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1 Private Key Encryption

Consider a game between three players: Alice, Bob and Eve. In this game, Alice and Bob
are communicating over an insecure channel, where Eve can listen to messages, although
she cannot modify them. Informally, Bob and Alice win if they are able to communicate
without Eve being able to decipher any partial information about the messages. On the
other hand, Eve wins if she can discover any information about the messages sent. Notice
that Eve does not have to find the whole content of the messages in order to win; for her,
it suffices to discover any information hidden in the messages that she did not know when
the game started.

In this game, a plaintext message m is encrypted by means of a cipher key, to produce a
ciphertext c. Because Eve does not have access to the key used to encrypt the messages, it
is said that Bob and Alice communicate by means of a private key encryption system. In
a private key encryption system, it is necessary that Bob and Alice meet before starting to
communicate, so they can agree on a particular key, which should be keep secret, that is,
only they must know it. This is demonstrated in Figure 1.
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Figure 1: Alice and Bob use a private-key encryption scheme.

Sometimes, in a private key system, an encryption scheme is associated with a message
space M and some distribution on M . For example, M may be the set of all strings for
a given length. The ciphertext space is the set of all possible plaintext messages m ∈ M

4-1



encrypted with each possible key. Note that the ciphertext space does not necessary equal
M , that is, for some combinations of m and key k the same ciphertext can be produced.
Some ciphertext strings may not correspond to any plaintext. A formal definition of a
Private Key cryptosystem follows below:

Definition 1 We define an encryption scheme as a triple of algorithms (GEN, ENC,
DEC):

• GEN: Key Generation: a randomized polynomial time algorithm that outputs a key
K.
K ← GEN(1n, R)
where 1n is a security parameter and R is a polynomial number of coin-flips.

• ENC: Encryption: a randomized polynomial time algorithm that takes a plaintext
message m and key K and generates a ciphertext C.
C ← ENCK(m,R)

• DEC: Decryption: a polynomial time algorithm that takes a cipertext C and key K
and outputs a plaintext message m’.
m’ ← DECK(C)

• Correctness: a cryptographic system is called correct if DECK(ENCK(m,R)) = m,
provided that m has been generated by the GEN algorithm. Notice that we can allow
negligible error probability: Pr[DECK(ENCK(m,R)) 6= m] < ε.

1.1 Examples of Private Key Systems

Cryptosystems that we used in kindergarden are easy to break. Examples include:

Shift cipher (insecure!) For a shift cipher with m ∈ {A...Z}n. K ← GEN() assigns K a
random number in the range {0...25}. C ← ENCK(m1m2...ml) = c1c2...cl such that
ci = (mi + K) modulus 26. m’← DECK(c1c2...cl) = m′

1m
′
2...m

′
l where m′

i = (ci −K)
modulus 26.
Example: If K = 4, m = “HELLO” then C = “LIPPT”.
Because there are only 26 different keys, this system is trivial to break.

Caesar cipher (insecure!) For a substitution cipher, we let K be a random permutation
of the numbers {0...25}. Then, C← ENCK(m1m2...ml) = c1c2...cl where ci = K(mi).
Example: For a limited alphabet {A,B,C,D}, let K be the mapping {A,B,C,D} →
{B,D,A,C}. Then for m = ”DAD”, C = ”CBC”.
Again, this type of cipher is weak, with a very limited key space. For example, if
the only allowed symbols are the lower case characters of the English alphabet, then
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there are 26 possible substitutions! However, in order to break this system, it is not
necessary to try every possible combination. Attacks based on the frequency of each
character are very effective against the Caesar cipher.

On the other hand, we will see that the following cryptosystem is secure:

One-time pad For a one-time pad, we let K← {0, 1}n with M the set of all binary strings
of length l. We let ENCK(m) = m ⊕ K (bitwise). The decryption function DECK(c)
= c ⊕ K (bitwise).
Example: If m = 11001 and K = 01101, C = 11001 ⊕ 01101 = 10100.

