CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky

Lecture 9
Lecture date: March 7-9, 2005 Scribe: S. Bhattacharyya, R. Deak, P. Mirzadeh

1 Interactive Proof Systems/Protocols

1.1 Introduction

The traditional mathematical notion of a proof is a simple passive protocol in which a prover
P outputs a complete proof to a verifier V who decides on its validity. The interaction
in this traditional sense is minimal and one-way, prover — verifier. The observation has
been made that allowing the verifier to interact with the prover can have advantages, for
example proving the assertion faster or proving more expressive languages. This extension
allows for the idea of interactive proof systems (protocols).

The general framework of the interactive proof system (protocol) involves a prover P with
an exponential amount of time (computationally unbounded) and a verifier V' with a polyno-
mial amount of time. Both P and V exchange multiple messages (challenges and responses),
usually dependent upon outcomes of fair coin tosses which they may or may not share. It
is easy to see that since V is a poly-time machine (PPT), only a polynomial number of
messages may be exchanged between the two. P’s objective is to convince (prove to) the
verifier the truth of an assertion, e.g., claimed knowledge of a proof that x € L. V either
accepts or rejects the interaction with the P.

1.2 Definition of Interactive Proof Systems

An interactive proof system for a language L is a protocol PV for communication between
a computationally unbounded (exponential time) machine P and a probabilistic poly-time
(PPT) machine V such that the protocol satisfies the properties of completeness and sound-
ness.

Definition 1 (Goldwasser, Micali, Rackoff) An Interactive Proof (IP) for a language
L is a protocol PV for a prover P and a verifier V' for which the following two properties
hold:

e Completeness: Completeness is the property that the protocol work correctly given
any prover can always make V “accept” if x € L. That is, an interactive proof

(protocol) is complete if, given an honest P and an honest V', the protocol PV succeeds
with overwhelming probability (i.e., V accepts P’s claim). More formally, if x € L
then P has a overwhelming chance of convincing V' that x € L:

Ve>0 3N s.it. VYeeL where |z|>N
Prob [P «— Vx| makes V[z] accept] > 1 — ==

T
coins flips of P, V le

e Soundness: Soundness is the property that a dishonest prover (claiming x € L when
x ¢ L) cannot convince an honest verifier of the false assertion with more than a
negligible probability. If ¢ L then every dishonest prover P’ has negligible chance
of convincing V:

VP Ve>0 3N s.it. Vr¢L where [x|>N
Prob [P’ «— V[z] makes V[z] accept] < e

coins flips 4 le
ps of P!,V

Definition 2 Class IP.

With the definition of an interactive-proof system (protocol) PV, we can define the class of
languages that have interactive proofs as IP.

IP ={L | L has interactive proof.}

We note that IP is equal to another complexity class PSPACE, which includes for example
co-NP. This is however outside the scope of this course.

1.3 Mathematical Background: Graph Isomorphism

To illustrate examples for interactive-proof systems we first introduce our two case example
languages of Graph Isomorphism (GI) and Graph Non-Isomorphism (GNI). A graph Gy is
isomorphic to another graph Gy is the two graphs have the same form, that is if there exists
a 1-1 edge-invariant mapping 7 of the vertices of the first graph to the vertices of the second
graph, and similarly non-isomorphic when no such mapping exists. These languages are
our case examples because they are easy to describe and their protocols can be abstracted
to certain hard number theory problems, such as the hardness of quadratic residue and
quadratic non-residue assumptions. Many of the interactive proof protocols we will discuss
will depend upon the creation of random permutations of graphs, created simply by creating
a random permutation of vertex labels and applying it to the graph. Formally we define
the GI and GNI languages as:

Definition 3 Graph Isomorphism (GI)

x € GI iff xis a pair of graphs (Go,G1) and Gy ~ G1. We will abbreviate this as z =
{Go ~ G1}

Definition 4 Graph Non-Isomorphism (GNI)

x € GNI iff x is a pair of graphs (Go,G1) and Gy # Gp. We will abbreviate this as
x={Gp # G1}

1.4 Examples of Interactive Proofs
A Not-So-Interactive Proof

Here is an example of a proof where the P proves x € L.

p Vv
If Gy ~ Gy TG, aecept ifm(Gy) =G,

Figure 1: Non-Interactive Proof Diagram for Graph Isomorphism (GI)

In general, it is not known how to find a graph isomorphism between two arbitrary graphs.
However for many classes of graphs with additional properties, it is known how to find a
graph isomorphism between two graphs. Here note that the prover has infinite resources
and V is only a poly-time machine. Since P provides V with 7, the permutation that shows
the isomorphism between Gy and GG1, V' can apply the permutation to Gy and check to see
if it indeed results in GG; within poly-time.

