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1 Introduction

1.1 Outline

This is a one-term graduate course in cryptography1. The course is self-contained, though general

familiarity with computational complexity concepts and elementary algorithms is recommended.

Current research topics will be emphasized. Grading will be based on a �nal project which will

consist of reading and analyzing an additional paper related to one of the topics covered.

Topics will include foundations (complexity background; weak and strong one-way functions;

hard-core predicates; uniform vs. non-uniform model, connection to P=NP question); Pseudo-

random generators and pseudo-random functions; Public-key and private-key Encryption; Digital

Signatures; Single-prover and Multi-prover Interactive Proof Systems; Commitment protocols,

Zero-Knowledge; Reducibility among protocol problems, Oblivious Transfer; Completeness The-

orems for two-party and multi-party secure protocols; Non-Interactive Zero-Knowledge and its
applications. If time permits, we will cover advanced topics, such as software protection, proto-
cols in the the full-information model, mobile adversaries (viruses) and knowledge complexity.

1.2 Organization

Lectures are on Tuesdays and Thursdays 2-3:30 in 507 Soda Hall. O�ce hours will be held

after class (if there are questions) and in Nefeli when needed. Ra� can by reached by e-mail:
rafail@melody.berkeley.edu.

1.3 Motivation

Cryptography existed since ancient times. For example, the task of sending a secret message
between two allies which even if intercepted by an enemy, can not be understood (by an enemy)
was of relevance even in ancient Rome (example: Ceaser cipher). Until recently, however, cryp-

tography and cryptanalysis was more an art then a science, and cryptosystems were frequently
broken. The most famous example is breaking of the \ENIGMA engine" by the allies (ENIGMA
was an encoding scheme that Nazi used to send messages by radio to their U-boats during World

War II).

In this course, we explore how the task of secret communication (as well as many other problems

which deal with privacy) could be formally de�ned, and proved correct under various assumptions.
We will focus on formalizations of the notions of \privacy" and \fairness" (i.e., what does it

mean for some information to be \private", and what does it mean for some game/protocol to
be \fair") when considering various interactive tasks (like voting for a leader, or playing poker

by telephone).

1.4 Introductory remarks about Private Key Encryption

Informally, private-key encryption is a game between three players: Sender S; Receiver R, and

an Adversary A. The setting is as follows: S and R �rst get together and agree on a common
private key s which adversary A does not know. Using this shared (between S and R) secret key,

1Scribe notes taken by: Zaphod Beeblebrox, August 23, 1994.
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the sender S wishes to send messages m1,...,ml to receiver R such that R will understand them

(since he knows the secret key s) but adversary A will not, even if he gets to hear everything

that A sends to B.

Encryption Algorithm Decryption Algorithm

Sender S Receiver  R

Adversary  A

plaintext ciphertext  m y
E(m,s)=y D(y,s)=m

private−key  s private−key  s

plaintext m

In order to achieve that goal, sender S converts each plain-text message mi to a cipher-text

yi using an \encryption algorithm" E and agreed upon secret key s (i.e., where yi = E(mi; s)).
When receiver R gets cipher-text yi, R uses a \decryption algorithm" D to \decipher" yi (i.e. to
get backmi = D(yi; s). Notice that it should be the case that for allm, and all s,D(E(m; s); s) =

m.

Informally, Adversary A gets to hear cipher-text y1; : : : ; yl and he tries to \deduce" \some

information" about the clear-text m1; : : : ;ml. However, at this point, we have not yet de�ned
what this intuitive requirement means formally (it will actually take some work before we get
back to this).

1.5 Perfect Secrecy and One-Time Pad

One interpretation is that the secrecy is \perfect", as de�ned by Shannon: suppose we have some

a priori probability distribution on messages m = m1;m2; : : : ;ml that A is going to send. In
particular, for any m let Pr(m) denote an a priori probability of A sending m. Then for all m

and for all y = y1; y2; : : : ;ml it should be the case that Pr(m) = Pr(mjy).
If length of all messages is equal to the length of private-key, this is possible, and it is called

a one-time pad private-key cryptosystem: pick a private key s such that jsj = jmj. When
sending j'th bit of m, compute an exclusive-or (xor) of j'th bit of m with j'th bit of s and send
the result yj = mj � sj. When R gets yj it computes yj � sj = (mj � sj)� sj = mj. The scheme

has \perfect" security: For all mj, Pr(yj = 0) = Pr(yj = 1) = 1

2
where the probability is taken

over the choice of sj.

What if we want to have length of private key to be much less then the total length of m?
Shannon proved that this is impossible if we want \perfect" security. However, suppose, instead

of requiring that adversary should not be able to decrypt at all, we only require that adversary

7



should not be able to decrypt \quickly" (i.e. that it is \hard" for A to decrypt in polynomial

time.) Then we will see that (after we formally de�ne this notion) we can use much smaller key!

1.6 Attacks on a Cryptosystem

We are going to consider several types of attacks:

� known cipher-text attack: adversary gets to see only cipher-text E(m1; s), E(m2; s),

: : :, E(ml; s). He must deduce \some" information about the plain-text (what this means

is to be de�ned later).

� known plain-text attack: adversary gets to see both plain-text and cipher-text l �
1 times: (m1; E(m1; s)), (m2; E(m2; s)),: : :,(mk; E(ml�1; s)) and then he has to deduce

\some" information about some \new" message ml given only E(ml; s).

� adaptive chosen plain-text attack: adversary chooses m1 and then gets to see E(m1; s),

then (based on what he seen) he chooses m2 and gets to see E(m2; s), and so on for l � 1
times. Then, he has to deduce \some" information about a \new" message ml, given only
E(ml; s).

� chosen cipher-text attack: adversary chooses arbitrary message y1 and then gets to see
D(y1; s), then (based on what he seen) he chooses y2 and gets to see D(y2; s) and so on for
l � 1 times, and then he has to deduce \some" information about some \new" ml, given
E(ml; s).

� active/Byzantine attacks where adversary not only listens, but can also change the
cipher-text in an arbitrary manner in order to learn how to \break" some future message.

In all these attacks, we assume that adversary knows algorithms E and D, but does not know
s. We will see (among other things) how these attacks (and there combinations) could be dealt
with.
As an additional remark, it should be pointed out that even though a lot of initial work in

cryptography was about secure communication, (and this is where we will also going to start)
it now evolved into a mature �eld which deals with issues of interplay between privacy and

computation in general, including secure two-party and multi-party protocols, general partial-

information games and various security considerations.
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2 Complexity Background

2.1 Familiar Complexity Classes

As a review, recall the following de�nitions2:

� P is the set of all languages L decidable in polynomial time.

� NP is the set of all languages L decidable in nondeterministic polynomial time. In other

words, it is a class of languages which can be veri�ed in polynomial time: imagine a game

between two players a Prover and a Veri�er. Veri�er is a polynomial-time machine. Prover

has unbounded computational resources. We say that a language L is in NP, if whenever

x 2 L, prover can send to the veri�er some short (i.e. polynomial-length) message, such

that if x 2 L veri�er always excepts, and if x 62 L prover can never \cheat" the veri�er and

make him except (i.e. there is no message that Prover can send that will convince veri�er.)

� RP is the set of all languages L which are decidable (with 1-sided error) by a machine

which runs in polynomial time and can 
ip coins: whenever x 2 L machines accepts with
probability greater then a half (where probability is token over coin-
ips of the machine)
and whenever x 62 L, machine must always reject.

� BPP is the set of all languages L which are decidable (with 2-sided error) by a machine
which runs in polynomial time and can 
ip coins: whenever x 2 L machine accepts with
probability greater then 2

3
; whenever x 62 L machine must accept with probability less then

a 1
3
(again probability is taken over coin-
ips of the machine).

2.2 FACT: P � RP � NP

It is obvious that P � RP , since any machine which 
ips coins can simply ignore its coins and
work deterministically. Proving RP � NP involves the following. Suppose L 2 RP , so there is
some machine M which computes whether x 2 L but is sometimes incorrect when it says that

the answer is false. For this machine, a sequence of coin 
ips which causes it to answer yes is a
witness to x being in L, and we know there there is always such a witness.5 On the other hand,

if x 62 L, such witness does not exist. Thus, L 2 NP .

2.3 Reducing error probability for RP

We are interested in machines which have lower error rates than those necessary for the de�nitions

of RP and BPP. We would like error rates to be less than 2�P (n) where P is some polynomial

and n is the length of the input string. We now discuss methods for taking machines satisfying
the de�nitions of RP and BPP and reducing their error rates.

Suppose we have some L 2 RP decided by a machineM which says correctly that x 2 L only
with probability �(n). This means that the error probability when x 2 L is at most 1� �(n). We

can construct a new machineM 0 out of M by having this new machine run old machineM some

k(n) (each time using new independent coin-tosses) and accepting i� it is accepted by old M at

2Scribe notes taken by: Jay Lorch, August 25, 1994
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least once. As long as k(n) is polynomial in n, this new machine M 0 still runs in polynomial

time, but it will in general have a lower probability of error. Speci�cally,

P (M 0 makes a mistake jx 2 L) � [1� �(n)]
k(n) � e�k(n)�(n);

where we have used the fact that ez � z + 1. If �(n) = 1=2, as in the de�nition of RP , we

can make k(n) = 2P (n) to get the error bounded by e�P (n). Even if �(n) is some function that

decreases as the reciprocal of a polynomial in n, such as 1=n3, we can set k(n) to some polynomial

exceeding P (n)=�(n) in order to bound the error the way we want.

2.4 Reducing error probability for BPP

Now, suppose we have some L 2 BPP decided by a machine M whose error probability is a

1=3 (as in the original de�nition of BPP ). We construct a machine M 0 which simply runs M

using independent coin-tosses for each run k(n) times and accepts i� M at least half the time
(i.e. take the majority vote). As long as k(n) is polynomial in n, this new machine still satis�es
the requirements of BPP, but will have, in general, a lower error rate than M . We now compute
a bound on this error rate. We need the following

Cherno� bound: Let X1;X2; : : : ;Xm be independent 0; 1 random variables with iden-
tical probability distribution. Let X = X1 +X2 + : : :+Xm. Then

Pr (X � (1 + �)E(X)) < e�
1
2
�2E(X):

Now, let us use this to bound the probability of error inM 0 above. In particular, let Xi = 1 ifM
makes a mistake on the i'th run. Then from the de�nition of BPP we know that Pr(Xi = 1) � 1

3
,

where probability is taken over coin-
ips of the machine. Lets be pessimistic and assume that
it is exactly a third, then E(X) = k(n)

3
We know that M 0 makes an incorrect decision if the

majority of k(n) runs is wrong:
Pk(n)

i=1 Xi � k(n)

2
. If we set � = 1=2 and m = k(n) and plug it

into the above bound we get:

Pr

0
@k(n)X

i=1

Xi �
3

2
� k(n)

3

1
A < e�

k(n)
24 :

But, the left-hand side of this inequality is just the probability that M 0 will answer incorrectly.
So, if we set k(n) = 24P (n), we have an error probability for our new machine bounded by

e�P (n), for any polynomial P (n).

2.5 Non-uniform Polynomial Time

We now shift to a di�erent tack. Suppose we have an adversary who can construct a special circuit

to attack those of your encrypted messages which have a certain length. We give this adversary
supernatural power in order to construct such a circuit for each input length, but require that
this circuit is of polynomial size (i.e. allow only polynomial time to crack your code.) This kind

of attack is more devious than a general attack which requires the same machine to be used for

all input lengths, and we would like a way to model it.

Thus, we de�ne a class of languages called P=poly as follows. L 2 P=poly if there exist
machinesM1;M2; : : : and a polynomial Q(n) such that:

10



� The description of Mi has less than Q(i) bits.

� The running time of Mi is less than Q(i).

� 8n8x 2 f0; 1gn, Mn(x) =\yes" i� x 2 L.

Another way to think about this class of languages is that they are decided by a single machine

in polynomial time which is always given some advice, but this advice must be polynomial in

length and must depend only on the input length (i.e. for every input of the same length the

advice is the same).

2.6 Power of P=poly

What the relationship between P=poly and NP ? It was once suggested (INCORRECTLY!) that

P=poly � NP , and the following bogus proof for this claim was given. Suppose there is an
L 2 P=poly decided by a machineM which takes advice as described in the alternate de�nition
above. Then, we consider this advice to be a witness, and construct a new NP machine: guess
an advice which makes the machine accept on input x. If there is such an advice, accept, else

reject.
What's wrong? The problem with this \proof" is thatM can not actually \trust" this advice;

if the advice is wrong, it will come to the wrong conclusion! And there is no way to check if the

advice is good for all inputs, as this be not an NP statement.
To give an idea of the power of P/poly we will in fact show that it can recognize undecidable

languages. Consider some standard enumeration of the Turing machines M1;M2; : : :. Now con-

sider the following language L: x 2 L i� machine number jxj halts. (i.e. the length of x indicates
the number of the machine in the standard enumeration above). Since we are allowed magic
advice for each input length, the magic advice could tell us which machines halt and which do
not in the above enumeration. But this is undecidable... so there are very hard languages which
can be recognized in P=poly.

2.7 BPP � P=poly

We will now further show the power of P=poly by proving that BPP � P=poly (i.e. in the class
P=poly we do not have to 
ip coins in order to do everything that BPP can do!) This proof
is due to Adelmann. Suppose L 2 BPP , so it has a deciding machine M which 
ips at most

r(n) coins and has an error with probability less than 2�(n+1). (Note that this low error rate

can be obtained by methods described earlier if the original error rate is higher.) Consider a
matrix with 2n rows and 2r(n) columns. The element at row x and column c is 1 if M will make

a mistake given input x and coin 
ip sequence c, and is 0 otherwise. Since the probability of
making a mistake on any given input is less than 2�(n+1), the total number of 1's in each row is

less than 2�(n+1)2�r(n). What is the total number of 1's in the matrix? It is the number of ones

in each row, times the number of rows: (2�(n+1)2�r(n))2n. So there are at most 2r(n)�1 1's in the
entire matrix. Observing that there are more columns (2r(n)) than there are total number of 1's

in the matrix (at most t2r(n)�1), the pigeonhole principle tells us that there must be a column
containing no 1's. This column corresponds to a coin 
ip sequence which, if it were hard-wired

into M , would cause it to never make a mistake on inputs of length n. We call this hard-wired

11



machine Mn, and observe that the sequence of machines M1;M2; : : : satis�es the conditions for

L 2 P=poly.

2.8 Terminology

The class of RP (and co-RP) machines corresponds to what are called Monte Carlo algorithms,

which are de�ned as algorithms which always �nish in polynomial time and are correct with one-

sided error bounded above by 1=2 � � (where 1-sided error is either for x 2 L or for x 62 L, but

not both.) The class of BPP machines corresponds to what are called Atlantic City algorithms,

which are de�ned as algorithms which always �nish in polynomial time and are correct with two-

sided error bounded above by 1=2 � �. Another type of algorithm is the Las Vegas algorithm,

which is always correct but only has an expected running time which is polynomial. Algorithms

like this, which 
ip coins to decide whether or not to continue computing, will be discussed later,

but for today we are �nished.

12



3 Introduction to One-Way Functions

3.1 Overview

This lecture3 is devoted to the de�nition of one way functions. While informally the idea should

be quite clear,(i.e., a function which is \easy to compute" but \hard to invert") the precise formal

de�nition is quite tricky and easy to get wrong.

As a motivating example, suppose we wish to construct a cryptosystem consisting of an en-

cryption E and a decryption D, both of which are poly-time. The encryption takes a clear-text

message x and some random bits r, and gives y = E(x; r). A polynomial-time adversary has

access only to the cipher-text y. For the cryptosystem to be secure, it should be hard for the

adversary to recover the clear-text, i.e. a poly-time adversary who is given E(x; r) should not

be able to �gure out x.

-

- -

cleartext

-

coin 
ips

D(E(x,r)) = x
x

E D
y = E(x,r)

r

x

This brings up two questions: what assumptions do we need to design that such a cryptosystem,
and what is meant by the security of the cryptosystem? In this lecture we will answer only the
�rst question.

3.2 Worst-case complexity: P and NP

It is clear that if one can \invert" a function E(x; r) (i.e, given y of polynomial length, and
description of algorithm E(�; �), �nd x and r such that E(x; r) = y) then the cryptosystem is
not secure. However, this is an NP problem, hence if P = NP , the cryptosystem can always be
broken. So, let us assume that P 6= NP . Notice that usually, P and NP refer to languages, but
this formulation is equivalent to expressing the machine in terms of functions. To show this, we

will reformulate the Hamiltonian cycle problem, a well known NP-complete problem:

f(G;H) =

(
G if H is a Hamiltonian cycle

000 : : : 0 (number of 0's = jGj) otherwise
If P 6= NP , then f�1 is hard for in�nitely many (G;H) pairs. We remark that the reason

P 6= NP implies in�nite (and not just �nite) number of hard (G;H) instances is that otherwise

there exists an algorithm which contains answers to this �nite number of pairs as a look-up table,
and for this algorithm everything is easy. So, we must simply assume that P6=NP. Is this enough,
then, to have a one way function? No, not yet.

3.3 Worst-case complexity: BPP and NP

One of the problems is that security of a cryptosystem is not de�ned \fairly" if the encryption

E is supplied with coin-
ips (random string r) but the adversary is not allowed to 
ip coins. So,

3Scribe notes taken by: Raph Levien, August 30, 1994
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to be fair, we must allow any polynomial-time adversary to be able to 
ip coins, and be wrong

once in a while, i.e. we view our adversary as a BPP (bounded probabilistic poly-time) machine.

We choose BPP over, say, RP, because BPP is a larger class, and thus can potentially do more,

then RP, and we wish to say that \no matter" what the polynomially -bounded adversary does

he can not invert E.

Now do we have one-way functions? Not yet. For one thing, we need a new assumption: that

there are languages in NP which are not in BPP , i.e. that NP �BPP is not empty. (By the

way, since BPP contains P , if we assume that NP �BPP is not empty, then clearly NP �P is

not empty, and hence NP 6= P . Thus, the assumption that NP �BPP is not empty is stronger

then P 6= NP . So, lets assume that NP �BPP is not empty. Hence, there exists a function f

in NP such that any BPP machine fails on in�nitely inputs.

3.4 Negligible, and Noticeable functions

What does it mean for the BPP machine to fail? Let us suppose that the machine has a
probability of :5 + �(n) of guessing correctly. We already know that if �(n) is greater than the
reciprocal of some polynomial, then it is possible to amplify the probability (by running the

machine a polynomial number of times, and taking the majority vote) to any practical degree
of certainty (speci�cally, a failure rate less than e�poly(n)). So, we want to de�ne the notion of
negligible probability, one which can not be ampli�ed in polynomial time. Informally, �(n) is
negligible if it is smaller than the reciprocal of any polynomial. Formally,

De�nition 3.1 Let g : N ! N . We say that g is negligible if 8c 9Nc such that 8n > Nc

g(n) <
1

n�c

The Nc term is there to make the de�nition not depend on constant factors. Asymptotically,
the degree of the polynomial will always overcome the constant factor. The notion of a negligible

functions should be robust against any polynomial-time machine. Indeed,

Fact 3.2 For all negligible functions g(n) and all polynomials p(n), their product g(n)p(n) is negli-

gible.

To see this, notice that the above statement is equivalent to: 8c1c2 9Nc1c2 such that g(n)nc2 <

n�c1 . Dividing both sides of the inequality by nc2, we get g(n) < n�(c1+c2). Thus, by taking

Nc1c2 = N(c1+c2), the fact becomes equivalent to the negligibility of g, which was given. 2

The \opposite" of negligible functions are noticeable functions, those that are greater than the

reciprocal of some polynomial. Formally g(n) is noticeable if:

De�nition 3.3 Let g : N ! N . We say that g(n) is noticeable if 9c and 9N such that 8n > Nc

g(n) >
1

n�c

14



A word of warning is appropriate here. There exist some functions that are neither negligible

nor noticeable. The world looks like this:

Negligible Functions
Noticeble Functions

(also called  "non−negligible")
Neither Negligible nor
Non−Negligible!

For example, there are functions which on an in�nite sequence of inputs is negligible and on a

complement in�nite sequence is noticeable, where the two sequences interleave. The composite
sequence is neither negligible not noticeable.

3.5 Average Case Complexity

So lets assume that there exists a language L which is in NP and not in BPP . This implies that
there exists a function f such that for any probabilistic polynomial time machineM there exists
in�nitely-many inputs x1; x2; : : : such that probability (over coin-
ips of M) that M inverts on
f(xi) is negligible.

Is this assumption (i.e., for in�nitely many x probability of successful inversion is negligible)
enough to characterize a one way function? No, not quite. The problem is that for cryptography

we need to e�ciently �nd hard instances (in order to grantee the security of the cryptosystem).
While there might be in�nitely many instances for which f�1 is hard, it is not clear how to �nd
this hard instances. (Moreover, the assumption that in�nitely many hard instances exist does
not even guarantee that they exist for every input length. ) What we really want to say that
not only hard instances exist, but they are also easy to �nd. One way is to say that \most"

instances are hard.

An attempt to de�ne this is to say that for most f(x), when jxj is su�ciently large, it is

\hard" to invert f . In other words, if we pick y at random, and ask ourself to �nd f�1(y), this
is hard \most" of the time (This was formalized by Levin as an average case analog of P vs. NP
question.) Let us assume that such problems exists, i.e. ave-P 6= ave-NP. Is this su�cient? It is

not clear, since it could be the case that whenever we pick y at random and try to �nd f�1(y)

it is hard, but whenever we pick x at random and ask our enemy to invert f�1(f(x)) it is easy!

The reason for this is that the distribution of f(x) if we start from the uniform distribution on
x could be very far from uniform. Thus, we need to assume not only that ave-P 6= ave-NP but
also that there are functions which are hard on the uniform distribution of the inputs!

3.6 One-way functions

To summarize, the type of a polynomial-time computable function f(�) we really need could be
best described as a game between a Player (a probabilistic polynomial-time machine) and an

Adversary (a probabilistic polynomial-time machine), as follows:
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� Step 1: Player pick an input length n for a one-way function, which he hopes is \large

enough". Then Player picks x at random, jxj = n, and computes y = f(x), and gives the

result y to Adversary.

� Step 2: Adversary tries to compute f�1(y) (for some polynomial amount of time in the

length of jf(x)j) and sends his guess z back to Player.

� Outcome: Adversary wins if f(x) = f(z), otherwise Player wins. We de�ne f to be a one

way function if the probability of all probabilistic polynomial-time adversaries to win is

negligible, for n big enough.

Note that the size of the input and output of f must be polynomially related, otherwise, if

(say) jf(x)j = log(jxj), then Player is cheating, because it gets to do exponentially more work

(as a function of its input length) than the Adversary. Tying all this together, we arrive at the

following de�nition:

De�nition 3.4 f is a one-way function if:

1. f can be computed in (deterministic) polynomial time.

2. f is \hard to invert" : 8c 8 probabilistic polynomial-time A, there exists Nc;A such that
8n > Nc;A

Prob
h
A(f(x)) 2 f�1(f(x))

i
<

1

nc

where jxj=n, and probability is taken over x and coin-
ips of the adversary.

3. f has polynomially-related I/O: 9c1; c2 such that jxjc1 � jf(x)j � jxjc2.