1.2 Security Criteria

There are several different formal definitions of an information-theoretically secure crypto-
graphic system. One is the Shannon Security Criterion (Definition 2). According to the
Shannon criterion, the probability that a certain message was generated, given the knowl-
edge of a ciphertext, is equal to the a-priori probability that any message was produced.
That is, the knowledge of the ciphertext does not provides any a-posteriori information
about the message m, except what was already know from a-priori probabilities.

Definition 2 An encryption scheme over message space M is Shannon secure if, for all
distributions D over M , for all m ∈M , and for all ciphers c, the following equation holds:

PrD[m|c] = PrD[m]

The equation above means that the a posteriori probability that a message m has been sent,
given that the cipher c has been sent, is equal to the a priori probability that message m has
been sent.

Claim 3 One-time pad is Shannon secure

Proof For all the possible distributions D of messages over the message space M =
{0, 1}n, for all keys in the key space K = {0, 1}n, for all fixed m ∈ M , and for a fixed
c ∈ {0, 1}n:

PrD,k[m|c] =
PrD,k[m ∧ c]

PrD,k[c]
=

PrD,k[c|m] · PrD,k[m]

PrD,k[c]
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PrD,k[c|m] = PrD,k[m⊕ k = c] = 1
2n

Notice that, for a given (m, c) pair, there is only one possible value for k such that k = m⊕c.
Also, the probability of a given cipher c been produced is given by:

PrD,k[c] = Σm∈MPrD,k[c|m] · PrD,k[m] = 2−n · Σm∈MPrD,k[m] = 2−n

Using the latter result in the first equation gives:

PrD,k[m|c] =
2−n·PrD,k[m]

2−n

PrD,k[m|c] = PrD,k[m]

PrD[m|c] = PrD[m]

Unbreakable cryptographic systems can also be characterized by the concept of Perfect
Security (Definition 4). This definition states that an encryption scheme is perfectly secure
if a cyphertext c is an equally likely output for any two messages in the message space.

Definition 4 An encryption scheme S over message space M is perfectly secure if, for any
distribution D over any set {m1,m2} ⊂ M of two messages of same length, and for all
cipher texts c we have:

PrD[m1|c] = PrD[m2|c] (1)

Given Definitions 2 and 4, which is stronger? That is, which gives the user of a cryptosystem
the highest level of security? Although they look different, it is possible to show that they
are essentially equivalent definitions. Here we prove that Shannon security is a consequence
of perfect security.

Claim 5 If perfect security holds then Shannon security holds.

Proof

Given arbitrary messages m1 and m2 from the message space M , according to perfect
security, we have PrD[c|m1] = PrD[c|m2], where D is any distribution over some arbitrary
subset of M with just two elements, m1 and m2. Since this equation is true for arbitrary
messages m1 and m2, it must hold for any pair of messages in M . Assume that the following
probabilities range over any distribution of messages from M :
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Pr[m|c] =
Pr[c|m] · Pr[m]

Pr[c]

=
Pr[c|m] · Pr[m]

Σm′∈MPr[c|m′] · Pr[m′]

=
Pr[c|m] · Pr[m]

Σm′∈MPr[c|m] · Pr[m′]

=
Pr[c|m] · Pr[m]

Pr[c|m] · Σm′∈MPr[m′]
= Pr[m]

Because Pr[c|m] = Pr[c|m′] for any message m′, it is possible to remove the probability
Pr[c|m′] from the summation. Also, Σm′∈MPr[m′] = 1, given that a message has been
produced. This two remarks justify the last steps of the derivation above.

Claim 6 For any perfectly secure encryption, the number of keys |K| is at least as big as
the size of the message space |M |.

Proof Consider an encryption scheme S in which the size of the key space is less than the
size of the message space, that is, |K| < |M |. Bob and Alice will try to use S to defeat Eve.
Given a message m ∈M , and a key k ∈ K, Bob generates a cipher text c = ENCk(m), and
sends it to Alice. Eve intercepts c and now applies every possible key k′ in order to decrypt
c. If S is a perfectly secure system, for any message m, and any key k, Prk[m|c] = Prk[m].
However, because |K| < |M |, there must be at least one message m such that Prk[m|c] = 0.
Therefore, after knowing c, one of the following situations must hold: Prk[m|c] > Prk[m],
or Prk[m|c] = 0. In this case, the cryptographic system does not meet the Shannon security
criterion, and, consequently, perfect security does not hold.