Interactive Proof for Graph Isomorphism [Protocol P_GI| - (Gy ~ G1)

The following steps describe the interactive proof protocol for graph isomorphism GI. P
generates a random bit b and a random permutation 7w of Gy, (if b = 0 then Gy = G else
if b =1 then G, = G1). P sends this new graph H to V who responds with a random bit
b’. P then responds to V'’s request by sending the permutation which maps the new graph
H to Gy. V checks that this permutation is actually an isomorphism between the graphs.
Repeat this k times one after the other (i.e. sequentially). V accepts if P was able to send
a correct permutation every time.

Repeat sequentially
k times. V accepts
if H = 7T2(Gb/) each

iteration.

Go
P

random b,
random 7 s.t.

H = m(Gyp)

G1

b/

random 7y s.t.
H = 7T2(Gb/)

2

random b

Figure 2: Interactive Proof Diagram for Graph Isomorphism (GI)

e Completeness: If Gy ~ (1, then it does not matter what b’ is, since P shows an

isomorphism to H.

e Soundness: If P is lying, and Gy # G1, then H could be isomorphic to Gy or Gy
but not both. Then at each iteration, V' will catch P cheating with probability % So
with k iterations, the probability of successfully cheating becomes at most 2%

Interactive Proof for Graph Non-Isomorphism [Protocol P_GNI]| - (G # G1)

Here again P has infinite resources and the V is a poly-time machine. V picks randomly
which graph P must show an isomorphism to and permutes this graph with 7. The resulting
graph is H. Since P is all-powerful, it can determine which graph H is isomorphic to in
order to recover b. If Gg and (G are isomorphic, contrary to P’s claim, then P, no matter
how powerful, will not be able to differentiate whether H was supposed to be isomorphic
to Gg or (G1, and will be forced to guess with a success probability of % V' can require k
rounds of such verifications to approve the P’s claims, resulting in a success probability of

1
2_k:‘

Go # Gy

P Vv
(random b
random 7 s.t.
H =m(Gh)
H
Repeat determine b’ s.t.
k times. H ~ Gy

b/

accept this iteration
if b =10/, otherwise
L reject entire conversation.

Figure 3: Interactive Proof Diagram for Graph Non-Isomorphism (GNI)

e Completeness: As long as Gy # (1, then either Gy or Gy will be isomorphic to H
but not both. The infinitely powerful P will always be able to find H.

e Soundness: If Gy ~ G1, then P will not be able to decipher whether H ~ G| or
H ~ G1. The P will be forced to guess b with success probability %

2 Zero-Knowledge Interactive Proofs

2.1 Introduction

In the previous discussion we mentioned the advantages of interactive-proof systems over
the traditional passive verifier proof, that is, the interaction may allow P to convince V of
more complicated statements such as those in co-NP. Here we also want P not to reveal any
information about why the theorem is true. For example, the simplest proof protocol for
graph isomorphism (GI) is for P to simply send the isomorphic mapping 7 between G and
G1 to V. Corresponding to the traditional proof method, this protocol reveals the secret
knowledge the provider claimed to V', namely the isomorphism mapping between the two
input graphs. In most cases, we do not want the P to reveal any knowledge to V outside
the truthfulness of the assertion itself, that the graphs are isomorphic.

In this section we introduce Zero-Knowledge (ZK) Proofs or protocols, instances of
interactive-proof systems, which are designed to allow P to demonstrate knowledge of a

secret while revealing no information whatsoever (beyond what V' was able to deduce by
himself in poly-time) of use to V' in conveying this demonstration of knowledge to others. It
should be noted that the interactive proof for GI (P_GI) in the previous section is actually
a zero-knowledge interactive proof.

