1 Oneway Trapdoor Permutations

Recall that a oneway function, f, is easy to compute, but hard to invert. Formally, for all PPT adversaries A, there is a c such that or eventually all n,

$$
\operatorname{Pr}\left[A(f(x)) \in f^{-1} f(x)\right]<\frac{1}{n^{c}}
$$

with the probability taken over $|x|=n$ and coin flips of A.
A oneway, trapdoor function is a oneway function f, which becomes easy to invert when given some extra information, t, called a trapdoor.

We formalize this as follows.

Definition $1 A$ oneway trapdoor function is a parameterized family of functions $\left\{f_{k}: D_{k} \rightarrow R_{k}\right\}_{k \in K}$, with K, D_{k}, and $R_{k} \subseteq\{0,1\}^{*}$.

1. Key, trapdoor pairs are PPT sampleable: there is a polynomial p and PPT algorithm GEN such that $\mathbf{G E N}\left(1^{n}\right)=\left(k, t_{k}\right)$, with $k \in K \cap\{0,1\}^{n}$, and $\left|t_{k}\right| \leq p(n)$. Call k a key, and t_{k} the trapdoor for f_{k}.
2. Given k, the domain D_{k} is PPT sampleable.
3. f_{k}^{-1} is computable, given a trapdoor t_{k} : there is an algorithm I, such that $I\left(k, t_{k}, f_{k}(x)\right)=x$, for $x \in D_{k}$.
4. For all PPT A, the following is negligible:

$$
\operatorname{Pr}\left[A\left(k, f_{k}(x)\right) \in f_{k}^{-1} f_{k}(x)\right]
$$

where k is sampled by GEN, and the asymptotics are relative to the security parameter.

In this definition, (1) is saying that we can randomly generate a function from the family, and its trapdoor. The the size of the trapdoor information must be polynomial in the size of the key. (3) says that an instance f_{k} is invertible, given its description k, and its trapdoor t_{k}. (4) says that $\left\{f_{k}\right\}$ is a oneway family. For clarity, we will often let the k be implied, and write $\left(f, f^{-1}\right)$, instead of $\left(k, t_{k}\right)$.

Note that it is important to use a family of functions. If we try to make the above definition for a single function, (4) will fail. There is always some adversary A, with a description of the trapdoor t, and the inverter I, "hard-wired" into its description. This adversary will always be able to invert.

2 Public Key Encryption

A public key encryption scheme (say, for entity A) consists of three algorithms, KEYGEN for key generation, and ENC and DEC, for encryption and decryption, respectively. Given a security parameter, 1^{n}, KEYGEN should return two keys, $P K$ and $S K$. The idea is that $P K$ is made public, and is used by any other entity B, as input to ENC, to encrypt a message for $A . S K$ is kept secret by A, and is used in DEC to decrypt a ciphertext, and recover the original message. We will define the semantic security of this system so that no adversary E can recover the message, even with knowledge of the public key $P K$.

$$
\begin{aligned}
(P K, S K) & \leftarrow \mathbf{K E Y G E N}\left(1^{n}, r\right) \\
c & \leftarrow \mathbf{E N C}(P K, m, r) \\
m^{\prime} & \leftarrow \mathbf{D E C}(P K, S K, c)
\end{aligned}
$$

Of course, in the above procedure, we want $m^{\prime}=m$, so that we recover the original message m. We demand that the scheme be correct: if $(P K, S K)$ is generated by KEYGEN, then for all messages m,

$$
\begin{equation*}
\mathbf{D E C}(P K, S K, \mathbf{E N C}(P K, m, r))=m \tag{1}
\end{equation*}
$$

To define semantic security, consider the following game. Challenger uses KEYGEN to generate a key pair $(P K, S K)$ and publishes $P K$. Adversary, given $P K$, picks distinct messages m_{0} and m_{1}, of equal length, and sends them to Challenger. Challenger picks a random bit b, and then sends to Adversary the ciphertext $c=\mathbf{E N C}\left(P K, m_{b}\right)$.

Challenger $(P K, S K)=$ KEYGEN $\left(1^{n}, r\right)$	\longrightarrow	Adversary m_{0}, m_{1}
	\longleftarrow	Pick $m_{0} \neq m_{1}$ of equal length
random ENC $\left(P K, m_{b}, r\right)$	\longrightarrow	c

We say that the cryptosystem is secure if Adversary can then guess b with probability which deviates only negligibly from $\frac{1}{2}$.

Remark For this definition to work, we needed ENC to be probabilistic. Otherwise, Adversary could simply compute $\mathbf{E N C}\left(m_{0}\right)$ and $\mathbf{E N C}\left(m_{1}\right)$, and compare them to c, thus determining b.

