Corp. SA-110 Microprocessor Technical Reference
Manual.
7. Jouppi, N. P. Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache Prefetch Buffers.
In Proceedings of 25 Years {ISCA}: Retrospectives and Reprints,
1998.
8. Kin, J., M. Gupta, and W. H. Mangione-Smith. The Filter
Cache: an energy efficient memory structure. In Proceedings of
Intl. Symposium on Microarchitecture, Dec. 1997, Research
Triangle Park / NC.
9. Mangione-Smith, W. H. and G. Memik, Network Processing:
Applications, Architectures and Examples., in Tutorial at
International Symposium on Microarchitecture, Austin / TX. Dec.
2001.
10. Memik, G., W. H. Mangione-Smith, and W. Hu. NetBench: A
Benchmarking Suite for Network Processors. In Proceedings of
International Conference on Computer-Aided Design (ICCAD),
pp. 39-42, Nov. 2001, San Jose / CA.
11. Memik, G., G. Reinman, and W. H. Mangione-Smith. Just Say
No: Benefits of Early Cache Miss Determination. In Proc. of High
Performance Computer Architecture, Feb. 2003, Anaheim/CA.
12. Montanaro, J., et al., A 160-MHz, 32-b, 0.5-W CMOS RISC
microprocessor. IEEE Journal of Solid-State Circuits, 1996.
31(11): p. 1703-14.
13. Moshovos, A., G. Memik, B. Falsafi, and A. Choudhary.
JETTY: Snoop filtering for reduced power in SMP servers. In
Proceedings of International Symposium on High Performance
Computer Architecture (HPCA-7), Jan 2001, Toulouse / France.
14. Panda, P. R. and N. D. Dutt. Reducing Address Bus
Transitions for Low Power Memory Mapping. In Proceedings of
EDTC-96: IEEE European Design and Test Conference, pp. 63-
67, March 1996.
16. Zhang, Y. and M. J. Irwin. Energy-Delay Analysis for On-
Chip Interconnect at System Level. In Proceedings of IEEE
Computer Society Workshop on VLSI, 1999.

-5

0

5

10

15

20

crc dh drr drr
-l

ipc
ha

ins md5 na
t-l na

t
rou

-l rou

sn
ort

-l

sn
ort

-n
ss

l-m ss
l-s

ss
l-w tl-l tl url

av
g.

R
ed

uc
tio

n
in

 E
ne

rg
y

C
on

su
m

pt
io

n
[%

]

2-w ay 8K SVC PVC_HL PVC_SUM PVC_TAB PVC_EXC

Figure 3. Reduction in Energy Consumption for the embedded processor. (SVC: serial victim cache, PVC: parallel victim cache, HL: HighLow-
Bits, SUM: Sum bypassing technique, TAB: Table bypassing technique, EXC: Exclusive prediction technique).

265