Motivating Story

This is a story due to Goldwasser, Micali and Rackoff. One night in a small town there
is a murder. Verry Fire, the local reporter, hears about the murder and wants to write a
story for her newspaper. She goes to a pay phone and calls the detective to get the facts
of the murder case, but the detective simply tells her, "there was a murder” and hangs up.
She calls back several times, but every time she just hears the same phrase, "there was a
murder.” Verry already knew there was a murder, so she certainly didn’t need to call the
detective to obtain this information. She could have just saved her money and generated
this phrase herself. Feeling a little frustrated, she decides to call the police chief. The chief,
who enjoys playing games with reporters, flips a coin. If the coin lands heads, the chief
says, "there was a murder.” If the coin lands tails, the chief says, "no comment.” Verry calls
back several times, only to hear one of the two phrases each time. Like the conversation
with the detective, her conversation with the chief provides no new information with which
to write her column. She could have just flipped a coin herself and generated the chief’s
phrases with the same probability distribution. Verry proceeds to write her column. Only
now does she realize that she could have written her column without having talked to either
the detective or the chief, as the conversations with them were zero-knowledge.

2.2 Definition of Zero-Knowledge Proofs

We can informally define zero-knowledge proofs, or interactive proof systems with the zero-
knowledge property, as a protocol in which the message conversation V' has with P, the same
distribution of messages between the two parties could have been generated by V himself.
Before we can formally define a zero-knowledge proof, we must give the definition of the
notion of a verifier’s view. Simply put, the view is the sequence of messages (challenges and
responses) exchanged between the verifier V' and prover P as well as the string of random
bits (coin tosses) that V used. Formally:

Definition 5 View.

For an interactive protocol PV, let PV (x) denote the verifiers view during the protocol on
input z. Specifically, PV (z) is composed of:

e Sequence of messages between P and V

e Random bit string (coin tosses) of V'

Let [PV (z)] represent the random variable which represents the distribution of view points
PV (x) taken over the coin tosses of P and V.

With the definition of a view, we can describe a zero-knowledge proof or say an interactive
proof system for language L is zero-knowledge if Vx € L and VV € PPT there exists a
probabilistic poly-time machine S, (x) whose output distribution /S, (z)] taken over input
x and coins of S is indistinguishable from the distribution of the view [PV(z)]. We call this
PPT machine S, (x) a simulator. We note that the definition of zero-knowledge should hold
only for honest provers.

Definition 6 Zero-Knowledge Interactive Proof

An Interactive Proof PV* for a language L is said to be Zero-Knowledge if

vvV*e PPT dSy- € PPT Yx €L s.t.
[P — V*[z]] =[Sy ()]

That is, for every verifier V* there exists an expected poly-time algorithm Sy« (simulator)
which can produce, upon input of the assertion x to be proven, but without interacting with
the real prover, transcripts indistinguishable from those resulting from interaction with the
real prover or more specifically points from [PV*(x)]. Intuitively, the existence of Sy« means
the verifier V* does not need to interact with P, in relation to our motivating story Verry
Fire does not need to talk to the detective or the chief, since it can generate or simulate
the view itself.

The zero-knowledge property implies that a prover executing the protocol, against all veri-
fiers, even dishonest verifiers, does not release any information (other than the truth of the
assertion). The existence of a PPT simulator Sy« for a verifier V* means interaction be-
tween P and V* is zero-knowledge. If all interactions with P for every V* are zero-knowledge
then the protocol is called zero-knowledge.

Definition 7 Three Variants of Zero-Knowledge:

e Perfect ZK: "="

The distributions of the Simulator and Protocol are exactly equal. This is the strictest
definition of zero-knowledge.

o Statistical ZK: ="

The distributions of the Simulator and Protocol are statistically close.
From the definition, two distributions {X,,} and {Y},} are statistically close iff

Ve AN s.t.Vn > N

1
> |Prixg [Xn=a] = Priv,y Yo =al| < —
ae{0,1}"

Which is to say at least n® samples are required to differentiate {X,,} and {Y,}, or
in other words more than a polynomial number of samples are required to distinguish
the distributions.

* COmPUtat'ional ZK: 77277

The distributions of the Simulator and Protocol are computationally indistinguishable
to a poly-time machine.

Recall the definition, {X,,} and {Y,,} are poly-time indistinguishable iff:

Ve YA € PPT 9N s.t. Yyn> N

1
|PT{{Xn},A’scoins} [A (Xn) = 1] - Pr{{Yn},A’scoins} [A (Yn) = 1” <=

nC
Note that distributions are equal = statistically close = computationally indistinguishable.

The converses may not be true however. If 1-way functions exist, then
computational indistinguishability # statistical closeness.