We remark that in requirement 3, the second inequality is not really necessary: since f is
computable in polynomial time, it can not output more the some �xed polynomial number of
bits. We decided to explicitly state this anyway. Another remark is that an adversary can always

invert on a negligible set of the inputs, buy simply \guessing" what the inputs are.

We will see that with the above de�nition of a one-way function, it is possible to build a good

encryption scheme (which was our motivating example), we will see how to this can be done in
the near future.

3.7 One-way functions and NP

The P=NP question is one of worst-case complexity. But in general, an NP-hardness result says

nothing about the average hardness of a particular problem. For cryptography, we wish to say
that average instances are hard, yet easy to generate. For this to hold, we would need to have
ave-P 6= ave-NP, which would imply the existence of hard unsolved problems, or problems for a

friend: \Pick y at random. Try to �nd f�1(y)." But one-way functions give us even more, in

that they guarantee the existence of hard solved problems, or problems for an enemy: \Pick x at

random. Compute f(x) = y. Ask enemy to �nd f�1(y)." To conclude, note that the existence
of one-way functions guarantees that ave-P 6= ave-NP, which in turn guarantees P 6= NP. The

reverse implications are not known, however.
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4 In-depth look at One-way Functions

4.1 Introduction

Today's lecture4 will concern one-way functions and various de�nitions of them. Our objective

is to show several equivalent de�nitions and to prove that so-called \weak" one-way functions

exist i� there exist so-called \strong" one-way function.

4.2 One-way Functions

Recall the following de�nition from lecture 3, where \PPT" stands for probabilistic polynomial

time, and \A inverts f(x)" denotes A(f(x)) 2 ff�1(f(x))g:

De�nition 4.5 A function f is said to be a uniform strong one-way function if the following
conditions hold:

1. f is polynomial-time computable.

2. f is hard to invert for a random input: 8c > 0 8A 2 PPT 9Nc s:t: 8n > Nc :

Prfx;!g[A inverts f(x)] <
1

nc

where jxj = n and ! are coin-
ips of the probabilistic algorithm A.

3. Input/output length of f is polynomially related: 9�; c s:t: jxj� < jf(x)j < jxjc.

Such a one-way function f is said to be uniform, as opposed to a non-uniform one-way func-
tion. A non-uniform one-way function is de�ned exactly as above, except that the adversary is
formulated not as a PPT machine, but a family of polynomial-size circuits:

De�nition 4.6 A function f is said to be a non-uniform strong one-way function if the following

conditions hold:

1. f is polynomial-time computable.

2. f is hard to invert: 8c > 0 8 non-uniform polynomial-size families A of circuits 9Nc s:t: 8n >
Nc :

Prx;jxj=n[A inverts f(x)] <
1

nc

3. Input/output length of f is polynomially related: 9�; c s:t: jxj� < jf(x)j < jxjc.
4Scribe notes taken by: Ari Juels, September 2, 1994
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REMARK : Notice the in the non-uniform de�nition, the probability is only over x.

The following fact shows that this last condition is weaker than the non-invertability condition

imposed on uniform circuits. In consequence, results proven about the existence of uniform

one-way functions will also pertain to non-uniform one-way functions.

Fact 4.7 If f is a non-uniform one-way function, then f is also a uniform one-way function.

Proof: We will prove the contrapositive. That is, we will show that if f does not satisfy the

de�nition of the uniform one-way function, then it can not satisfy de�nition of the non-uniform

one-way function. Suppose that f is not a uniform one-way function. Then there exists a constant

c, and an adversary A such that for an in�nite number of integers n, for all strings x of length

n, Prfx;!g[A inverts f(x)] > 1

nc
(where ! are the coin-
ips of the adversary. Our objective is to

�nd a poly-size collection of circuits A0 to substitute our adversary A. But A is probabilistic.

We have to somehow \hardwire" coin-
ips ! of A to get an A0.
De�ne �(n) = 1

nc
. De�ne GOOD = fx j Pr![A inverts f(x)] > �(n)

2
g. By conditioning on

whether x 2 GOOD:

Prx;![A inverts f(x)] = Prx;![A inverts f(x) j x 2 GOOD] � Prx[x 2 GOOD]

+ Prx;![A inverts f(x) j x 62 GOOD] � Prx[x 62 GOOD]

Therefore:

Prx[x 2 GOOD] =
Prx;![A inverts f(x) ]� Prx;![A inverts f(x) j x 62 GOOD]Prx[x 62 GOOD]

Prx;![A inverts f(x) j x 2 GOOD]

> Prx;![A inverts f(x) ]� Prx;![A inverts f(x) j x 62 GOOD]Prx[x 62 GOOD]

> Prx;![A inverts f(x) ]� Prx;![A inverts f(x) j x 62 GOOD]

� �(n)� �(n)

2

=
�(n)

2

By standard techniques of repeated coin 
ips, we can boost Pr![A inverts f(x)jx 2 GOOD]

to 1� 1

2poly(n)
. Analogous to the proof that BPP 2 P=poly we can show that there exist coin-
ips


 for A such that A correctly inverts all elements of GOOD on 
. Therefore, by hardwiring 
,
we can build a circuit family A0 which inverts at least �(n)

2
of all strings x. Therefore f is not a

non-uniform one-way function.

The following fact will also prove useful in many contexts in the future, and we will often
assume it implicitly:

Fact 4.8 If there exists a one-way function, then there exists a length-preserving one-way func-

tion.
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Proof: Suppose that f is a one-way function. By de�nition, there exists a c such that for any n

and x, jf(x)j � nc. We can therefore de�ne a function g such that g(x) = f(x) 0 1jxj
c�jf(x)j�1

{ i.e., f(x) followed by a 0 and then jxjc � jf(x)j � 1 ones. The function g is one-way, since

the existence of a successful polynomial-time adversary Ag for g implies the existence of such an

adversary Af for f : by de�nition of a one-way function, jxj� < jf(x)j < jxjc for some c; �, this Af

need only apply Ag to f(x) 0 1
m for all m, 0 � m < jxjc � jxj� � 1: one of these paddings5 will

yield f(x) 0 1jxj
c�jf(x)j, and therefore guarantee the success of Ag with su�cient probability.6

Using this intermediate function g, we can construct length-preserving function h. Given

input x, the function h computes x0, a string of leading bits of x such that jx0jc = jxj, and
outputs g(x0). (Inexactitudes in length can be compensated for by appropriate padding7.) Since

jg(x0)j = jx0jc = jxj, h is length-preserving.

It now remains to show that h is a one-way function. Suppose not. Then there exists an

adversary A which can invert h with probability at least 1
nq

for some q. This implies the existence

of an adversary A0 which can invert g: A0 computes A(f(x)) and takes only the �rst jA(f(x))j 1c
bits of the result. Adversary A0 inverts g with success at least 1

nqc
= 1

poly
, a contradiction.

Therefore h is one-way.

4.3 Weak One-way Functions

A uniform one-way function as de�ned above, against which any adversary fails most of the

time, can be regarded as a strong one-way function. A weak one-way function is one in which
any adversary fails at least some of the time.

A Motivating Example (due to Oded Goldreich): The problem of factoring the product
of two primes lies in the intersection of NP and co-NP. To the best of our knowledge, it is not
polynomial-time computable. Assuming that it is a su�ciently hard problem for large primes
of the same length, we can construct the following weak 1-way function: Consider the function

f which takes two n-bit numbers x1 and x2 at random and outputs x1 � x2. The probability
that an arbitrary n� bit number is prime is about 1

n
. Therefore the probability that f(x) is the

product of two primes is about 1

n2
.Hence, if factoring numbers composed of two primes of equal

length is hard, this function is hard hard to invert with probability greater then 1

n2
.

In other words, a weak one-way function is a function f which satis�es the �rst and third con-
ditions of the de�nition above for a strong one-way function, but for which the second condition

is replaced with the following:

5the reason we have to search through all m is that given f(x) we do not know what length of jxj is.
6The separating 0 in the padding may seem unnecessary at �rst glance. If we padded entirely with 1s, though,

then we couldn't insure that g would be one-way. In particular, we could construct an f 0 such that on input xy,

where jxj = jyj, f 0(xy) = xy if y consists entirely of 1s and f 0(xy) = f(x) otherwise. If f is a one-way function,

f 0 is also one-way. On the other hand, if we constructed g on f 0, then g would not necessarily be one-way, for the

following reason. If we chose c large enough, then g(z) would always have the form xy, where y consists entirely

of 1s. Therefore, xy would always be a correct inverse of g(z), so g would not be one-way.
7Note that to compute the length of jx0

j given jxj and jcj could be done in jxj2 steps, but the rest of the

computation of g(x0) takes time linear in jxj, hence our new function g is not only length preserving, but also

runs in quadratic time!
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2'. 9 c > 0 8A 2 PPT 9Nc s:t: 8n > Nc :

Prx;![A does not invertf(x)] >
1

nc

where jxj = n; ! are coin-
ips of A; and \A does not invert f(x)" means A(f(x)) 62
ff�1(f(x))g.

4.4 Super-Weak One-way Functions

We can weaken the conditions on a one-way function still further by changing the quanti�ers in

the above de�nition of a weak one-way function. A super-weak one-way function has the following

condition:

2". 8A 2 PPT 9c > 0 s:t: 9Nc s:t: 8n; n > Nc :

Prx;![A does not invert f(x)] >
1

nc

where jxj = n; ! are coin-
ips of A; and \A does not invert f(x)" means A(f(x)) 62
ff�1(f(x))g.

It follows from work of Levin (1984,85) that super-weak functions exist if and only if weak
one-way functions exist. He shows that there exists an \optimal" (within a multiplicative factor)
inverting adversary. This adversary could be considered instead of all other adversaries, and
hence we can take a c for this adversary to work for all other adversaries as well. As this is a

fairly involved argument, we will not deal with \super-weak" one-way functions here.

4.5 Weak and Strong One-way Functions

We will now prove the main result in today's lecture, due to Yao:

Theorem 4.9 [Yao]: There exists a weak one-way function if and only if there exists a strong

one-way function.

Proof:

First, let us show a trivial direction that that the existence of a strong one-way function implies
that of a weak one-way function: condition 2 of a strong one-way function can be re-written as

follows: 8c > 0 8A 2 PPT 9Nc s:t: 8n > Nc :

Prx;![A does not invert f(x)] > 1 � 1

nc
>

1

nc

which implies condition 20 of a weak one-way function.

We now prove the converse. That is, given a weak one-way function f0, we will construct
a strong one-way function f1. We will demonstrate that f1 is a strong one-way function by

contradiction: we assume an adversary A1 for f1 and then demonstrate an e�ective adversary A0

for f0. W.l.o.g. we can assume that f0 is length-preserving and mapsm bits to m bits. De�nition
20 of a weak one-way function f0 can be restated as:
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2'. 9 cf0 > 0 8A0 2 PPT 9Mcf0
s:t: 8m> Mcf0

:

Prfx;!g[A0 inverts f0(x)] � 1 � 1

mcf0
= 1� �0(m)

where jxj = m, ! are coin-
ips of A, and �0(m)
def
= 1

m
cf0

.

To construct f1, we amplify the \hardness" of weak one-way function f0 by applying f0 in parallel

q
def
= 2m

�0(m)
times:

f1(x1; : : : ; xq)
def
= f0(x1); : : : ; f0(xq):

where each xi, 1 � i � q is uniformly and independently chosen m-bit input to f0. Notice that

our f1 maps n = 2m2

�0(m)
bits to n bits. We claim that f1 is a strong one-way function. The proof

is by contradiction. Suppose f1 is not a strong one-way function. Then 9A1, 9c s.t. for in�nitely
many input length n,

Prf~x;!g[A1 inverts f1(~x)] >
1

nc
def
= �1(n)

def
= �2(m)

Notice that we can rede�ne �1(n) in terms of �2(m) since m and n are polynomially related. If
we can show how to construct A0 (using above A1 as a subroutine) such that A0 will invert f0
with probability (over x and !) greater then 1� �0(m) we will achieve a contradiction with weak
one-wayness of f0. Our algorithm A0(f0(x)) is as follows:

Algorithm A0(y):

repeat procedure Q(y) at most 4m2

�2(m)�0(m)
times;

stop whenever Q(y) succeeds and output f�1
0 (y),

otherwise output \fail to invert".

Procedure Q(y):

for i from 1 to q = 2m
�0(m)

do:

STEP1: pick x0; : : : ; xi�1; xi+1; : : : ; xq
(where each xj is independently chosen m-bit number)

STEP2: call A1(f0(x0); : : : ; f0(xi�1); y; f0(xi+1); : : : ; f0(xq))

(procedure Q(y) succeeds if A1 above inverts)

We must estimate the success probability of A0(f0(x)), where the probability is over x and
coin-
ips ! of A0. De�ne x (of length m) to be BAD if

Pr!(Q(f(x)) succeeds ) <
�2(m)�0(m)

4m

We claim that

Prx[x is BAD] <
�0(m)

2

21



To show this we assume (towards the contradiction) that Prx[x is BAD ] � �0(m)

2
. Then

Prf~x;!g[A1 inverts f1(~x)] = Prf~x;!g[A1 inverts f1(~x) j some xi 2 BAD] � Pr~x[ some xi 2 BAD]

+ Prf~x;!g[A1 inverts f1(~x) j 8i; xi 62 BAD] � Pr~x[8i; xi 62 BAD]

�
2m

�0(m)X
i=1

h
Prf~x;!g[A1 inverts f1(~x) j xi 2 BAD] � Pr~x[xi 2 BAD]

i
+ Prf~x;!g[A1 inverts f1(~x) j 8i; xi 62 BAD] � Pr~x[8i; xi 62 BAD]

� 2m

�0m

�
�2(m)�0(m)

4m

�
� 1 + 1 �

�
1� �0(m)

2

� 2m
�0(m)

� �2(m)

2
+ e�m

< �2(m)

But we assumed that Prf~x;!g[A1 inverts f1(~x)] � �2(m) a contradiction. Hence we have shown

that Prx[x is BAD] < �0(m)

2
. We are now ready to estimate the failure probability of A0, using

the fact that we try procedure Q in case of failure a total of 4m2

�2(m)�0(m)
times:

Prfx;!g[A0 does not invert f0(x)] = Prfx;!g[A0 does not invert f0(x) j x 2 BAD] � Prx[x 2 BAD]

+ Prfx;!g[A0 does not invert f0(x) j x 62 BAD] � Prx[ x 62 BAD]

� 1 � �0(m)

2
+

�
1� �2(m)�0(m)

4m

� 4m2

�2(m)�0m � 1

� �0(m)

2
+ e�m

< �0(m)

Thus Prfx;!g[A0 inverts f0(x)] > 1 � �0(m) contradicting the assumption that f0 is a weak

one-way function.
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5 Hard-core Bits

5.1 Introduction to Hard-Core Bits

The �rst of these three lectures8 is devoted to the motivation and de�nition of hard-core bits.

Hard-core bits were de�ned by Blum and Micali in 1982. In formally, a hard-core bit B(�) of
a one-way function f(�) is a bit which is as hard to compute as it is to invert f . Blum and

Micali showed that a particular number theoretic function (which is believed to be one-way) has

a hard-core bit. It was later shown that all (padded) one-way function have a hard-core bit. The

next two lectures are devoted to presenting this proof (due to Goldreich and Levin 1989).

Motivating example (due to Manuel Blum): Consider the problem of gambling on the

outcome of a random coin 
ip with an adversary over a telephone line. If you bet on heads

and allow the adversary to 
ip the coin and then inform you of the outcome, he may cheat and
say tails without even bothering to 
ip the coin. Now suppose that after losing quite a bit of

money, you decide to play a more sophisticated game in which both you and the adversary select
a random bit and you win if the XOR of the two bits is 1. Unfortunately, it is still unsafe to
transmit your random bit in the clear to an un-trustworthy adversary, for your adversary can
always cheat by claiming that it selected the same bit.
To keep from being swindled further, you decide on the following commitment protocol to

play the game described above fairly. You begin by sending the adversary your bit in a locked
safe, then the adversary sends you its bit in the clear, and �nally you send the adversary the
combination to the safe. Both of you then compute the XOR of the two bits certain that the other
party had no unfair advantage playing the game. We use this analogy to motivate the idea that
it may be possible to send a commitment of a secret bit to an adversary, without revealing any

information as to the value of that bit. Our objective is to develop such a legitimate commitment
protocol based on one-way functions.
Assume that we have a one-way function. One (unfair) strategy would be to commit to the

third bit of x, then to transmit f(x). The 
aw with this strategy is that the player can cheat,
since f(x) might not have unique inverses. In particular, suppose f(x) has inverses x1 and x2
such that the third bit of x1 and x2 di�er. Then once the adversary presents its random bit in

the clear, the player can choose to transmit either x1 or x2 to the adversary, and clearly will

choose to transmit the one which results in a payo�.
What if we assume much more, i.e. that we have a 1-1, length-preserving one-way function?

The player can no longer cheat in the manner described above, but the adversary may still be able

to cheat. Just because f(x) is hard to invert does not necessarily mean that any individual bit

of f(x) is hard to invert. As an example, suppose we have a one-way function f(x) and another
function g(x) = g(b1; b2; b3; x4; x5; : : : ; xn) = b1b2b3f(x4; x5; : : : ; xn). Now since f is one-way, g is

also one-way, yet the three highest-order bits of g(x) are simple to invert.

5.2 De�nition of a hard-core bit

These examples motivate the following de�nition of a hard-core bit due to Blum and Micali.

Intuitively, a hard-core bit is a bit associated with a one-way function which is as hard to

8Scribe notes taken by: John Byers, September 6,8,13 1994
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determine as is inverting the one-way function.

De�nition 5.10 A hard-core bit B(�) of a function f(�) is a boolean predicate such that:

� B(x) is easy to compute given x, i.e. computable in deterministic polytime

� Given f(x); B(x) is hard to guess better than at random:

8c 8 probabilistic poly-time A; there exists Nc such that 8n > Nc

Pr
fx;!g

[A(f(x)) = B(x)] <
1

2
+

1

nc

where jxj = n, and probability is taken over x and coin-
ips ! of A.

Pictorially, the relationship between a one-way function and a hard-core bit is as follows:

x

f(x)

b(x)

hard

easy

hard

easy

5.3 Does the existence of a hard-core bit B(�) for a function f(�)

implies that f is a one-way function?

We note �rst that the existence of a hard-core bit for f does not necessarily imply that the
corresponding one-way function is hard. As an example, the almost-identity function I(b; x) = x

has a hard-core bit b but is not hard-to-invert in the sense that we have de�ned in previous

lectures. However, if no information is lost by the function f , then the existence of a hard-core
bit guarantees the existence of a one-way function. We prove a somewhat weaker theorem below.

Theorem 5.11 If f is a permutation which has a hard-core bit, then f is a one-way function.

Proof: Assume f is not one-way. Then there exists a good inverter for f which correctly computes
inverses with probability q > �(n), where probability is taken over x and coin-
ips of A. The

predictor for the hard-core bit B �rst attempts to invert f using this good inversion strategy. If

it succeeds in inverting f , it knows x, and can compute B(x) in polynomial time. Otherwise,
with probability 1 � q, it fails to invert f , and 
ips a coin as its guess for B(x). The predictor

predicts B correctly with probability

q � 1 + (1 � q) � 1
2
=

1

2
+
q

2
� 1

2
+
�(n)

2

Therefore f does not have a hard-core bit, proving the contrapositive.
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5.4 One-way functions have hard-core bits

The next two lectures are devoted to a proof of the following important theorem, �rst proved in

1989 by Goldreich and Levin, then simpli�ed (by Venkatesan and Racko�). It says that if f1(x)

is a strong one-way function, then parity of a random subset of bits of x is a hard-core bit:

Theorem 5.12 [Goldreich, Levin] Let f1 be a strong one-way function. Let f2(x; p)
def
= (f1(x); p),

where jxj = jpj = n. Then

B(x; p)
def
=

nX
i=1

xipi mod 2

is hard-core for f2.

Notice that a random subset is chosen by choosing p at random. The hard-core bit of x is simply

parity of a subset of bits of x, where the subset corresponds to all bits of x where corresponding

bits of p are set to one.

5.4.1 Proof outline

The proof that B(x; p) is a hard-core bit will be by contradiction. We begin by assuming that
B(x; p) is not a hard-core bit for f2. That is:

B(�; �) is not hard-core: 9AB 2 PPT, 9c such that for in�nitely many n,

Pr
fx;p;!g

[AB(f2(x; p)) = B(x; p)] >
1

2
+

1

nc
def
=

1

2
+ �(n)

where AB is probabilistic poly-time and probability is taken over x; p and coins ! of AB

We want to show that we can invert f2 with noticeable probability, proving that f2 (and
likewise f1) is not a strong one-way function, i.e.:

f2 is not a strong one-way function: 9Af2 2 PPT, 9c such that for in�nitely many n:

Pr
fx;p;!g

[Af2 inverts f2(x; p)] >
1

nc

where Af2 is probabilistic poly-time and probability is taken over x; p and coins of Af2

We will show how to construct Af2 using AB as s subroutine.

5.4.2 Preliminaries

First, let us recall some useful de�nitions and bounds. Recall that a set of random variables is
pairwise independent if given the value of a single random variable, the probability distribution

of any other random variable form the collection is not a�ected. That is,

De�nition 5.13 Pairwise independence: A set of random variables X1; : : : ;Xn are pairwise

independent if 8i 6= j and 8a; b:

Pr
fXi;Xjg

[Xi = a ^Xj = b] = Pr
Xi

[Xi = a] � Pr
Xj

[Xj = b]
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As an example of pairwise independence, consider distribution of three coins, taken uniformly

from: fHHH,HTT,THT,TTHg. It is easy to check that given an outcome of any one of the three

coins, the outcome of any other (of the two remaining) coins is still uniformly distributed. Notice

however, that the number of sample points is small (only 4). On the other hand, for total (i.e.

three-wise) independence we need all 8 combinations.

We are sometimes interested in bounding tail probabilities of large deviations. In particular,

recall a Cherno� bound which we already used:

De�nition 5.14 Cherno� bound:Let X1; : : : ;Xm be (totally) independent 0=1 random variables

with common probability 0 < p < 1, and let Sm = X1 +X2 + : : :Xm. Then

Pr
fX1;:::;Xmg

[jSm � pmj > �m] � 2e�
�
2
m
2

Notice that as a function of m, the error-probability in Cherno� bound drops exponentially
fast. In case of pairwise independence we have an analogous, Chebyshev bound. Like the Cherno�
bound, the Chebyshev bound states that a sum of identically distributed 0/1 random variables
deviates far from its mean with low probability which decreases with the number of trials (i.e. m).

Unlike the Cherno� bound, in Chebyshev bound the trials need only be pairwise independent,
but the probability drops o� only polynomially (as opposed to exponentially) with respect to the
number of trials.

De�nition 5.15 Chebyshev bound: Let X1; : : : ;Xm be pairwise independent 0/1 random vari-
ables with common probability 0 < p < 1, and let Sm = X1 +X2 + : : :Xm. Then

Pr
fX1;:::;Xmg

[jSm � pmj > �m] � 1

4�2m

We also implicitly used before a union bound, which simply states that:

De�nition 5.16 Union Bound: For any two events A and B (which need not be independent),

the

Pr[A
[
B] � Pr[A] + Pr[B]

5.4.3 Two warmup proofs

To motivate the direction we will be heading for in the full proof, we �rst consider two scenarios

in which the adversary (on input f1(x) and p can guess B(x; p with probability much greater

then a half.