Fact 7 Shift and Substitution Ciphers do not satisfy perfect security.

Proof This is easy to see using Claim 6.

Fact 8 1-Time Pad is perfectly secure.
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2 Indistinguishability

The problem with 1-Time Pad is that the key must be as long as the message, and we
cannot seem to do better if we need information-theoretic security. We will see that using
so-called pseudo-random generators and weaker “computational security”, we can make the
key of the private-key encryption scheme much shorter. In the context of this discussion, a
pseudo-random generator will be defined as a deterministic polynomial-time algorithm that
takes as input an initial sequence of truly random bits, called a seed, plus a polynomial Q,
and outputs a new, apparently “random looking” sequence of size equal to at least Q(|seed|).
A simplified scheme is shown in Figure 2.
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Figure 2: A pseudo-random generator.

Before moving to the formal definition, it is important to give an intuitive idea about what
does it mean for a sequence of symbols to be “apparently random”. A distribution is called
pseudo-random if it is not possible to build an algorithm of polynomial complexity that
can distinguish that distribution from a truly random distribution of strings of the same
length. It is possible to establish an analogy between this concept and the idea underlying
the Turing Test. This test, proposed by Alan Turing, aims to determine if a computer
could be considered intelligent. According to the test, a computer is considered intelligent
if it is impossible to distinguish it from a true human being in an interview conducted on-
line. In our case, the test aims to distinguish between a truly random and a pseudo-random
sequence of bits. Such sequences, according to Definition 9, are said to be from a Sampleable
Distribution.

Definition 9 A Sampleable Distribution – A sampleable distribution is a probabilistic poly-
nomial time algorithm S(1n, r) that takes a finite sequence of random bits r and 1n, and
produces strings of length n, such that, for some distribution Xn:

Prr[S(1n, r) = α] = PrXn [Xn = α] (2)

The test T , used to determine if two distributions are the same or not, is called a statistical
test. According to definition 10, given two sampleable distributions Xn and Yn, it is said
that they are indistinguishable with respect to the probabilistic polynomial test T if T
cannot determine whether a sample comes from Xn or Yn. Figure 4 represents a statistical
test.
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Definition 10 The random distributions Xn and Yn are said to pass the probabilistic poly-
nomial test T if ∀c,∃N such that ∀n > N :

|Prw,Xn [Tw(Xn) = 1]− Prw,Yn [Tw(Yn) = 1]| <
1

nc
(3)
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Figure 3: Experiment 1: statistical test receiving pseudo-random string.
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Figure 4: Experiment 2: statistical test receiving truly random sequence.

According to Definition 11, two distributions are statistically close if the difference in prob-
ability that a sample string α comes from one distribution versus the other is negligible.

Definition 11 We say that two distributions Xn and Yn are statistically close if ∀c,∃N ,
such that ∀n > N :

∑

α∈{0,1}n

|Pr [Xn = α]− Pr [Yn = α]| <
1

nc
(4)

If it is not possible for any polynomial time algorithm to distinguish two distributions, it
is said that these distributions are computationally close. Definition 12 formally states this
fact.
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Definition 12 [Yao] Xn and Yn are polynomial-time indistinguishable if, and only if, ∀c,
and ∀A ∈ PPT, ∃n such that ∀n > N :

|Pr [A(Xn) = 1]− Pr [A(Yn) = 1]| <
1

nc
(5)

2.1 Extended Statistical Test

One could argue that, if it was possible to feed the testing algorithm T with several, instead
of just one, samples from the random distributions, perhaps it would be easier to distinguish
a pseudo-random sequence from a truly random distribution. According to Definition 13, a
test that receives more than one sample is called an extended statistical test. An extended
statistical test T ′ is a machine that takes a polynomial number of inputs and ouputs a
single bit in {0, 1}. Given two distributions Xn and Yn, T ′ is given a polynomial number
of samples from either Xn or Yn (not both). Then, if T ′ determines that the samples come
from Xn it outputs bit b, otherwise it outputs bit b

Definition 13 Extended Statistical Test – The sampliable distributions Xn, and Yn pass
extend statistical test T ′ if ∀c1, c2,∃N such that ∀n > N :

[|Pr(T ′(X1
n, . . . Xc2

n ) = 1)− Pr(T ′(Y 1
n , . . . Y c2

n ) = 1)|] <
1

nc1
(6)

Claim 14 If Xn and Yn are sampleable distributions which can be distinguished by a (uni-
form) extended statistical test T ′, then there exist a single sample (uniform) statistical test
T which distinguishes Xn and Yn.

