
CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky

Lecture 6

Lecture date: Wed. 16,23 of February, 2005 Scribe: M. Bradonjić, S. Lu, J. Otchin

1 Digital Signatures

1.1 Introduction

Say Bob wants to communicate with Alice over a channel in which Eve can intercept and
transmit messages. We have already considered the problem of message security - how Bob
can encrypt a message for Alice such that Eve cannot decipher it in polynomial time with
non-negligible probability.

Now we consider a different problem: if Bob receives a message purportedly from Alice,
how can she be certain it isn’t a forgery by Eve? One solution is to have Alice “sign” the
message in some way that Bob will recognize, and that Eve will be unable to forge. There
are a number of properties we would ideally like for such a signature:

• Alice can efficiently sign any message, for some reasonable limit on the message size.

• Given any document D that Alice has not signed, nobody can efficiently forge Alice’s
signature on D.

• Given a document D and a signature, anyone (not just Bob!) can efficiently tell
whether the signature is valid for D.

We introduce digital signatures schemes as a way of accomplishing this.

1.2 Digital Signatures

We now give a definition of a digital signature scheme. A digital signature scheme is a
triple of poly-time computable algorithms (KeyGen,Sign,Verify) over a message space M
that satisfy the following conditions:

1. KeyGen(1n, R) is a probabilistic(with coin flips R) poly-time algorithm that outputs
a public key and a secret key pair, (PK,SK)

6-1

m’,s PK(m’)

Bob
m,s PK(m)

Alice

Eve

Alice has a public key PK

Figure 1: Eve tries to forge a signature.

2. Sign(D,PK,SK,R) is a probabilistic(with coin flips R) poly-time algorithm that signs
a document D ∈ M with a signature σ(D). Note: |σ(D)| should be polynomially
related to |D|

3. Verify(PK,D, s) is a (probabilistic) poly-time algorithm that outputs an element of
{Yes,No}. It returns Yes (with negligible error) if s is a valid signature of D, i.e.
s = σ(D)

Given such a scheme, Alice can set up her document signer. First she generates (PK,SK)←
KeyGen(1n, R) and publishes PK while keeping SK secret. Then when she wants to sign a
document, D, she can run the signing algorithm σ(D)← Sign(D,PK,SK,R) and sends the
pair (D,σ(D)) to Bob. Bob can then verify the signature by running Verify(PK,D, σ(D)).
We also say that Eve forges a signature if she can produce a D and a σ(D) (that was not
signed by Alice) such that Verify(PK,D, σ(D)) = Yes with non-negligible probability.

1.3 Security of a Digital Signature Scheme

When we talk about security for a digital signature scheme, we consider an adversary, Eve,
who attempts to send a message to Bob and try to forge Alice’s signature. What possible

6-2

information does Eve have access to before attacking the system? Here are some reasonable
assumptions that have been proposed:

• Eve only knows the public key. (Key-only Attack)

• Eve has seen a set of messages {m1, . . . ,mk} with their corresponding signatures. The
set of messages is given to her but not chosen by her. (Known Message Attack)

• Eve chooses a fixed set of messages {m1, . . . ,mk} (there are two cases, where the
messages are chosen independently of the public key or not) and gets to see the
signatures of those messages. (Chosen Message Attack)

Once this information is given to her, what does it mean for the signature scheme to be
broken by Eve?

• Eve computes the secret key. This is as bad as it gets because now Eve can sign any
message she wants. (Total Break)

• Eve computes a poly-time algorithm that can forge a signature for any message.
(Universal Forgery)

• Eve can forge a signature for a particular message of her choice. (Selective Forgery)

The previous examples will ultimately motivate our definition of security for signature
schemes; but first we consider security after a single document is signed.

1.4 Lamport’s 1-time signature scheme

The following is a construction of a one-time signature scheme (for messages of length n)
out of a one-way permutation, f : {0, 1}n → {0, 1}n.

