
Reducing the Energy of Speculative Instruction Schedulers

Yongxiang Liu† Gokhan Memik‡ Glenn Reinman†

†Computer Science Department, University of California, Los Angeles
‡Department of Electrical and Computer Engineering, Northwestern University

Abstract

Energy dissipation from the issue queue and register file
constitutes a large portion of the overall energy budget of an
aggressive dynamically scheduled microprocessor. We pro-
pose techniques to save energy in these structures by reducing
issue queue occupancy and by reducing unnecessary register
file accesses that can result from speculative scheduling. Our
results show a 44% reduction in issue queue occupancies and
an 87% reduction in register file accesses for scheduling re-
plays. Our data show that these savings can translate into a
52% saving in issue queue energy, a 13% savings in register
file energy, and a 22% overall energy savings.

1. INTRODUCTION AND MOTIVATION
In contemporary microprocessors, the out-of-order issue

queue logic and register file access are responsible for a large
portion of the total energy dissipated. The issue queue
employs a fully associative structure that can potentially
wakeup and select new instructions to issue every cycle from
any slot in the queue. As a result, the issue queues are often
a major contributor to the overall power consumption of the
chip, and can be a hot spot [3, 4] on the core. In [7], it is
estimated that instruction issue queue logic is responsible
for around 25% of the total power consumption on average.
Wilcox et al. [23] showed that the issue logic could account
for 46% of the total power dissipation in future out-of-order
processors that support speculation.

Similarly, register files also represent a substantial portion
of the energy budget in modern high-performance, wide-
issue processors. It is reported that modern register files
represent about 10% to 15% of processor energy [18]. The
development of speculative scheduling in recent microarchi-
tectures [9, 11] will further worsen the energy dissipation in
register files.

Speculative scheduling emerged in response to the grow-
ing pipeline depth in recent microprocessor designs. The
pipeline depth of dynamically scheduled processors between
instruction scheduling and execution – the schedule to exe-
cute (STE) window has grown to multiple cycles. For exam-
ple, the recent P4 design features a 7 stage STE window [9].
Conventional schedulers broadcast instruction completion to
instructions in the issue queue, and then select candidates
for execution from the pool of ready instructions [21]. The
throughput of such schedulers in a deep-pipelined proces-
sor is extremely low as every dependency is exposed to the
depth of the STE pipeline. Speculative schedulers [9, 11],
on the hand, are designed to hide the latency of the STE
pipeline by anticipating operand ready time and schedul-
ing the instruction further ahead, even before their parent
instructions have completed execution.

Speculative execution works well for instructions that have
predictable latencies, but load latency is highly nondeter-
ministic. As shown in our prior work [14], this nondetermin-
ism comes from cache misses, loads that alias with in-flight
data blocks, and memory bus contention. Load instructions
can take anywhere from several cycles to several hundred
cycles in current generation processors. Current generation
designs [9, 11] speculatively schedule load dependents by
assuming cache hits. If a load misses in the cache, the pro-
cessor must prevent the load’s dependents from executing
and then attempt to reschedule these instructions until they
are correctly scheduled.

Such misscheduled instructions will speculatively access
the physical register files before their operands are ready,
and will therefore consume even more energy in the register
file. If the latency of load instructions can be determined
prior to scheduling, then the misscheduling of their depen-
dents can be avoided, saving register file energy.

Another source of wasted energy is in the issue queue. In
contemporary designs, instructions with long waiting times
(i.e. dependent on long latency operations) will remain in
the issue queue while waiting for their operands. Prior re-
search [5, 4] demonstrates that an issue queue consumes
power proportionately to the number of active entries in
issue queue. If the long latency instructions are known a
priori, we can buffer their dependents before they enter the
issue queue – effectively allowing instructions to enter the
scheduling window out of order. In this way, we can reduce
the energy consumption in the issue queue by reducing the
issue queue occupancy.