Proof Let k =poly(n) and ε(n) = 1/k. We assume that there exists T ′ and show how to
construct T . Assuming that there exists T ′ means, w.l.o.g. that

PrXn(T ′(X1,X2,X3, ...,Xpoly) = 1)− PrYn(T ′(Y1, Y2, Y3, ..., Ypoly) = 1) > ε(n)

Consider “hybrids” Pj , for 0 ≤ j ≤ k, where in Pj the first j samples come from Yn and the
remaining samples come from Xn:

P0 = x1 x2 x3 x4 ... xk

P1 = y1 x2 x3 x4 ... xk

P2 = y1 y2 x3 x4 ... xk

P3 = y1 y2 y3 x4 ... xk
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...

Pk = y1 y2 y3 y4 ... yk

We know that P0 − Pk > ε(n), and therefore, ∃j such that Pj − Pj+1 > ε(n)/k (which is
another 1/poly fraction!) Consider a distribution:

P ( z ) = y1 y2 y3 ...yj z xj+2 ... xk

Notice that if z is a sample from Yn then P (z) = Pj and if z is a sample from Xn then
P (z) = Pj+1. Hence, if we are given z on which we have to guess which distribution it came
from, if we put z in the box above, and somehow fix other locations we could distinguish
on a single sample z. Two questions remain: (1) how do we find the correct j + 1 position,
and (2), how do we fix other values. The answers differ in uniform and non-uniform case:

non-uniform case (i.e. both T ′ and T are circuits): Since T is a circuit, we can non-
uniformly find the correct j + 1 value and find values to other variables which maximizes
distinguishing probability.

uniform case : Since Xn and Yn are sampleable, we can fix values different from j to be
samples from Xn and Yn and by guessing correctly j (we guess the position of j correctly
with probability 1/poly). The distinguishing probability could be further improved. By
experimenting with the distinguisher, we get (again using sampleability of Xn and Yn!) to
check if our choice of j and samples of other positions are good.

3 Pseudo-Random Generators

A Pseudo-Random Generator must be able to generate a sequence of symbols which cannot
be distinguished, in polynomial time, from a truly random distribution, even though such
a sequence is deterministically generated, given a short truly random seed. Definition 15
formally defines the properties of a pseudo-random generator.

Definition 15 A deterministic algorithm G(·, ·) is pseudo-random generator if:

• 1. G(x,Q) runs in time polynomial in |x|, Q(|x|) where Q is a polynomial.

• 2. G(x,Q) outputs strings of length Q(|x|) for all x.

• 3. For every polynomial Q(), the induced distribution {G(x,Q)} is indistinguishable from
{UQ(|x|)}, where UQ(|x|) is a uniform distribution on strings of length Q(|x|).
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3.1 Construction

We will now show how we can construct a pseudo-random generator from a one-way per-
mutation. Remember from the previous lecture that for a one-way permutation f(x), it is
possible to obtain a hard-core bit b, which is as difficult to predict as inverting f .

Consider the following steps:

1. Pick a one-way permutation function f , random seed X0, and a random bit string P,
|X0| = |P | = n

2. For i from 1 to Q(|x|) do:
Calculate Xi = f(Xi−1) and output the hardcore bit < P ∗Xi−1 >

3. Output XQ(|x|) and P

4. Return the sequence of random bits in reverse order.

Remark In the construction above, the bits are returned in “reversed” order. However,
since we will show that this is pseudo-random, the order (left–to-right or right-to-left) is
unimportant: if it is pseudo-random one way, it must be pseudo-random the other way. We
have chosen this particular order of the outputs to make the proof easier.

