CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 7 Lecture date: Monday, 28 February, 2005 Scribe: M.Chov, K.Leung, J.Salomone

1 Oneway Trapdoor Permutations

Recall that a oneway function, f, is easy to compute, but hard to invert. Formally, for all PPT adversaries A, there is a c such that or eventually all n,

$$\Pr\left[A(f(x)) \in f^{-1}f(x)\right] < \frac{1}{n^c}$$

with the probability taken over |x| = n and coin flips of A.

A oneway, trapdoor function is a oneway function f, which becomes easy to invert when given some extra information, t, called a trapdoor.

$$x \underbrace{\underbrace{\operatorname{easy}}_{hard}}_{easy, \text{ given } t} f(x)$$

We formalize this as follows.

Definition 1 A oneway trapdoor function is a parameterized family of functions $\{f_k : D_k \to R_k\}_{k \in K}$, with K, D_k , and $R_k \subseteq \{0, 1\}^*$.

- 1. Key, trapdoor pairs are PPT sampleable: there is a polynomial p and PPT algorithm **GEN** such that **GEN** $(1^n) = (k, t_k)$, with $k \in K \cap \{0, 1\}^n$, and $|t_k| \leq p(n)$. Call k a key, and t_k the trapdoor for f_k .
- 2. Given k, the domain D_k is PPT sampleable.
- 3. f_k^{-1} is computable, given a trapdoor t_k : there is an algorithm I, such that $I(k, t_k, f_k(x)) = x$, for $x \in D_k$.
- 4. For all PPT A, the following is negligible:

$$Pr[A(k, f_k(x)) \in f_k^{-1} f_k(x)]$$

where k is sampled by **GEN**, and the asymptotics are relative to the security parameter.

In this definition, (1) is saying that we can randomly generate a function from the family, and its trapdoor. The the size of the trapdoor information must be polynomial in the size of the key. (3) says that an instance f_k is invertible, given its description k, and its trapdoor t_k . (4) says that $\{f_k\}$ is a oneway family. For clarity, we will often let the k be implied, and write (f, f^{-1}) , instead of (k, t_k) .

Note that it is important to use a family of functions. If we try to make the above definition for a single function, (4) will fail. There is always some adversary A, with a description of the trapdoor t, and the inverter I, "hard-wired" into its description. This adversary will always be able to invert.

2 Public Key Encryption

A public key encryption scheme (say, for entity A) consists of three algorithms, **KEYGEN** for key generation, and **ENC** and **DEC**, for encryption and decryption, respectively. Given a security parameter, 1^n , **KEYGEN** should return two keys, PK and SK. The idea is that PK is made public, and is used by any other entity B, as input to **ENC**, to encrypt a message for A. SK is kept secret by A, and is used in **DEC** to decrypt a ciphertext, and recover the original message. We will define the semantic security of this system so that no adversary E can recover the message, even with knowledge of the public key PK.

$$(PK, SK) \leftarrow \mathbf{KEYGEN}(1^n, r)$$

 $c \leftarrow \mathbf{ENC}(PK, m, r)$
 $m' \leftarrow \mathbf{DEC}(PK, SK, c)$

Of course, in the above procedure, we want m' = m, so that we recover the original message m. We demand that the scheme be *correct*: if (PK, SK) is generated by **KEYGEN**, then for all messages m,

$$\mathbf{DEC}(PK, SK, \mathbf{ENC}(PK, m, r)) = m.$$
(1)

To define semantic security, consider the following game. Challenger uses **KEYGEN** to generate a key pair (PK, SK) and publishes PK. Adversary, given PK, picks distinct messages m_0 and m_1 , of equal length, and sends them to Challenger. Challenger picks a random bit b, and then sends to Adversary the ciphertext $c = \text{ENC}(PK, m_b)$.

Challenger Adversary $(PK, SK) = \longrightarrow PK$ **KEYGEN** $(1^n, r)$ $m_0, m_1 \longleftarrow Pick m_0 \neq m_1$ of equal length b random **ENC** $(PK, m_b, r) \longrightarrow c$ Guess b

We say that the cryptosystem is secure if Adversary can then guess b with probability which deviates only negligibly from $\frac{1}{2}$.