In this paper, we propose to apply load latency predic-
tion techniques to reduce energy wasted on register file ac-
cess by misscheduled instructions and energy expended in
the issue queue by reducing issue queue occupancy. Our
prior work [14] demonstrated how load latency can be pre-
dicted during the instruction renaming stage. But they have
only considered latency prediction as a means of improving
IPC performance of a conventional wakeup-and-select issue
queue. In this paper, we look into modern speculative sched-
ulers and we propose several techniques to reduce register
file accesses and issue queue occupancy in such schedulers.

Particularly, in this work, we make the following contri-
butions:

• We investigate the energy impact of speculative schedul-
ing on deeply pipelined processors,

• We reduce the energy consumption in the issue queue
and register file by applying latency prediction and
instruction sorting in a speculative scheduler,

• We examine the energy cost of the added latency pre-

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

diction and instruction sorting hardware.

The rest of this paper is organized as follows. In Section 2
we discuss prior work, followed by a description of our en-
ergy reduction techniques in Section 3. Section 4 describes
our experimental methodology. Section 5 presents our sim-
ulation results. Concluding remarks follow in Section 6.

2. RELATED WORK
Buyuktosunoglu et al. present an adaptive issue queue

design by dynamically shutting down and re-enabling blocks
of the issue queue [5, 4]. By shutting down unused blocks
of the issue queue, they are able to proportionately reduce
the energy dissipated. Our work follows this trend to scale
energy dissipation with the number of active entries in the
issue queue.

In conventional issue queue design, the dependents of missed
loads consume a substantial amount of power while waiting
for loads completion. Gschwind et al. propose a recircula-
tion buffer for misscheduled instructions in addition to the
main issue queue [8]. Similarly, Moreshet and Bahar [17]
propose to use a Main Issue Queue(MIQ) and a Replay Is-
sue Queue(RIQ). Load dependents in main queue are spec-
ulatively scheduled assuming cache hit. They will enter re-
play/recirculation queue if the load misses. Power is saved
by reducing the main queue size relative to a baseline issue
queue. As we can see, energy is still consumed when the de-
pendents of missed loads are misspeculated, and when they
wait in the replay/recirculation queue. On the other hand,
our approach anticipates load misses and then before their
dependents can enter the issue queue, they are buffered in
low-power FIFO structures.

Ponomarev et al. present a circuit-level low-power issue
queue design [19]. In their approach, energy is saved by
using comparators that dissipate energy mainly on a tag
match, using 0-B encoding of operands to imply the presence
of bytes with all zeros and bitline segmentation. This is
orthogonal to our work, and our approach can help to reduce
the issue queue energy even further.

Karkhanis et al. propose to limit the number of in-flight
instruction to save energy [4, 10]. In their approach, the
fetch engine dynamically throttles so that instructions are
not fetched sooner than necessary. This reduces the process-
ing of speculative instructions. However, ILP is sacrificed in
this approach as the number in-flight instructions is limited.
In our approach, we decouple instruction fetch and instruc-
tion issuing by introducing FIFOs buffers – available ILP is
still exploited in such a design.

Folegnani and Gonzalez propose to save issue queue power
by disabling the wakeup of empty issue queue entries or
entries that have already been woken up previously [7]. In
addition, they propose to dynamically reduce the effective
issue queue size by monitoring the utilization of the issue
queue. Our baseline model is a more ideal version of their
approach. Our approach can help this technique work more
effectively by reducing the occupancy of the issue queue,
thus providing more opportunity to shut down parts of the
queue.

Wilcox et al. [23] demonstrate that the issue queue logic
on the 8-way issue Alpha 21464 was expected to be 23% of
the overall power of the core. They also argue that the issue
logic could account for 46% of the total power dissipation in
future out-of-order processors supporting speculation.

Lebeck et al. [13] explore an alternative means of reducing
issue queue occupancy, maintaining a secondary buffer of
load dependents that have been misscheduled. However,

this design does not use any form of load latency prediction,
and therefore will not impact register file energy. They do
not explore the energy implications of this design.