A graphical representation of the algorithm is shown in Figure 5.
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Figure 5: A pseudo-random generator.

The proof that the output of the above algorithm is pseudo-random is shown in two steps:
First, we will show that the pseudo-random sequence is unpredictable as defined by Blum
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and Micali. Then we show that every unpredictable sequence is pseudo-random (which was
shown by Yao).

Informally, a pseudo-random generator G is unpredictable if it is passes the next-bit-test,
defined as follows: given G1, ..., Gk , it is hard to predict Gk+1, for any k. That is, given the
first k bits of the output, it is hard to predict the next bit with probability better than 1

2

Definition 16 Xn passes the next bit test (is unpredictable) if ∀c and ∀A ∈ PPT , there
∃N such that ∀n > N and ∀i, (0 ≤ i ≤ n):

Pr
Xn, coins of A [A( first i bits b1, b2, . . . , bi of x ∈ Xn ) = bi+1] <

1

2
+

1

nc
(7)

Claim 17 If f is a strong one-way permutation, then G as defined in the previous section is
unpredictable.

Proof The proof is by contradiction. We will show that if G does not pass the next bit
test, then we can invert a one-way permutation on a random input. The construction is as
follows: We are given an adversary A ∈ PPT which for some prefix b1...bi of output from a
pseudo-random generator, can compute bi+1 with probability > 1/2 + ε(n) = 1/2 + 1/poly.
We wish to invert f , that is, find f−1(y). We know that if we can predict a hard-core bit of
f−1(y) and p (for a random p), then we can find the inverse of y (with 1/poly probability).
We make y the (n−i)th Xi value of the generator. We can then compute (by applying f to y
i times, and computing hard-core bits) the first i bits of the generator in the straightforward
fashion. Finally, we feed it to our “next-bit” predictor A. Notice that the next bit is exactly
the hard-core bit of y.

Remark Notice that we are dealing with f , which is a one-way permutation. Hence, a
uniform distribution of the inputs implies a uniform distribution of the outputs, and in the
above experiment, the fact that we start with y and compute the first i bits of the output,
has the same (uniform) distribution over the seeds.

Claim 18 Ensemble Xn is pseudo-random if and only if Xn is unpredictable.

Proof Proof in one direction is trivial: a next bit test is a type of statistical test. Hence
if it passes all polynomial-time statistical tests it passes the next-bit test as well.

In the opposite direction, we must show that passing the next bit test implies passing all
polynomial-time statistical tests. We will show a proof by contradiction. That is, if ∃
distinguisher D, then ∃ a next bit predictor. A distinguisher means that for distributions
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p = Xn and q = Yn, |p− q| > 1
nc .

By the hybrid argument, there ∃i such that |Pi − Pi+1| >
ε
l
. Then, we can construct an

(i + 1)st bit predictor as follows:
Give an adversary A an input string B1...Bib̂Y , where b̂ is a random bit. If the adversary

outputs 1 on the input, we output b̂, otherwise we output b̂.

Pr [A(B1...Bi) = bi+1] = Pr
[

b̂ = bi+1

]

∗ Pr [A(B1...Bibi+1Y ) = 1]

+ Pr
[

bi+1 = b̂
]

∗ Pr
[

A(B1...Bibi+1Y ) = 0
]

= 1
2 ∗ Pi+1 + 1

2 ∗ q

So, what is q? To figure it out, let’s expand Pi

Pi = Pr [A(B1...BiY )] = Pr [A(B1...Bibi+1Y ) = 1] ∗ 1
2

+ Pr
[

A(B1...Bibi+1Y ) = 1
]

∗ 1
2

= Pi+1 ∗
1
2 + (1− q) ∗ 1

2

or, q = 1 + Pi+1 − 2 ∗ Pi

Substituting for q above, we get:
= 1

2 ∗ Pi+1 + 1
2 ∗ q = 1

2 ∗ Pi+1 + 1
2 [1 + Pi+1 − 2Pi] = 1

2 [Pi+1 − Pi] > 1
2 + ε

l
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