Remark For this definition to work, we needed **ENC** to be probabilistic. Otherwise, Adversary could simply compute $\mathbf{ENC}(m_0)$ and $\mathbf{ENC}(m_1)$, and compare them to c, thus determining b.

2.1 Example: PK Cryptosystem from Oneway Trapdoor Permutations

A semantically secure, public key cryptosystem can be constructed from a oneway, trapdoor permutation. The algorithms are as follows¹.

 $\mathbf{KEYGEN}(1^n,r){:}$

- 1. compute $(f, f^{-1}) := \mathbf{GEN}(1^n)$.
- 2. Pick a string p, uniformly at random, for computing hard-core bits.
- 3. return $PK = (f, p), SK = f^{-1}$.

Encryption and decryption are done bit-wise on the plaintext and ciphertext.

ENC((f, p), m, r):

- 1. Pick x at random from the domain of f.
- 2. compute $c := (p \cdot x) \oplus m$.
- 3. compute d := f(x).
- 4. return ciphertext (c, d).

¹Recall that $p \cdot x = \bigoplus_{1 \le i \le n} p[i]x[i]$, where |p| = |x| = n.

 $\mathbf{DEC}((f, p), f^{-1}, (c, d)):$

- 1. compute $x := f^{-1}(d)$.
- 2. compute $m := (p \cdot x) \oplus c$.
- 3. return m.

Clearly this cryptosystem is correct; it is also semantically secure. If an adversary could distinguish two messages m_0 and m_1 , then by a hybrid argument, it could distinguish two messages m'_0 and m'_1 , which differ in only one bit. We could then use this adversary to compute hard-core bit, $p \cdot x$, knowing only $f_s(x)$.

3 Some Cryptographic Assumptions

3.1 Finite, Abelian Groups

Recall that an abelian group is a collection of elements G, with a binary operation \star on G, satisfying:

 $\begin{array}{ll} (\forall a, b, c \in G) \ (a \star b) \star c = a \star (b \star c) & (\text{Associativity}) \\ (\forall a, b \in G) \ a \star b = b \star a & (\text{Commutativity}) \\ (\exists 1 \in G)(\forall a \in G) \ 1 \star a = a & \\ (\forall a \in G)(\exists a^{-1} \in G) \ a \star a^{-1} = e & \end{array}$

Call 1 the identity element of G, and a^{-1} the inverse of a. The order of a finite group G is the number of elements in the group, denoted |G|. A useful fact is that if |G| = n then for any element $a, a^n = 1$.

We will usually be concerned with a specific type of abelian group: Call $g \in G$ a generator iff $G = \{g^n | 0 \le n < |G|\}$. In case G has a generator, say that G is cyclic, and write $G = \langle g \rangle$.

We wish to generate finite, cyclic groups randomly. Fix a PPT algorithm **GROUP**, which samples a finite, cyclic group, given a security parameter 1^n . In other words, if

$$(G, p, g) \leftarrow GROUP(1^n),$$

then G is a (binary description of a) finite group, p = |G|, and g is a generator.

3.2 Discrete Logarithm Problem

Suppose we are given a cyclic group G, of order p, with generator g, and a group element $a \in G$. The Discrete Logarithm Problem is to find an integer k, such that $g^k = a$. In

other words, to compute $k = \log_g(a)$. The Discrete Logarithm Assumption say that this is computationally hard.

Assumption 2 (DLA) For any PPT algorithm A

$$Pr\left[g^k = a: (G, p, g) \leftarrow \mathbf{GROUP}(1^n); a \stackrel{R}{\leftarrow} G; k \leftarrow A(G, p, g, a)\right]$$

is negligible in n.

Many financial transactions are done using a **GROUP** which returns $G = \mathbb{Z}_p$ for p a prime.