Kim and Lipasti explain in detail the problem of miss-
chedulings due to load misses, and several misscheduling
recovery mechanisms [12]. We proposed latency prediction
techniques to scale a conventional wakeup-and-select issue
queue [14]. The Alpha 21264 uses a global 4-bit history
counter to determine whether a load hits in the cache [11].
However, it is difficult to accurately predict based on global
history. Memik et al [16] propose to predict load/hit miss
information during load execution time to reduce schedul-
ing replays. In this paper, we propose to predict load access
time far ahead at execution stage. In this way, we prevent
the dependents of long latency loads from entering the issue
queue too early, saving energy both from reduced replays
and from more efficient use of the issue queue.

3. SCHEDULING TECHNIQUES
In this paper, we apply latency prediction to reduce the

energy from misschedulings in a speculative scheduler and
the energy of the issue queue.

3.1 Conventional Wakeup-and-Select vs Spec-
ulative Scheduling

In recent microprocessor designs, the number of pipeline
stages from the stage of Scheduling To Execution (STE)
has grown to accommodate the latency needed for reading
the register file and performing other book-keeping duties.
Conventional instruction schedulers let issued instructions
wake up their dependent instructions [21]. As the pipeline
stages from scheduling to actual execution grow beyond a
single stage, conventional wakeup-and-select can no longer
schedule and execute the dependent instructions back-to-
back. Each back-to-back scheduling exposes the depth of
the schedule to execute window.

Modern microprocessors address the problem by specula-
tively waking up and selecting dependents instructions sev-
eral cycles ahead [11, 9]. In this way, instructions that have
back-to-back dependencies can still be executed in consecu-
tive cycles.

3.2 Replays in Speculative Scheduling
In current microprocessors, the instructions dependent on

a load (and their eventual dependents) are scheduled with
the assumption that the load will hit in the cache. This
assumption usually increases the performance as most of
the loads actually hit in the cache. However, performance
can be adversely affected in the case of cache misses.

Consider a load operation that is scheduled to execute. If
the STE pipeline latency is n, and the processor is an m-way
machine, (m x (n + time to identify miss)) instructions
may be scheduled before the scheduler knows whether the
load will hit in the cache. Once the load instruction misses
in the cache, these dependent instructions will be replayed.
Misscheduled instructions represent wasted issue bandwidth
(as something useful could have been issued in place of the
instruction) and wasted issue energy (wasted energy in the
issue logic and register file).

Prior work has suggested two replay mechanisms: flush re-
covery (used in the integer pipeline of the Alpha 21264 [11])
and selective recovery (used by Pentium 4 [9]). In this pa-
per we focus on selective replay, where the processor only
re-executes the instructions that depend on the missed load.

A speculative scheduler needs to know when to reschedule

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

instructions dependent on a load miss, but load latency is
highly nondeterministic. A load may hit in different levels
of the memory hierarchy. In addition, a load miss may alias
an already in-flight data block. Bus contention and mem-
ory port arbitration may also impact the load latency. In
current processors, the latency of load can range from a few
cycles to a few hundred cycles. The current strategy [9, 11]
is to replay instructions every so often until the instructions
are correctly scheduled. Waiting longer before replaying a
misscheduled instruction can lengthen the perceived load
latency. Replaying at too fine a granularity (i.e. replaying
more frequently) can increase wasted issue energy and band-
width. We have seen that replaying at the granularity of the
L2 cache latency is a reasonable compromise. Therefore, on
a load miss, a misscheduled dependent instruction will con-
tinue to execute every T cycles, where T is the latency of the
L2 cache hit.

3.3 Latency Prediction and Sorting
In this paper, we explore the use of latency prediction

techniques to reduce the number of replays in speculative
schedulers. We use the lookahead latency prediction de-
scribed in our previous work [14]. With correctly predicted
load latency, speculative schedulers are able to schedule the
dependent instructions to execute precisely after loads com-
plete.

We propose to reduce the number of replays by allowing
only instructions that are that can be executed soon to enter
the issue queue, while buffering other instructions with long
waiting times before they enter the issue queue. This way,
instructions with long waiting times will not be mistakenly
selected for execution. In addition, instead of attempting
every T cycles, the scheduler makes decisions based on the
accurately predicted latencies. This way, even if the depen-
dents of a missed load enter the issue queue too early due
to imperfect buffering , most of the scheduling replays can
still be avoided. The speculative scheduler is also able to
get better utilization out of the existing issue queue space,
potentially improving performance.

