
CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky

Lecture 7

Lecture date: Monday, 28 February, 2005 Scribe: M.Chov, K.Leung, J.Salomone

1 Oneway Trapdoor Permutations

Recall that a oneway function, f , is easy to compute, but hard to invert. Formally, for all
PPT adversaries A, there is a c such that or eventually all n,

Pr
[

A(f(x)) ∈ f−1f(x)
]

<
1

nc

with the probability taken over |x| = n and coin flips of A.

A oneway, trapdoor function is a oneway function f , which becomes easy to invert when
given some extra information, t, called a trapdoor.

x

easy
,,
f(x)

hard

kk

easy, given t

XX

	

~
o_O

@

5
2

We formalize this as follows.

Definition 1 A oneway trapdoor function is a parameterized family of functions
{fk : Dk → Rk}k∈K , with K, Dk, and Rk ⊆ {0, 1}

∗.

1. Key, trapdoor pairs are PPT sampleable: there is a polynomial p and PPT algorithm
GEN such that GEN(1n) = (k, tk), with k ∈ K ∩ {0, 1}n, and |tk| ≤ p(n). Call k a
key, and tk the trapdoor for fk.

2. Given k, the domain Dk is PPT sampleable.

3. f−1

k is computable, given a trapdoor tk: there is an algorithm I, such that
I(k, tk, fk(x)) = x, for x ∈ Dk.

4. For all PPT A, the following is negligible:

Pr
[

A(k, fk(x)) ∈ f−1

k fk(x)
]

where k is sampled by GEN, and the asymptotics are relative to the security parame-
ter.

7-1

In this definition, (1) is saying that we can randomly generate a function from the family,
and its trapdoor. The the size of the trapdoor information must be polynomial in the size
of the key. (3) says that an instance fk is invertible, given its description k, and its trapdoor
tk. (4) says that {fk} is a oneway family. For clarity, we will often let the k be implied,
and write (f, f−1), instead of (k, tk).

Note that it is important to use a family of functions. If we try to make the above definition
for a single function, (4) will fail. There is always some adversary A, with a description of
the trapdoor t, and the inverter I, “hard-wired” into its description. This adversary will
always be able to invert.

2 Public Key Encryption

A public key encryption scheme (say, for entity A) consists of three algorithms, KEYGEN
for key generation, and ENC and DEC, for encryption and decryption, respectively. Given
a security parameter, 1n, KEYGEN should return two keys, PK and SK . The idea is that
PK is made public, and is used by any other entity B, as input to ENC, to encrypt a
message for A. SK is kept secret by A, and is used in DEC to decrypt a ciphertext, and
recover the original message. We will define the semantic security of this system so that no
adversary E can recover the message, even with knowledge of the public key PK .

(PK ,SK)← KEYGEN(1n, r)

c← ENC(PK ,m, r)

m′ ← DEC(PK ,SK , c)

Of course, in the above procedure, we want m′ = m, so that we recover the original message
m. We demand that the scheme be correct : if (PK ,SK) is generated by KEYGEN, then
for all messages m,

DEC
(

PK ,SK ,ENC(PK ,m, r)
)

= m. (1)

To define semantic security, consider the following game. Challenger uses KEYGEN to
generate a key pair (PK ,SK) and publishes PK . Adversary, given PK , picks distinct
messages m0 and m1, of equal length, and sends them to Challenger. Challenger picks a
random bit b, and then sends to Adversary the ciphertext c = ENC(PK ,mb).

7-2

Challenger Adversary

(PK ,SK) = −→ PK

KEYGEN(1n, r)

m0, m1 ←− Pick m0 6= m1

of equal length

b random

ENC(PK ,mb, r) −→ c

Guess b

We say that the cryptosystem is secure if Adversary can then guess b with probability which
deviates only negligibly from 1

2
.

Remark For this definition to work, we needed ENC to be probabilistic. Otherwise,
Adversary could simply compute ENC(m0) and ENC(m1), and compare them to c, thus
determining b.

2.1 Example: PK Cryptosystem from Oneway Trapdoor Permutations

A semantically secure, public key cryptosystem can be constructed from a oneway, trapdoor
permutation. The algorithms are as follows1.

KEYGEN(1n, r):

1. compute (f, f−1) := GEN(1n).

2. Pick a string p, uniformly at random, for computing hard-core bits.

3. return PK = (f, p), SK = f−1.

Encryption and decryption are done bit-wise on the plaintext and ciphertext.

ENC((f, p),m, r):

1. Pick x at random from the domain of f .

2. compute c := (p · x)⊕m.

3. compute d := f(x).

4. return ciphertext (c, d).

1Recall that p · x =
�

1≤i≤n
p[i]x[i], where |p| = |x| = n.

7-3

DEC((f, p), f−1, (c, d)):

1. compute x := f−1(d).

2. compute m := (p · x)⊕ c.

3. return m.

Clearly this cryptosystem is correct; it is also semantically secure. If an adversary could
distinguish two messages m0 and m1, then by a hybrid argument, it could distinguish two
messages m′

0
and m′

1
, which differ in only one bit. We could then use this adversary to

compute hard-core bit, p · x, knowing only fs(x).