In the following two warmup proofs, we use the following notation to (hopefully) clarify the

presentation of the results. Given a string x, we use xi to denote the string x with the ith bit


ipped. We use array notation, x[j], to denote the jth bit of x. Also, when referring to a string

in the set of strings P , we use pk to denote the kth string in the set.
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The super-easy proof: Suppose the adversary AB is able to guess the hard-core bit B(x; p)

given f2(x; p) with probability 1. Then AB can compute x bit-by-bit in the following manner. To

compute x[i], the ith bit of x, choose a random string p, and construct pi. Since the adversary

can compute hard-core bits with certainty, it can compute b1 = B(x; p) and b2 = B(x; pi). By a

simple case analysis, x[i] = b1 � b2. After n iterations of this procedure (i.e. separately for each

bit of x), we have the entire string x.

The somewhat easy proof: Now suppose that for every x, the adversary AB is able to

guess the hard-core bit B(x; p) given f2(x; p) with probability (over p) greater then 3
4
+ �(n):

Prp[AB(f2(x; p)) = B(x; p)] > 3

4
+ �(n). Using the same procedure as in the super-easy proof,

i.e. for each x[i], we pick a random p and compute pi, then guess B(x; p) and B(x; pi) to help

us determine x[i]. If we let E1 and E2 denote the events that the adversary's guesses for B(x; p)

and B(x; pi) are correct. We know that:

Prp[E1
def
= [AB(f2(x; p)) = B(x; p)]] >

3

4
+ �(n)

and

Prp[E2
def
= [AB(f2(x; p

i)) = B(x; pi)]] >
3

4
+ �(n)

But this two events are not independent. Our guess for x[i] is correct if both E1 and E2 occur
(we also happen to get lucky if neither E1 nor E2 occur, but we ignore this case). We know that
Prp[:E1] =

1

4
� �(n) and Prp[:E2] =

1

4
� �(n). Hence, by using union bound:

Pr
p
[E1 ^ E2] = 1 � Pr

p
[:E1 _ :E2] � 1 �

��
1

4
� �(n)

�
+

�
1

4
� �(n)

��
� 1

2
+ 2�(n)

By employing tricks we have already seen, we can run the procedure for poly-many random p

for each x[i] and take the majority answer, which by a Cherno� bound ampli�es the probability
of success so that all bits of x can be guessed correctly with overwhelming probability.

5.5 One-way function have hard-core bits: The full proof

Now that we have obtained some insight as to how using a predictor of a hard-core bit can help
us to invert, we are ready to tackle the full proof. Therefore, we now assume that we are given an

algorithm AB which can compute the hard-core bit with probability > 1

2
+ �(n) (over x; p and it

coin-
ips) and show an algorithm Af(which uses AB as a black-box) to invert f with noticeable

probability.

The main idea of the proof is as follows: from the somewhat easy proof it is clear that we can
not use our predictor twice on the same random string p. However, if for a random p we guess
correctly an answer to B(x; p) = b1, we can get the i'th bit of x (with probability 1

2
+ �(n)) by

asking AB to compute B(x; pi) = b2 only once for this (p; pi) pair. So if we guess polynomially

many B(x; pj) = bj correctly for di�erent random pj's we can do it. But we can only guess (with

non-negligible probability) logarithmic number of totally independent bits. However, as we will

see, we can guess (with non-negligible probability) a polynomial number of pairwise independent
bits, and hence can do it. Now we go into the details.
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5.5.1 Eliminating x from probabilities

In the somewhat easy proof, we assumed that the predictor AB had > 3

4
+ �(n) chances for all

x. But our AB does not have such a guarantee. That is, we are only given that:

Pr
x;p;!

[AB(f2(x; p)) = B(x; p)] >
1

2
+ �(n)

We wish to say that for a su�ciently \large" fraction of x, we still have a > 1

2
+ �(n) guarantee

(only over the choice of p and !) and try to invert only on this fraction of x's. Thus, we begin by

formalizing the notion of a good x and restrict our attention to adversaries which have reasonable

chance of inverting f2(x; p) only on good x.

De�nition 5.17 A string x is said to be good if Prp;![AB(f(x); p) = B(x; p)] > 1

2
+

�(n)

2
where

probability is taken over p and coin-
ips ! of AB.

Claim 5.18 At least an �(n)

2
fraction of x is good.

Proof: Suppose not. Then,

Pr
x;p;!

[AB(f2(x; p)) = B(x; p)] = Pr
x;p;!

[AB(f2(x; p)) = B(x; p)jx is good] � Pr
x
[x is good]

+ Pr
x;p;!

[AB(f2(x; p)) = B(x; p)jx not good] � Pr
x
[x not good]

� 1 � �(n)
2

+

�
1

2
+
�(n)

2

�
� 1

=
1

2
+ �(n)

This yields a contradiction, so the claim holds.

5.5.2 Overall strategy

Consider an adversary which attempts to invert f(x) only on the set of good x, and succeeds with
probability > 1

2
on this set. Such an adversary succeeds in inverting f(x) with total probability

� �(n)

4
, which is non-negligible, thereby ensuring that f is not a one-way function. This is exactly

what we are going to do.
Our next question is for good x, with what probability does the adversary need to guess

each bit x[j] of x correctly in order to ensure that the entire x string is guessed correctly with

probability > 1

2
. If the adversary computes each x[j] correctly with probability 1 � 
, then we

can upper bound the probability that the adversary's guess for x is incorrect by employing the

Union Bound:

Pr
!
[Af1(f1(x)) gets some bit of x is wrong] �

nX
i=1

Pr
!
[Af1(f1(x)) gets ith bit wrong] � n


where ! are coin-
ips of Af .

Setting 
 < 1
2n

guarantees that the probability that some bit of x is wrong is less than 1
2
, or

equivalently, ensures that Af1 guess is correct with probability > 1

2
. That is, if Af can get each

individual bit of x with probability grater then (1 � 1

2n
) then we can use the same procedure to

get all bits of x with probability greater then 1

2
even if our method of getting di�erent bits of x

is not independent!
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5.5.3 Using pairwise independent p's

Our next goal is to devise a strategy for the adversary to guess each bit x[j] with probability at

least 1 � 1

2n
. Again, we begin by making an assumption which seems di�cult to achieve, prove

the result given the far-fetched assumption and then show how to derive the assumption.

Lemma 5.19 Suppose we are given a collection of m
def
= 2n

�(n)2
pairwise independent p1; : : : ; pm,

where 1 � i � m, jpij = n and every pi is uniformly distributed. Moreover, suppose that for every

i, we are given a bi satisfying x � pi = bi. Then, for good x, we can compute x[j] correctly with

probability � 1� 1

2n
in polynomial time.

Proof: The adversary employs the following polytime algorithm.

1. For each i 2 1; : : :m, construct p
j
i by 
ipping the jth bit of pi.

2. Compute bji = x � pji .

3. Derive a guess for x[j] as in the \somewhat easy" proof: gi = bji � bi

4. Take the majority answer of all guesses gi as the guess for x[j].

We are interested in bounding the probability that the majority of our guesses were wrong, in
which case our guess for x[j] is also wrong. De�ne Yi = 1 if gi was incorrect and Yi = 0 otherwise,
and let Ym =

Pm
i=1 yi. Thus, we have Pr[Yi = 1] = 1

2
� �(n) for all i. Using Chebyshev:

Pr

�
Ym >

m

2

�
= Pr

�
Ym �mp >

m

2
�mp

�

= Pr
h
Ym �mp >

�
1
2
� p

�
m
i

� Pr
h
jYm �mpj >

�
1
2
� p

�
m
i

[Chebyshev] � 1

4[(1
2
� p)2m]

=
1

4�(n)2m

Substituting in for m = 2n

�(n)2
ensures that the probability that we misguess x[j] (i.e., that

Pr[Ym > m
2
]) is at most 1

2n
, proving the claim.

Lemma 5.20 If we are given uniformly distributed completely independent p1; : : : ; pl for l
def
=

dlog( 2n

�(n)2
) + 1e together with b1; : : : ; bl satisfying B(x; pi) = bi then we can construct in poly-

nomial time a pairwise independent uniformly distributed p1; : : : ; pm, m
def
= 2n

�(n)2
sample of correct

equations of the form B(x; pi) = bi

Proof: The proof hinges on the following fact, whose proof we omit because it is a simple case
analysis:

Fact 5.21 Given correct equations x � p1 = b1 and x � p2 = b2, then x � (p1 � p2) = (b1 � b2).
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It is easy to see by induction that this fact extends to the case in which there are arbitrarily

many bi and pi. Therefore, we can generate a large set of new, valid equations by repeatedly

choosing an arbitrary subset of the pis, XOR them together; XOR the corresponding bis together

to form a new equation of the form, for example, x � p1;3;5;7 = b1;3;5;7. Since there are (2l � 1)

non-empty subsets of a set of size l, by choosing all possible subsets, the new set is of polynomial

size 2log l = m and each new equation is polytime constructible. Furthermore, if we look at the

symmetric di�erence of two di�erent subsets, they are pairwise independent, so the entire set of

new equations is pairwise independent.

5.5.4 Putting it all together

We now have all the machinery to provide a construction for inverting f1(x) with noticeable

probability given a predictor AB for predicting B(x; p) with probability > 1
2
+ �(n). We �rst

present the code and then summarize it below:
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Algorithm Af1(y = f1(x)):

Step 1: Pick a set P
def
= fp1; : : : ; plg uniformly at random,

where jxj = jpij = n and l
def
= dlog( 2n

�(n)2
) + 1e

Step 2: Compute pairwise independent P̂
def
= fp̂1; : : : ; p̂mg where m def

= 2l and

P̂ is computed by taking XOR of all possible non-empty subsets of P .

Step 3: For all possible 2l bit-strings b1; : : : ; bl of length l do:

Step 3.1: [ Assume that for every pi 2 P , (1 � i � l), B(x; pi) = bi ]

From P , and b1; : : : ; bl compute for every p̂k 2 P̂ bit b̂k, where

where b̂k are computed by taking XOR of the corresponding

(to p̂k) bi's from step 3, and where b̂k
def
= B(x; p̂k) for all 1 � k �m.

Step 3.2: For j from 1 to n do: [ compute all bits x[j] of x ]

Step 3.2.1: For every p̂k 2 P̂ , where 1 � k �m ask AB

to predict ck
def
= B(x; p̂

j
k). Let bp̂k

def
= ck � b̂k

Step 3.2.2: de�ne x[j] as the majority of b̂p̂k from step 3.2.1

Step 3.3: Check if for z
def
= (x[1]; : : : ; x[n]) after step 3.2 f1(z) = y.

If so, return z, otherwise go back to step 3.

The adversary randomly selects a set of l strings of length n to form a set P . It then iterates
through all possible completions x � pi = bi, of which there are only 2log l = m. For each
incorrect completion, the adversary will perform a polynomial amount of useless work which
we are not interested in; we focus on the work performed on the correct completion of the set

of equations (which we can check in step 3.3). By Lemma 5.10, since the set of l equations is
totally independent, we can construct a pairwise independent set of m equations which are also

correct. (step 3.1) Now from Lemma 5.9, this set of m equations su�ces to invert f(x) if x is

good with probability > 1

2
. Early on, we noticed that the existence of a probabilistic poly-time

Af1 which succeeds in inverting f1(x) for good x with probability > 1
2
proves that we can invert

f with probability greater then �(n)

4
, since good x occurs with probability greater then �(n)

2
. But

if we can invert f1 with probability greater then �(n

4
, f1 is not a strong one-way function. This

completes the proof of the contrapositive, so we have shown that every one-way function has a

hard-core bit.

Remark: Instead of searching through all possible 2l bit strings b1; : : : ; bl in step 3, we can just
pick at random b1; : : : ; bl and try it only once. We guessed correctly with probability 1

2l
= 1

poly
,

hence we will still invert f1 on good x with 1

poly
probability.
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6 Pseudo-randomness

6.1 Introduction

Today's lecture9 will concern provably secure pseudo-random generators.

Our objectives in de�ning such a pseudo-random generators are twofold: First, we have to

de�ne what we mean by \looking random" to a polynomially-bounded player. Second, we want

to be able to construct a Pseudo-Random Generator that is based on a one-way function. In this

lecture we will only show a construction based on a one-way permutation.

6.2 Motivation and De�nitions

Recall from the �rst class the one-time pad method for encryption. In this method, a random

bit sequence k is chosen for a key, and as long as the sender S and receiver R each has a copy
of k, they can communicate: S can send R a message m which is bitwise exclusive-ored with k.
As long as the adversary does not know k, all s/he sees is random noise.

The restriction to this system is that k can only be used once, and it must be approximately the
same length as m. If k is polynomially shorter than n (the length of m), then some information

is released. However, we want to make this information useless to an polynomially-bounded
adversary. For example, we want to be able to pick a much smaller random seed s, feed it into
a function, G(s), which would then produce a much longer string which \looks random", and,
hence is \just as good" as a totally random string. If we want randomness, why not just 
ip
coins? Physically, it is expensive to 
ip coins, so we would rather 
ip a much smaller number of

coins, say 300 or so), then use them as a seed to a pseudo-random generator (PRG) to obtain a
polynomially large number of pseudo-random bits.

6.2.1 Looking Random: a computational de�nition

What does it mean to look random? Suppose we have a pseudo-random generator (a deterministic
poly-time computable program) which takes a \seed" of length n and outputs a pseudo-random
string of length 2n. Since there are only 2n possible inputs to such a program, there are only at

most 2n possible outputs, which are strings of length 2n. But there are 22n possible strings of
length 2n. Hence, any such pseudo-random generator outputs only a tiny fraction ( 2n

22n
= 1

2n
) of

all possible strings of length 2n. Never-the-less, for a randomly chosen input, the output should

still \look random" to any poly-time machine. In other words, given a truly random distribution
U2n of 2n bit stings and an output of the generator distribution Gn;2n, (produced by picking an n
bit string at random and then computing a pseudo-random sequence of length 2n bits using this

seed) Gn;2n is de�ned to be pseudo-random i� there does not exist a polynomial-time machine

which can tell whether a sample came from U2n or from Gn;2n.
More formally, a sequence (\ensemble") of random variables fXngn2N is an in�nite sequence

of random variables where Xn output strings in f0; 1gn. Un is a uniform distribution on strings

of length n.

A Sampleable probability distribution is a distribution which can be produced e�ciently in

polynomial time. In other words, we say that

9Scribe notes taken by: Dean J. Grannes, September 15,20, 1994
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De�nition 6.22 A sequence Xn is poly-time sampleable (or just sampleable) if 9 poly-time algo-

rithm S such that:

Pr
r
[S(1n; r) = �] = Prob(Xn = �)

where jrj is polynomial in n, and r is chosen uniformly at random.

By this de�nition, the uniform distribution is sampleable { if we want length n output string,


ip and output n coins. Note that the existence of an algorithm S which produces a distribution

D (when given as an input a random string) is enough to show that D is sampleable.

6.2.2 De�nition of polynomial indistinguishability

A statistical test T is a program which takes a single input and outputs a bit. Given two ensembles

of distributions, Xn and Yn, T is given a sample of length n from one of the two distributions.

It then outputs a 0 or a 1 (hopefully, depending upon which distribution it believes the sample
came from.) Xn and Yn pass test T if T can only distinguish whether a sample came from Xn or
Yn with negligible probability. That is,

De�nition 6.23 Xn and Yn pass test T if 8c, 9N such and 8n > N"
j Pr
fXn;coins of Tg

(T (Xn) = 1)� Pr
fYn;coins of Tg

(T (Yn) = 1)j
#
<

1

nc

Distributions Xn and Yn are indistinguishable if they pass all poly-time (in n) statistical tests.
That is,

De�nition 6.24 [Yao]: Two sequences Xn and Yn are poly-time indistinguishable i� 8c and
8A 2 PPT, 9n such that 8n > N"

j Pr
fXn;coins of Ag

(A(Xn) = 1)� Pr
fYn;coins of A;g

(A(Yn) = 1)j
#
<

1

nc

6.2.3 Polynomial indistinguishability de�nition is robust

Next, we consider the following question: why do we limit a polynomial-time statistical test

to receiving only one sample from one of the two distributions? Perhaps a test which gets

polynomially-many samples can distinguish much much better then a test which must make a

decision based on only a single sample?

That is, let is de�ne an extended statistical test T 0 as a program which takes a polynomial
number of inputs and outputs a single bit. Given two ensembles of distributions, Xn and Yn, T

0

is given a polynomially-mane samples from either Xn or Yn (i.e. all from the same distribution).

It then outputs a 0 or a 1 (hopefully, depending upon which distribution it believes the samples
came from.) Xn and Yn pass extended statistical test T 0 if T 0 can distinguish whether all the

samples came from Xn or Yn with only negligible probability. That is,

De�nition 6.25 Xn and Yn pass extended statistical test T 0 if 8c1; c2, 9N such and 8n > N"
j Pr
fXn;coins of T 0g

(T 0(X1
n; : : : ;X

nc2

n ) = 1) � Pr
fYn;coins of T 0g

(T 0(Y 1
n ; : : : ; Y

nc2

n ) = 1)j
#
<

1

nc1
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We claim this this de�nition is not stronger then the �rst de�nition. That is, if two polyno-

mially sampleable distributions can be distinguished on polynomially many samples, then they

can be distinguished on a single sample.

Claim 6.26 If Xn and Yn [are sampleable] distributions which can be distinguished by a [uniform]

extended statistical test T 0, then there exist a (single sample) [uniform] statistical test T which

distinguishes Xn and Yn.

Proof: Let let k =poly(n) and let �(n) = 1=k. We assume that two there exists T 0 and show how

to construct T . Assuming that there exists T 0 means, w.l.o.g. that

Pr
Xn

(T 0(X1;X2;X3; :::;Xpoly) = 1) � Pr
Yn
(T 0(Y1; Y2; Y3; :::; Ypoly) = 1) > �(n)

Consider \hybrids" Pj , for 0 � j � k, where in Pj the �rst j samples come from Yn and the
remaining samples come from Xn:

P0 = x1 x2 x3 x4 ::: xk

P1 = y1 x2 x3 x4 ::: xk

P2 = y1 y2 x3 x4 ::: xk

P3 = y1 y2 y3 x4 ::: xk

:::

Pk = y1 y2 y3 y4 ::: yk

We know that P0�Pk > �(n), and therefore, 9j such that Pj�Pj+1 > �(n)=k (which is another
1/poly fraction!) Consider a distribution:

P ( z ) = y1 y2 y3 :::yj z xj+2 ::: xk

Notice that if z is a sample from Yn then P (z) = Pj and if z is a sample from Xn then

P (z) = Pj+1. Hence, if we are given z on which we have to guess which distribution it came

from, if we put z in the box above, and somehow �x other locations we could distinguish on a
single sample z. Two questions remain: (1) how do we �nd the correct j + 1 position, and (2),

how do we �x other values. The answers di�er in uniform and non-uniform case:

non-uniform case (i.e. both T 0 and T are circuits): Since T is a circuit, we can non-uniformly �nd
correct j+1 value and �nd values to other variables which maximizes distinguishing probability.

uniform case : Since Xn and Yn are sampleable, we can �x values di�erent from j to be samples

from Xn and Yn and by guessing correct j (we guessed j position correctly with probability

1/poly). The distinguishing probability could be further improved by experimenting with the

distinguisher we get (again using sampleability of Xn and Yn!) to check if our choice of j and
samples of other positions are good.
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Homework: Calculate the best distinguishing probability for T we can achieve in the uniform

case by experimenting, (assuming that distinguishing probability for T 0 is �(n).).

6.2.4 Statistically Close Distributions

Another related and important notion is of statistically close distributions.

De�nition 6.27 The sequence of random variables fXng and fYng is statistically close if 8c, 9N
such that 8n > N : X

�2f0;1gn

�
jPr
Xn

(Xn = �)� Pr
Yn
(Yn = �)j

�
<

1

nc

It should be noted that

Fact 6.28 fXng and fYng are poly-time indistinguishable i� for every poly-time test A : A(Xn) and

A(Yn) are statistically close.

The proof of this fact is left as a homework problem.

6.2.5 Pseudo-random Distributions and Pseudo-random Generators

De�nition 6.29 fXng is pseudo-random i� fXngN is poly-time indistinguishable from the uniform
distribution fUngN
A pseudo-random generator produces a (polynomially-larger) sequences from a random seed,

which is pseudo-random. That is,

De�nition 6.30 A deterministic algorithm G(�; �) is pseudo-random generator if:

� 1. G(x;Q) runs in time polynomial in jxj; Q(jxj) where Q is a polynomial.

� 2. G(x;Q) outputs strings of length Q(jxj) for all x.

� 3. For every polynomial Q(), the induced distribution fG(x;Q)g is indistinguishable from
fUQ(jxj)g.

6.3 Construction of Pseudo-Random Generators based on 1-way

Permutations

In fact, it is known that the existence of 1-way functions and pseudo-random generators is

equivalent. In particular, [Impagliazzo, Levin, Luby, Hastad] have shown how to construct a
pseudo-random generator based on any one-way function (the proof is hard, in this lecture we

will only show how to construct a pseudo-random generator based on one-way permutations).

It is also the case that if pseudo-random generators exist, then there exist one-way functions.

In particular, any pseudo-random generator G is a one-way function. To see this, suppose

G : n ! 2n is not a one-way function. Then G can be inverted with non-negligible probability,
given a pseudo-random string of length 2n. However, most truly random strings of length 2n

can not be inverted (there are only 2n seeds of length n). Thus we can construct an e�cient

distinguisher between random and pseudo-random strings: given a string, we try to invert it: if

we succeed, we say it is pseudo-random, if we fail, we say it is random. If we can invert with

non-negligible probability, this gives us a good distinguishing test.
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6.3.1 The construction.

Assuming that f is a one-way permutation, we can de�ne a pseudo-random generator G to be

the following function ([Blum,Micali],[Yao]), taking as a seed (s) a 2n-bit string and producing

as output a poly(n) = m-bit output b1; b2; : : : ; bm:

X_poly                                             X_4               X_3               X_2               X_1...

fffff

P · X_{poly−1}                                P · X_3          P · X_2         P · X_1 

hard−core hard−core

...

seed = ( X_1, P )

outputoutput

=b_1                                                                   = b_{m−1}       =b_m

First, s is divided into two halves. One half will be P , the bit string used to generate Goldreich-

Levin hard-core bits, and the other half will be X1, the initial input to f . Bit bm (the last bit) of
the output string is obtained by calculating the hard-core bit of X2 = f(X1), which is equal to
inner product of P and X1. Likewise, the second-to-last bit bm�1 of the output string is obtained
by calculating the hard-core bit of X2 = f(X1), which is inner product of X1 and P and so on.
We claim that the output is a pseudo-random string. Clearly, is satis�es conditions one and two

of the de�nition, where the number of times we apply f is equal to Q(n). What remains to show
is that this output is pseudo-random.

Remark: in the construction above, the bits are returned in the \reversed" order. However,

since we will show that this is pseudo-random, the order (left{to-right or right-to-left) is unim-
portant: if it is pseudo-random one way, it must be pseudo-random the other way. We have
chosen this particular order of the outputs to make the proof easier.