Figure 1 shows the overall architecture of the proposed
technique. In the early pipeline stages, we predict how long
an instruction needs to wait before it can be issued, i.e, the
waiting time for its operands to be produced. The “latency
prediction” structure implements the techniques described
in [14]. The prediction structure captures 83% of the load
misses, and 99% of the cache hits. In the renaming stage,
we let the PC access a load address predictor and a latency
history table (LHT). The latency history table performs a
last latency prediction. If the LHT can confidently report
a latency, then the predicted load latency is obtained. Oth-
erwise, we use the predicted address to access a cache miss
detection engine [15] – a small, energy-efficient structure to
tell if a load address will miss in a given level of the mem-
ory hierarchy. We also access the SILO (Status of In-flight
Loads) structure – a small structure to tell if a load aliases
with an in-flight data block. The latency of loads are pre-
dicted based on whether a load needs to access the L1 or L2
cache, main memory, or if it aliases with an in-flight data
block.

The latencies of instructions other than loads are deter-
ministic. Each instruction saves its expected completion
time in a timing table [6], which can be implemented with
architectural register files, so that its dependents can ob-
tain the waiting times by checking their parents’ completion
times.

3 Fast Queues

10-cycle

4-cycle

20-cycle

150-cycle

Pre-Issue
Buffer(PIB)

Latency
Prediction Issue

Queue

Figure 1: The Architecture to Perform Prediction,
Sorting and Buffering

ILP-intensive apsi,crafty,eon,
applications gcc,gzip,vortex
Memory-intensive ammp,applu,art
applications equake,lucas,twolf

Table 1: The benchmarks used in this study.

Once its waiting time is predicted, an instruction is placed
into one of the FIFO queues in the sorting engine. The pri-
mary function of the FIFO queues is to hold the instructions
until their waiting time has elapsed. Instructions with very
long waiting times are placed into the long queues and those
with short waiting times into the short queues. Instructions
should only leave the sorting queues when they can be exe-
cuted soon. This way, dependents of missed loads that are
correctly latency predicted will not be misscheduled. At the
same time, issue queue occupancy is reduced. The sort-
ing queues feature a locking mechanism [14] that prevents
instructions from entering the issue queue before their par-
ents.

A Preissue Buffer (PIB) is inserted between the sorting
structure and issue queue to provide an inexpensive buffer-
ing of sorting instructions in cases where the issue queue fills.
Instructions may not directly issue from the PIB - they must
pass to the issue queue first.

4. METHODOLOGY
We integrate Wattch [1] with the SimpleScalar 3.0 tool

set [2] to evaluate the energy performance of our design.
We simulate the power and performance for a 100nm process
technology at 3 GHz. We obtain the total energy dissipation
and then divide it by the number of committed instructions
to produce the average energy per instruction for each ap-
plication.

The benchmarks in this study are taken from the SPEC
2000 suite. We rank the benchmarks by the percentage
of level 2 cache misses. As listed in Table 1, we take 6
benchmarks with high miss rates as memory-intensive ap-
plications, and another 6 benchmarks with low miss rates
as ILP-intensive applications. The benchmark mcf has ex-
tremely large miss rate and sees benefit far beyond any other
benchmark from our proposed techniques. We exclude it
from the memory-intensive group to make our results more
representative.

The applications were compiled with full optimization on
a DEC C V5.9-008 and Compaq C++ V6.2-024 on Digital
Unix V4.0. We simulate 100 Million instructions after fast-
forwarding an application-specific number of instructions ac-
cording to Sherwood et al. [20].

