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Abstract. Verifying that a network configuration satisfies a given boolean
predicate is a fundamental problem in distributed computing. Many vari-
ations of this problem have been studied, for example, in the context of
proof labeling schemes (PLS), locally checkable proofs (LCP), and non-
deterministic local decision (NLD). In all of these contexts, verification
time is assumed to be constant. Korman, Kutten and Masuzawa [15]
presented a proof-labeling scheme for MST, with poly-logarithmic veri-
fication time, and logarithmic memory at each vertex.
In this paper we introduce the notion of a t-PLS, which allows the verifi-
cation procedure to run for super-constant time. Our work analyzes the
tradeoffs of t-PLS between time, label size, message length, and com-
putation space. We construct a universal t-PLS and prove that it uses
the same amount of total communication as a known one-round univer-
sal PLS, and t factor smaller labels. In addition, we provide a general
technique to prove lower bounds for space-time tradeoffs of t-PLS. We
use this technique to show an optimal tradeoff for testing that a net-
work is acyclic (cycle free). Our optimal t-PLS for acyclicity uses label
size and computation space O((logn)/t). We further describe a recursive
O(log∗ n) space verifier for acyclicity which does not assume previous
knowledge of the run-time t.

1 Introduction

A fundamental problem in distributed computing is to determine if a network
configuration satisfies some predicate. In the distributed setting, a network con-
figuration is represented by an underlying graph, where each vertex represents
a processor, edges represent communication links between processors, and each
vertex has a state. For example, the state of every vertex can be a color, and
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the predicate signifies that the coloring is proper, i.e., that every edge has its
endpoints colored differently. Processors learn about the network by exchang-
ing messages along the edges. Some properties are local by nature and easy to
verify, yet many natural problems—for example, testing if the network contains
cycles—cannot be tested in less than diameter time, even if message size and
local computational power are unbounded.

In order to cope with strong time lower bounds, Korman, Kutten, and Peleg
introduced in [16] a computational model, called proof-labeling schemes (PLS),
where vertices are given auxiliary global information in the form of labels. This
auxiliary information may allow vertices to verify that a property is satisfied
more efficiently than could be achieved without the aid of labels. Specifically, a
PLS consists of two components, a prover and a verifier. The prover is an oracle
which assigns labels to vertices. The verifier is a distributed algorithm which
runs on the labeled configuration and outputs true or false at each vertex as a
function of its state, its label, and the labels it receives. A PLS is complete if for
every legal configuration (satisfying the predicate), prover can assign labels such
that all vertices output true. The PLS is sound if for every illegal configuration
(which does not satisfy the predicate) for every labeling, some vertex outputs
false.

Schemes for verifying a predicate are useful in many applications. One such
application is checking the output of a distributed algorithm [3,11]. For exam-
ple, if a procedure is meant to output a spanning-tree of the network, it may
be useful to periodically verify that the output does indeed not contain cycles.
If the original procedure which finds the spanning-tree can additionally produce
labels, verification may be achieved substantially faster than diameter time re-
quired without the aid of labels. A simple procedure for checking the legality
of the current state is very useful in the construction of self stabilizing algo-
rithms [2,1,15,6]. Other applications include estimating the complexity of logics
required for distributed run-time verification [11], establishing a general dis-
tributed complexity theory [10], and proving lower bounds on the time required
for distributed approximation [7]. Local verification was recently applied in the
design and analysis of software defined networks (SDN) in [17].

Distributed verification has been formalized in various models to suit its myr-
iad applications. These models include proof-labeling schemes (PLS) [16], locally
checkable proofs (LCP) [12], and non-deterministic local decision (NLD) [10].
We refer the reader to [8] for a detailed comparison of these models. All three of
these models are local in the sense that verification requires a constant number
of rounds, independent of the size of the graph. PLS differs from LCP and NLD
in that verification in (traditional) PLS occurs in a single communication round,
while the LCP and NLD models allow verification in a fixed constant number
of rounds. While a fast procedure is certainly a desirable feature in verification
algorithms, it may be the case that other computational resources—space or
communication—must also be considered. For example, in the case of PLS, de-
terministically verifying a sub-graph is acyclic requires labels of size Ω(log n)
per vertex [16]. However, specifying a sub-graph only requires O(∆) space (the



maximum degree of a vertex) per vertex. Thus, if we restrict attention to local
verification algorithms, the space requirement to store labels may be unbound-
edly larger than the space required to specify the instance.