6.4 The Generator output is pseudo-random

The proof is in two steps: First we show that the pseudo-random sequence is unpredictable as

de�ned by Blum and Micali. Then we show that every unpredictable sequence is pseudo-random

(which was shown by Yao).
Informally,G is unpredictable if it is passes the next-bit-test, de�ned as follows: givenG1; :::; Gk,

it is hard to predict Gk+1, for every pre�x k. That is, given the �rst k bits of the output, it is

hard to predict the next bit.

De�nition 6.31 Xn passes the next bit test (is unpredictable) if 8c and 8A 2 PPT , there 9N
such that 8n > N and 8i; (0 � i � n):

Pr
Xn; coins of A

[A( �rst i bits b1; b2; : : : ; bi of x 2 Xn ) = bi+1] <
1

2
+

1

nc
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Claim 6.32 If f is a strong one-way permutation, then G as de�ned in the previous section is

unpredictable.

Proof: The proof is by contradiction. We will show that if G does not pass the next bit test,

then we can invert a one-way function on a random input. The construction is as follows: We

are given an adversary A 2 PPT which for some pre�x b1:::bi of out pseudo-random generator

can compute bi+1 with probability > 1=2 + �(n) = 1=2 + 1=poly. We wish to �nd f�1(y). We

know that if we can predict a hard-core bit of f�1(y) and p (for a random p), then we can �nd

the inverse of y (with 1/poly probability). we make y the n� i Xi of the generator. We can then

compute (by applying f to y i times, and and computing dot-products, the �rst i bits of the

generator in the strait-forward fashion. Finally, we feed it to our \next-bit" predictor A. Notice

that the next bit is exactly the hard-core bit of y.

Remark: Notice that we are dealing with f which is a permutation. Hence, a uniform distri-

bution of the inputs implies a uniform distribution of the outputs, and in the above experiment,
the fact that we start with y and compute the �rst i bits of the output, has the same distribution
(uniform) distribution over the seeds.
Next, we show that Unpredictability (next bit test) implies pseudo-randomness:

Claim 6.33 Ensemble Xn is pseudo-random if and only if Xn is unpredictable.

Proof: One direction is trivial: next bit test is a a type of a statistical test. Hence if it passes all
polynomial-times statistical tests it passes the next-bit test as well.
In the opposite direction, we must show that passing next bit test implies passing all polynomial

time statistical tests. The proof is by contradiction: we assume that there exists some polynomial-
time distinguishing test M , and we show how to construct the next-bit test using M as a

subroutine.
We assume there exists a testM which distinguishesXn and Un with probability > 1=2+�0(n).

We show how to construct the next-bit-test which for some 0 � j � n can predict the \next bit"
with probability > 1=2 + �0(n)

n
.

We know that M is given a sample from one of the two possible distributions Un or Gn. Let

us call this samples (U1:::Un) or G(s) = G1:::Gn. Moreover, we know that

Pr
Un;coins of M

j(M(U1:::Un) = 1) � Pr
seeds for G,coins of M

(M(G1:::Gn) = 1)j > �0(n)

We construct \hybrids"
P0 = U1 U2 U3 ::: Un

P1 = G1 U2 U3 ::: Un

P2 = G1 G2 U3 ::: Un

:::

Pn = G1 G2 G3 ::: Gn

W.l.o.g, Pn � P0 > �0(n), and therefore, 9j such that

Pj+1 � Pj >
�0(n)

n

def
= �(n)

We will construct the next bit test for Gj+1 as follows:
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Next-Bit-Test A(G1; : : : ; Gj):

1: pick random bits Uj+1; : : : ; Un.

2: Run M(G1; : : : ; Gj; Uj+1; : : : ; Uj) = b

3: IF b = 1 output Uj+1

ELSE (if b = 0) output (1�Uj+1)

We must measure the probability that the next-bit-test A correctly outputs Gj+1.

Pr[A(G1; :::; Gj) = Gj+1] = Pr[M(G1; :::; Gj; (Gj+1); Uj+2; :::Un) = 1] � Pr(Gj+1 = Uj+1)

+Pr[M(G1; ; :::; Gj; (1�Gj+1); Uj+2; :::Un) = 0] � Pr(Gj+1 = 1� Uj+1)

=
1

2
Pj+1 +

1

2
X

where
X

def
= Pr[M(G1; :::; Gj; (1�Gj+1); Uj+2; :::; Un) = 0]

Let us calculate X. We know that

Pj = Pr[M(G1; :::; Gj; Uj+1; :::; Un) = 1]

= Pr[M(G1; :::; Gj; (Gj+1); Uj+2; :::; Un) = 1]

+Pr[M(G1; :::; Gj; (1�Gj+1); Uj+2; :::; Un) = 1]

=
1

2
Pj+1 +

1

2
(1�X)

Hence, Pj =
1
2
Pj+1 +

1
2
� 1

2
X, thus 1

2
X = 1

2
Pj+1 +

1
2
� Pj . Hence,

Pr[A(G1; :::; Gj) = Gj+1] =
1

2
Pj+1 +

1

2
X

=
1

2
Pj+1 +

1

2
Pj+1 +

1

2
� Pj

=
1

2
+ (Pj+1 � Pj)

>
1

2
+ �(n)
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NEEDS REVISION

7 Pseudo-random Functions

Topics for today10:

1. P vs. BPP

2. Pseudo-random functions (work of Goldreich, Goldwasser, Micali); How to construct them,

and proofs; Applications.

7.1 P vs. BPP

Suppose we have a machine that can't 
ip coins, but want to simulate a machine that can.
Say that we have a BPP machine for determining whether a given string x is in the language

L. Recall that a BPP machine takes as input the string x , with say jxj = n, and a string of
random bits, of length polynomial in n (say Q(n)), and outputs either a yes or a no. If x 2 L

then the probability that the output is \yes" is at least 3

4
(probability taken over all possible

strings of Q(n) random bits), and if x =2 L then the probability of a \yes" output is no more
than 1

4
.

Now if we have such a BPP machine and an x, there is a simple algorithm which will tell us
de�nitely, not just probabilistically, whether x 2 L or not. It goes like this:

� Try all 2Q(n) random strings

� Count how many give yes and no.

� If there are more yes'es, x 2 L; if there are more no's, x =2 L.

This is an exponential time algorithm. We can do better. If non-uniform one-way functions
exist, then we can recognize BPP in sub-exponential time (i.e. algorithm can run in 2Q(n)� time,

for any � > 0.)

Theorem 7.34 [Yao]: If there exist non-uniform one-way functions then BPP is contained in

subexponential time.

That is,
BPP �

\
�>0

DTime(2n
�

)

The algorithm, call it P 0, uses a pseudo-random generator G : n-bits ! Q(n)-bits . The

algorithm is:

� Cycle through all 2n possible seeds of G.

� Take the outputs of G as the Q(n)-bit strings to be input into the BPP machine along

with the input x.

10Scribe notes taken by: Michael Galbraith, September 22 and 27, 1994
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� Out of those strings, count how many times the BPP machine says yes, how many times

it says no.

� If yes'es are more common, x 2 L; if no's are more common, x =2 L.

cycle through
seeds of length
n Pseudo−random 

generator G 

BPP algorithm 

count yes/no
answers

outputs of
length  Q(n)

input   x  

Proof:

Assume our algorithm P 0 makes a mistake. We will prove this implies that: We can construct
a non-uniform poly-size distinguisher of g 2 fG(n)gQ(n) and u 2 fUgQ(n), where G(n) is the
outputs of the pseudo-random generator and U is the uniform, i.e. truly random, distribution.

Suppose that x, jxj = n, is a string on which P 0 makes a mistake, that is, either x 2 L and P 0

says \no" or x =2 L and P 0 says \yes'. Note that x is given to us in a non-uniform fashion, and we
just \hard-wire" it into our circuit. We will show that in either case, x together with our BPP
machine can be used for a decision process T on Q(n)-bit strings which is polynomial time, and
which has a non-negligible di�erence between the probabilities of saying \yes" for a truly random
or a pseudo-random string. But this contradicts the de�nition of a pseudo-random generator G:

there is no poly-time distinguisher of the output of G from a truly random distribution, i.e. no
poly-time algorithm that says 1 for one of those distributions non-negligibly more often than for
the other. This contradiction establishes the fact that P 0 works.

Case 1. x 2 L for which P' makes a mistake and says no.

This means that on more then half of the pseudo-random strings the output is no but on

more then three quarters of random string the output is yes. Hence we have a distinguisher with

distinguishing probability a 1/4.

Case 2. x =2 L but we P 0 makes a mistake and says yes.

This means that for more then half of the pseudo-random strings the machine says yes, while
for less the a 1/4 of truly random strings the machine says yes. Hence again the distinguishing
probability is a 1/4.

7.2 Pseudo-Random Functions, and How to Construct Them

Consider the set of function f : k bits ! k bits. Since there are 2k k-bit strings, there are

2k�2
k

such functions. By random function from k bits to k bits we mean chosen randomly and
uniformly from any 2k2

k

all possible functions from k bits to k bits.
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We de�ne an oracle Turing machine Af(x) with access (as a black-box) to a random function

f and input x. Instead of functions, we can talk about ensembles of functions, i.e. distributions

of functions for each input length.

De�nition 7.35 fFng and fGng are poly-time indistinguishable ensembles of functions

if: 8c; 8 probabilistic poly-time oracle machines A;9N s:t: 8n > N :

jProb(AFn(1n) = 1)� Prob(AGn(1n) = 1)j < 1

nc

Here Prob(AFn(1n) = 1) means that oracle machine A has access to some function f from Fn
family chosen at random and given to A (as an oracle and where A runs in time polynomial in
1n and outputs 1, where probability is taken over coin-
ips of A, and a random function f from
n bits to n bits chosen uniformly from Fn family (of all such functions). In AGn(1n) A runs with
Gn given as a black-box. So this de�nition means that any BPP machine A, allowed to toss
a polynomial number of coins, still has negligible chance of telling whether a given function fn
given in an oracle form is from Fn or Gn.

We de�ne a pseudo-random function by

De�nition 7.36 Fn is a pseudo-random function if

1. Fn has only 2n elements fn 2 Fn and every n-bit string x is a label for some fn and every fn
appears with probability 1

2n
.

2. Given x (a label) and input y, f(x; y) is poly-time computable.

3. fFng is poly-time indistinguishable from a random ensemble of functions fUng.

Here is the construction:

Assume we have a pseudo-random generator,

G : n bits! 2n bits

x, with jxj = n, is our seed. Compute G(x) = x0x1, where jx0j = jx1j = n. That is, x0
is the �rst n digits of G(x) and x1 is the last n digits. Then compute G(x0) = x00x01 and
G(x1) = x10x11. Proceed in this manner and de�ne a tree,
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G(x_00) = x_000 x_001 G(x_01) =  x_010 x_011 G(x_10) = x_100 x_101 G(x_11) = x_110 x_111

G(x) = x_0 x_1

G(x_1) =  x_10 x_11G(x_0) = x_00  x_01  

..............................................................................................................................................................................................

De�ne this tree to n stages (so that at the last stage, the x's are indexed by an n-bit string).

Note that even though this is an exponential-size object, we can still de�ne it, as long as we
don't have to construct the entire tree, but just explore some small subset of it (which is what
we will do).

Finally, our function f takes x as its seed and reads the input y as the path to be taken down
this tree, i.e.

f
x=seed(input y = path down this tree) = output leaf

i.e. at each branch, pick path according to next bit in input. For instance, if our input string
begins y = 001::: then we �rst go to x0, then from that we calculate G(x0) = x00x01 and pick x00,
from that calculate x001, etc. The �nal output is whatever leaf we arrive at on the last branch
of the tree, after n branchings.

Theorem 7.37 If there are pseudo-random generators then there are pseudo-random functions.

We now prove that our construction gives a pseudo-random function.

Proof: Recall that a pseudo-random generator has output that can't be distinguished from truly

random.

We will show that, if a polynomial-time machine T exists which can distinguish the output
Fn of this process just described from that of the uniform random ensemble of functions Un,

then there is a polynomial- time distinguisher which can distinguish between outputs of our

pseudo-random generator G and randomly chosen strings. This contradiction will establish our
theorem.

Suppose we have a polynomial-time (in n) machine T , which we give as input either a series

of strings x1; :::; xpoly 2 Un from the uniform truly random ensemble or y1; :::; ypoly 2 Gn from
our pseudo-random ensemble, such that the probability that T outputs 1 for Un is non-negligibly
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di�erent from the probability T outputs 1 for Gn. That is, if M(E) is the probability that T

outputs 1 when given output from the ensemble E,

jM(F )�M(U)j > �(n)

for some non-negligible function �(n).

We will use a hybrid argument. Consider the four levels of randomness of functions, expressed

as trees:

� a completely pseudo-random function F

� S1 represents the output of a tree constructed as above, but whose entries are truly random

to level i (counting from the top) and pseudo-random thereafter.

� S2 which is truly random to level i+ 1 and then pseudo-random.

� a completely randomly generated function U , just a tree with all random entries.

RANDOM

Random

Pseudo-

Random

Random

Pseudo-

Random

Pseudo-

Random

Then, since T can distinguish F from U with distinguishing probability �(n), and there are n
levels to the trees F and U , there must be a level I in between 0 and n such that T distinguishes

S1 from S2 with probability �(n)

n
when i = I, because we must for at least one such i have

jM(S1) �M(S2)j > �(n)

n
;

and since �(n) is non-negligible, so is �(n)

n
. We must �rst guess at which level i this inequality

holds. There is a 1

n
chance we guess right, and thus our distinguishing probability is still non-

negligible.
Now suppose our distinguisher T wishes to see the outputs f(y) for inputs y1; y2; :::; yk. Each

such yj represents a path down the tree of our algorithm. We can take the beginning of any
query yj, that is, the �rst i bits of yj, call them yj1; yj2; :::; yji and randomly assign an n-bit

string x to the internal node in the tree corresponding to those �rst i bits. Then we apply our

algorithm using the pseudo-random generator G to this string x for the rest of the n � 1 steps
down the tree, using yji+1; :::; yjn the remaining bits of yj to choose our path. If another of T 's

queries yj0 starts with the same i bits, then we can remember what random string x we chose for
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that path before, and again start from that x and go on to �nd the new f(yj0) according to the

path dictated by the last n� i bits of yj0. Since T is poly-time and can only ask for the values

of polynomially many f(y)'s, we only need to remember polynomially many random numbers

x; and repeatedly applying the pseudo-random generator to these is a poly-time process, so we

have in all a poly-time algorithm.

Thus we will consistently answer queries from T according to a tree which is random to level

i and pseudo-random from level i+ 1 down.

But T can distinguish these answers from those we would make in S2, in which we would

choose a random string for the �rst i + 1 bits of yj and proceed pseudo-randomly thereafter.

Hence T is distinguishing between random strings and pseudo-random strings at the i+ 1 level.

Moreover, since T is a poly-time distinguisher, it can only query polynomially-many yj's. Thus

T distinguishes between polynomially-many pseudo-random strings from G and an equal number

of random strings.

But as was shown in the last lecture, assertion 4.5 (Robustness of de�nition of polynomially
indistinguishable distributions of strings), when there is a poly-time distinguisher T 0 between

polynomially-many strings from two distributions Xn and Yn, then there is also a poly-time
distinguisher T between single strings from Xn and from Yn. Thus our T that can tell between
poly-many outputs from the hybrid trees S1 and S2 implies the existence of one that can tell
random strings from the output of G. This contradicts the fact that G is a pseudo-random
generator and establishes the theorem.

7.3 Applications

Now that we have pseudo-random functions, let's show how incredibly useful they can be.

Suppose in these applications that

� We can pick our pseudo-random function f : k-bits ! k-bits (by picking a seed at
random)..

� We a given a black box for calculating f .

1. Adaptive security. Suppose an Adversary has access to our black box function and tries
to gain information about the function by an adaptive attack: he tries several values of xi
and observes the outputs f(xi); each time he gets to choose xi according to what he has
learned from his previous i� 1 attempts. Since our function is pseudo-random, as long as

our Adversary is limited to trying polynomially-many (in the input length n) xi, he won't
be able to guess the value of f(x) for any untried value x.

2. Dynamic hashing. A hashing function is an h : n bits! l bits for some l < n. we can use

our pseudo-random f , and let h(x) be the �rst l bits of f(x)

Then even if our adversary asks us hash several strings of length n, x1 ! h(x1),..., xi !
h(xi), he still cannot guess h(xi+1) for a string xi+1 that he hasn't yet seen, by the pseudo-
randomness of our function f .
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3. Message authentication

message m
Receiver RSender S

Adversary who can add messages

Sender, receiver, but not adversary have access to f . So each message, sender transmits

(m; f(m)). Then if Adversary wants to insert phony message m0, he can't authenticate it

by providing (m0; f(m0)).

4. Time-stamping.

Situation same as above. Notice our Adversary could still insert a message m and authen-
tication if it's a message that's been sent before (so that he has seen (m; f(m))).

To prevent this let y = (m; time, date). Sender sends (y; f(y)). Then Adversary can't
insert phony message because he hasn't seen f(y) where the y includes the current date
and time.

5. Friend or foe system. All friends keep seed s of a pseudo-random function. When meet
each other pick a random input x and ask for fs(x). Even if enemies overhear conversation,
if they do not know s they can not compute fs(x

0) for random x0, hence can not pretend
to be included to the club.

45



NEEDS REVISION

8 Public Key Cryptography

In11 public key cryptography there is a public key p and a private key s used with encryption

and decryption algorithms. To send a message m to a person, E(p;m) is computed and sent,

where E is the encryption algorithm (which is known to everyone), p is the public key, and m

is the message to be sent. The decryption of a message is computed by D(p; s;E(p;m)). The

algorithm D is known to everyone. Only the secret key s is kept secret.

For public key encryption three things are needed. First is the generator of the public and

private key. This is computed by G(1k)! (p; s). The next two are the encryption (E(p;m)!
E(m)) and decryption (D(p; s;E(m)) ! m) algorithms. All three algorithms are probabilistic

polynomial time.

The semantic security was de�ned by [Goldwasser, Micali]. Basically it states that whatever
you can compute given any partial information about a message m and its encryption, you can
also compute given only the partial information (i.e. encryption of a message is useless). The
formulation is as follows:

(1) Pick D, a distribution of messages

(2) pick the message m from D,

(3) pick some auxillary function h() of the message (for example, output the �rst 10 bits of
the message).

The adversary A tries to compute f(x). Then, 8A;9A0 s.t. A(x; h(m); E(m)) = f(x) is indistin-
guishable from A0(x; h(m)) = f(x).

Formally, the triple (G;E;D) is semantically secure i� for all sequencesXn;8h 2 PPT, 8f(even
di�cult to compute f);8A 2 PPT, 9A0 s.t. 8c9N8n > N;ProbG(1k);coins�of�A(A(E(Xn); h(Xn); 1

n) =

f(Xn)) � Prob((A0(h(Xn); 1
n)) = f(Xn)) + 1=nc.

To construct E and D, �rst pick a trap door 1-way permutation (f; f�1), and a hard core bit
H() for the function. Then f and H are made public and f�1 is kept secret. To send a message

m, pick an x at random and a bit b of m to send, and send < b�H(x); f(x) >. Then to decrypt,
�nd x with f�1, compute H(x), and then retrieve b. (In practice, quadratic residuocity is used:
the integer n and a y which is a non-quadratic residue is made public and and the factorization
pq = n is kept secret. Then to send a 0, x2 (QR) is sent for some random x, and for a 1, yx2

(QNR) is sent.)

Theorem 8.38 The protocol above of sending < b�H(x); f(x) > is semantically secure.

Proof: The proof will consist of two stages. First, proving that the protocol is indistinguishably

secure, and then showing that indistinguishable security implies semantic security.

De�nition 8.39 A protocol is indistinguishably secure if 8 PPT A8c9N8n > N s.t. after:

11Scribe notes taken by: Sean Hallgren
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(1) A! m0 and m1

(2) run G! (p; s)

(3) give A either E(m0) or E(m1)

Then jProb(A(m1;m0; E(m0)) = 1) � Prob(A(m1;m2; E(m1) = 1))j < 1=nc.

Proof of stage 1 (i.e. that it is indistingibly secure) is done by a hybrid argument, where if

there is an algorithm which can distinguish E(m0) from E(m1) then there is an algorithm which

can distinguish:

� a pre�x up to i bits of m0 followed by a su�x of m1 from

� the pre�x of i + 1 bits of m0, followed by the remaining bits of m1, where the i+ 1 bit is

di�erent in m0 and m1.

But this implies that we can predict a hard-core bit, a contradiction.

For stage 2, (i.e. that indistingisbility implies semantic security). We �rst note that A(E(m); h(x))

is indistinguishable from A(E(0:::0); h(x)). Then, we construct A0 using A(E(0:::0); h(x)).
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9 Software Protection

In this lecture12 we consider the problem of software protection. Informally, we show a method

of simulating an arbitrary program by a program which runs on a CPU having access to a

random oracle and a few protected registers such that no information other than the input-

output behavior of the program can be deduced.

The cryptographic tool that we are using is pseudo-random functions of [Goldreich, Gold-

wasser, Micali] which were discussed in the previous lecture. Pseudo-random functions are used

in this work for both (private-key) encryption and to simulate a random oracle (see previous

lecture for de�nitions).

9.1 The probabilistic RAM Model

Protected Registers

Memory (RAM)

Random OracleC. P. U. 

Probabilistic RAM Model

The probabilistic RAM consists of a CPU which has has some protected registers and has access

to a random oracle. The CPU is connected to a random access memory (RAM) whose contents

can be read or altered by the adversary (or the software pirate). The adversary can also snoop
on the address bus of the CPU and �gure out the order in which the RAM is accessed. However
there is no way by which one can �nd the contents of the CPU's register at a given point in time.

9.2 Protection of Program's Data

9.2.1 Protection against non-tempering adversaries

A non-tempering adversary can read the RAM and watch the communication between the RAM

and the CPU, but it can't modify or alter the RAM contents. The �rst step is to encrypt the
program and its data so that no one else copy or use it. This can be done by encrypting the

contents of the RAM. One can replace the bit bi stored at the ith location by b0i = F (i) � bi,
where F (:) is the random function computed using the oracle. The program reads b0i from the

RAM and computes bi = b0i � F (i) to compute the actual value of the data. Since F (:) is a

12Scribe notes taken by: Rahul Garg, September 27, 29, 1994
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random function, the contents of the RAM after this transformation are random to anyone who

doesn't know F (:). The next step is to simulate a read (or a write) by a (dummy) read followed

by a write at the same memory location. This would hide whether the access was a read or

a write. (Thus the most frequently used RISC instructions \load" and \store" would become

indistinguishable from each other).

9.2.2 Protection against tempering adversaries

A tempering adversary is allowed to change the contents of RAM. Such an adversary might try

to change the RAM contents to get additional information about the working of the program.