The processor configuration used for the base simulations
is shown in Table 2.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

Parameters Value

Issue Width 8 instructions per cycle
ROBs 128 entries
LSQs 64 entries
Issue Queue 32 or 64 entries
Cache Block Size L1: 32B, L2: 64B
L1 Cache 8KB, 4-way, 2-cycle latency
L2 Cache 512KB, 2-way, 12-cycle latency
Memory Latency 164 cycles
Integer FUs 8 ALU, 2 Ld/St, 2 Mult/Div
FP FUs 2 FP Add, 1 FP Mult/Div
Integer FU Latency 1/5/25 add/mult/div (pipelined)
FP FU Latency 2/10/30 add/mult/div

(all but div pipelined)
Branch Predictor 4k BTB/Comb/Bimod/gshare
Branch Penalty 12, additional 2

for latency prediction

Table 2: Processor Configuration.

4.1 Structures from Proposed Techniques
We model the address predictors and latency history table

(LHT) as tagless arrays as in [24, 1]. The address predictor
we use has 8K entries and the LHT has 2K entries. Each
entry in these structures has 40 bits. Our SILOs (Status of
In-flight Loads) are modeled as a 8-entry fully associative
caches, with 40 bit block sizes. We model the timing table
as part of the renaming table by extending each entry of the
table by 10 bits.

We model the preissue buffers and sorting queues as FIFO
queues. As in Orion [22], we model FIFO queue energy with
SRAM arrays [24, 1]. Our PIB has length of 64. The sorting
queues have FIFO lengths of 1,5,10,20 and 150. The number
of FIFOs are 3, 2, 1, 1, and 1 respectively.

Our 8-issue architecture would require 16 read ports and
8 write ports on the register file. To reduce the energy dis-
sipation of the register file, we use a common technique: we
maintain two copies of the register file, each with only 8
read ports and 8 write ports. Half of the functional units
are connected to one register file and half are connected to
the other. All writes go to both register files. Despite hav-
ing to write each value twice (once per register file), we still
save the net energy by reducing the ports on each individual
register file.

5. EXPERIMENTS AND RESULTS
In this section we examine the energy data for our latency

prediction engine.

5.1 Prediction, Sorting and Buffering Struc-
tures

We use Wattch to record the total energy dissipation in
these structures and then divide it by the number of commit-
ted instructions to produce the average energy per instruc-
tion for each application (shown in Figure 3). Throughout
this paper, we use energy dissipation per committed instruc-
tion for a fair comparison among different schedulers. The
total energy from FIFOs in the sorting engine in our sim-
ulation is similar to the result obtained from Orion’s FIFO
implementation [22]. Overall, the energy dissipation from
all additional structures for our latency prediction, sorting,
and buffer engine is 0.3 nJ/instruction, which constitutes
4% of the overall energy consumption.

5.2 Speculative Scheduling
Speculative scheduling helps to hide the schedule to exe-

cute latency that is exposed with conventional wakeup and
select logic. Figure 2 demonstrates that most of the bench-
marks observe a large speedup with speculative scheduling,
an average 60% improvement. Without speculative schedul-
ing, back to back instructions see the full schedule to execute
window. In the remainder of this section, we will focus on
reducing the energy consumption of speculatively scheduled
processors.

5.3 Issue Queue Energy
In the baseline speculative scheduler, instructions with

long waiting times consume energy waiting for their operands
in the issue queue. When we use latency prediction and
instruction sorting to buffer these instructions before they
enter the issue queue, we observe significant reductions in is-
sue queue occupancy and energy. Note that this can provide
benefit to any instruction that must wait for their operands
in the issue queue, not just those instructions dependent on
load misses.

As shown in Figure 4, we observe a 44% reduction in issue
queue occupancy with a 32-entry issue queue configuration,
and a even larger reduction of 53% with a 64-entry issue
queue. The ILP-intensive applications observe larger reduc-
tions in issue queue occupancy because they have a larger
number of in-flight instructions. The latency prediction and
buffering mechanism effectively prevents these instructions
from entering the issue queue earlier than necessary. In
memory-intensive applications, dependents of missed loads
can still enter issue queue early due to the coarser granular-
ity of sorting queues for very long latencies.

Figure 5 shows the energy reduction in a 32-entry issue
queue configuration. We observe an average of 52% reduc-
tion in issue queue energy. The ILP-intensive applications
are able to reduce their issue queue energy by nearly two
thirds. The memory-intensive applications also observe a
large energy savings, around 45%.