3.3 Decisional Diffie-Hellman Problem

The Decisional Diffie-Hellman Problem is similar to the Discrete Log Problem, except that one tries to distinguish to powers of a generator, rather than trying to compute a log. Suppose we are given a group G, of order p, with generator g. Then integers $x, y, z \in \mathbb{Z}_p^*$ are selected randomly. From this, two sequences are computed:

$\langle G, p, g, g^x, g^y, g^z \rangle$	(Random sequence)
$\langle G, p, g, g^x, g^y, g^{xy} \rangle$	(DDH sequence)

The DDH problem is to determine which sequence, Random or DDH, we have been given. The DDH Assumption is that the DDH Problem is hard.

Assumption 3 (Decisional Diffie-Hellman) Let G be a sampled group of order p, with generator g. Pick $x, y, z \in \mathbb{Z}_p^*$ uniformly at random. Then it is asymptotically difficult (with respect to the security parameter), for a PPT adversary A to distinguish $(G, p, g, g^x, g^y, g^{xy})$ from (G, p, g, g^x, g^y, g^z) .

Remark The DDH assumption is stronger than the DLP assumption. Computing discrete logarithms would allow one to trivially distinguish g^{xy} from g^z , for a random z.

4 The ElGamal Public Key Cryptosystem

The security of the ElGamal cryptosystem is based on the difficulty of DDH and DLP. The algorithms are:

$\mathbf{KEY}(1^n)$:

- 1. compute $(G, p, g) := \mathbf{GROUP}(1^n)$.
- 2. Sample $x \in \mathbb{Z}_p^*$, uniformly at random.
- 3. compute $w := g^x$.
- 4. return PK = (G, p, g, w), SK = x.

ENC((G, p, g, y), m) (for $m \in G$):

- 1. Sample $r \stackrel{R}{\leftarrow} \mathbb{Z}_p^*$.
- 2. compute $c := w^r m, d := g^r$.
- 3. return ciphertext (c, d).

DEC((G, p, g, y), x, (c, d)):

- 1. compute $m := \frac{c}{d^{-x}}$.
- 2. return m.

To see that the cryptosystem is correct, compute $cd^{-x} = w^r mg^{-rx} = g^{xr} mg^{-rx} = m$. It is also secure, assuming the DDH assumption holds.

Theorem 4 ElGamal is semantically secure, if the DDH assumption holds.

Proof Suppose we have a PPT adversary A, which breaks ElGamal's semantic security. We can use it to construct an algorithm A', which solves the DDH problem. A' is given a sequence $\langle G, p, g, g_1, g_2, g_3 \rangle$ and must decide whether this is a Random Sequence or a DDH Sequence. A' will play the semantic security "game", using A's responses to identify the sequence, thus solving the DDH problem.

 $A'(G, p, g, g_1, g_2, g_3):$

- 1. compute messages $(m_0, m_1) := A(G, p, g, g_1).$
- 2. Pick $b \in \{0, 1\}$ uniformly at random.
- 3. compute *A*'s guess $b' := A(g_2, g_3m_b)$.
- 4. if b' = b then return 1 else return 0.

A' takes an input (G, p, g, g_1, g_2, g_3) (with G, p, g sampled). (G, p, g, g_1) is used as an El-Gamal public-key, which is given to A. The adversary returns a pair of messages m_0, m_1 ,

which it can distinguish. After selecting a random bit b, (g_2, g_3m_b) is returned to A, as a potential cipher-text. Then A returns b', its guess for b. If b' = b we return 1, which we interpret as identifying the DDH sequence. Otherwise, we return 0, identifying the Random sequence.

Note that if we give A' the input $(G, p, g, g^x, g^y, g^{xy})$, then $(g_2, g_3m_b) = (g^y, (g^x)^y m_b)$. This is a valid ciphertext encryption of m_b , with public key (G, p, g, g^x) , and secret key x. Since A can distinguish m_0 from m_1 , it will guess b' = b correctly. In this case A' will output 1 with as high a probability as A can distinguish the messages.

On the other hand, if we give input (G, p, g, g^x, g^y, g^z) for independently chosen $z, g_3m_b = g^z m_b$ will just be a random element of G. Thus $g^z m_0$ and $g^z m_1$ will have equal probability of appearing in the ciphertext. So A will not be able to guess b, and A' will output 0 with high probability (and output 1 with low probability).

Thus A' can solve the DDH problem with non-negligible probability, assuming that A can break the semantic security of ElGamal.