Korman, Kutten and Masuzawa [15] presented a PLS for minimum spanning-
tree with poly-logarithmic verification time and logarithmic memory at each
vertex. In the present work we also consider super-constant time verification
and address tradeoffs between computational resources in distributed verification
algorithms: label size, communication, computation space, and time. Specifically,
we address the following questions: If verification algorithms are allowed to run in
super-constant time, can labels be significantly shorter? What are the tradeoffs
between label size and verification time? Can verification be achieved using (per
processor) space which is linear in the label size? We focus on the acyclicity
problem and prove that labels can indeed be shortened by a factor of t—the
run-time of the algorithm—compared to constant-round verification. Moreover,
computation space for each vertex can be made linear in the label size. Note
that in this model it does not trivially hold that each message contains exactly
one label, since in each round every vertex receives a (potentially different) label
from each neighbor, and the scheme should specify the message to be sent in
the following round. We show that in our schemes messages are small enough so
that the total communication is the same as in one-round verification.

1.1 Our Contributions

In this paper we consider proof-labeling schemes with super-constant verification
time, and analyze tradeoffs between time, label size, message size, and compu-
tation space. Many of the results presented here were announced without proof
in [5]. In Subsection 3.1, we describe a universal scheme which can verify any
property P. Suppose Gs, with n vertices, m edges, and each state can be repre-
sented using s bits. Then for every t ∈ O(diam(Gs)), our scheme verifies P in t
rounds using labels and messages of size O((ns+min{n2,m log n})/t). For t = 1
this is the known universal scheme [16,12,4]. When t ∈ Ω(n), we obtain labels
and messages of size O(s+min{n, (m/n) log n}). Overall, labels are significantly
smaller, and total communication is the same. Subsection 3.2 proves a general
lower bound technique for label size of t-round schemes.

In Section 4 we consider the problem determining if a graph is acyclic. Using
the lower bound technique of Subsection 3.2, we prove in Subsection 4.1 that
labels of size Ω((log n)/t) are required for the acyclic problem. Subsection 4.2
shows that this lower bound is tight. Our scheme for acyclic additionally uses
optimal space and messages of size O((log n)/t). In particular, by taking t to
be a sufficiently large constant, our upper bound (along with the Ω(log n) lower
bound for acyclic in [16]) implies separation between the PLS and LCP models
for acyclicity (see [8]). The verifier for acyclic assumes that vertices are given
some truthful information about the round number, for example, by being told
when (a multiple of) t rounds have elapsed. We prove that such information
is necessary for any super-constant and sub-linear time distributed algorithm
in Appendix A. In Subsection 4.3, we describe a recursive scheme for acyclic



which uses space O(log∗ n) and constant communication per vertex per round.
The recursive verifier runs in time O(n) in the worst case, but there are always
correct labels which will be accepted in time O(log diam(G)). We note that in
order to break the logarithmic space barrier, our schemes in Subsections 4.2
and 4.3 crucially do not rely upon unique identifiers for the vertices. Conversely,
the lower bounds of Subsections 3.2 and 4.1 hold for a stronger model where
vertices have unique identifiers, and labels may depend on the unique identifiers.

1.2 Related Work

Distributed verification has been studied extensively. It was studied and used
in the design of self stabilizing algorithms, first in [1], where the notion of lo-
cal detection was introduced, and recently in [15], where a super-constant time
verification scheme was presented. Both papers use verification in the design of
a self stabilizing algorithm for constructing a minimum spanning-tree. Verifica-
tion has also received attention of its own. For example, [14] presented tight
bounds for minimum spanning-tree verification. In [16], Korman, Kutten, and
Peleg formalized the concept of local verification and introduced the notion of
proof-labeling schemes. In their paper, verification is defined to use one com-
munication round, and among other results they show a Θ(log n) bound on the
complexity (label size and communication) for acyclic. Recently, [4] suggested
using randomization in order to break the lower bounds of deterministic schemes,
and among other results they show a Θ(log log n) bound on the communication
complexity of acyclicity. In this paper, we show that if we use super-constant
verification time, we can break the lower bound of space consumption (label size
and computation space), while the total amount of communication is the same
as in one deterministic verification round. Proof-labeling schemes with constant,
greater than one, verification time was studied in [12], and with super-constant
verification time was presented in [15]. In [9], the authors consider verification
of acyclicity and related problems in various models for directed graphs.