5.4 Register File Energy
The baseline speculative scheduler also suffers from fre-

quent misschedulings in the face of load nondeterminism.
Without knowledge of load latencies, the scheduler has to
optimistically issue load dependents to assume the load will
hit in the cache. When a load misses in the cache, its de-
pendents will have been misspeculated and will need to be
rescheduled. Moreover, to avoid exposing the latency of the
schedule to execute window, a speculative scheduler will re-
play the load’s dependents at certain intervals until they are
able to correctly schedule. This can impact performance in
two ways: 1) by coarsening the granularity of load laten-
cies based on the interval at which instructions replay and
2) when misscheduled instructions consume issue bandwidth
that could be used to execute useful instructions. This latter
component can also dramatically impact energy consump-
tion, particularly in the issue logic and register file.

When we use latency prediction and instruction sorting
to implement out-of-order entry into the scheduling window,
we observe a large reduction of scheduling replays (Figure 6):
the number of replays are reduced by 87% in a 32-entry issue
queue configuration and by 90% in a 64-entry issue queue.
The reduction comes from two sources: the dependents of
missed loads that are correctly latency predicted tend not to
be misscheduled because they do not enter the issue queue
until they have been buffered in the sorting queues. Even

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

aps
i
cra

fty eon gcc gzi
p
vo

rte
x

am
mp

ap
plu art

equ
ake luc

as
twolf

avg
_IL

P

avg
_M

EM

avg
_A

LL

IP
C

Wakeup&Select Spec. Sched(SS) SS with Pred&Sort

Figure 2: Performance in IPC

if the dependents of missed loads enter issue queue prema-
turely, misschedulings are still rare because the scheduler
speculates load latency based on the accurately predicted
load latencies.

The reduction in scheduling replays translates into energy
savings in the register file. As shown in Figure 7, the new ap-
proach saves energy in the register file by an overall average
of 13% – saving 22% in memory-intensive applications and
2% in ILP-intensive applications. Memory-intensive appli-
cations observe a much larger energy savings due to a larger
amount of cache misses.

5.5 Overall Performance and Energy Reduc-
tion

When we use latency prediction and instruction sorting
to implement out-of-order entry into the scheduling window,
we observe a substantial improvement in IPC performance
(Figure 2). On average, the memory-intensive benchmarks
observe a 22% speedup. The benchmark art observes the
largest improvement (61%). This is because these applica-
tions have frequent cache misses. With our proposed tech-
niques, dependents of loads that miss in the cache are pre-
vented from entering the issue queue, while other instruc-
tions with shorter waiting times are allowed to enter the
issue queue earlier (and out-of-order). Therefore, the sched-
uler is able to better exploit memory level parallelism. The
ILP-intensive benchmarks see less of an improvement be-
cause load misses are less frequent. In the case of apsi, we
even observe a slight degradation of 1.5%. Our results show
that apsi has relatively few cache misses. For this appli-
cation, any benefit from latency prediction and sorting is
canceled out by the impact of the additional pipe stages to
perform latency prediction, sorting and preissue buffering.

The reduction in energy dissipation in the register file and
issue logic, combined with the improved utilization of the is-
sue queue, results in an overall drop in energy dissipation.
As shown in Figure 8, the memory intensive applications
observe an average 22% reduction in energy per instruction.
In these applications, a large amount of misschedulings are
effectively eliminated, and therefore a significant energy re-
duction is observed. The ILP intensive applications observe
a 23% reduction. These applications, though have less en-
ergy savings from eliminated replays, have large savings in
issue queue energy.