1. KeyGen(1n, R) will randomly select 2n elements from {0, 1}n. We will label them
x0

1, x
1
1, x

0
2, x

1
2, . . . , x

0
n, x1

n. Then we compute yb
i = f(xb

i) for all 1 ≤ i ≤ n and b ∈ {0, 1}.
The secret key SK and the public key PK will be

SK =

(

x0
1 x0

2 . . . x0
n

x1
1 x1

2 . . . x1
n

)

PK =

(

y0
1 y0

2 . . . y0
n

y1
1 y1

2 . . . y1
n

)

2. Sign(m,PK,SK,R) will use m = m1m2 . . . mn to index SK meaning it will return
(xm1

1 , xm2

2 , . . . , xmn

n). For example if m = 100 . . . 1 then we will return the selected
entries:

σ(m) =

x0
1 x0

2 x0
3 . . . x0

n

x1
1 x1

2 x1
3 . . . x1

n

6-3

3. Verify(PK,m, s) where m = m1m2 . . . mn and s = (s1, s2, . . . , sn) checks that f(si) =
ymi

i and returns Yes if they are equal for all 1 ≤ i ≤ n. Continuing our previous
example where m = 100 . . . 1 we check the equalities in the selected entries:

s = (s1, s2, . . . , sn)

y0
1 f(s2) = y0

2 f(s3) = y0
3 . . . y0

n

f(s1) = y1
1 y1

2 y1
3 . . . f(sn) = y1

n

Assuming f is a one-way permutation, we claim that this scheme is secure against an
adversary that is allowed only one query for the signature of a message m of his choice,
then has to come up with m′ 6= m and a forgery σ(m′).

Proof We shall prove the contrapositive of the claim. We start by assuming there is an
adversary A that can forge signatures with non-negligible probability, then we show that A
can be used to invert f with non-negligible probability. Suppose A can forge a signature with
probability> ε conditioned over all m and PK (because f is a permutation, PK simply
has a uniform distribution). Then we construct an algorithm to invert y as follows:

(PK,SK)← KeyGen(1n, R)
i′ ← {1, . . . , n}; b′ ← {0, 1}
Replace yb′

i′ in PK by y.
Give A this new PK, and he will request a signature for m = m1m2 . . . mn

if mi′ = b′ then fail; else send A the correct signature
A will then output a forged signature (s1, s2, . . . , sn) for a different message m′

if m′

i′ = b′ then fail; else return si′

Notice y is uniformly distributed because f is a permutation, so the modified PKs look like
they are also uniformly distributed, which means that the adversary will invert with the
same probability> ε. The first place our algorithm can fail is if the adversary asks us to
sign a message that has b′ as its i′-th bit because we do not know f−1(y). This occurs with
probability 1

2 . The second place our algorithm can fail is if the message generated by our
adversary did not pick out b′ as its i′-th bit, which means that we did not get the inverse
to y from him. Because m′ 6= m, it must differ by at least one bit, which means the chance
that it differs on the i′-th bit is 1

n .

Provided that our algorithm did not fail, then the answer it returns will be x = si′ . Because
s is a valid signature for m′, it must be the case that f(x) = f(si′) = y

m
i′

i′ = yb′

i′ =
y. Thus the algorithm has succeeded in inverting y. Combining all the probabilities, we
have a probability 1

2 ·
1
n · ε of inverting f . Thus, f cannot be one-way, which proves the

contrapositive.

Remark This scheme is only secure for signing one message, because the signature reveals
part of your secret key. For example, if you signed 00 . . . 0 and 11 . . . 1, then your entire
secret key has been revealed.

6-4

Some drawbacks of this scheme is that the public key has size 2n2 and that it can only be
used to securely sign one message. In the next section we will construct a scheme that can
sign many messages.

1.5 Security over multiple messages

The preceding section gave a signature scheme to sign any one message, after which forging a
new signature is as hard as inverting a one-way function. However, it is clear that Lamport’s
algorithm is not at all secure if the adversary is allowed to see two distinct signed messages.
This motivates the following definition of security over multiple messages(Goldwasser, Mi-
cali, Rivest):

Definition 1 A digital signature scheme is existentially unforgeable under an adaptive
chosen-message attack if for all A ∈ PPT who is allowed to query Sign polynomially many
times (such messages may be dependent on both previously chosen messages and the public
key) cannot forge any new message.