To secure against such adversaries store of a value v at a location i is simulated as store of a pair

(v; F (v)). While reading back the value, a pair (v; y) is read and F (v) is computed to check if

y = F (v). An adversary which wants to replace v by v0 should also replace F (v) by F (v0), so

that the simulator doesn't come to know that the RAM contents have been altered. Since F (:)
is a random function known only to the CPU the adversary can't compute F (v0) and hence can't

change the RAM contents to store a fake value. However it can still copy a (v; F (v)) pair from
one RAM location to another and clobber the program's memory. The program can be protected
from this by storing a value v at location i as (v; F (i:v)) where i:v represents concatenation of
i and v. The adversary could still alter a location by placing a value which was stored there is
the past. This can be avoided by storing a version number with the value. The version number

is incremented each time the location is updated. Thus a value could be stored at location i as
(v; version; F (v:i:version)) (we discuss later how appropriate version number is checked).

With the above encryption a program and its data can be hidden securely. Even after this an
adversary might be able to get some information about the working of a program by carefully
analyzing the order in which the program accesses its memory. The �nal milestone in achieving
the goal of software protection is to hide the access pattern of a program. In other words the
programs have to be transformed in such a way that the access patterns of any two program

taking the same running time are indistinguishable from each other.

This problem is formalized as e�cient simulation of any RAM program on an oblivious RAM.

A machine is oblivious if the sequence in which it accesses memory locations is equivalent for
any two inputs with same running time. For example an oblivious Turing Machine is one for

which the movement of heads on the tapes is identical for each computation. In 1979 Pippenger

and Fischer showed how a two tape oblivious Turing Machine can simulate, on-line, a one tape
Turing Machine, with a logarithmic slowdown in the running time. An analogue result for the

RAM model of computation is presented.

9.3 The restricted problem

Consider a simpler problem for restricted set of programs which access each location of the RAM
exactly once. A solution to the problem can be attained by shu�ing the memory locations. After

the memory is shu�ed (randomly permuted), the accesses to the RAM would appear to be like

a random permutation and hence would be oblivious. The same idea can be extended to the
general case by organizing the memory into hierarchy.

Lets assume that the program accesses each memory location exactly once. If the memory is

permuted randomly before the accesses are made then the accesses will appear to be a random
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permutation. Thus the access pattern of any two programs will be indistinguishable. The

problem reduces to the problem of permuting the memory obliviously.

Assume that the original program accesses n words of the RAM. Allocate 4n:O(log n) words

of memory and organize it into 4n buckets of size O(log n) each. Now the original memory is

hashed into these buckets using the random oracle to compute the hash function. The hash

function hs(i) can be de�ned as F (i:s) mod4n, where s is chosen randomly.

Notice that n items are stored into a hash table with 4n entries according to a random oracle.

Hence the probability (taken over a choice of randomly chosen function) that the number of

entries in a bucket will exceed O(log n) (bucket over
ow) is negligible.

If one can somehow transfer the original RAM contents into the data structure described above,

then the access patterns can be hidden. An access to a memory location i can be translated

into searching for the appropriate tuple in bucket hs(i). Any two distinct memory locations are

assigned independent buckets and each memory location is accessed exactly once, thus the access

pattern (i.e. the bucket access pattern) is independent of the memory access pattern. Whenever

a bucket is accessed, each of its element is examined, as a result the memory accesses looks as if
one is randomly choosing a bucket and scanning it sequentially.

The �nal problem is of hashing the elements into buckets obliviously (oblivious hash). This
problem can be solved if one can perform sorting of elements obliviously. We �rst describe the

a scheme to perform oblivious sorting and then we show a scheme to do oblivious hash.

9.3.1 Oblivious Sorting

The idea is to implement Batcher's Sorting Network which consists of a number of 2-element
sorters as shown in the �gure. A 2 element sorter takes two inputs and it outputs them in sorted
order. To sort n elements, a network of (log n)2 such 2-element sorters can be built. Since the
network consists of 2-element sorters only, an implementation of this in software will only consist
of operations which read two a-priory predetermined memory location and write them back after
swapping them (if needed). Thus the order in which the memory locations are accessed by the

program will be �xed in advance and be independent of the data being sorted.

2x2 Sorter

2x2 Sorter 2x2 Sorter

2x2 Sorter

2x2 Sorter

4x4 Sorting Network using 2x2 Sorters
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9.4 Oblivious Hashing

Now that we know how to perform oblivious sorting, we can make its use to perform oblivious

hash. The oblivious sorting is used to to the following.

� Sorting elements within a bucket to group together the empty and full entries. Empty

entries are tagged 0 and full entries are tagged 1, the sorting is done on tags.

� Sorting elements within two buckets to move all the non empty entries into a single bucket.

� Sorting buckets as individual elements.

First, all the elements of the RAM are tagged by their hash function and then, 4n dummy
elements corresponding to the 4n possible tag values are introduced to make sure that each

bucket has at least one element after hashing. The elements are sorted according to their tags
and all the elements with the same tag value are put into the same bucket (using oblivious sort
in way as described above). The buckets are then sorted according to tags of their elements to
make sure that the ith bucket contains all the elements having a tag value of i. This is always
ensured because dummy elements make sure that bucket corresponding to each tag value will

contain at least one element. Thus an element of the RAM stored at location i is now moved to
the bucket numbered hs(i).

9.5 Simulation on an Oblivious RAM

Instead of a single hash table introduced to solve the simple problem, several hash tables of

di�erent sizes are used in the general case. There are N hash tables and each table associated
with an index si (see �gure). These hash tables are called \bu�ers" which are obliviously hashed

at di�erent intervals (smaller bu�ers are hashed more often than larger ones). The idea is to

ensure that for each bu�er, no element in that bu�er is accessed more than once in between

two consecutive oblivious hashes, thus reducing the general problem to the restricted problem

already solved.
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The Hierarchical organization of RAM

Initially memory is allocated for N = (1 + dlog4 ne) (n is the length of the input) distinct

bu�ers, where ith level bu�er is a hash table of size 4i buckets and each bucket is of size log n.
For each bu�er of level i, a random seed si is picked and a hash function hsi(:), where hsi(v) =
F (si:v) mod4i, is associated with it. All the bu�ers are empty in the beginning. The program

begins with copying (i.e. hashing) the program and input into the biggest, Nth level bu�er.
During the simulation if the program refers to a location v, the �rst level 1 bu�er is completely

scanned to �nd it. If it is not found in the �rst level bu�er, then hs2(v) bucket of the next

level bu�er is scanned. If it is still not found there then hs3(v) bucket of the next level bu�er is
scanned and so on. Note that address of each element is stored along-with the element, so one

can compare the address to �nd whether the an element in the bucket is actually the one which is
needed. After the required element is found, the bu�ers of remaining level are randomly scanned

till the Nth bu�er. The value is put into level 1 bu�er after the access. After some time the

bu�er at level 1 may start over
owing. To avoid this potential over
ow, we move the contents
of bu�er level i to level i+1 after every 4i�1 accesses. The contents of bu�er at level i and i+ 1

are obliviously hashed into level i + 1 according to a newly chosen random seed s0i. Thus, each
time when a bu�er at level i is at most a quarter full, it is emptied into a higher level. If the

higher level does not exist, it is allocated.

Notice that at round 4i, the total number of entries in the �rst i bu�ers is at most 4i and
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hence merging their contents into ith bu�er (of size 4i+1 buckets) can have only a quarter of

the entries. When the contents of a lower bu�er are moved into the larger bu�er, a new hash

function is picked and the elements are rehashed according to this new hash function. Thus the

collisions which occurred in the smaller bu�er do not in
uence the collisions which may occur in

the bigger bu�er. That is, the collisions do not accumulate.

9.5.1 Obliviousness of Access Pattern

From the restricted problem, we know that as long as any memory reference is made at most

once, the choice of the hash bucket accessed appears completely random to the adversary.

The crucial observation is that for all bu�ers other than 1, the program never looks for the

same memory location more than once, in between hashing stage of that bu�er. After a tuple

is found at some level, it is moved to the �rst level. Thus subsequent searches for the same

location will �nd the required tuple in smaller levels unless the tuple migrates to the same level

again. Each time something is migrated to a same level, the level is rehashed according to a new
randomly selected hash function. The bucket in which a tuple would go will be independent of
its previous bucket. Thus, for all bu�ers i � 2 and location v, whenever a new si is picked, hsi(v)
is computed at most once and hence the access patterns at each level appear to be random to
the adversary.

9.5.2 Overhead of Oblivious Simulation

Let t be the running time of the program. At the end of simulation, there would be at most
N = O(log t) bu�ers. For each memory access in the original program, the transformed program
scans all the buckets of level 1 bu�er and then scans a single bucket of size O(log t) on every other
level, resulting into O((log t)2) accesses for each original access. In addition, during simulation
level i and level i � 1 bu�ers are hashed into level i bu�er a total of 4n�i+1 times, i = 2; : : : n.

Since the joint size of level i � 1 and level i bu�ers is O(4i) buckets of size O(log t), it takes
O(4i: log t: log(4i: log t)) steps to obliviously hash them. Thus the total number of steps needed
to perform all the hashing of all the bu�ers is equal to :

NX
i=2

4N�i+1:4i: log t: log(4i: log t) = O(t:(log t)3)

Therefore the overhead in the oblivious simulation of an arbitrary RAM program is a factor
of O((log t)3) (with a negligible probability of failure of the simulation).
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10 Introduction to Interactive Proofs

10.1 Introduction

A traditional, Euclidean-style proof for an assertion consists of a prover who simply outputs a

proof13. Someone reading the proof, a veri�er, then decides whether or not the proof is correct.

The observation has been made that there could be an advantage to letting the veri�er interact

with the prover. This may allow the assertion to be proven faster or with the release of less

information than would be the case if the veri�er were passive.

Our general framework consists of a prover P who is allowed an arbitrary exponential amount

of time, and a veri�er V who is allowed only poly-time. Both P and V are allowed to 
ip coins
and they communicate to each other by sending messages. Note that since V is a poly-time
machine, only a poly-number of messages will be sent between P and V .

The programs for P and V de�ne the protocol PV . The input, typically an assertion of the

form x 2 L, is presented to both P and V , and P tries to convince V that the assertion is true.
If V is convinced, then V accepts.

10.2 De�nition of IP [Goldwasser,Micali,Racko�]

De�nition 10.40 An Interactive Proof for a language L is a protocol PV for a Prover and a
Veri�er such that:

� Completeness: If x 2 L then P has a good chance of convincing V that x 2 L

8c > 0 9N s.t. 8x 2 L where jxj > N

Pr
coins of V;P

[PV (x) makes V accept ] > 1 � 1

jxjc

� Soundness: If x =2 L then every P 0 has little chance of convincing V that x 2 L

8P 0 8c > 0 9N s.t. 8x =2 L where jxj > N

Pr
coinsofV 0

[P 0V (x) makes V accept ] <
1

jxjc

IP is de�ned to be the class of languages which have Interactive Proofs.

13Scribe notes taken by: Vassilis Papavassiliou, October 4,11 1994
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10.2.1 IP for Graph Nonisomorphism

Disclaimer: In these notes we will write interactive proofs for two languages: graph-isomorphism

(GI) and graph-non-isomorphism (GNI). These languages are chosen because, besides the belief

that V (a PPT machine) cannot recognize them, they provide a convenient framework in which

to study the notions of interactive proofs and zero-knowledge. In addition, protocols for GI and

GNI can be translated into protocols for certain hard number-theory problems. One would not

really base a real system on GI or GNI.

Many of these interactive proofs will rely on the ability to produce random permutations of

graphs. We do this by creating a random permutation and applying it to the graph.

x 2 GNI i� x is a pair of graphs (G0; G1) and G0 6� G1

We abbreviate this as x = fG0 6� G1g

The following protocol is an interactive proof for GNI. V picks either G0 or G1 at random

and generates a random permutation of that graph. V sends this new graph to P who responds
by telling V which graph V originally picked. Repeat this k = jxj times. V accepts if P is right
every time. In tabular form:

x = fG0 6� G1g
P communication V

1 Generate a random bit b

2  G0  Generate a random permuta-

tion �. Let G0 = �(Gb)

3 Determine b0 s.t. G0 � Gb0 ! b0 ! Reject if b0 6= b

4 Repeat steps 1-3 k times. Ac-

cept if b0 = b every time.

This protocol is an interactive proof because:

� Completeness: If the graphs are not isomorphic then only one of G0 or G1 will be
isomorphic to G0, so P will always be able to determine b.

� Soundness: If the graphs are isomorphic then G0 could have come from either G0 or G1

with equal probability, so any prover P 0 can only guess b. P 0 would have to guess correctly

jxj times. This has probability 1

2jxj
.

10.2.2 Protocol (P1): Interactive Proof for Graph Isomorphism

x 2 GI i� x is a pair of graphs (G0; G1) and G0 � G1

We abbreviate this as x = fG0 � G1g

The following protocol is an interactive proof for GI. P generates a random permutation of

G0. P sends this new graph to V who responds with a bit b. P then responds to V 's request by
sending the permutation which maps the new graph that P generated to Gb. V checks that this

55



permutation is actually an isomorphism between the graphs. Repeat this k times one after the

other (i.e. sequentially). V accepts if P was able to send a correct permutation every time. In

tabular form:

x = fG0 � G1g
P communication V

1 Generate a random permuta-

tion �1. Let G
0 = �1(G0)

! G0 !

2  b Generate a random bit b.

3 Determine �2 s.t. G
0 = �2(Gb) ! �2 ! Reject if G0 6= �2(Gb)

4 Repeat steps 1-3 k times se-

quentially. Accept if G0 = �2(Gb)

every time.

This protocol is an interactive proof because:

� Completeness: If the graphs are isomorphic then G0 is isomorphic to both G0 and G1, so
P can always send an isomorphism between G0 and Gb.

� Soundness: If the graphs are not isomorphic then G0 is isomorphic to at most one of G0

and G1. Any prover P 0 would be able to send an isomorphism between G0 and Gb only if
G0 was originally created as a permutation of Gb. Thus P

0 would have to guess which b V

will send. The probability that P 0 can do this k times is 1

2k
.
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NEEDS REVISION

11 Introduction to Zero Knowledge

The obvious interactive proof protocol for GI is for P to simply send V the isomorphism between

G0 and G1. This corresponds to the traditional, non-interactive way of proving things
14. However

this protocol has the undesirable feature of revealing to V much information. In particular, V

now knows an isomorphism between G0 and G1. We desire an interactive proof which still

convinces V that the graphs are isomorphic without revealing so much information to V . In fact,

we don't want P to reveal anything to V beyond that the graphs are isomorphic. Such proofs

are called zero-knowledge, introduced by Goldwasser, Micali and Racko� (GMR-85). (P1) from

the previous lecture is one such protocol for GI.

11.1 Motivating story

(This is a story also due to [GMR]) One night in a small town there is a murder. Verry Fire, the
local reporter, hears about the murder and wants to write a story for her newspaper. She goes to
a pay phone and calls the detective to get the facts of the murder case, but the detective simply
tells her \There was a murder" and he hangs up. She calls back several times, but every time

she just hears the phrase \There was a murder." Verry already knew that there was a murder,
so she certainly didn't need to call the detective to obtain this information. She could have just
saved her money and generated this phrase herself. Feeling a little frustrated, she decides to
call the police chief. The chief, who enjoys playing games with reporters, 
ips a coin, and if the
coin is heads, the chief says \There was a murder" and hangs up. If the coin is tails, he says

\No comment" and hangs up. Verry calls back several times and sometimes she hears the �rst
phrase while other times she hears the second phrase. Her conversation with the chief, however,
still hasn't given her any new information for her column. She could have just 
ipped a coin
herself and generated the chief's phrases with the same probability distribution. Verry proceeds
to write her column, but she could have written the column without talking to the detective or

the chief, because her conversations with them were zero-knowledge.

11.1.1 De�nition of ZK

De�nition 11.41 For a protocol PV , let PV (x) represent view of the conversation from veri�ers
point of view on input x. Speci�cally, PV (x) consists of:

� The messages sent back and forth between P and V

� The coins of V

In a later section we will justify including the coins of V in this de�nition. Let [PV (x)]

represent the distribution of points PV (x) taken over the coins of P and V . In general for a

14Scribe notes taken by: Vassilis Papavassiliou, October 11 1994
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machine S, let [S(x)] be the distribution of outputs of S on input x taken over the coins of S.

De�nition 11.42 An Interactive Proof PV for a language L is Zero Knowledge if

8V 0 9SV 0 2 PPT s.t. 8x 2 L

[SV 0(x)] ' [PV 0(x)]

SV 0 is a PPT machine which knows V 0 and which on input x 2 L outputs points of the form
PV (x) de�ned above. Intuitively, the existence of SV 0 shows that V

0 does not need P to generate
the output distribution [PV 0(x)]. V 0, a PPT machine, could have generated the distribution

itself. Therefore P does not transfer any knowledge to V 0 (beyond the fact that x 2 L) which
V 0 could not have generated itself.

The quanti�er is over all veri�ers V 0, even cheating veri�ers. That is, PV 0 doesn't have to be
an interactive proof for L. The only goal of V 0 may be to extract information from P . Even for
such cheating veri�ers, there must exist a simulator with ' output distribution.

The existence of a PPT simulator for a veri�er V 0 means that the interaction of P and V 0

is zero-knowledge. If the interaction of P with every veri�er V 0 is zero-knowledge, then the

protocol PV is zero-knowledge. In this case, note that the protocol PV 0 for any veri�er V 0 is
also zero-knowledge, but remember that this protocol is not necessarily an interactive proof that
x 2 L.

In the de�nition of ZK, we use a simulator whose distribution on x 2 L is ' to the distribution

of PV (x). There are actually three di�erent de�nitions of ZK corresponding to the three di�erent
de�nitions of ' of distributions:
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De�nition 11.43 The three variants of ZK are:

� Perfect ZK =

The distributions are exactly equal. This is the strictest de�nition of ZK.

� Statistical ZK =s

The distributions are statistically close. Recall that:

Distributions fXng and fYng are statistically close i�

8c 9N s:t: 8n > N

X
�2f0;1gn

j Pr
fXng

[Xn = �]� Pr
fYng

[Yn = �]j < 1

nc

In other words 8c 9N s:t: 8n > N even a machine which is allowed exponential
time must take at least nc samples before it can distinguish fXng and fYng.
Thus more than a polynomial number of samples are required to distinguish the
distributions.

� Computational ZK =c

The distributions are computationally indistinguishable to poly-time machines. Recall that:

Streams fXng and fYng are poly-time indistinguishable i�

8c 8A 2 PPT 9N s:t: 8n > N

j Pr
ffXng;A0s coinsg

[A(Xn) = 1] � Pr
ffYng;A0s coinsg

[A(Yn) = 1] j < 1

nc

In other words 8c 9N s:t: 8n > N any polynomial time machine must have
running time at least nc before it can distinguish fXng and fYng. Thus no poly-
time machine can distinguish the streams.

distributions are equal ) statistically close ) computationally indistinguishable

The converses may not be true. In particular, if 1-way functions exist, then computational

indistinguishability 6) statistical closeness:

fX2ng is the output distribution of a pseudo-random number generator G : f0; 1gn ! f0; 1g2n.
fY2ng is the output distribution of a true random number generator for 2n-bit strings.

fX2ng contains at most 2n di�erent strings.
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fY2ng contains 22n di�erent strings.

Therefore these distributions are statistically distinguishable, however since G is a pseudo-

random number generator, they are computationally indistinguishable.

11.1.2 Requiring the Simulator to Output the Coins of V

The output of the simulator consists of the messages passed back and forth between P and V 0

as well as the random bits used by V 0. We will now show why it is necessary for the simulator

to output the random bits of V 0.

Consider the following protocol for graph-isomorphism. This is clearly not a very good way to

prove graph-isomorphism, but it illustrates the need for the simulator to output the coins of V 0.

First, a description with words: The input is G0 and G1. V randomly selects one of the two

graphs, say G0, and sends to P a random permutation of that graph. P randomly selects one of

the two graphs, say G1, and sends back the permutation which maps the graph it received from
V to G1. If P and V happened to choose di�erent graphs (in the above example V chose G0

and P chose G1) then V will be able to determine an isomorphism between G0 and G1, and so
V will accept the graphs as being isomorphic. Repeat everything k times, and if V is never able
to determine an isomorphism between G0 and G1, then V rejects. In table form, the protocol is:

x = fG0 � G1g
P communication V

1 Generate a random bit b

2  G0  Generate a random permuta-

tion �1. Let G
0 = �1(Gb)

3 Generate a random bit c

4 Determine �2 s.t. Gc = �2(G
0) ! �2 ! Accept if G�b = �2(�1(Gb)).

That is, accept if �1 � �2 is

an isomorphism between G0 �
G1

5 Repeat steps 1-4 k times. Re-

ject if Gb0 6= �2(�1(Gb)) every

time.
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This protocol is an interactive proof because:

� Completeness: If the graphs are isomorphic then V will determine an isomorphism i�

b 6= c. The probability that all k trials have b = c is 1

2k
, so the probability that P fails to

convince V that the graphs are isomorphic is negligible.

� Soundness: If the graphs are not isomorphic then V will never accept since it only accepts

if it can determine an isomorphism between G0 and G1.

The protocol is not zero-knowledge because V learns an isomorphism between G0 and G1.

Thus we cannot construct a simulator for V with the appropriate output distribution where the

output consists of the messages passed back and forth between P and V as well as the random

bits of V . However, if we only required the simulator to output the messages passed back and

forth between P and V , and in the de�nition of zero-knowledge interactions we only required

the distributions to be ' on points consisting only of the messages passed back and forth, then

the interaction of P and V is zero knowledge because, as shown below, we can construct an
appropriate simulator for V . Remember that to prove zero-knowledge for a protocol, we would

have to show how to simulate any veri�er V 0, not just V . All we will show is that in the particular
case of P talking to V , if we don't require the simulator to output the random bits of V , then
we will incorrectly conclude that the interaction between P and V is zero-knowledge.

Code for (Pseudo)Simulator SV

1. FOR i:=1 TO k DO

(a) pick a random bit b

(b) pick a random permutation �. Let G0 = �(Gb)

(c) output messages:
 G0  

! �!

(d) END FOR LOOP

2. END PROGRAM /* The simulator has output k points */

If we consider only the messages passed back and forth between P and V , then the above
simulator produces a distribution of points identical to the one generated by the real P talking
to V : for x 2 L, G0 is uniformly distributed over all the graphs isomorphic to G0 (or G1 since

G0 � G1), and � is a map between G' and either G0 or G1 with equal probability for each. This

would lead us to believe that the interaction of P and V is zero-knowledge, even though V may

learn an isomorphism between G0 and G1.

Now consider the messages passed back and forth between P and V and the random bits of V .
If we have the above simulator also output the bit b from which G0 was created (b is suppose to

be the random bit of V ), then SV (x) no longer has output distribution identical to [PV (x)] for

x 2 L. In particular, the points in [PV (x)] have the graph Gc to which � maps G0 independent

from bit b. The points in [SV (x)] always have � mapping G0 to Gb. This justi�es including

the random bits of V in the view of what the veri�er sees in the de�nition of a zero-knowledge

interaction.
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11.2 Proving a Protocol is Zero Knowledge

Let PV be the protocol (P1) for graph isomorphism which was de�ned earlier. It was proved

previously that PV obeys Completeness and Soundness, so PV is an interactive proof. In this

section we will prove that PV is zero-knowledge. We will do this by constructing, for any veri�er

V 0, a simulator whose distribution on x 2 GI is the same as that for PV (x). The simulator will

depend on the notions of saving the state and restarting a Turing Machine.