6. CONCLUSION
In this paper, we use look-ahead load latency prediction

and proactive instruction buffering to reduce energy con-
sumption in issue queue and register file accesses. With
predicted latencies, the schedulers can avoid unnecessarily

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

aps
i
cra

fty eon gcc gzi
p
vo

rte
x

am
mp

ap
plu art

equ
ake luc

as
twolf

avg
_IL

P

avg
_M

EM

avg
_A

LL

E
ne

rg
y

of
 P

re
d/

S
or

t/P
IB

 (n
J)

Figure 3: Energy Consumption in the Latency Pre-
diction, Sorting and Buffering Structures (per in-
struction)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

aps
i

cra
fty eon gcc gzi

p
vo

rte
x

am
mp

ap
plu art

eq
ua

ke
luc

as
twolf

avg
_IL

P

avg
_M

EM

avg
_A

LL

Occ32 Occ64

Figure 4: Reduction in Issue Queue Occupancy

0
0.5

1
1.5

2
2.5

3
3.5

aps
i
cra

fty eon gcc gzi
p
vo

rte
x

am
mp

ap
plu art

equ
ake luc

as
twolf

avg
_IL

P

avg
_M

EM

avg
_A

LL

Is
su

e
Q

ue
ue

E
ne

rg
y

(n
J) Spec. Sched(SS) SS with Pred&Sort

Figure 5: Issue Queue Energy Consumption Per
Committed Instructions

0%

20%

40%

60%

80%

100%

aps
i

cra
fty eon gcc gzi

p
vo

rte
x

am
mp

ap
plu art

eq
ua

ke
luc

as
twolf

avg
_IL

P

avg
_M

EM

avg
_A

LL

Replay32 Replay64

Figure 6: Reduction in Number of Scheduling Re-
plays

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

0

0.5

1

1.5

2

2.5

3

aps
i
cra

fty eon gcc gzi
p
vo

rte
x

am
mp

ap
plu art

equ
ake luc

as
twolf

avg
_IL

P

avg
_M

EM

avg
_A

LL

R
eg

is
te

r F
ile

 E
ne

rg
y

(n
J) Spec. Sched(SS) SS with Pred&Sort

Figure 7: Register File Energy Consumption Per
Committed Instructions

0
2
4
6
8

10
12
14

aps
i

cra
fty eon gcc gzi

p
vo

rte
x

am
mp

ap
plu art

equ
ake luc

as
twolf

avg
_IL

P

avg
_M

EM

avg
_A

LLTo
ta

l E
ne

rg
y

P
er

 In
st

ru
ct

io
n

(n
J)

Spec. Sched(SS) SS with Pred&Sort

Figure 8: Total Energy Consumption Per Commit-
ted Instructions

misscheduling the dependents of missed loads. With the
buffering mechanisms, we prevent instructions from enter-
ing issue queue earlier than necessary. Our results show
that these savings translate into 52% savings in issue queue
power, 13% savings in register file power, and 22% overall
energy savings. Future work should consider the thermal
implications of this reduction, as the issue logic often con-
stitutes a processor hot spot.

7. REFERENCES
[1] David Brooks, Vivek Tiwari, and Margaret Martonosi.

Wattch: a framework for architectural-level power analysis
and optimizations. In Proceedings of the 27th Annual
International Symposium on Computer Architecture
(ISCA’00), pages 83–94. ACM Press, 2000.

[2] D. C. Burger and T. M. Austin. The simplescalar tool set,
version 2.0. Technical Report CS-TR-97-1342, U. of
Wisconsin, Madison, June 1997.

[3] Alper Buyuktosunoglu, David H. Albonesi, Stanley
Schuster, David Brooks, Pradip Bose, and Peter Cook.
Power-efficient issue queue design. In Power Aware
Computing, pages 35–58. Kluwer Academic Publishers,
2002.

[4] Alper Buyuktosunoglu, Tejas Karkhanis, David H.
Albonesi, and Pradip Bose. Energy efficient co-adaptive
instruction fetch and issue. In Proceedings of the 30th
annual international symposium on Computer architecture
(ISCA’03), pages 147–156. ACM Press, 2003.

[5] Alper Buyuktosunoglu, Stanley Schuster, David Brooks,
Pradip Bose, Peter W. Cook, and David H. Albonesi. An
adaptive issue queue for reduced power at high
performance. In Proceedings of the First International
Workshop on Power-Aware Computer Systems-Revised
Papers, pages 25–39. Springer-Verlag, 2001.