The question of what properties can be verified using a constant verifica-
tion time was studied in [10], and several complexity classes were presented,
including LD—local decision—which includes all properties that can be decided
using constant number of rounds and no additional information, and NLD—non-
deterministic local decision—which includes all properties that can be decided
in a constant number of rounds with additional information in the form of a
certificate given to each vertex. While NLD and PLS are closely related, they
differ in that NLD certificates are independent of vertex identifiers. Since PLS
labels may depend on vertex identifiers, there is a PLS for every sequentially
decidable property on ID based networks, while not all sequentially decidable
properties are in NLD. Our lower bounds in Subsections 3.2 and 4.1 allow labels
to depend on unique vertex identifiers, so our arguments give identical lower
bounds for certificate sizes in the weaker NLD model. Nonetheless, the schemes
for acyclic in Subsections 4.2 and 4.3 do not require unique identifiers.

Awerbuch and Ostrovsky describe a log∗ n-space distributed acyclicity ver-
ifier in [2]. Our scheme described in Section 4.3 achieves the same space usage



per node, but improves on the algorithm of [2] in several ways. The worst-
case runtime of our acyclicity verifier is O(n), whereas that in [2] requires time
O(n log2 n). Further, in our scheme there are always correct labels which are
accepted in time O(log n). This runtime nearly matches the Ω((log n)/ log∗ n)
time lower bound implied by Theorem 7. We leave it as an open question if it is
possible to verify acyclic using constant space and worst case runtime O(log n).

2 Model and Definitions

2.1 Computational Framework

A graph configuration Gs consists of an underlying graph G = (V,E), and a
state assignment function ϕ : V → S, where S is a state space. The state of a
vertex includes all of its local information. It may include the vertex’s identity
(in an ID based configuration), the weight of its adjacent edges (in a weighted
configuration), or the result of an algorithm executed on the graph, for example,
its color according to a coloring algorithm.

In a proof-labeling scheme, an oracle assigns labels ` : V → L. Verification is
performed by a distributed algorithm on the labeled configuration in synchronous
rounds. In each round every vertex receives messages from all of its neighbors,
performs local computation, and sends a message to all of its neighbors. At the
beginning of each round, a vertex scans its messages in a streaming fashion,
and the computational space is the maximum space required by a vertex
in its local computation. Each vertex may send different messages to different
neighbors in a round. When a vertex halts, it outputs true or false. If the
vertex labels contain unique identifiers, then we require that an algorithm has
the same output for all legal assignments of unique IDs.

2.2 Proof-Labeling Schemes and t-PLS

We start with a short description of proof-labeling schemes (PLS) as introduced
in [16]. Given a family F of configurations, and a boolean predicate P over F ,
a PLS for (F ,P) is a mechanism for deciding P(Gs) for every Gs ∈ F . A PLS
consists of two components: a prover p, and a verifier v. The prover is an
oracle which, given any configuration Gs ∈ F , assigns a bit string `(v) to every
vertex v, called the label of v. The verifier is a distributed algorithm running
concurrently at every vertex. The verifier v at each vertex outputs a boolean. If
the outputs are true at all vertices, v is said to accept the configuration, and
otherwise (i.e., v outputs false in at least one vertex) v is said to reject the
configuration. For correctness, a proof-labeling scheme (p,v) for (F ,P) must be
(1) complete and (2) sound . Formally, for every Gs ∈ F , we say (p,v) is

1. complete if P(Gs) = true then, using the labels assigned by p, the verifier
v accepts Gs, and

2. sound if P(Gs) = false then, for every label assignment, the verifier v
rejects Gs.



The verification complexity of a proof-labeling scheme (p,v), according
to [16], is the maximal label size—the maximal length of a label assigned by the
prover p on a legal configuration (satisfying P). A PLS is defined to use one
verification round, in which neighbors exchange labels. In this case, label size
and message size are the same.

In this paper we consider proof-labeling schemes with more than one verifi-
cation round, in particular it can use super-constant time, and hence we define
the message size of the scheme (p,v) to be the largest message a vertex sends
during the execution of v on a legal configuration with the labels assigned by p.
We denote a proof-labeling scheme with t-round verification by t-PLS.