The veri�er is a special kind of Turing Machine. It consists of a �nite state control, an input

tape, output tape, work tape, random tape, input communication tape and output communi-

cation tape. The information on these tapes and the state of the control completely de�nes

the state of the veri�er. Thus, we can save the state of the veri�er by saving this information.

Say we save the state of the veri�er at time t. We then put something on the veri�er's input

communication tape, let the veri�er continue running and observe the behavior of the veri�er.

We can now restore the veri�er to the state we saved at time t. If we now put the same thing

on the veri�er's input communication tape and let the veri�er run again, we will observe exactly
the same behavior we did before; the Turing Machine has no way of remembering what we had

it do before we restored its state.

11.2.1 Story-time

Jay Lentil, host of a popular late-night television show, convinces the great, world-famous ma-
gician Flippo to be on his show. To the amazement of all the viewers, Flippo proceeds to 
ip
a normal coin and have it come up heads 100 times in a row. Not to be outdone, Dave Num-
berman, host of a competing show, tries to �nd a magician to match this incredible feat. Dave

however doesn't �nd a suitable magician, so he disguises his assistant Paul in a magician's cos-
tume. Dave's show is pretaped, so in the studio, he has Paul 
ip a coin again and again until it
has come up heads 100 times. Then the tape is edited to remove all the coin 
ips that came up
tails. When the tape is shown that night, the viewers are amazed to see a man 
ipping a coin
and having it come up heads 100 times in a row!
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11.2.2 Construction of a Simulator for (P1)

The previous story showed how it is possible to run an experiment many times and pick out only

the successful experiments. If the chance of success is high enough (1
2
in the story) then we can

get the required number of successful experiments quickly. We will use this for our simulator

SV 0 ; we will save the state of the veri�er V 0, run an experiment on V 0, output the results if

they are successful, restore the state of V 0, run another experiment, etc. We continue until we

have the required number of successful experiments. For our simulator, a successful experiment

corresponds to a point the simulator can output. At the end, the k points that SV 0(x) has output

have ' distribution to [PV 0(x)].

Code for Simulator SV 0

1. pick at random a random tape R for V 0

2. FOR i:=1 TO k DO: /* simulate 3-round atomic protocol k times */

(a) record state of S0

/* record con�guration of FSM control of V 0 */

/* record work tape con�guration of V 0 */

/* record head positions of work and random tapes readers */

(b) set DONE:=FALSE

(c) WHILE (not DONE) DO

i. pick bit c at random

ii. pick permutation � at random

iii. compute Hi = �i(Gc)

iv. send Hi to V
0 and get bit b from V 0

v. if b=c

then

DONE:=TRUE

output random tape R and messages:

! Hi !

 b 

! �i !

else

reset V 0 to previously saved state

vi. END WHILE LOOP

(d) END FOR LOOP

3. END PROGRAM /* The simulator has output k points */
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Each experiment is successful half the time. In particular, it is successful when b = c. Therefore

in 2k expected time, SV 0(x) outputs k points. If SV 0(x) outputs k points, then the distribution

of these points is identical to [PV 0(x)]. This is true because SV 0 chooses Hi exactly the same

way as P does, and V responds with the same b because it has no way of knowing if it is talking

to P or SV 0.

The only complication comes from the fact that there is an exponentially small chance the

simulator will fail to terminate and so fail to produce the desired output distribution. Therefore

[SV 0] is statistically close to [PV 0(x)], not exactly equal. To get perfect zero-knowledge, we can

run a brute-force, exponential time algorithm for graph isomorphism in parallel to the simulator.

If the exhaustive algorithm �nishes before the simulator, we use its results instead (i.e. if it

gives an isomorphism between G0 and G1, use this isomorphism to create the k points). The

expected running time of this method is polynomial since the chance that SV 0 takes a long time

is negligible, but there is a small chance it will run in exponential time. Therefore, we have to

modify our de�nition of ZK slightly to allow simulators which are expected PPT rather than
PPT .

11.2.3 Parallel Version of (P1)

Protocol (P1) runs a 3-round protocol k times, so there are 3k total messages sent. Communi-

cation is expensive in reality, so we would like a way to minimize the number of rounds required
by an interactive proof. This would save us the overhead on each separate message. One thing
we could think of for (P1) is to do all k runs in parallel so that we have only 3 (albeit larger)
messages sent. The Parallel (P1) protocol is:

x = fG0 � G1g
P communication V

1 For i=1 to k: Generate a ran-

dom permutation �1
i . LetG

0
i =

�1
i (G0)

! G0
1; :::; G

0
k!

2  b1; :::; bk Generate random bits b1; :::bk.

3 For i=1 to k: Determine �2
i

s.t. G0
i = �2

i (Gbi)

! �2
1; :::;�

2
k! Accept i� 8i G0

i = �2
i (Gbi)

The above protocol is still an interactive proof for GI because:

� Completeness: If the graphs are isomorphic then P will be able to provide an isomorphism

between G0
i and Gbi forall i.

� Soundness: If the graphs are not isomorphic then V will only accept if some prover P 0

can guess right all k times. The probability that this happens and P 0 fools V is 1

2k
.
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Unfortunately, the above protocol is believed not to be zero-knowledge. In particular, the

simulator we created for (P1) will not work for Parallel (P1). This is true because a simulator

for a parallel veri�er produces a successful experiment only if it guess all k bits b1; :::; bk correctly

simultaneously. It can do this with probability only 1

2k
. In fact, if the above protocol is zero-

knowledge, that would imply that GI 2 BPP , as was shown by [Goldreich, Krawzyk]. However,

later on we will see that with appropriate modi�cations to the protocols we can make a constant-

round ZK for GI.

11.2.4 Application: Interactive Passwords

Imagine that you are in Berkeley and that you want to login to a computer in New York. The

computer in New York requires a password, so you send your password over the network to New

York, however anyone can tap the network cable and learn your password by monitoring the line.

This is clearly not acceptable. You need a system for proving to the computer in New York that

you really are who you say you are, without sending any information over the network line that
can be intercepted:

1. P and V get together and generate \hard" G0 � G1 and �, the isomorphism between them
(warning: in practice, we will not use GI, since we do not know which graphs are hard to
�nd isomorphism for, but rather some algebraic problem, but for now lets assume that we

can somehow �nd a pair of graphs for which is it hard to �nd an ismoromorphims, to make
our example simpler)

2. Whenever P wants to login, P and V run the ZK proof for GI. If P is able to convince V

that G0 � G1, then V allows P to login.

Why is this secure? The answer is that ZK protocols can not be repeated by listeners (i.e. it
is not transferable!). Why? Because whatever listener heard on the wire during login, he could
of generated all by himself, since is there is a simulator for ZK!
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NEEDS REVISION

12 Number of rounds for ZK

The topic of today's lecture15 is the number of rounds of interaction needed for perfect and

statistical ZK proofs. We will also consider the special subclass of Interactive proofs (called

Arthur-Merlin proofs), in which veri�er can not keep secrets from the prover.

12.1 Arthur-Merlin Protocols

Today's topic explores special type of Interactive Proof, called Arthur-Merlin proofs, introduced

by Babai and Moran. The name is drawn from the Arthurian legend, where Merlin is the
all powerful (exponential time) prover and Arthur is the polynomial time veri�er. Arthur is
restricted to generating public random coin tosses (i.e. which Merlin can see) as opposed to
Interactive Proofs of [GMR], where the veri�er can secretly (from the prover) generate the coin
tosses. Moreover, the only messages Arthur is allowed to Send to Merlin is results of his coin-

tosses. (Recall that in interactive proofs, Veri�er can make arbitrary polynomial computations
in order to generate questions for the Prover. Notice in the setting where coins are public, there
is no need to send anything but the coin-
ips, since whatever questions veri�er can compute
based on his public coin-
ips, prover can compute just as well).

Complexity remarks : Goldwasser and Sipser have shown that if there exists an interactive
protocol for a language L, then it can be transformed into an AM protocol for a language L.
The transformation they present does not (as far as we know) preserve Zero-Knowledge. Also,in
the [Shamir,LFKN] proof that IP = PSAPCE, it is in fact shown that AM = PSAPCE as

far as languages membership is concerned. This does not tell us anything about ZK, though.
Fortunately, Impagliazzo and Yung (and [BGGHKMR]) have shown that everything in IP is in

computational ZK. As far as perfect and statistical ZK, it was shown by Fortnow, and Aiello

and Hastad that only languages in the second level of the polynomial-time hierarchy (in single
round AM intersect co-AM) can be proven in statistical ZK.

12.2 Public/Private coins and The number of rounds of interaction

As stated above, the AM protocol is di�erent from IP in that it restricts the veri�er to generating
public coin tosses, and it restricts veri�er's messages to random strings only. Let us revisit the

proof for graph non-isomorphism (GNI) to see if this is either or both ZK and AM.

15Scribe notes taken by: Wendy He�ner, October 13, 1994. These notes are based on the previous notes by

Sivan Toledo of the same lecture given at MIT in 1992.
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P input: G0; G1 V

Privatly generate a coin 
ip b

 �(Gb) = G0  Generate random permutation

� of graph Gb

Calculate to which

graph G0 is isomorphic,

send back that subscript.

! c!

If c = b OK.

In that protocol, the veri�er generates a secret bit b and sends to the prover a random per-
mutation �(Gb) = G0 isomorphic to one of the two input graphs G0 or G1. Then the prover
sends back a bit c indicating the graph Gc to which G0 is isomorphic. The veri�er then checks
the value of c to see if matches b. If the graphs G0 and G1 are isomorphic, the cheating prover
will be caught with probability 1=2. If the graphs are not isomorphic, the veri�er will be always
convinced.

Clearly, this protocol is not AM. The veri�er cannot publicly generate the coin 
ips in this

protocol. In addition, this protocol is not ZK. Suppose the veri�er V had a third graph Gnew

that (s)he knew to be isomorphic to either G0 or G1. The cheating V could substitute the graph
Gnew for G0 in the �rst step and have the prover P show to which graph Gnew was isomorphic.
Using this technique V , therefore, can gain additional knowledge.

In the future lectures, we will see how to design a perfect ZK protocol for GNI. Could we
construct a perfect ZK protocol for GNI which is also AM? The answer depends on the number
of rounds of interaction between prover and veri�er: Goldreich and Krawczyk have shown that

any (perfect or statistical) ZK protocol with constant number of rounds which is AM for language
L implies that L 2 BPP . However, if we allow private coins, we can design a constant number
of rounds perfect ZK protocol for GNI. This we will see next time, this time, we will look at

graph-isomorphism problem, and show a constant-round (private coins perfect ZK protocol for
it, due to [Bellare, Micali, Ostrovsky 1990].

12.3 Private coins, Constant rounds protocol for Graph-Isomorphism

Let's look again at the Graph Isomorphism protocol we devised in the last lecture. In that

protocol, the prover sends a random graph C isomorphic to the two input graphs G0 and G1,
obtained by choosing one of them at random and randomly permuting it. Then the veri�er sends

a random bit b, and the prover has to show the isomorphism between C and Gb.
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P communication V

Privatly generate a coin 
ip x

and randomly permute graph

Gx.

! �(Gx) = C !

 b Generate a public coin 
ip b.

Show isomorphism betweenGb

and C

! Gb � C !

If the graphs are indeed isomorphic, the veri�er always will be convinced. If they are not,

the cheating prover will be caught with probability 1=2. We want to amplify the probability of

catching a cheating prover. As we have seen in previous lecture, doing so by repeating the above

atomic protocol k times sequentially will amplify the probability to 1�2�k, and will preserve also
the ZK property. But, this requires repeating the atomic protocol sequentially, so the number of
rounds raises to 3k.

Can we squeeze all k repetitions of the atomic protocol into fewer steps? Let us consider what
happens when we send all k graphs isomorphic to the input graphs at once, then send all k query
bits in one round, and then send all the answers to the queries in one round.

P communication V

Privatly generate a coin 
ips

x1; : : : ; xk and randomly per-

mute graph Gx1 ; : : : ; Gxk .

! �(Gx1) = C1; : : : ;�(Gxk) = Ck !

 b1; : : : ; bk  Generate a public

coin 
ip b1; : : : ; bk.

Show isomorphism between each

pair Gbi and Ci

! (Gb1 � C1); : : :(Gbk � Ck)!

This protocol is still an interactive proof, meaning that if the graphs are isomorphic the veri�er

will be convinced, and if they are not he will detect this with probability 1� 2�k. Additionally,
the protocol is an AM proof, however, the ZK property cannot be established any more.

The problem is that when the simulator sends the k graphs H1; : : : ;Hk to a veri�er, the veri�er
may send in return query bits that depend on those graphs. This means that if the simulator tries

to reset the veri�er and send k new graphs that were generated from G0 and G1 according to the

query bits, the veri�er might ask di�erent queries. Depending on luck is also a bad strategy here.
While the veri�er has no way to know from which of the input graph was each Hi generated,
the chances that the query bits will match the generation pattern of the Hi's is only 2�k . So it

will take the simulator exponential (in k) expected time to generate a valid conversation. Note

that even knowing the code of the veri�er is not enough. The veri�er might choose the query
bits according to some hard to invert hash functions of the Hi's.

What should we do? Intuitively, we would like to modify the protocol such that the veri�er

will have to commit to its query bits before seeing the Hi's. Of course the commitment should
not reveal the bits to the veri�er in any way, otherwise he might generate the graphs Hi accord-
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ingly, and the protocol will no longer be an interactive proof. Having such a bit commitment

mechanism, the idea is that a simulator will be able to get the committed bits, then send some

H1; : : : ;Hk. Then the veri�er de-commits, or reveals its bits. Now the simulator rewinds the

veri�er to the state it was in just before receiving the Hi's, and sends another sequence of k

graphs, which were generated according to the bits (which must be the same, since the veri�er

committed to them), and generate a conversation.

We face however a major problem. When we used encryption, we used it to hide information

from the veri�er. This worked because the veri�er has only polynomial time to try to decipher the

messages. But our prover has in�nite computational power, so the veri�er cannot hide anything

by encryption. The solution is to modify a bit our requirements from the bit commitment

protocol. We will devise a mechanism that will ensure that the prover has no way at all to know

the query bits, since this is essential for maintaining the IP properties. We will however let the

veri�er cheat sometimes, that is to ask a di�erent query than the one he committed to. This has

no relevance to the IP properties, but it might a�ect the ZK property. However, we will make
sure that if the veri�er changes his bits, then he already knows the isomorphism between G0 and
G1, so he doesn't gain any knowledge from the protocol.

P communication V

Generate 2 random graphs A0,

A1 by permuting G0

twice.

! A0; A1 !

 �1(Ab1) : : :�k(Abk) Generate k random bits

b1 : : : bk and k random permu-

tation �1 : : :�k.

Generate k random graphs

H1 : : :Hk by permuting G0

! H1 : : :Hk !

P checks that all (bi;�i) for

all i = 1; : : :k are valid. If

this is not the case, P stops the

conversation.

 (b1;�1) : : :(bk;�k) (Send the query bits, with

\proofs" that these were indeed

committed.)

(Send a proof that P could not

decipher the committed bits.)

! G0 � A0 � A1 !

(Send the actual proofs.) ! H1 � Gb1 : : :Hk � Gbk !

It is easy to see that the protocol is indeed an IP protocol. Since V accepts only if in the step

before last P proves that A0 and A1 are isomorphic, V can be sure that P could not know what
are b1; : : : ; bk. So in fact in this sense the protocol is similar to the previous (non ZK) one, since

the query bits are sent all after P sends H1; : : : ;Hk. To prove that the protocol is indeed a ZK
protocol we have to show a simulator for any veri�er. The simulator works in phases, where each

phase is divided into two sub-phases. If a phase succeeds, the simulator generates a conversation,

and is done. Since the probability of success will be shown to be constant, the expected number
of phases of the simulator will be constant. In the �rst sub-phase, the simulator tries to simulate

a conversation under the assumption that the veri�er he has is honest, hence the simulator is
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in the honest mode. He generates A0 and A1 from G0, sends them to the veri�er, then gets

the k permuted copies of them (the commitments), and sends the k random graphs, generated

arbitrarily from G0 or G1. Then the veri�er de-commits and reveals the bits. The simulator

then rewinds the veri�er to the state just before the k random graphs were sent, and now sends

k permuted graphs, but that were generated from G0 or G1 according to the query bits. If the

veri�er is an honest one, and actually de-commits the same bits, we are done, since the simulator

can run the protocol to completion. If, however, the veri�er sends di�erent bits, we are out of

luck. Note that the simulator cannot actually declare the veri�er a cheater, since this is not

something that a prover could �nd out in a real conversation. In that case the simulator moves

to the second subphase, the cheating mode. Now the simulation starts by generating A0 from G0

and A1 from G1. Note that the veri�er cannot distinguish between these modes, since he always

sees two random isomorphic graphs. The simulation proceeds as before, the veri�er is rewinded,

and given new Hi's. If he is honest now, and de-commits to the same bits, we are again out of

luck, since the simulator will not be able to demonstrate the isomorphism between A1 and G0.
But if the veri�er cheats again, we can complete the simulation. Consider the bit bi that the
veri�er changed. In the �rst try, he demonstrated that some graph is isomorphic to A0 say. In

the second, he demonstrated that the same graph is isomorphic to A1. By doing so, he gave the
simulator the isomorphism between A0 and A1, and therefore between G0 and G1. So now there
is no problem to answer all the queries, and to show that A1 is isomorphic to G0.
The crucial point is that because the veri�er cannot distinguish between the honest and cheat-

ing mode, the probability that he will cheat in the honest mode and be honest in the cheating

mode is at most 1=4. So the expected number of phases is constant.
The protocol which appears in [Bellare,Micali,Ostrovsky 1990], is a perfect ZK protocol. The

way we presented the correctness proof however, only shows that the protocol is a statistical ZK
protocol, since a veri�er might behave in some deterministic way (that is, be honest or cheat) for
someA0 and A1's, so it is not clear that the distribution will be completely identical. The protocol
is a perfect ZK protocol, however, but the proof of this fact is somewhat more complicated. A

similar protocol can be devised for Quadratic Residuosity (and any other random self-reducible
problem).
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13 Number-theoretic ZK protocols and Compound ZK

protocols

13.1 Some Number Theory

In this lecture16, we consider Perfect ZK proofs for a number theoretic language. Before doing

that, we need some facts from number theory. Let's start with some de�nitions.

De�nition 13.44 ZN
� = fxj1 � x � N; gcd(N;x) = 1g.

De�nition 13.45 x 2 QR(ZN
�) if

� 9w 2 ZN
� such that w2 = x mod N , and

� ( x
N
) = 1 where ( x

N
) is the Jacobi symbol.

For the de�nition of the Jacobi symbol, see p. 30 of Dana Angluin's lecture note. We make the
following assumption:

If N is a product of two large primes and ( x
N
) = 1, then it is hard to decide if x is a QR or not.

Assumption :

Fact 13.46 ( x
N
) can be computed in polynomial time in given N even if you do not know the

factorization of N .

Fact 13.47 Suppose N = P1P2 (a product of two di�erent primes). Given x 2 QR(ZN
�), there are

four di�erent square roots of x mod N , say y;�y; z;�z. Then we have gcd(y + z;N) = P1 or P2.

In particular, if you know these four square roots, it is easy to factor N .

Proof: Since y2 � x mod N and z2 � x mod N , y2 � z2 mod N . So there is K such that

y2 � z2 = KN . Since y2 � z2 = (y + z)(y � z), we have P1jy + z or P1jy � z. Also, P2jy + z

or P2jy � z. From these, it is easy to see P1jy + z xor (exclusive or) P2jy + z. Thus, we have

gcd(y + z;N) = P1 or P2.

On the other hand,

Fact 13.48 if you know the factorization of N , then it is easy to check whether x is a QR or not.

Fact 13.49 If both q and x are squares, then qx is a square. If q is a square and x is not a square,
then qx is not a square.

16Scribe notes taken by: Shuzo Takahashi, October 18, 1994
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13.2 A Perfect ZK Proof for QR in 3k rounds [GMR]

Now we describe an IP protocol for QR. In this protocol, an input is a pair (N;x), and the

prover needs to convince the veri�er that x 2 QR(ZN
�).

Protocol 1

P communication V

Generate a square q

at random.

! q !

 b Generate a random bit b.

Send
p
q (if b = 0) and sendp

qx (if b = 1).

!pq or pqx!

Repeat the above k-times sequentially.

It is easy to see that this is an IP proof. Notice the similarity between the protocol for the
graph isomorphism and Protocol 1. Actually, this protocol can be translated into the graph
isomorphism protocol. Now we show that Protocol 1 is a statistical ZK proof (it can also be

shown that the above protocol is perfect ZK by running, in parallel to the simulator below, an
\exponential search" simulator). The following is a statistical ZK simulator:

Description of a Simulator

(1) Set the state of the veri�er as usual.

(2) Pick a bit b0 and l 2 ZN
� at random. Then if b0 = 0, set q = l2 mod N and if b0 = 1 then

q = l2x�1 mod N .

(3) Then send q to the veri�er.

(4) If b = b0 (where b is a random bit generated by the veri�er), then we can supply
p
q or

p
qx

(depending on b = 0 or b = 1) to the veri�er. Otherwise, reset the state to (1) and repeat

(2)-(4).

The distribution created by taking only the successful repetitions is equal to the distribution of

the prover-veri�er conversation in Protocol 1.

Remark: the above protocol is also perfect ZK, where the above simulator is augmented by

adding low-probability exponential-time search, as before.

13.3 A Perfect ZK proof for QR in 5 rounds

In this section, we give a perfect ZK proof for QR which takes only 5 rounds. (it is a simpli�cation
of a [BMO-90] protocol for this problem.) Again, the input is (N;x) and the prover needs to

convince the veri�er that x 2 QR(ZN
�).

Protocol 2
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P communication V

Randomly generate

s 2 ZN �, and calculate z = s2.

! z !

 y1; :::; yk (commitment)  Randomly generate bits

b1; :::; bk and

r1; :::; rk 2 ZN�, and calculate

yi = zbir2i .

Randomly generate squares

q1; :::; qk.

! q1; :::; qk !

P checks that yi = zbir2i for all

i = 1; : : :k. If this is not the

case, P stops the conversation.

 r1; :::; rk; b1; :::; bk De-commit y1; :::; yk, i.e., show

r1; :::; rk and b1; :::; bk

to the prover.

Send a proof that the prover

couldn't decipher the commit-

ted bits.

!pz !

Send
p
qi or

p
qix for each i

depending on bi = 0 or bi = 1.

!pqi or pqix!

We can show that Protocol 2 is a perfect ZK proof. The proof is similar to the [BMO-90]
�ve-round graph isomorphism simulator..

13.4 Another Example of Perfect ZK Proof: Proving an "OR" of

GI

Let L = fh(G0; G1); (C0; C1)ij either G0 � G1 or C0 � C1g. In the following protocol, the prover
needs to convince the veri�er that at least one of two pairs of graphs is isomorphic.

Protocol 3

P communication V

Randomly generate bits b1 and

b2, and graphs G0 and C0 such

that G0 � Gb1 and C0 � Cb2 .

! G0; C0!

 b Randomly generate a bit b.

Choose b1
0 and b2

0 such that

b = b1
0 � b2

0, and such that

G0 � Gb1
0 or C0 � Cb2

0 .

! b1
0; b2

0; G0 � Gb1
0 ; C0 � Cb2

0 !