[6] D. Ernst, A. Hamel, and T. Austin. Cyclone: A
broadcast-free dynamic instruction scheduler with selective
replay. In Proceedings of the 30th Annual International
Symposium on Computer Architecture (ISCA’03), June
2003.

[7] Daniele Folegnani and Antonio Gonzalez. Energy-effective

issue logic. In Proceedings of the 28th Annual International
Symposium on Computer Architecture (ISCA’01), pages
230–239. ACM Press, 2001.

[8] M. Gschwind, S. Kosonocky, and E. Altman. High
frequency pipeline architecture using the recirculation
buffer. In IBM Research Report(RC23113), 2001.

[9] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the
Pentium 4 processor. Intel Technology Journal Q1, 2001.

[10] T. Karkhanis, J. E. Smith, and P. Bose. Saving energy with
just in time instruction delivery. In Proceedings of the 2002
International Symposium on Low Power Electronics and
Design (ISLPED’02), pages 178–183. ACM Press, 2002.

[11] R. E. Kessler. The Alpha 21264 microprocessor. IEEE
Micro, 19(2):24–36, 1999.

[12] Ilhyun Kim and Mikko H. Lipasti. Understanding
scheduling replay schemes. In 10th International
Conference on High-Performance Computer Architecture
(HPCA’04), 14-18 February 2004, Madrid, Spain, pages
198–209.

[13] A.R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and
E. Rotenberg. A large, fast instruction window for
tolerating cache misses. In Proceedings of the 29th Annual
International Symposium on Computer Architecture
(ISCA’02), May 2002.

[14] Yongxiang Liu, Anahita Shayesteh, Gokhan Memik, and
Glenn Reinman. Scaling the issue window with look-ahead
latency prediction. In Proceedings of the 18th Annual
International Conference on Supercomputing (ICS’04),
pages 217–226. ACM Press, 2004.

[15] G. Memik, G. Reinman, and W. H. Mangione-Smith. Just
say no: Benefits of early cache miss determination. In
Proceedings of the 9th International Symposium on
High-Performance Computer Architecture (HPCA’03),
February 2003.

[16] G. Memik, G. Reinman, and W. H. Mangione-Smith.
Precise scheduling with early cache miss detection. CARES
Technical Report No. 2003 1, 2003.

[17] Tali Moreshet and R. Iris Bahar. Power-aware issue queue
design for speculative instructions. In Proceedings of the
40th Conference on Design Automation (DAC’03), pages
634–637. ACM Press, 2003.

[18] Il Park, Michael D. Powell, and T. N. Vijaykumar.
Reducing register ports for higher speed and lower energy.
In Proceedings of the 35th annual ACM/IEEE
International Symposium on Microarchitecture
(MICRO’02), pages 171–182. IEEE Computer Society
Press, 2002.

[19] Dmitry V. Ponomarev, Gurhan Kucuk, Oguz Ergin, Kanad
Ghose, and Peter M. Kogge. Energy-efficient issue queue
design. IEEE Trans. Very Large Scale Integr. Syst.,
11(5):789–800, 2003.

[20] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and
simulation points in applications. In International
Conference on Parallel Architectures and Compilation
Techniques (PACT’01), September 2001.

[21] R. Tomasulo. An efficient algorithm for exploring multiple
arithmetic units. In IBM Journal of Research and
Development, vol. 11, no. 1, pp. 25-33, Jan. 1967.

[22] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and
Sharad Malik. Orion: a power-performance simulator for
interconnection networks. In Proceedings of the 35th annual
ACM/IEEE International Symposium on Microarchitecture
(MICRO’02), pages 294–305. IEEE Computer Society
Press, 2002.

[23] K. Wilcox and S. Manne. Alpha processors: A history of
power issues and a look to the future. In Cool-Chips
Tutorial, November 1999. Held in conjunction with
MICRO-32.

[24] S. Wilton and N. P. Jouppi. Cacti: An enhanced cache
access and cycle time model. In IEEE Journal of
Solid-State Circuits, pages 677-687, 1996.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