3 General Space-Time Tradeoff Results

If there exists a PLS for (F ,P) with label size κ (and hence, message size κ),
then there exists a t-PLS for (F ,P) with label size κ and message size κ/t.
Indeed, vertices can communicate their κ-bit label in t different shares of size
κ/t. In this section we give general results for label size reduction, along with
message size, in a t-PLS. The idea is to take a 1-PLS, and break it into smaller
shares where vertices are assigned only a single share of the original label. We
refer to this technique as label sharing . In particular, we present a universal
scheme and provide a tool for obtaining lower bounds.

3.1 Universal t-PLS

A universal scheme is a scheme that verifies every sequentially decidable prop-
erty. In this subsection we assume that every vertex has an identifier, and iden-
tifiers in the same configuration are pairwise distinct. We give an upper bound
on the label and message size of a universal scheme that uses t communication
rounds.

Theorem 1 Let F be a family of configurations with states set S and diameter
at least D, let P be a boolean predicate over F and suppose that every state in
S can be represented using s bits. For every t ∈ Ω(D) there exists a t-PLS for
(F ,P) with label and message size O((ns+ min{n2,m log n})/t) where n is the
number of vertices, and m is the number of edges in the graph.

In the proof of this theorem we use a known universal PLS [16,12,4]. Labels
consist of the entire representation of the graph configuration. Nodes then verify
that they have the same representation, and that it is consistent with its local
view. Finally, they verify individually that the label represents a legal configura-
tion. Since every configuration can be represented usingO(ns+ min{n2,m log n})
bits—by listing the state of each vertex and an adjacency matrix or an edge
list—this is the label (and message) size of this scheme.

The idea of the universal t-PLS is to disperse the configuration representation
into shares such that each vertex can collect the purported graph configuration
from its t-neighborhood.



Proof (of Theorem 1). Let F be a family as described in the statement, let P be
a boolean predicate over F and Gs = (V,E, ϕ : V → S) ∈ F . We first describe
the scheme. Consider some fixed vertex v ∈ V . For every vertex u ∈ V , let
dist(u, v) = d and define j ≡ d mod (t/4). Denote R = (ns+ min{n2,m log n}).
The universal label of u, denoted by c(u), consists of:

– a v-indication d0(u) ∈ {0, 1} indicating if u = v,
– a first in block f(u) ∈ {0, 1} indicating if j = 0,
– an orientation label a(u) ∈ {0, 1, 2} encodes (d mod 3), and

– a share of representation r(u) ∈ {0, 1}(4R)/t
which encodes the j-th part

(out of t/4 parts, of length 4R
t each) of Gs’s representation.

In the first round, each vertex sends its label to all of its neighbors. In the
first t/2 rounds we use the orientation indicated by the orientation label of each
neighbor for an efficient pipelining of labels in two directions. The message of
every vertex in each of the first t/2 rounds is composed of two parts, one for
pipelining of labels towards v and the other for pipelining of labels away from
v. For every vertex u ∈ V , let Y(−1) be all neighbors y of u with a(y) ≡ a(u)− 1
mod 3, and let Y(+1) be all neighbors y of u with a(y) ≡ a(u) + 1 mod 3. The
pipelining towards v is done by receiving labels only from Y(+1) and sending
labels only to Y(−1). Let Li

(+1) be the set of labels u received in round i from

all its Y(+1) neighbors. The vertex u verifies that all non empty labels in Li
(+1)

are equal, and sends this label to Y(−1). The pipelining away from v is done
similarly, with the roles of Y(−1) and Y(+1) reversed. The distinguished vertex
v verifies that it has only Y(+1) neighbors, and in each round all non empty
labels in Li

(+1) are equal, and sends this label to all its neighbors. Every vertex

u 6= v verifies that during the first t/2 rounds it has received from Y(−1) two
labels (in two different rounds) with ‘first in block’ indication, f = 1. If the first
had also ‘v-indication’ then u concatenates all ‘shares of representation’ of these
labels, in order, excluding the last. Otherwise (the first had no ‘v-indication’),
u concatenates all ‘shares of representation’ of these labels, in reverse order,
excluding the first. The distinguished vertex v verifies that it has ‘v-indication’,
‘first in block’ indication, and ‘orientation label’ 0, and concatenates the t/4
first ‘shares of representation’ it sees, in order (including r(v)). Every vertex
u ∈ V considers its concatenation, denoted by g(u), as a representation of a
configuration, and verifies that it is consistent with its local view. In the last t/2
rounds u verifies that for every neighbor w it holds that g(w) = g(u), by sending
g(u) in t/2 disjoint shares. Finally, if all verifications succeed, the output of u is
whether the configuration represented by g(u) satisfies P.