Signer Adversary
PK

m1

s(m1)

m2

s(m2)

...

mpoly

s(mpoly)

m',s (m')
Adversary

Where m' is different from m1 ... mpoly

Figure 2: An Adaptive Chosen Message Attack

6-5

This will be chosen as our definition of security for a signature scheme. We mention that
the definition is quite strong. For instance, consider the following scheme proposed by Diffie
and Hellman: let (Gen, f, f−1) be a one-way permutation, where Gen outputs a (public) key
k and a (private) trapdoor td. Given a document D, Sign gives the signature σ(D)=f−1

k (D).
To verify a signature, any party can compute whether fk(σ) = D. Therefore this indeed
defines a legitimate signature scheme. But is it secure in the sense of the above definition?

It turns out that the scheme is not secure. An adversary can pick a random σ and define D
to be fk(σ). Note that D could be completely meaningless as a document, but nevertheless
the adversary has given a new document and a valid signature, so by definition, the scheme
is not secure.

1.6 Signing multiple messages

We saw a secure scheme that could sign one message, and from this we can build a scheme
that can sign many messages. All the schemes we will present in this section will require
the signer to save a “state” based on how many messages have been already signed. Under
the formal definition of a digital signature scheme this is not allowed, but we will relax
this condition. Secure, stateless signature schemes have been first achieved by Goldreich in
1986.

One way we can sign N messages is to generate N secret key and public key pairs
{(PK0, SK0), . . . , (PKN , SKN)} under the Lamport 1-time signature scheme. Then to
sign the i-th message, one can simply sign it using (PKi, SKi) under the Lamport scheme.
This way of signing multiple messages is highly impractical because our public key is un-
reasonably huge and we need to know a priori how many messages to sign.

By introducing hash functions into our schemes, we can make a great deal of improvement on
the lengths of messages we can sign, and how many we can sign. For example, one may first
hash a message using a collision resistant hash function and then sign the hashed document.
Merkle in 1989 constructed a multi-time signature scheme using trees by “hashing-down”
public keys to a single root which will be the master public key.

6-6

1.7 Introduction to Hash Functions

We want to define the notion of a hash function. Intuitively, it should be a function that is
easy to compute, and the output should be shorter in length than the input.

Definition 2 A hash function h : {0, 1}n → {0, 1}m is a deterministic, poly-time com-
putable function such that n > m.

Because h is length decreasing, the function is many-to-one, i.e. there exists a pair (x, x′)
such that h(x) = h(x′). In cryptographic constructions using a family of hash functions we
want to have control over how these collisions occur. We consider a family of hash functions
defined by a key-gen algorithm Gen(1n, R)→ h where R is some randomness. We define the
following three notions of collision resistance on the family, H, of hash functions generated
by Gen(1n, R):

Definition 3 (Collision resistance) (∀A ∈ PPT)(∀c > 0)(∃Nc)(∀n ≥ Nc)

PrH,R[h← Hn; (xn, yn)← A(h) : h(xn) = h(yn)] ≤ 1
nc .

Definition 4 (Universal one-way [Naor-Yung]) (∀A ∈ PPT)(∀c > 0)(∃Nc)(∀n ≥ Nc)

PrH,R[(xn, α)← A(1n);h← Hn; yn ← A(α, h, xn) : h(xn) = h(yn)] ≤ 1
nc .

Definition 5 (Two-wise independence) (∀A ∈ PPT)(∀c > 0)(∃Nc)(∀n ≥ Nc)

PrH,R[(xn, yn)← A(1n);h← Hn : h(xn) = h(yn)] ≤ 1
nc .

6-7

Adversary

h

Challenger x,yCollision Resistance:

AdversaryhChallenger

y

Universal 1-way:

x

AdversaryChallenger2-wise independent: h

x,y

Figure 3: Three games of collision resistance.