Let {X,,} be the output distribution of pseudo-random generator G: {0,1}" — {0,1}?".
Let {Y,,} be the output distribution of a truly random generator for 2n-bit strings.

{Xa,} contains at most 2" different strings.
{Ys,} contains 22" different strings.

So by definition these distributions are statistically distinguishable, however since G is a
pseudo-random generator, the distributions are computationally indistinguishable.

2.3 Constructing a Simulator: Two Analogies

In order to construct a simulator, S for V' that simulates the conversation with P, we need
to ensure that the probability distribution induced by S on z € GI is the same as the
probability distribution induced by the view PV (x). In order to do this, we will depend
on the fact that S is a Turing Machine whose state can be saved and restarted.

The verifier we are interested in is a multi-tape Turing Machine with the following
structure. It is a finite state machine with tapes for input and output, a work tape, a
random tape, and tapes for communication input and output. Since the the state of these
tapes completely defines the state of the verifier, we can save the state of the verifier at
any time. We can place an input on the communication input tape and let the tape
continue running. At any time, we can restore the verifier to a previous state.

This abstraction clearly applies to other computational devices, i.e. we can restart any
computer to a previous state provided that we take a “snapshot” of its entire
configuration, including, memory, CPU, registers, etc...

Film analogy

Imagine the shooting of a movie. Although movies typically appear as a continuous
stream of scenes which tend to play for a total of one and a half to two and a half hours,
movies generally take much longer to produce. Certain scenes have to be shot multiple
times before the scene is acceptable for the screen. Although a director may shoot a scene
a number of times, in the final production the bad scenes are typically edited out, leaving
only the good scenes. This analogy shows us what resetting the verifier allows us to do; it
allows us to “reshoot” the scene.

Coin-flipping extravaganza analogy

Jay Lentil, host of a popular late-night television show, convinces the great, world-famous
magician Flippo to be on his show. To the amazement of all viewers, Flippo proceeds to
flip a normal coin that lands heads 100 times in a row. Not to be outdone, Dave
Numberman, host of a competing show, tries to find a magician to match this incredible
feat. Dave however does not find a suitable magician, so he disguises his assistant Paul in
a magician’s costume. Dave’s show is pre-taped, so in the studio, he has Paul flip a coin
again and again until 100 heads have landed. Then the tape is edited to remove all the
coin flips that landed tails. When the tape is shown that night, the viewers are amazed to
see a man flipping a coin and having it land heads 100 times in a row!

2.4 Examples of Zero-Knowledge Proofs

In the following section we discuss examples of zero-knowledge proofs for our case
examples of graph isomorphism and non-isomorphism as well as a zero-knowledge
interactive proof for graph 3-coloring which can be abstracted for all NP problems (since
graph 3-coloring G3C is NP-Complete).

9-9

Zero-Knowledge for Graph Isomorphism (GI)

In the previous section of Interactive Proofs, we introduced a protocol for graph
isomorphism (GI) called protocol P_GI (see Figure 2) which was shown to have the
properties of completeness and soundness, thus an interactive proof. We also stated that
it was also zero-knowledge. In this section we show that the protocol is zero-knowledge by
constructing the simulator Sy for any verifier V', whose output can be shown to be
indistinguishable with the distribution of the view in protocol P_GI.

Statistical Simulator for Graph Isomorphism In review, to prove that protocol
P_GI is zero-knowledge we must create a simulator Sy whose output distribution is
statistically close with the distribution of the P_GI protocol messages exchanged and
random bit string of V. The simulator story demonstrates that it is possible to run an
experiment many times and pick only successful outcomes, the rewinding trick the
simulator will employ. Since V is simply a turing machine, we can record the state of the
verifier and rewind to a previous state (rewind) if necessary. The following is the
simulator pseudo-code:

1. Choose a random bit b.

2. Choose a random isomorphic permutation of input graph Gy; H «— 7(Gp).
3. Record the state information of V.

4. Give H to verifier V.

5. Get random bit b’ from V.

6. (a) IF (b=10") we can simulate so output the prover’s output.

(b) ELSE reset V to previous state using step 3 information.
7. GOTO Step 1 (REPEAT k times sequentially).

8. Then output the resulting conversation and V'’s random string.

Each iteration of the simulator code is successful in matching V’s random bit b’ with
probability %, therefore Sy is expected to run 2k iterations to output the k view points
identical to [PV(z)] (ignoring the issue of “aborts”, which may make the proof more
delicate). The distributions are statistically close because Sy chooses H exactly the same
way as P, and V interacts with the simulator with a random bit b’ as it would with the
real P since it cannot distinguish who it is talking to.