The label size is O(R/t). In the first t/2 rounds, every message contains
exactly two labels, and hence message size is also O(R/t). For every u, by def-
inition, g(u) is the concatenation of at most t/2 ‘shares of representation’ (t/2
rounds, and at most one ‘share of representation’ is concatenated in each round).
Therefore, in the last t/2 rounds every message size is not more than the size
of one ‘share of representation’, which is also O(R/t). So, the label and message
size requirements hold.



We now prove the correctness of the scheme. If all vertices output true, by
the last part of the scheme we know that they all have the same representation,
and that it is consistent with their local view. Therefore, it must be the case
where all vertices hold the correct representation of Gs. Since all vertices output
true, by construction of the scheme, P(Gs) = true. If P(Gs) = true and
labels are assigned according to the scheme, we have the following. Denote by
cj the label of a vertex with distance j from v. Let u ∈ V be a vertex and
let dist(u, v) = d. In round i, by construction of the scheme, u receives from
Y(−1) (and v from Y(+1)) the label c|d−i|. If d < t/4, by construction, the first
label u receives with ‘first in block’ indication (after less than t/4 rounds) is c0.
Afterwards it receives c1, c2, . . . , ct/4−1 and ct/4 which is the second with ‘first
in block’ indication. If d ≥ t/4, the first label u receives with ‘first in block’
indication (after less than t/4 rounds) is not c0, and hence has no ‘v-indication’.
By construction, it must be cZ , where Z = t/4·k for some natural number k > 0.
Afterwards it receives cZ−1, cZ−2, . . . , cZ−t/4+1 and cZ−t/4 which is the second
with ‘first in block’ indication. It is easy to see that in both cases u constructs the
correct representation of Gs. Therefore, the equality and local view verifications
succeed, and since P(Gs) = true, all vertices output true.

3.2 Lower Bound Tool

We start with some definitions. Although we consider only networks represented
by undirected graphs, we will define an orientation on an edge to indicate a
specific ordering of its endpoints. We denote by H(e) the head of a directed edge
e, and by T (e) the tail of e.

Definition 2 (Edge Crossing) Let G = (V,E) be a graph, and e1, e2 ∈ E be
two directed edges. The edge crossing of e1 and e2 in G, denoted by C(e1, e2, G),
is the graph obtained from G by replacing e1 and e2, by the edges (T (e1), H(e2))
and (T (e2), H(e1)).

Edge crossings were used many times before, and were formalized as a tool
for proving lower bounds of verification complexity in [4]. We now show how to
use edge crossing in order to prove lower bounds for label size of t-PLS.

Definition 3 (Edge k-neighborhood) Let G = (V,E) be a graph, and e =
(u, v) ∈ E. The k-neighborhood of e in G, denoted by Nk(e,G), is the subgraph
(V ′, E′) of G satisfying

1. w ∈ V ′ if and only if w ∈ V and min(dist(w, u),dist(w, v)) ≤ k, and
2. e′ ∈ E′ if and only if e′ ∈ E ∩ (V ′ × V ′).

Proposition 4 Let (p,v) be a deterministic t-PLS for (F ,P) with label size |`|.
Suppose that there is a configuration Gs ∈ F which satisfies P and contains r
directed edges e1, . . . , er, whose t-neighborhoods Nt(e1, Gs), . . . , Nt(er, Gs) are
pairwise disjoint, contain q vertices each, and there exist r state preserving
isomorphisms {σi : V (Nt(e1, Gs)) → V (Nt(ei, Gs)), i = 1, . . . , r} such that



σi(H(e1)) = H(ei) and σi(T (e1)) = T (ei). If |`| < (log r)/q, then there exist
i, j with 1 ≤ i < j ≤ r such that every connected component of C(ei, ej , Gs) is
accepted by (p,v).