3 Some Cryptographic Assumptions

3.1 Finite, Abelian Groups

Recall that an abelian group is a collection of elements G, with a binary operation ? on G,
satisfying:

(∀a, b, c ∈ G) (a ? b) ? c = a ? (b ? c) (Associativity)

(∀a, b ∈ G) a ? b = b ? a (Commutativity)

(∃1 ∈ G)(∀a ∈ G) 1 ? a = a

(∀a ∈ G)(∃a−1 ∈ G) a ? a−1 = e

Call 1 the identity element of G, and a−1 the inverse of a. The order of a finite group G is
the number of elements in the group, denoted |G|. A useful fact is that if |G| = n then for
any element a, an = 1.

We will usually be concerned with a specific type of abelian group: Call g ∈ G a generator
iff G = {gn|0 ≤ n < |G|}. In case G has a generator, say that G is cyclic, and write G = 〈g〉.

We wish to generate finite, cyclic groups randomly. Fix a PPT algorithm GROUP, which
samples a finite, cyclic group, given a security parameter 1n. In other words, if

(G, p, g) ← GROUP (1n),

then G is a (binary description of a) finite group, p = |G|, and g is a generator.

3.2 Discrete Logarithm Problem

Suppose we are given a cyclic group G, of order p, with generator g, and a group element
a ∈ G. The Discrete Logarithm Problem is to find an integer k, such that gk = a. In

7-4

other words, to compute k = logg(a). The Discrete Logarithm Assumption say that this is
computationally hard.

Assumption 2 (DLA) For any PPT algorithm A

Pr
[

gk = a : (G, p, g) ← GROUP(1n); a
R
← G; k ← A(G, p, g, a)

]

is negligible in n.

Many financial transactions are done using a GROUP which returns G = Zp for p a prime.

3.3 Decisional Diffie-Hellman Problem

The Decisional Diffie-Hellman Problem is similar to the Discrete Log Problem, except that
one tries to distinguish to powers of a generator, rather than trying to compute a log.
Suppose we are given a group G, of order p, with generator g. Then integers x, y, z ∈ Z

∗

p

are selected randomly. From this, two sequences are computed:

〈G, p, g, gx, gy, gz〉 (Random sequence)

〈G, p, g, gx, gy, gxy〉 (DDH sequence)

The DDH problem is to determine which sequence, Random or DDH, we have been given.
The DDH Assumption is that the DDH Problem is hard.

Assumption 3 (Decisional Diffie-Hellman) Let G be a sampled group of order p, with
generator g. Pick x, y, z ∈ Z

∗

p uniformly at random. Then it is asymptotically difficult (with
respect to the security parameter), for a PPT adversary A to distinguish (G, p, g, gx, gy, gxy)
from (G, p, g, gx, gy, gz).

Remark The DDH assumption is stronger than the DLP assumption. Computing dis-
crete logarithms would allow one to trivially distinguish gxy from gz, for a random z.

4 The ElGamal Public Key Cryptosystem

The security of the ElGamal cryptosystem is based on the difficulty of DDH and DLP. The
algorithms are:

7-5

KEY(1n):

1. compute (G, p, g) := GROUP(1n).

2. Sample x ∈ Z
∗

p, uniformly at random.

3. compute w := gx.

4. return PK = (G, p, g, w), SK = x.

ENC((G, p, g, y),m) (for m ∈ G):

1. Sample r
R
← Z

∗

p.

2. compute c := wrm,d := gr.

3. return ciphertext (c, d).

DEC((G, p, g, y), x, (c, d)):

1. compute m := c
d−x .

2. return m.

To see that the cryptosystem is correct, compute cd−x = wrmg−rx = gxrmg−rx = m. It is
also secure, assuming the DDH assumption holds.

Theorem 4 ElGamal is semantically secure, if the DDH assumption holds.

Proof Suppose we have a PPT adversary A, which breaks ElGamal’s semantic security.
We can use it to construct an algorithm A′, which solves the DDH problem. A′ is given a
sequence 〈G, p, g, g1, g2, g3〉 and must decide whether this is a Random Sequence or a DDH
Sequence. A′ will play the semantic security “game”, using A’s responses to identify the
sequence, thus solving the DDH problem.

A′(G, p, g, g1 , g2, g3) :

1. compute messages (m0,m1) := A(G, p, g, g1).

2. Pick b ∈ {0, 1} uniformly at random.

3. compute A’s guess b′ := A(g2, g3mb).

4. if b′ = b then return 1 else return 0.

A′ takes an input (G, p, g, g1, g2, g3) (with G, p, g sampled). (G, p, g, g1) is used as an El-
Gamal public-key, which is given to A. The adversary returns a pair of messages m0,m1,

7-6

which it can distinguish. After selecting a random bit b, (g2, g3mb) is returned to A, as a
potential cipher-text. Then A returns b′, its guess for b. If b′ = b we return 1, which we
interpret as identifying the DDH sequence. Otherwise, we return 0, identifying the Random
sequence.

Note that if we give A′ the input (G, p, g, gx, gy , gxy), then (g2, g3mb) = (gy, (gx)ymb). This
is a valid ciphertext encryption of mb, with public key (G, p, g, gx), and secret key x. Since
A can distinguish m0 from m1, it will guess b′ = b correctly. In this case A′ will output 1
with as high a probability as A can distinguish the messages.

On the other hand, if we give input (G, p, g, gx, gy , gz) for independently chosen z, g3mb =
gzmb will just be a random element of G. Thus gzm0 and gzm1 will have equal probability
of appearing in the ciphertext. So A will not be able to guess b, and A′ will output 0 with
high probability (and output 1 with low probability).

Thus A′ can solve the DDH problem with non-negligible probability, assuming that A can
break the semantic security of ElGamal.

7-7