9-10

A Parallel Version of a Zero Knowledge Proof for Graph Isomorphism? Since
the three round protocol of the zero knowledge proof for graph isomorphism runs k times,
3k communications are sent between the prover and the verifier over the course of the
proof. In an attempt to minimize the number of communications (and the associated
overhead) during the proof, we now suggest an alternative zero knowledge proof in which
the communications occur in parallel. Such a proof could be constructed as follows.

Go ~ Gy
P Vv
for: «— 1tok
random 7; s.t.
H; = m;(Go)
Hy,...,Hy
Generate random
$b1, ..., $by,
b1,...,bg

fori «— 1tok
determine ¢; s.t.

H; = ¢;(Gy,)
Piyeees P

Accept if Vi
H; = ¢i(Gy,)

Figure 4: Parallel Interactive Proof for GI (not zero-knowledge)

To show this is an interactive proof we need to show:

e Completeness: If Gy ~ G1, then Vi, P will be able to show an isomorphism
between H; and Gy,.

e Soundness: If Gy % Gy, then V only accepts when P can guess b; k times in a

row. The probability that this happens is 2%

It is not actually known whether this protocol is zero knowledge. The simulator that we
constructed before does not work in this case. This is because for a parallel simulator to
produce a successful experiment, it must simultaneously guess correctly each of the k b;’s.
The probability of this occurring is 2% To illustrate, consider the case where we have a
dishonest verifier which acts deterministically instead of probabilistically in choosing

b1, ..., by, for example some V* using a collision-resistant hash function h to output

9-11

h(by,...,b) instead of by, ..., b, clearly rewinding will not help. In fact, it was shown by
Goldreich and Krawzyk that if this protocol is zero knowledge, then GI € BPP.

Zero-Knowledge for Graph Non-Isomorphism (GNTI)

It was shown previously (in § 1.4) that graph non-isomorphism has an interactive proof.
We will show here that the previous interactive proof is not a zero-knowledge proof for
graph non-isomorphism. So why is P_.GNI in § 1.4 not zero-knowledge?

Go '/J Gl
P \%
$o
. random 7 s.t.

Repeat sequentially H = 7(Gy)
k times. V accepts H
if b =1 each determine b’ s.t.
iteration. H ~ Gy

b/

Figure 5: Interactive Proof Diagram for GNI (not zero-knowledge)

We saw before that this protocol is an interactive proof. It is not however a zero knowledge
proof. Suppose that V has a graph H that he knows is isomorphic to exactly one of Gy or
G1 but he does not know to which one it is isomorphic. If V' sends H to P and P answers
honestly, then V has gained knowledge about which graph is isomorphic to H.

There is indeed a zero knowledge proof for graph non-isomorphism, but before it is
presented, we introduce a new protocol and show where it fails as a zero knowledge proof.
Consider the following protocol:

9-12

Repeat sequentially
k times. V accepts
if b = b’ each

time.

determine b’

Go

* G

Ho,H1

$b

Generate random
permutations of Gy
1 and my s.t.

Hy = m1(Gp) and
Hy = m(Gy)

Figure 6: Alternative Interactive Proof Diagram for GNI (not zero-knowledge)

Notice that this is an interactive proof because it satisfies:

e Completeness: If Gy G then Hy 4 Hy, so P can distinguish between them and

ensure that b = b.

e Soundness: If Gy ~ Gy then Hy ~ Hq, so no prover can distinguish between them.

Thus P must guess between the pairs with probability % P has only a 2%
probability of fooling V' k times.

Notice that this is not a zero knowledge proof however because V' may not know that
value of the coin flip b before P reveals it to him. Thus V may gain some knowledge

through communication with P. To, counteract this, we need a protocol in which V' can

show P that he knows the value of the random b. The revised protocol utilizes the

following notation and follows as seen in Figure 7:

Notation:

{A,B} ~{C,D}: {A~Cand B~ D)or (A~ D and B~ C)

m:{A,B} - {C,D} : {A,B} ~ {C, D} and 7 is the pair of mappings.