1.8 Naor-Yung trees

We will present an improvement of Merkle’s signature scheme based on the work of Naor-
Yung. The construction assumes the one-time security of Lamport’s 1-time signature,
(KeyGen,Sign,Verify) as well as the existence of a family of universal 1-way hash functions
{h : {0, 1}4n2

→ {0, 1}n} which will be used in the construction of our signature scheme
which signs nlog(n) messages of length n. The main concept for signing is to first pretend
we have a complete tree of height, say, k = log2(n) which will have an secret key and a
public key at each node. Only the public key PK of the root of this tree will be published,
which means our public key size is independent of the number of messages we need to sign.
To sign the i-th message, we sign it on the i-th leaf using Lamport’s 1-time signature, then
include the public keys of the nodes in the path from the leaf to the root and their siblings.
To make sure this path is authentic, we also need to have each parent sign the public keys of
its two children. This is accomplished by concatenating the public keys of the two children
then applying a hash to it, then signing the result. All of this information is to be included
in the signature, but the good news is that the size of the signature does not grow as the
number of signed messages increases. Notice that because we only pretended to have such
a tree, some of these values may need to be computed and stored on the fly, but still this
only takes poly-time to accomplish. Also notice that because our tree has more than poly-
nomially many leaves, no polynomially bounded adversary can exhaust all of the leaves, so

6-8

that we can always sign a message when an adversary asks for one.

...PK PK PKk

PK

PK

PK

PKk-1

PK'k

PK'k-1

...

i-th leaf

Figure 4: Signing the i-th message.

More formally, we can define a triple (MKeyGen,MSign,MVerify) with state information as
follows:

• MKeyGen(1n, R) will generate the keys for the root of our tree from the 1-time gener-
ator (PK,SK)← KeyGen(1n, R)

• MSign(m,PK,SK,R) will use state information to sign a message. To sign the i-th
message, m, we first set up some notation. Let nj

k denote the j-th node (reading the

tree from left to right) of depth k = log2(n). Then by this notation n
j/2
k−1 denotes its

parent, n
j/4
k−2 denotes its grandparent, and so on. Let nk = ni

k, nk−1 = n
i/2
k−1, . . . and

let r = n1 denote the root of our tree. Let (PK`, SK`) be the keys corresponding
to node n` for 1 ≤ ` ≤ k with (PK1, SK1) = (PK,SK). Also, let (PK ′

`, SK ′

`)
denote the keys for the sibling of n` for 2 ≤ ` ≤ k. Finally, we compute σ ←
Sign(m,PKk, SKk, R) and σ` ← Sign(h(PK`+1PK ′

`+1), PK`, SK`, R) for 1 ≤ ` ≤
k − 1, and output (PK`, PK ′

`, σ`, σ) as our signature for m.

6-9

• MVerify(PK,m, s) will first check that s is of the form s = (PK`, PK ′

`, σ`, σ). Then
it will run Verify(PKk,m, σ) and Verify(PK`, h(PK`+1PK ′

`+1)) and return Yes if they
both pass.

We mention as a side note that the space requirements can be reduced to a constant if one
uses pseudorandom functions to generate the public keys. Because pseudorandom outputs
are indistinguishable from a uniform distribution, such a construction is equally secure.

This (stateful) digital signature scheme we constructed is existentially unforgeable adap-
tively secure if the Lamport 1-time scheme is secure and universal one-way hash functions
exist. The sketch of the proof is as follows:

Sketch of Proof Assume for the contrapositive that there exists a poly-time adversary
A that can forge a signature with non-negligible probability, ε after p = poly(n) steps.
Because there is a path of signatures from each leaf down to the root, two cases can occur
in a forgery (1) A found a collision to h or (2) A can sign a message on an existing leaf or
a message different from h(PK`PK ′

`) on an existing node. One of the two cases occur with
probability at least ε/2 so either we can show h is not universal 1-way, or we can show f is
not one-way, which proves the contrapositive.