Repeat the above k-times sequentially

Now we claim:

Claim 13.50 The above protocol is an IP proof for the language L.
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Proof: If x 62 L, that is, G0 6� G1 and C0 6� C1, then the prover cannot �nd b01; b
0
2 described in

Protocol 3 at least half the time. So the veri�er will reject with probability � 1

2
. On the other

hand, if x 2 L, say G0 � G1, then the prover can change b1 to b01 (if it is necessary) and take

b2
0 = b2 so that b = b1

0� b2
0 for b which is sent by the veri�er. So the prover can always convince

the veri�er.
Next we claim:

Claim 13.51 The protocol is a statistical ZK proof

Proof: The following is a simulator:

Simulator

(1) Record the state of the veri�er.

(2) Pick b1; b2 at random and generate G0; C 0 such that G0 � Gb1 and C 0 � Cb2.

(3) Send G0 and C 0 to the veri�er.

(4) If b = b1 � b2 (where b is a random bit generated by the veri�er), then we can supply b1,
b2, Gb1 , and Cb2 to the veri�er. Otherwise reset the state of the veri�er to (1) and repeat
(2) - (4).

The distribution created by taking only the successful repetition is statistically close (i.e. with
exponentially small probability the protocol is always guessing wrong, and then we can not
proceed) to the distribution of the original prover-veri�er conversation in the protocol. Thus,
Protocol 3 is a statistical ZK proof.

Remark: the above protocol is also perfect ZK, where the above simulator is augmented by

adding low-probability exponential-time search, as before.
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14 Perfect Zero-Knowledge Graph Non-Isomorphism

In this lecture we consduer ZK protocol for GNI, due to [GMW]17.

Let L = f(G0; G1)jG0 6� G1g. Now, the prover's task is to convince the veri�er that two graphs
G0 and G1 are not isomorphic. The following is an IP protocol for L.

Protocol 4

P communication V

 G0  Randomly generate a bit b and

G0 such that G0 � Gb.

Find b such that G0 � Gb. ! b!

Repeat the above k-times.

Now we claim:

Claim 14.52 Protocol 4 is an IP proof for the language L.

Proof: If G0 6� G1, then the prover can always tell b which is sent by the veri�er. On the other
hand, If G0 � G1, then the prover can send b at most half the time.

However, Protocol 4 is not a ZK proof (of any type)! Suppose the veri�er has a graph C such
that G0 � C or G1 � C; but the veri�er does not know which is the case. If the veri�er sends C
to the prover and the prover answers faithfully, then the veri�er knows which one of G0 and G1

is isomorphic to C. This is extra information. Also, notice that an obvious simulation does not
work because a veri�er V 0 might have a biased coin. A ZK proof for the graph non-isomorphism

exists, to design it, let us �rst consider a modi�cation of the above protocol:
Here's another interactive protocol for graph non-isomorphism (GNI) { P wants to prove to V
that G0 6�= G1.

Prover Communication Veri�er

Flip a coin b 2 f0; 1g
 C0; C1 Generate random permutations

C0
�= Gb and C1

�= G�b

Guess bit b ! b!

(1) This is an interactive protocol:

� If G0 6�= G1, then C0 6�= C1, so P can always distinguish between them and thus guess the

bit.

17Scribe notes taken by: Shuzo Takahashi, October 18, 1994; Sanjoy Dasgupta October 27. 1994
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� If G0
�= G1, then C0

�= C1, so no prover can distinguish them; thus any prover has at most

a 1=2 chance of fooling V . This can be reduced to 1=2k by repeating the process k times.

(2) However, the protocol is not clearly zero-knowledge: we run into di�culties constructing

a simulator for it.

The basic problem is that V may not know the bit b before the prover tells him what it is, so

that he actually gains information. To overcome this, we force V to start by proving to P that he

knows b (so that he can't possibly have gained anything from P 's answer). Here is the expanded

protocol:

Prover Communication Veri�er

Flip a coin b 2 f0; 1g
 C0; C1 Generate random permutations

C0
�= Gb and C1

�= G�b

V proves that he knows b:

 D1; : : : ; D2k  Generate graphs D1; : : : ; D2k,

fD2i�1; D2ig �= fC0; C1g
Flip coins q1; : : : ; qk ! q1; : : : ; qk ! Find k pairs of isomorphisms

�1; : : : ; �k, such that

�i : fD2i�1; D2ig ! fG0; G1g
if qi = 0, and

�i : fD2i�1; D2ig ! fC0; C1g
if qi = 1

Check the �i  �1; : : : ; �k  
Find bit b ! b!

Notation:

fA;Bg �= fC;Dg means that (A �= C ^ B �= D) or (A �= D ^B �= C):

� : fA;Bg ! fC;Dg means that fA;Bg �= fC;Dg and � consists of the two relevant mappings.

To get an idea of what is going on in the \proof of knowledge" phase, consider the pair (D1;D2).

P will ask V to either demonstrate a mapping fD1;D2g ! fG0; G1g or fD1;D2g ! fC0; C1g.
Since V doesn't know beforehand which mapping he will be asked for, he must know both of

them (otherwise, he'll fail with probability 1=2). If he knows both of them, then he automatically
knows a mapping fG0; G1g ! fC0; C1g and he therefore knows b. So the chance that he doesn't

know b but manages to give the right answers (for all k pairs) anyway is 1=2k . Here's a statistical

ZK simulator SV̂ for this protocol:

1. Get (C0; C1) and (D1;D2); : : : ; (D2k�1;D2k) from V̂ .

2. Record V̂ 's state (the usual).
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3. Send random bits q1; : : : ; qk, and get responses �1; : : : ; �k.

4. Reset V̂ to its old state (in 2).

5. Send new random bits q01; : : : ; q
0
k, and get responses �0

1; : : : ; �
0
k. With high probability

(1 � 1=2k), qi 6= q0i for some i. For this i, we have �i : fD2i�1;D2ig ! fG0; G1g and

�0
i : fD2i�1;D2ig ! fC0; C1g. Therefore, we know b.

The distribution created by successful runs of this simulator is statistically equivalent to that

created by the prover-veri�er conversation. It is not necessarily perfect ZK because of the tiny

chance of failure. To make the simulator perfect ZK, we can augment it with a low-probability

exponential-time search.
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15 ZK for ALL of NP

15.1 ZK Proofs for all of NP under physical assumptions

In our protocolgraph non-isomorphism, the veri�er had to convince the prover that he knew a

certain bit. Now we'll look at a situation where the prover must commit to a bit and then reveal

it later to the veri�er. For the time being, let us implement this using a physical assumption {

safes. Later, we'll show to how simulate this using one-way permutations. Figure 1 shows the

protocol.

Figure 1: Bit commitment using a safe:

Commital:
    puts bit in safe

Decommital:
    reveals combination

66−02−39

Prover Verifier

We'll use safes to exhibit a ZK protocol for Graph 3-Colourability (G3C), an NP-complete

problem { see Figure 2. It is statistical zero-knowledge, since the conversations can be simulated
as shown in Figure 3.
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Figure 2: ZK proof for G3C:

Prover Verifier

?

Colours, then commits:

Randomly picks an edge

Reveals
Combinations

Checks colouring(Repeat k times)
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Figure 3: ZK simulator for G3C:

?

Simulator Verifier

Records state of verifier

Colours only one edge, then commits

Picks an edge

Is this the edge we want? If not,
reset Verifier; otherwise:

Reveals
Combinations

Checks colouring

80



15.2 ZK proofs for NP using one-way permutations

15.2.1 Implementing safes

We'll show how to simulate a safe using a one-way permutation f :

Commital:

� P wants to commit to bit b. He randomly chooses p; x such that jpj = jxj.

� P sends p; f(x); (x � p)� b to V .

Decommital:

� P sends x; b to V .

Why does this system work?

(1) It is perfectly binding { because f is a permutation, P is fully committed to x. He is thus
committed to (x � p) and therefore to b.
(2) If the veri�er (who operates in probabilistic polynomial time) can deduce any information

about b, then he can invert f , as we showed in our proofs about hard-core bits.
It makes a big di�erence whether f is a uniform or non-uniform one-way permutation, as we'll

see below.

15.2.2 ZK protocol for Graph 3-Colourability

Here is a more formal statement of the ZK protocol for G3C:

Prover Communication Veri�er

C = 3-colouring of graph G

Repeat k times:

Permute(C) ! Commit to C !
 u; v  Pick an edge e = (u; v) 2 G

! Decommit colouring of u; v ! Check colouring of u; v

Intuition for proof: If graph G has jEj edges, then the probability that P doesn't know a

coloring but manages to fool V is at most (1� 1

jEj
)k. So for k � `jEj, this probability is less than

1=e`. The simulator SV̂ follows the usual pattern:

Do k times:

1. Pick an edge e = (u; v) in G and color u; v di�erently. Assign all other vertices the same
color.

2. Commit to the coloring of G.
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3. Record the state of V̂ .

4. If V̂ asks for an edge other than e, reset its state, and repeat step (4). Otherwise, decommit

vertices u; v.

As before, this is a statistical ZK simulator, because it has a (small) chance of failure, but it

can be made into a perfect ZK simulator by adding a low-probability exponential search.

The proof of the protocol is rather involved, and we'll touch on some of the important issues

below.

15.2.3 Uniform vs. Non-Uniform Bit Commitment

One possible problem with the protocol is that we've assumed that our bit commitment scheme

is secure in this context. Consider, for instance, what happens if it is based on a permutation f

which is uniform one-way but not non-uniform one-way. That is, f (and thus the bit commitment)
can be cracked with non-negligible probability by a family of poly-sized circuits (one circuit for
each input size) or equivalently, by a polynomial time Turing machine which receives some
additional \advice" as input (this advice being the description of the relevant circuit). Well, it
might just happen that the advice that the veri�er needs to break the bit commitment scheme

is precisely the statement \G is 3-colourable"! Who knows? { this statement might, by some
strange mapping, be exactly equivalent to the description of a circuit that can invert the function
f . Thus it is crucial that f be non-uniform one-way.

15.2.4 ZK subroutines

Here's another di�culty { our interactive protocol for G3C consists of a loop which is repeated
many times. We can show that a single iteration of this loop is zero-knowledge, but it is somewhat
more complicated to show that the entire protocol is zero-knowledge, since with each successive

iteration, the veri�er has more information (speci�cally, the conversation from previous rounds).
To handle this, we introduce a new term:

De�nitionAn interactive protocol (P; V ) for a language L is auxiliary-input zero-knowledge
if 8 veri�ers V̂ 9 simulator S

V̂
2 PPT such that:

8h; 8x 2 L; P V̂ (x; h) ' S
V̂
(x; h)

Here, h corresponds to the past history between the prover and veri�er. If a protocol is

auxiliary-input zero-knowledge, then we'll see in a later lecture that it can be used as a subroutine
without any problems. That is, it can be used in another program which calls it a polynomial

number of times, and these multiple calls taken together will be auxiliary-input zero-knowledge.

15.2.5 Main proof

The core of the proof consists of the following:

Claim Say the bit-commitment scheme is based on a permutation f . If for in�nitely many
graphs, the veri�er can often (with non-negligible probability) decide if a committed (hidden)
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graph coloring is correct, then f is not non-uniform one-way.

Proof Intuition. Let's �rst restate the claim. Without loss of generality, assume there's

a in�nite sequence of graphs G1; G2; : : : where the size of Gi is i, on which the veri�er V can

often distinguish a hidden correct coloring from a hidden incorrect coloring. For each graph

Gi, �x (1) a correct 3-coloring Ci and (2) an incorrect coloring C 0
i in which the vertices of one

edge are colored the same as in Ci and the remaining vertices all have the same color. Let our

bit-commitment relation (a hard-core predicate of f) be g(�). With a slight abuse of notation, let

g�(Ci) denote a committal of coloring Ci. So we know that 8i; V can often distinguish between

g�(Ci) and g�(C 0
i). We'll use this fact to construct a family of poly-sized circuits Pi, each of

which can invert g(�) on outputs of length i, with non-negligible probability.

Look at a speci�c pair (Ci; C
0
i). Consider a sequence of colorings C

0
i = D1;D2;D3; : : : ;Dk = Ci

such that Dj+1 is the same as Dj except for one vertex vj, whose coloring is changed to that

in Ci. Using our old hybrid argument, we can show that there is some j for which V can tell
apart Dj and Dj+1 with non-negligible probability. So here's our circuit Pi: it has Gi;Dj ;Dj+1;

and vj hard-wired into it, and on input I = g(b) = (f(x); (x � p) � b; p), it asks V if there's a

di�erence between (1) Dj+1 and (2) Dj with I substituted for g(coloring of vj). The circuit is
right whenever V is.

The proof is slightly more complicated than this (for instance, the coloring of vk actually uses
two bits since there are three possible colors), but these are the main ideas behind it.
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16 ZK: a �ne print

Herein18 we will cover the the following:

� Uniform versus non-uniform zero-knowledge: a danger

� Auxiliary-input zero-knowledge

� A compiler for honest zero-knowledge ) general zero-knowledge

16.1 Uniform versus non-uniform zero-knowledge

Thus far, we have implemented a secure bit-commitment mechanism for zero-knowledge proofs
using one-way functions. A question remains as to whether we need uniform or non-uniform
one-way functions for the proofs to actually be zero-knowledge.

It turns out we must assume our one-way function f is non-uniformly secure, i.e., that it is

secure not only against polynomial-time adversaries, but also a family of circuits, one per input
length.

Recall that a uniform one-way function cannot be broken by a polynomial time adversary, but
can be broken by a family of circuits or a polynomial-time adversary with advice.

A non-uniform one-way function can't be broken by either.

As an example, in a zero-knowledge proof for graph-coloring, the description of the circuit that
breaks the particular uniform f , or the advice necessary to break it, might be embedded in the
(potentially very bizarre) graph itself.

Remark: Note that for all G of a certain input length, no advice will help.

16.2 Auxiliary-input zero-knowledge

Usually, a zero-knowledge proof is a subroutine in some larger application. Thus, much additional

information might be available to the veri�er. For example, the veri�er might know how to color

half of a certain graph. We now discuss how a veri�er, V , gets no additional information, even

given some auxiliary input.

De�nition 16.53 An interactive proof PV for a language L is auxiliary-input zero-knowledge if:

8 V̂ 9SV̂ 2 PPT s.t. 8h 8x 2 L

[P V̂ (x; h)] �= [SV̂ (x; h)]

i.e. the distributions are indistinguishable.

18Scribe notes taken by: Todd Hodes, Ocotber 27, 1994
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Here, the simulator has two inputs, where h is an arbitrary string: the auxiliary input.

The bene�t of auxiliary-input zero-knowledge proofs is that they can be combined, and they

stay zero-knowledge. For example, lets look at the special case where a single protocol is repeated

multiple times. We �rst prove that the protocol is \good," i.e. that the probability of error is

negligible, and then prove it is auxiliary-input zero- knowledge. Thus, assume we have a protocol

PV that shows x 2 L with probability of 1
2
. Running this protocol Q times gives us a new

protocol, PQVQ.

Claim 16.54 If PV is auxiliary-input zero-knowledge, then PQVQ is also auxiliary-input zero-knowledge.

Proof:

Suppose 9 a distinguisher that can distinguish distributions P1V1; P2V2; P3V3; : : : from the

distributions S1; S2; S3; : : :, where the simulator Sn has the previous partial history as auxiliary

input.

Consider \hybrids" Pj , for 0 � j � k, where in Pj the �rst j samples come from PnVn and
remaining samples come from Sn:

P0 = (P1V1)(P2V2)(P3V3) : : : (PkVk)

P1 = S1(P2V2)(P3V3) : : : (PkVk)

P2 = S1S2(P3V3) : : : (PkVk)
...

Pk = S1S2S3 : : : Sk

We know P0 � Pk > 1

2n
; and therefore 9j such that Pj � Pj+1 >

1

k2n
, another 1

poly
fraction.

Consider a distribution:

P ( z ) = S1S2S3 : : : Sj z (Pj+1Vj+1) : : : (PkVk)

If z is a sample from Sn then P (z) = Pj, and if z is a sample from PnVn then P (z) = Pj+1.
Assuming we �nd j + 1 and �x the other values correctly, such a distinguisher could be used to

distinguish this single sample, z , which is a contradiction.

16.3 A compiler for honest zero-knowledge) general zero-knowledge

It would be nice if we knew that a veri�er following a zero-knowledge interactive proof protocol

wouldn't \cheat" and try to obtain additional information from the prover. Since this is unlikely,
we will now look at a procedure to take a honest ZK protocol and convert it into one where
it is assured that no information is revealed. In other words, we will show how to convert an

interactive proof which is zero-knowledge for an honest veri�er into an interactive proof which is

zero-knowledge for any veri�er.

The �rst step in the procedure is to design a protocol where V must follow the instructions

exactly, an honest zero-knowledge protocol. The second step is to \compile" this into a new
protocol which is guaranteed to divulge no information, regardless of the actions of the veri�er.
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First, we describe a procedure developed by [Blum and Micali]: 
ipping coins into a well:

A person P1 stands far enough away from a well so as not to be able to look into it. Another

person, P2, stands at the edge of the well. P1 then 
ips coins into the well. P2 can discern the

result of the coin tosses by looking into the well, and also prevent P1 from seeing them.

This can be formalized as follows:

Tossing Coins Into a Well

P1 communication P2

1  commit(b1)  Generate a random bit b1

2 Generate a random bit b2 ! b2 ! r = b1 � b2

If multiple bits are needed, they can all be done in parallel, still using only two communications.

This procedure has the following properties:

1. P2 cannot control the outcome of the coin 
ip

2. P1 doesn't know the outcome of the coin 
ip

Note that V will never have to decommit her bit if they use a \good" commitment scheme.
Given this procedure, if we let P1 = P and P2 = V , Prover can pick the coins for V . We

must now enforce that V acts honestly. One way of doing this is by demanding that each time
V sends a message m to P , V also sends a zero-knowledge proof of the following NP statement:

\According to my committed secret random tape and previous random history, m is
the message I was supposed to send."

However, how does a veri�er commit to a prover, if the prover has arbitrary computational

power? This is the topic of our next lecture.
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17 Bit-Commitment (BC): two variants

17.1 Introduction

These notes19 explain two versions of Bit Commitment and the construction of Bit Commitment

protocols based on cryptographic protocols.

Let's recall the problem of Bit Commitment (BC). There are two communicating parties, a

sender S, and a receiver R. BC takes place in two stages. First, in the commit stage, a bit b is

committed to, then in the reveal stage the bit is revealed. In order to make this protocol e�ective

we want it to possess the following two properties:

� R has no knowledge of the value of b until S wishes him to know it.

� S cannot change the value of his commitment, i.e., decommit to a di�erent value after
commiting to it.

There are two properties of a BC protocol:

1. Security: The complexity of R knowing the value of b, i.e., how well b is \hidden".

2. Binding: The complexity of S being able to \cheat" (change the value of his commitment
without R detecting it), i.e., how \binding" is the commitment to the sender.

We will see two versions:

1. Computationally Secure/Perfectly Binding.

2. Perfectly Secure/Computationally Binding.

17.2 Computationally Secure/Perfectly Binding BC (CS/PB)

Computationally Secure/Perfectly Binding BC has the following properties:

1. After commitment b is well de�ned, i.e., sender will never be able to cheat and decommit

both a 0 and a 1.

2. b is hidden only computationally.

Note: S can have arbitrary complexity but R must only be of polynomial-time complexity.

The following is an example of a CS/PB BC protocol. Let f be a one-way permutation. Let
HCB(x) be a Hard Core Bit of a string x generated using f , then the following is a CS/PB BC

protocol of bit b:

19Scribe notes taken by: Elan Amir, October 25, 27 1994
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S communication R

Generate a random string x.

Let c = b�HCB(x).

Commitment ! f(x); c!
Decommitment ! x; b! Verify c = b�HCB(x).

Let's examine the protocol in detail and see why it is in fact CS/PB. In order to cheat the

sender has to be able to �nd a value of x with the property that

HCB(f�1(f(x))) = f0; 1g
But f is a permutation so this is impossible. Therefore the protocol is Perfectly Binding. On

the receiver's side, in order for the receiver to determine b from the information he is given, he

needs to determine the value of HCB(x) which is computationally di�cult for a polynomial-time
receiver. Therefore, the protocol is Computationally Secure.

17.2.1 Extending CS/PB BC Protocol Construction to all One-Way Functions

We have seen a CS/PB BC protocol that requires the use of one-way permutations. We now
show that such a protocol can be devised using any one-way function f .
The �rst step of the construction uses the fact established in [ill] that any one-way function can

be used to build a Pseudo-Random Number Generator (PRG). [naor] completes the construction
with the result that any PRG can be used to construct a CS/PB BC protocol. We now prove
this result.
Let G : f0; 1gn ! f0; 1g3n be a PRG. Let C(g; r) = c; g; r; c 2 f0; 1g3n where the bits of c are

de�ned as follows:

ci =

(
gi � b if ri = 1
gi if ri = 0

Now consider the following BC protocol of bit b.

S communication R

 r  Choose a random 3n-bit string r.

Choose a random n-bit seed s.

Let g = G(s); c = C(g; r)

Commitment ! c!
Decommitment ! b; s! Verify c.

Let's examine the properties of this protocol. First, we claim that the sequence c is still

pseudo-random. To see this, observe that if b = 0, then c is just the output of a PRG. If b = 1,
then c is the output of a PRG with a random set of 
ipped bits. The latter case is pseudo-random

since if it was not, i.e., we could construct a distinguisher to distringuish between c and a truly

random value, we could use this distinguisher to distinguish all pseudo-random numbers, which
contradicts the assumption of PRG existence. Since c is pseudo-random, b is computationally

hidden, and the protocol is Computationally Secure.
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Next, for a given r, consider what the sender needs to do in order to cheat. He must �nd two

seeds s1 and s2 such that G(s1) agrees with G(s2) on all bit positions where ri = 0 and disagrees

with G(s2) on all bit positions where ri = 1. A simple counting argument will show that given a

random r the probability of the existence of such a pair is exponentially small. We observe that

each pair of seeds corresponds to a single choice of r (since the bits of r are de�ned according to

the corresponding bits of s1 and s2 as described above). Next, notice that there exist 22n pairs

of n-bit seeds. The correspondence between seed pairs and r implies that there exist at most 22n

values of r for which there exist a pair of seeds s1 and s2 that can be used to cheat. However,

there exist 23n 3n-bit strings for r so that the probability that given a random r there exist a

pair of seeds s1 and s2 that can be used to cheat is 22n=23n = 2�n.

Therefore we have have shown that any one-way function can be used to construct a CS/PB

BC protocol.

17.3 Perfectly Secure/Computationally Binding BC (PS/CB)

Perfectly Secure/Computationally Binding BC has the following properties:

1. After commitment, b is perfectly hidden, i.e.,

8conversations c of commitment; P (cjb = 0) = P (cjb = 1)

where the probabilities are over the coin-
ips of S and R.

2. A polynomial-time sender can not cheat, i.e., decommit to both a 0 and a 1.

Here we note that S must be of polynomial-time complexity while R can have arbitrary
complexity.
Before moving on to an example of a PS/CB BC protocol we introduce the notion of claw-free

functions. Informally, two one way permutations f0; f1 are claw-free if it is computationally
intractable to �nd in polynomial-time two values x0; x1 such that f0(x0) = f1(x1).
We are now ready for a PS/CB BC protocol. Let f0; f1 be two claw-free one-way permutations.