2.1 Example: PK Cryptosystem from Oneway Trapdoor Permutations

A semantically secure, public key cryptosystem can be constructed from a oneway, trapdoor permutation. The algorithms are as follows ${ }^{1}$.
KEYGEN $\left(1^{n}, r\right)$:

1. compute $\left(f, f^{-1}\right):=\operatorname{GEN}\left(1^{n}\right)$.
2. Pick a string p, uniformly at random, for computing hard-core bits.
3. return $P K=(f, p), S K=f^{-1}$.

Encryption and decryption are done bit-wise on the plaintext and ciphertext.
$\operatorname{ENC}((f, p), m, r)$:

1. Pick x at random from the domain of f.
2. compute $c:=(p \cdot x) \oplus m$.
3. compute $d:=f(x)$.
4. return ciphertext (c, d).

[^0]$\mathbf{D E C}\left((f, p), f^{-1},(c, d)\right)$:

1. compute $x:=f^{-1}(d)$.
2. compute $m:=(p \cdot x) \oplus c$.
3. return m.

Clearly this cryptosystem is correct; it is also semantically secure. If an adversary could distinguish two messages m_{0} and m_{1}, then by a hybrid argument, it could distinguish two messages m_{0}^{\prime} and m_{1}^{\prime}, which differ in only one bit. We could then use this adversary to compute hard-core bit, $p \cdot x$, knowing only $f_{s}(x)$.

3 Some Cryptographic Assumptions

3.1 Finite, Abelian Groups

Recall that an abelian group is a collection of elements G, with a binary operation \star on G, satisfying:

$$
\begin{array}{ll}
(\forall a, b, c \in G)(a \star b) \star c=a \star(b \star c) & \text { (Associativity) } \\
(\forall a, b \in G) a \star b=b \star a & \text { (Commutativity) } \\
(\exists 1 \in G)(\forall a \in G) 1 \star a=a & \\
(\forall a \in G)\left(\exists a^{-1} \in G\right) a \star a^{-1}=e &
\end{array}
$$

Call 1 the identity element of G, and a^{-1} the inverse of a. The order of a finite group G is the number of elements in the group, denoted $|G|$. A useful fact is that if $|G|=n$ then for any element $a, a^{n}=1$.

We will usually be concerned with a specific type of abelian group: Call $g \in G$ a generator iff $G=\left\{g^{n}|0 \leq n<|G|\}\right.$. In case G has a generator, say that G is cyclic, and write $G=\langle g\rangle$.

We wish to generate finite, cyclic groups randomly. Fix a PPT algorithm GROUP, which samples a finite, cyclic group, given a security parameter 1^{n}. In other words, if

$$
(G, p, g) \leftarrow \operatorname{GROU} P\left(1^{n}\right),
$$

then G is a (binary description of a) finite group, $p=|G|$, and g is a generator.

3.2 Discrete Logarithm Problem

Suppose we are given a cyclic group G, of order p, with generator g, and a group element $a \in G$. The Discrete Logarithm Problem is to find an integer k, such that $g^{k}=a$. In
other words, to compute $k=\log _{g}(a)$. The Discrete Logarithm Assumption say that this is computationally hard.

Assumption 2 (DLA) For any PPT algorithm A

$$
\operatorname{Pr}\left[g^{k}=a:(G, p, g) \leftarrow \mathbf{G R O U P}\left(1^{n}\right) ; a \stackrel{R}{\leftarrow} G ; k \leftarrow A(G, p, g, a)\right]
$$

is negligible in n.

Many financial transactions are done using a GROUP which returns $G=\mathbb{Z}_{p}$ for p a prime.

3.3 Decisional Diffie-Hellman Problem

The Decisional Diffie-Hellman Problem is similar to the Discrete Log Problem, except that one tries to distinguish to powers of a generator, rather than trying to compute a log. Suppose we are given a group G, of order p, with generator g. Then integers $x, y, z \in \mathbb{Z}_{p}^{*}$ are selected randomly. From this, two sequences are computed:

$$
\begin{array}{ll}
\left\langle G, p, g, g^{x}, g^{y}, g^{z}\right\rangle & \text { (Random sequence) } \\
\left\langle G, p, g, g^{x}, g^{y}, g^{x y}\right\rangle & \text { (DDH sequence) }
\end{array}
$$

The DDH problem is to determine which sequence, Random or DDH , we have been given. The DDH Assumption is that the DDH Problem is hard.