We summarize this result as showing secure digital signatures exist if one-way permutations
exist (for the Lamport scheme to work), and universal 1-way hash functions exist. In the
next section we will show how to construct a universal 1-way hash function from a one-way
permutation.

1.9 One-way Permutations Imply Universal 1-way Hash Functions

We will construct a family of universal 1-way hash functions from a one-way permutation
f . The hash functions we construct will take n bits to n− 1 bits and they will be indexed
by h = (a, b) where a, b ∈ GF (2n). The algorithm for hashing a string x of length n is to
apply y ← f(x) then z ← chop(ay+b) to n−1 bits (operations are taken over GF (2n)). By
the fact that f and the linear map ay + b are both 1-1 and chop is 2-1, our hash function is
a 2-1 mapping from {0, 1}n → {0, 1}n−1. We claim that this is a family of universal 1-way
hash functions if f is a one-way permutation.

Proof Assume for the contrapositive that this family is not universal 1-way. Let A be a
poly-time adversary that chooses x and is given h chosen from a uniform distribution can
find a x′ such that h(x) = h(x′) with probability> ε. Then to invert y′ = f(γ), we first look
at x and we solve for (a, b) to satisfy the equation chop(af(x)+b) = chop(af(γ)+b). Because
f is a permutation, and the fact that this linear equation does not skew the distribution
of the (a, b) returned, the hash function h = (a, b) looks as if it were chosen truly from a
uniform distribution. Then A will return x′ such that chop(af(x) + b) = chop(af(x′) + b),

6-10

but f(x) and f(γ) are the only two solutions to that linear equation, so f(x′) = f(γ) = y′.
Thus we can invert f with probability> ε, proving that it is not one-way.

x

y

z

f

h=(a,b)

x’

y'=f(x')

f

Figure 5: Setting a trap.

Assuming that there exists a family of one-way permutations: fpoly(n), fpoly(n)−1, . . . , fn+1,
such that fi : {0, 1}i → {0, 1}i, we may construct a family of universal 1-way hash functions
h : {0, 1}poly(n) → {0, 1}n as follows:

x0 ← {0, 1}
poly(n)

fork = 0 topoly(n)− n− 1
ak ← GF (2poly(n)−k); bk ← GF (2poly(n)−k)
xk+1 ← chop(akfpoly(n)−k(xk) + bk)

Output xpoly(n)−n

Proof Idea

Assume that there was a poly-time adversary A who could break this construction with
probability> ε. Then we can pick a random location in our chain to set a trap by solving
for (ak, bk) at that level as before. If the adversary finds a collision, then at some level in
our construction there will be a collision. The probability of which that level will be equal
to the one we set the trap is 1

poly . This will allow for us to invert the one-way permutation
at that location with probability> ε

poly , thus contradicting the one-way property of the
function.

6-11

Thus we have shown the following theorem:

Theorem 6 Hash functions exist if one-way permutations exist.

1.10 Application to Signatures

Assuming that there exists a family of one-way permutations: f4n2, f4n2 , . . . , fn+1, such
that fi : {0, 1}i → {0, 1}i, we may construct a family of universal 1-way hash functions
h : {0, 1}4n2

→ {0, 1}n as seen in the previous section. This gives the following result:

Theorem 7 (Naor-Yung) Secure digital signatures exist if one-way permutations exist.

To conclude on this topic, we mention that it has also been shown:

Theorem 8 (Rompel) Secure digital signatures exist iff any one-way function exists.

1.11 Hash functions for Commitment Schemes

Consider the scheme where a sender is given a hash function h : {0, 1}2n → {0, 1}n by a
receiver. Let h be applied on every 2n bits x, and then iteratively on every 2n bits of the
result producing the final output a.

Claim 9 The output a is a good commitment for x.

Sketch of Proof The receiver gets no information on x which follows from the way we
constructed our hash function. On the other hand, the sender cannot cheat because in order
to cheat, he would be able to find a collision for the hash function h.

6-12