Then the following is a PS/CB BC protocol of bit b:

S communication R

Generate a random string x.

Let z = fb(x).

Commitment ! z !
Decommitment ! x; b! Verify z = fb(x).

Why is this PS/CB? In order for the sender to cheat, he has to �nd two values x0; x1 such
that f0(x0) = f1(x1), that way when he decommits he can send xb. But this property contradicts

the fact that f0;1 are claw-free for a polynomial-time sender, so this protocol is Computationally
Binding. Note that the alternative of �nding a value of z such that f0;1(x) = z is impossible

since f0;1 are permutations. On the receiver's side, since f0;1 are permutations, there exist x0; x1
such that f0(x0) = f1(x1) = z, therefore only the knowledge of z does not enable the receiver to
obtain any information on b since the sender could have computed z with b = 0 or b = 1 with

equal probability. Therefore the protocol is Perfectly Secure.
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So we see that the above protocol is PS/CB providing that we can �nd claw-free functions.

We now show a Number Theoretic construction of a PS/CB BC protocol which uses a pair of

such functions.

Let b be a bit to be committed. Then the following protocol is PS/CB.

S communication R

Generate 2 large primes p0; p1.

Let n = p0p1

Generate a random string w.

Let s = w2 mod n

Generate k random values vi;

1 � i � k.

Let ti = v2i mod n

 n; s; t1; t2; : : : ; tk  Proof the s is a square

Choose k bit values ci; 1 � i � k ! c1; c2; : : : ; ck !
 pt1sc1 ; : : : ;

p
tksck (mod n) End proof that s is a square.

Commitment.

Choose a large number r.

De�ne Mb(r) = sbr2 mod n

!Mb(r)!

Decommitment ! (b; r)! Verify Mb(r) = sbr2.

The proof rests assumes the fact that factoring cannot be be done in polynomial time. First,
let's examine the proof of the fact that s is a square. Note that if s is not a square then if bi = 1,p
tisci will not be de�ned unless ti is not a square and the product tis

ci is a square. In that case,
when bi = 0,

p
ti will not be a square. So we see that the probability of R being able to cheat

on the fact that s is a square is 2�k.
Next, notice that since s is square, both values that the sender could send are squares, i.e., in

the quadratic residue of n, and therefore have the same distribution. As a result, the receiver

learns no information on the value of b from the commitment which implies that the protocol is
Perfectly Secure. From the sender's point of view, in order for him to cheat, he must be able to

factor s, since then he would be able to send the pair (b; r
p
s) or the pair (b; r), depending on what

he chose to decommit to. However, since we assume that factoring s is computationally impossible

for a polynomial-time machine, the fact that the sender has only polynomial complexity assures

that the protocol is Computationally Binding. Note that the above discussion shows that Mb is
a pair of claw-free functions.

17.3.1 Construction of a PS/CB BC using any One-Way Permutation

We now show a PS/CB BC protocol that removes the restriction of claw-free functions. The
following protocol is presented in [novy]. The sender wishes to commit to a bit b. Let B(x; y) =

x � y (mod 2); x; y 2 f0; 1gn. Let f be a one-way permutation on f0; 1gn.
The following is the commitment stage:

1. S generates a random n-bit string x and computes y = f(x).
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2. R selects a linearly independent set of n-bit vectors fh1; h2; : : : ; hn�1g.

3. For j from 1 to n� 1

� R sends hj to S.

� S sends cj = B(hj; y) to R.

4. The n � 1 iterations of the above step de�ne n � 1 linearly independent equations of the

form cj = B(hj; y). Therefore there are exactly two n-bit vectors y0; y1 that are solutions

to these equations. De�ne y0 to be the lexicographically smaller of the two vectors. Both

S and R compute y0 and y1 (this does not place any restrictions on the complexity of S or

R since a set of linear equations can be solved in polynomial time). Observe now that y is

equal to either y0 or y1. Let

c =

(
0 if y = yb
1 if y = y1�b

5. S computes c and sends it to R.

To decommit S sends b and x to R who veri�es the computation of c and that in fact y = f(x)

solves the set of equations.
The above protocol is clearly perfectly secure. How do we show that it is computationally

binding? Observe that in order to cheat the sender must be able to know f�1(y0) and f�1(y1)
since then he will be able to send the appropriate inverse corresponding to the bit value he wishes
to decommit to according to the de�nition of c. However, we now show that this is impossible. In

particular, we show that if the sender can invert both solutions to the equations, we can use that
sender as a subroutine to an algorithm which can invert a one-way function. The construction
of such an algorithm is as follows.
De�ne the If to be the following algorithm which \communicates" with a cheating sender Ŝ.

The input to If is an n-bit string w. B(x; y) is de�ned as before.

The core of the algorithm is the following loop:

1. Record the entire state of Ŝ.

2. Pick h1 at random and send it to Ŝ.

3. Upon receipt of c1 from Ŝ check if B(h1; w) = c1 If so, proceed to h2 (linearly independent
of h1), otherwise reset Ŝ to the state recorded in (1) and goto (2), i.e., choose a new h1.

If continues this loop until either it succeeds n � 1 times, i.e., it accepts h1; h2; : : : ; hn�1, or

it fails n times, i.e., it needs to choose a new hi in step (3) n times over the runtime of the

algorithm (not necessarily consecutively).
Here is an idea of what happens (the actual proof is more complicated): We now examine

the state of If when it terminates. In the �rst case, we have obtained n � 1 linear equations to

which w is a solution and which we know that Ŝ holds the inverse to, since it computed its ci's

using the same check we performed in step (3). Therefore, at the decommital stage Ŝ will send
us f�1(w). In a sense we have \forced" Ŝ into inverting our w by constraining the equations

to contain w as a solution, thereby obtaining the inverse by the assumption that Ŝ could invert
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both solutions. In the latter case, we observe that if Ŝ has avoided w n times this means that

we already have n equations which are su�cient to solve for w. This means that Ŝ has already

guessed w, which ((can be shown to happen over the choice of w) with negligible probability.

We see therefore that if S can cheat, we can invert a one-way function. Therefore, the protocol

is Computationally Binding.

92



NEEDS REVISION

18 Two-prover Model

18.0.2 Setup

All of our previous 20 discussions of zero-knowledge proofs have been based on the notion of

\secure envelopes" or \locked safes," where we can place a bit into a container in a commitment

stage and then only open the envelope in a decommitment stage. We will now examine a two-

prover model for zero-knowledge proofs, �rst described by [Goldwasser, Benor, Wigderson,

and Kilian].

The basic framework for the two-prover model consists of two (or more) provers (P1; P2) who

are unable to communicate with each other, but who can communicate with a Veri�er (V ) using

a prescribed protocol. Graphically, the model looks like the following:

1 2
P

V

P

We could imagine many ways of implementing this. For example:

� The two provers could be devices (such as ATM cards) that are inserted into the verifying
device (such as an ATM machine). By having the veri�er physically isolate the two provers,
it can be sure no communication occurs.

� The two provers could simply have a wall between them. We illustrated this last version
for the sake of simplicity.

18.0.3 Implementation of Bit-Commitment (BC)

So far, we have shown that there exist zero-knowledge proofs for all languages in NP if we have

bit-commitment. So, in order to implement zero-knowledge proofs in the two-prover model, we

can simply show how to implement bit-commitment, and all the other machinery follows from

there.
The nice properties of the two-prover model is that it model is \perfect:" no cheating is possi-

ble, and everything is hidden information-theoretically. Also note that there are no cryptographic
assumptions here, only physical ones.

First we'll describe a slightly broken protocol, Weak Two-Prover Bit-Commitment, where

we allow the provers to cheat with a probability of 1

2
. Then we'll describe how to �x it to

20Scribe notes taken by: Todd Hodes, November 1 1994
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obtain Strong Two-Prover Bit-Commitment, where the provers chances of cheating can be made

arbitrarily small (negligible).

18.0.4 Weak Bit-Commitment

The following is a protocol for Weak Two-Party Bit-Commitment.

The provers P1 and P2 have a bit b they want to commit. They choose two bits b0 and b1
such that b0 � b1 = b. V then picks a bit i, sends it to P1, and asks P1 to return bi. This is

the commitment stage. V then asks for b0 and b1 from P2, and veri�es the reply. This is the

decommitment stage.

In tabular form:

Assume P1 and P2 have chosen b, a bit to commit, and a set of bits b0 and b1 such that
b0 � b1 = b.

Weak Two-Party Bit-Commitment

P1 communication V communication P2

1  i Generate a random bit i

2 ! bi ! (commitment ends)

3 de-commit phase  b0 and b1  
4 b = b0 � b1

We see that the provers can cheat by changing either b0 or b1, but not both. The cheating will

go unnoticed with probability 1

2
.

18.0.5 Strong Bit-Commitment

We now show how to implement Strong Two-Party Bit-Commitment using the weak protocol
as a subroutine. We simply repeat the procedure for weak bit-commitment k times, and the
probability of tricking the veri�er decreases to 1

2k
. This probability can be made arbitrarily small

by varying k.

The protocol is illustrated as follows:

Assume P1 and P2 have chosen b, the bit to commit, and k pairs of bits (b0; b1), (c0; c1),

(d0; d1); : : : such that b = b0 � b1 = c0 � c1 = d0 � d1 = : : :.
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Strong Two-Party Bit-Commitment

P1 communication V communication P2

1  i0; i1; i2; : : : Generate a random vector

of k bits i0; i1; i2; : : :

2 ! bi0 ; ci1; di2; : : :!
3  (b0; b1); (c0; c1); (d0; d1); : : : 
4 b = b0 � b1 = c0 � c1 = d0 � d1 = : : :

Again, the provers can cheat by changing either b0 or b1, and either c0 or c1, and either d0 or

d1, etc. But this time, the cheating will go unnoticed with a probability of only 1

2k
.

18.0.6 Some extensions

It was mentioned earlier that IP = PSPACE. Incidentally, MIP = NEXP. That is, the set of
languages with multiple-prover interactive proofs is the same as the set of languages where
membership can be determined in non-deterministic exponential time (!). This is clearly a huge

class of languages.

Additionally, multiple-prover interactive proofs with more than two provers can be simulated
by two-prover interactive proofs. Showing how this simulation is done is left as an exercise.

Finally, a quick note of the importance of the class MIP. Multiple-prover interactive proofs are
quite useful for two important reasons:

� The model gives a method to obtain strong complexity results, like PCP, but this is outside
the scope of this course

� They provide information-theoretical security

� They translate into identi�cation schemes

One example of the usefulness of MIP is a mentioned above two-card ATM scheme, where no
information is revealed if the cards are not able to communicate.
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19 Introduction to Oblivious Transfer

19.1 Oblivious Transfer

In this lecture we introduce the oblivious transfer primitive21. The concept of oblivious transfer

was developed by [Rabin, 79] for digital signatures.

Here is a story to explain the concept: Imagine I have a very smart parrot that is old and

about to die. Also imagine that I have a bit b I want to commit to my friend. I whisper the

value of the bit to the parrot. The parrot 
ies over to my friend, and with probability 1

2
tells my

friend the value of b, or with probability 1

2
dies and tells my friend nothing.

The sender (me) has no idea if the output was either the bit b or nothing. The receiver (my
friend) does know if she gets the bit or not.

Thus, if we indicate the case where the receiver gets the bit as b, and the case where she gets
nothing as #, then

Pr(b) = Pr(#) = 1

2
.

In a sense, one can simply think of OT as a noisy channel.

This game is useful in that it can be used to play many other games; it can be thought of to
be \complete" in this sense. We will now describe some other such games.

19.1.1 One-out-of-two string oblivious transfer

This game comes from [Even, Goldreich, Lempel] and can be abbreviated 1-2-String OT.

Imagine a traitor, T , who is trying to sell one of two secrets to some enemy of our country.
The enemy, E, doesn't want T to know which secret he or she has purchased. If we call the two

secrets S0 and S1, and the selection bit c, then the situation looks like this:

S

S c

S

0

1

1-2 String OT
c

More formally, a sender inputs two strings, S0 and S1, while a receiver inputs a bit c, and gets
as output Sc. At the end of the game, the sender doesn't know anything about the selection bit

c, and the receiver doesn't know anything about message S1�c.

19.1.2 One-out-of-two oblivious transfer

This game is nearly identical to 1-2-String OT, but instead of having T input strings S0 and S1,

he or she inputs single bits b0 and b1. The output in this case is the single bit bc. 1-2 OT looks
like so:

21Scribe notes taken by: Todd Hodes, November 1, 1994
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0

1

1-2  OT
c

b

b b

c

Again, the sender doesn't know anything about the selection bit c, and the receiver doesn't

know anything about message S1�c.

It has been shown by [Crepeau] that OT , 1-2 OT. The constructions for both directions are

as follows:

Claim 19.55 1-2 OT ) OT

Proof: We prove by construction.

1. sender picks bit i at random and sets Si = b and S1�1 = 0.

2. Run the 1-2 OT protocol with inputs S0; S1.

3. Have the sender tell the receiver which Si had the actual message.

4. Thus, with probability 1

2
, R gets the bit b, and with probability 1

2
, R gets nothing. This is

exactly the outcome of OT.

Now for the other direction...

Claim 19.56 OT ) 1-2 OT

Proof: Again, we prove by construction.

1. S generates a random string of bits c1 : : : cpoly, and sends it to the receiver over the OT

channel.

2. R gets something of the form c1c2##c5# : : : cpoly at the other end of the OT channel

3. R selects two disjoint subsets of 1
3
of the indices from 1 : : : poly; one of these sets should

only contain indices of bits that were successfully received.

4. R sends both sets of indices to S in the clear.

5. S then sends S0�(all the bits in the �rst subset), and S1�(all the bits in the second subset.)

6. Using the Cherno� Bound, the probability of successfully getting either more than 2
3
or

less than 1

3
bits can be made negligible:

Pr[j
X

Xi � E(X)j � E(X)

3
] < e�

E(X)

18

Thus, with overwhelming probability,R can construct one subset with all of the bits known,

but can't construct a second subset with all bits known. In this case, just a single message

will get through, which is exactly the outcome of 1-2 OT.
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20 More on Oblivious Transfer, Connetction to ZK

20.1 OT =) BC

Recall22 that in Oblivious Transfer (OT), S has a bit that is sent to R. R either receives that bit,

or receives the # sign, which is interpreted as knowledge that a bit was sent, but no knowledge

of what that bit was. Each possible outcome occurs with probability 1

2
, and S has no knowledge

of what R actually received. Recall also that we showed OT to be equivalent to 1-2-OT, where

S has two bits b0 and b1, and R has a bit c. R receives bc, but S has no knowledge of which bit

R received.

We will show that given a black box for performing OT, we can perform Bit Commitment
(BC) [kilian]. Say that S wishes to commit one bit b to R. S chooses b1; b2; b3 : : : bn such that
b = b1 � b2 � b3 � : : : bn. Then, S sends b1; b2; b3 : : : bn to R through the OT channel. With

probability 1 � 1

2

n
, at least one of the bits bi does not go through, and thus the bit b will be

information theoretically hidden.

Decommitment is performed by S sending all the bits b1; b2; b3 : : : bn in the clear (i.e. through
a channel such that they all get through). Sending an incorrect value for b requires changing

at least one of the bits b1 : : : bn. But, since S does not know which bits actually were correctly
received by R, changing any bit bi in the decommitment stage will result in being caught with
probability 1

2
. This can be ampli�ed by performing the commitment many times, where the value

of the committed bit has to be the same every time.

20.2 OT + PRG =) Communication e�cient ZK

We �rst de�ne what communication e�cient ZK is (due to [kilian,micali,ostrovsky]). This is
motivated by the story of the traveling Theoretical Computer Scientist who proves theorems

during his travels. He is only able to send postcards home. In order to ensure that he gets credit
for his work, he sends Zero Knowledge proofs on these postcards, but since he does not receive

replies, the Zero Knowledge proofs cannot be interactive, and hence the term communication

e�cient.

So, say there exists a Prover P , and a Veri�er V . They are allowed k rounds of communication
in a pre-processing stage. During the this stage, neither the prover nor the veri�er knows what
the prover will be proving, (which corresponds to the traveler not knowing what he will prove

before he leaves for his trip). After the pre-processing stage, all further communications from

P to V will not be interactive. We will show an implementation where P is able to send a

polynomial number of Theorems, of the form (Theorem 1, Proof 1).

To help explain this technique, we �rst give a ZK proof for the existence of a Hamiltonian

Cycle on graph G, due to Manuel Blum:

Blum's protocol:

22Scribe notes taken by: Micah Adler, November 3, 1994
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x = fG is Hamiloniang
P communication V

1 Generate �, a random permu-

tation of G

! Commitment of � !

2 Find C(�(E)), a cycle on the

edges of �(G)

! Commitment of C(�(E))!

3  b Generate b, a random bit

4 if b = 0 ! Decommitment of � !
5 if b = 1 ! Decommitment of C(�(G))!

Each iteration of this technique can only succeed with probability 1

2
if the graph is not Hamil-

tonian, and thus the probability of being able to cheat can be made very small by repeated
iterations.

In order to give a communication e�cient ZK proof for this problem, we will use 1-2-String
OT, and Pseudo Random Generation (PRG). Recall that in PRG, function f takes a string s

and returns a string f(s) that has length polynomial in s, such that f(s) is di�cult to distinguish
from a truly random string.
The pre-processing phase proceeds as follows: P selects pairs of strings (a0; a1); (b0; b1); : : : (z0; z1),

and V selects bits b1; b2; : : : b26. P and V then use 1-2-String OT to transmit ab1; bb2; : : : zb26 to
V . Thus, V will know exactly one string of each pair, but P will not know which one. These
strings can then be used as the seeds to a PRG, f . Then, for each pair (i0; i1), P can send two
messages M0 and M1, as M0 � f(i0) and M1 � f(i1), where M0 � f(i0) represents the strings
Mo and f(i0) bitwise XORed together. V , who also has access to the function f will be able to

decode exactly one of M0 and M1, but P does not know which one.
A communication e�cient ZK proof for Hamiltonian Cycle then works as follows. P sends, in

the clear, a commitment of �, a permutation on G and a commitment of C(�(G)), a Hamiltonian
cycle on the edges �(G). Then, P sends � XORed with fa0(theorem� number), and C(�(G))
XORed with fa1(theorem�number). Thus, since V will be able to decode exactly one of them,

but P does not know which one, P has only a 1

2
probability of being able to cheat if the graph

is not Hamiltonian. But, since we had several such pairs of strings, this can be boosted by
repeating this process for the other pairs of strings. Since the pseudo random functions can be
used polynomially many times in the length of the original string, we can perform this same

procedure for a polynomial number of proofs.
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NEEDS REVISION

21 Completeness Theorem for multi-party computation

21.1 Completeness Theorem for the Honest But Curious model

In the honest but curios model23 several parties participate in a communication protocol. The
parties are assumed to follow any directions exactly, but will make any use of information that
they can, include sharing information with other parties.

A completeness theorem is a method of computing any poly-time function between two or
more parties subjetc to a privacy constraint. Let us �rst consider two-party setting. Say party
A has input x, and party B has input y, and they wish to compute f(x; y). The goal is for both
parties to see the value f(x; y), but for neither to gain any additional information about the input
held by the other party. An example of this is two millionaires trying to �nd out who is richer,

neither of which wishes to let the other know how much money they have. In the multiparty
case, an example is seeing election results without revealing individual votes.

We will assume that f is any function computable by a polynomially sized circuit. First, note
that any circuit can be converted to a similarly sized circuit consisting of only XOR gates and

AND gates. For example, NOT(x) could be converted to XOR(x,1).

Now, assume that P1 has input a1a2 : : : am, P2 has input b1b2 : : : bm, and so on up to Pn. Now,
8i; 1 � i � m, P1 chooses a representation of ai = xi1�xi2�xi3 : : : xin. Then, P1 sends xi2 to P2,
xi3 to P3, and so on. Every other party also sends the corresponding bits to every other party.

Thus, every party has a part of every bit, but the bit is information theoretically hidden from
every proper subset of the parties.

We next describe a simple example of the two party case. Say party A has the bit a and

party B has the bit b, and they wish to compute a � b. In this example, at the end of the

algorithm, both parties will be able to deduce the other persons bit, but once we can compute
both the XOR and the AND, we will be able to build every circuit. A chooses a1 and a2 such

that a = a1 � a2 and sends a2 to B. Also, B chooses b1 and b2 such that b = b1 � b2 and sends
b1 to A. A calculates c1 = a1� b1 and tells c1 to B. At the same time, B calculates c2 = a2� b2
and tells c2 to A. Thus, both parties will know a� b.

23Scribe notes taken by: Micah Adler, November 3, 1994
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Computing a � b
A communication B

1 A knows a B knows b

2 Chooses a1; a2 s.t. a1�a2 = a Chooses b1; b2 s.t. b1 � b2 = b

3 ! a2 !
4  b1  
5 Calculates c1 = a1 � b1 Calculates c2 = a2 � b2

6 ! c1 !
7  c2  
4 A knows c1 � c2 = a� b C knows c1 � c2 = a� b

We next show how to compute an AND gate. First note that we can convert our circuit to
binary arithmetic: XOR(a1; b1) = a1 + b1 mod 2 and AND(a1; b1) = a1 � b1. Again, A holds a1
and b1, and B holds a2 and b2. They both wish to calculate (a1�a2) � (b1� b2) = a1 � b1+a1 � b2+
a2 � b1 + a2 � b2: The �rst two terms are calculated by A and the second two by B. We describe
here A's calculation; B's is similar.
Calculating a1 � b1 is easy, since both bits are known to A. To calculate a1 � b2, we will use

1-2-OT. First, B picks r to be a random bit. Then, B sets v0 = 0 � b2 � r and v1 = 1 � b2 � r.

Then, A chooses one of v0 and v1 based on a1 using 1-2-OT. Thus, A receives the bit va1 without
giving B any information. So, A knows the bit a1 � b2� r, and B knows the bit r, which can then
be later added (XORed) together to obtain the bit a1 � b2. But, since A does not know the value
of r, A has not received any information.

Computing a1 � b2
A communication B

1 A knows a1 B knows b2

2 Pick r, a random bit, and let

v0 = 0�b2�r, and v1 = 1�b2�r
3 Using 1-2-String OT  va1 ! Using 1-2-String OT

4 A knows a1 � b2 � r B knows r

The multi-party case is similar. In other words, when we wish to know

c = a � b =
nX
i=1

ai �
nX
i=1

bi =

X
1�i=j�n

ai � bj +
X

1�i6=j�n

aibj;

then the �rst set of terms can all be computed locally, and the second set can all be done with
the OT trick.
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We now have the ability to play poker over the phone, since shu�ing can be simulated as a

pseudo random function of seeds given by di�erent players, and playing a hand can be done by

computing other functions.

21.2 Cheating parties

(to be completed)

NEEDS REVISION

22 Digital Singnatures

presented de�nition of existential, adaptive, chosen message attack security and [Naor,Yung]

signature scheme. The scribe must be totally re-written and is deleted.

NEEDS REVISION

23 Full Information Model

Presented [Ostrovsky,Rajagopalan,Vazirani] paper, scribe should be completely re-written, and
is deleted.
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