Assumption 3 (Decisional Diffie-Hellman) Let G be a sampled group of order p, with generator g. Pick $x, y, z \in \mathbb{Z}_{p}^{*}$ uniformly at random. Then it is asymptotically difficult (with respect to the security parameter), for a PPT adversary A to distinguish $\left(G, p, g, g^{x}, g^{y}, g^{x y}\right)$ from $\left(G, p, g, g^{x}, g^{y}, g^{z}\right)$.

Remark The DDH assumption is stronger than the DLP assumption. Computing discrete logarithms would allow one to trivially distinguish $g^{x y}$ from g^{z}, for a random z.

4 The ElGamal Public Key Cryptosystem

The security of the ElGamal cryptosystem is based on the difficulty of DDH and DLP. The algorithms are:

$\operatorname{KEY}\left(1^{n}\right)$:

1. compute $(G, p, g):=\operatorname{GROUP}\left(1^{n}\right)$.
2. Sample $x \in \mathbb{Z}_{p}^{*}$, uniformly at random.
3. compute $w:=g^{x}$.
4. return $P K=(G, p, g, w), S K=x$.
$\operatorname{ENC}((G, p, g, y), m)($ for $m \in G)$:
5. Sample $r \stackrel{R}{\leftarrow} \mathbb{Z}_{p}^{*}$.
6. compute $c:=w^{r} m, d:=g^{r}$.
7. return ciphertext (c, d).
$\operatorname{DEC}((G, p, g, y), x,(c, d))$:
8. compute $m:=\frac{c}{d^{-x}}$.
9. return m.

To see that the cryptosystem is correct, compute $c d^{-x}=w^{r} m g^{-r x}=g^{x r} m g^{-r x}=m$. It is also secure, assuming the DDH assumption holds.

Theorem 4 ElGamal is semantically secure, if the DDH assumption holds.
Proof Suppose we have a PPT adversary A, which breaks ElGamal's semantic security. We can use it to construct an algorithm A^{\prime}, which solves the DDH problem. A^{\prime} is given a sequence $\left\langle G, p, g, g_{1}, g_{2}, g_{3}\right\rangle$ and must decide whether this is a Random Sequence or a DDH Sequence. A^{\prime} will play the semantic security "game", using A 's responses to identify the sequence, thus solving the DDH problem.
$A^{\prime}\left(G, p, g, g_{1}, g_{2}, g_{3}\right):$

1. compute messages $\left(m_{0}, m_{1}\right):=A\left(G, p, g, g_{1}\right)$.
2. Pick $b \in\{0,1\}$ uniformly at random.
3. compute A 's guess $b^{\prime}:=A\left(g_{2}, g_{3} m_{b}\right)$.
4. if $b^{\prime}=b$ then return 1 else return 0 .
A^{\prime} takes an input ($G, p, g, g_{1}, g_{2}, g_{3}$) (with G, p, g sampled). (G, p, g, g_{1}) is used as an ElGamal public-key, which is given to A. The adversary returns a pair of messages m_{0}, m_{1},
which it can distinguish. After selecting a random bit $b,\left(g_{2}, g_{3} m_{b}\right)$ is returned to A, as a potential cipher-text. Then A returns b^{\prime}, its guess for b. If $b^{\prime}=b$ we return 1 , which we interpret as identifying the DDH sequence. Otherwise, we return 0, identifying the Random sequence.

Note that if we give A^{\prime} the input $\left(G, p, g, g^{x}, g^{y}, g^{x y}\right)$, then $\left(g_{2}, g_{3} m_{b}\right)=\left(g^{y},\left(g^{x}\right)^{y} m_{b}\right)$. This is a valid ciphertext encryption of m_{b}, with public key $\left(G, p, g, g^{x}\right)$, and secret key x. Since A can distinguish m_{0} from m_{1}, it will guess $b^{\prime}=b$ correctly. In this case A^{\prime} will output 1 with as high a probability as A can distinguish the messages.

On the other hand, if we give input $\left(G, p, g, g^{x}, g^{y}, g^{z}\right)$ for independently chosen $z, g_{3} m_{b}=$ $g^{z} m_{b}$ will just be a random element of G. Thus $g^{z} m_{0}$ and $g^{z} m_{1}$ will have equal probability of appearing in the ciphertext. So A will not be able to guess b, and A^{\prime} will output 0 with high probability (and output 1 with low probability).

Thus A^{\prime} can solve the DDH problem with non-negligible probability, assuming that A can break the semantic security of ElGamal.

[^0]: ${ }^{1}$ Recall that $p \cdot x=\bigoplus_{1 \leq i \leq n} p[i] x[i]$, where $|p|=|x|=n$.