9-13

Go # Gy
P 1%
$b
Generate random
m and my s.t.
Hy =m1(Gy), Hi = m2(Gy)
Ho,Hy
Vproves he knows b
Generate D1, ..., Dy, s.t.
{Dai—1, Doy} ~ {Ho, H}
Dx,...,Dy,
coin flips b}, ..., b},
b, b
Find k pairs of
isomorphisms ¢, ..., p
st if b, =0
@i : {Dai—1, D2} — {Go,G1}
else
¢i : {D2i—1, D2} — {Ho, H1}
¢17"'7¢k
Vi check ¢;
Determine bit b”
b//

Figure 7: Final Protocol for Zero Knowledge Proof of Graph Non-Isomorphism (GNI)

9-14

Here we will explain the zero-knowledge protocol for GNI given in Figure 7. To make
sense of the middle part of the protocol dealing with V’s proof of knowing b, consider a
pair of graphs (Dg;_1, Dy;). P will ask V' to show either the mapping

{Dsi_1, D9} — {Go,G1} or the mapping {Ds;_1, D2;} — {Cpy,C1}. Since V' does not
know which mapping P will ask for, V must know both. But notice that if V' knows both
mappings, then V knows a mapping {Go,G1} — {Cp,C1}. Thus, V knows b. If P does
not know b but guesses correctly on all of the b}, then he will fool V' with probability 2%

Now let us create a simulator Sy~ that is statistical ZK.
Simulator:
1. Get (Hy, Hy) and (D1, Ds), ..., (Dog_1, Do) from V.
Record V"’s state utilizing the Turing machine notion developed previously.
Send random bits b], ..., b
Get ¢1, ..., ¢, from V.

Reset V"’s state to the one recorded in step 2.

S ok N

Send another set of random bits, b7, ..., b/. Get the corresponding ¢/, ..., ¢, from
V’. Then with probability (1 — 2%) Ji for which b} # bj. For this i,

gbi : {ng_l,ng} — {Go,Gl} and gb; : {ng_l,ng} — {Ho,Hl}. ThuS, we can
determine the isomorphism between {Hy, H;} and {Gp, G1}, and hence b.

Since the distribution created by the output of the success runs of this simulator are
statistically identical to distribution induced by the actual conversation between the
prover and the verifier, this simulator is statistically zero knowledge.

2.5 Computational Zero-Knowledge for all of NP

Theorem [GM W] Assuming computational commitment protocols exist implies all of NP
is in computational zero-knowledge.

The first step to proving this amazing result is to reduce the zero-knowledge protocol to
graph 3-colorability. Since graph 3-colorability is NP-complete, using NP reductions we
can prove any other NP statement.

So how does one show that a graph is 3-colorable?

First permute the colors. Note the colors here have meaning that will be important when
the reduction takes place. Commit the colors using one’s favorite bit-commitment
protocol. V picks an edge and P must then show the two colors of vertices adjacent to
that edge. P shows V the colors of two nodes and V' checks that the colors are different.

9-15

P v

determine
3-coloring:

repeat following steps
k times:

pick random 7

€
S |

\)

" ~

\-.

commit 3 coloring

show me edge {i,j}

Accept if vertices are
not the same color.

Figure 8: Example of Zero Knowledge Proof for Graph 3-Coloring (G3C)
9-16

This is an interactive proof since:
e Completeness: If this graph is 3-colorable and P does not lie, no two vertices that
share an edge will have the same color.

e Soundness: If P is cheating then there is a % chance of being caught with every
iteration, where e is the number of edges. If this is repeated e? times then the error
probability becomes negligible.

Why is this zero-knowledge?

P A%

commit(color, noder)
m3—3

commit(color, nodes)

commit(color, noder,)

show me the color of (i,j)

decommit(color, node;)

decommit(color, node;)

Figure 9: Zero-Knowledge Protocol for Graph 3-Coloring (G3C)

The simulator for this conversation would then be the following:

Simulator:

1. Record verifier Vs state.

2. Guess edge (i,j).

3. Commit vertices i and j to two different colors (out of the three possible colors).
4. Commit remaining vertices to any color, say all red.

5. If V asks for the edge (i,j), show the commited vertices.

6. If V asks for another, rewind, and GOTO step 2.

This is computational zero-knowledge since no poly-time V' can differentiate commited
vertices from all red unopened vertices.

9-17

Since any N P problem can be reduced to graph 3-colorability in poly-time, you can reduce
the NP problem in question to graph 3-colorability, commit the random permutation and
convince V of the graph’s coloring with zero-knowledge without revealing P’s secret.

9-18