Proof. Let (p,v) and Gs be as described above, and assume that |`| < (log r)/q.
Consider a collection {σi : V (Nt(e1, Gs)) → V (Nt(ei, Gs)), i = 1, . . . , r} of r
state preserving isomorphisms,such that σi(H(e1)) = H(ei) and σi(T (e1)) =
T (ei). Order the vertices of Nt(e1, Gs) arbitrarily. For every i, consider the con-
catenation of labels given by p to the vertices of Nt(ei, Gs), in the order induced
by the ordering of Nt(e1, Gs) and σi. Denote this concatenated string Li. By
label size assumption, it holds that |Li| < log r for every i, and thus there
are less than r different options for Li. Therefore, by the pigeonhole principle,
there are i 6= j such that Li = Lj . Denote C(ei, ej , Gs) by G′s, and consider
the labels provided by p to Gs. For every vertex v /∈ Nt(ei, Gs) ∪ Nt(ej , Gs),
its t-neighborhood is the same in Gs and in G′s. Nt(ei, Gs) and Nt(ej , Gs) are
disjoint, isomorphic, and have the same states and labels according to some iso-
morphism which maps H(ei) to H(ej) and T (ei) to T (ej). Thus, for every vertex
v ∈ Nt(ei, Gs)∪Nt(ej , Gs), its t-neighborhood in Gs is the same as in G′s. Since
the output of the verifier v at each vertex in Gs is only a function of the states
and labels at its t-neighborhood, if the output of v in Gs is true at all vertices,
then the output of v in every connected component of G′s must be true, and
the proposition follows.

The following theorem, which is a consequence of Proposition 4, is the tool
we use to prove lower bounds of label size in a t-PLS.

Theorem 5 Let F be a family of configurations, and let P be a boolean predicate
over F . Suppose that there is a configuration Gs ∈ F which satisfies

1. P(Gs) = true,
2. Gs contains r directed edges e1, . . . , er, whose t-neighborhoods

Nt(e1, Gs), . . . , Nt(er, Gs) are pairwise disjoint, contain q vertices each, and
there exist r state preserving isomorphisms {σi : V (Nt(e1, Gs)) →
V (Nt(ei, Gs)), i = 1, . . . , r} such that σi(H(e1)) = H(ei) and
σi(T (e1)) = T (ei), and

3. for every i 6= j, there exists a connected component Hs of C(ei, ej , Gs) such
that P(Hs) = false.

Then the label size of any t-PLS for (F ,P) is Ω((log r)/q).

4 Acyclicity

In this section we focus on the acyclicity property, and give tight t-PLS lower and
upper bounds. The lower bounds of Subsection 4.1 hold in the computational
model where vertices have unique identifiers, and the labels are allowed to depend
on the ID of a vertex. The upper bounds presented in Subsections 4.2 and 4.3
still apply in a weaker computational model where vertices do not have unique
IDs.



Definition 6 (Acyclicity) Let F be the family of all connected graphs. Given a
graph configuration Gs ∈ F , acyclic(Gs) = true if and only if the underlying
graph G is cycle free.

4.1 Lower Bound for acyclic

Theorem 7 Every scheme which verifies acyclic in t communication rounds
requires labels of size Ω ((log n)/t).

Proof. We will show a configuration as described in Theorem 5, with r = Ω (n/t)
and q = O(t), to derive the stated lower bound on label size of any scheme that
verifies acyclic. Let Gs be the n-vertex path v0−v1−· · ·−vn−1 where all states
are the empty string. Obviously acyclic(Gs) = true. Let r = bn/(2t+ 2)c−1,
and consider the set {ei = (v(2t+2)i, v(2t+2)i+1) | 1 ≤ i ≤ r} of r directed edges.
Each Nt(ei, Gs) contains exactly 2t + 2 vertices, and thus q = 2t + 2. Every
pair of t-neighborhoods Nt(ei, Gs) and Nt(ej , Gs), for i 6= j, is disjoint since
the distance between ei and ej is at least 2t + 1. For every i < j, C(ei, ej , Gs)
contains exactly two connected components. One of them is the cycle Hs =
vqi+1 − vqi+2 − · · · − vqj − vqi+1 where all its edges are marked. By definition,
P(Hs) = false. Hence, the conditions of Theorem 5 are satisfied, and the lower
bound follows.

4.2 Upper Bound for acyclic

In this section, we describe a t-PLS for acyclic which matches the lower bound
presented in Theorem 7.

Theorem 8 Suppose G = (V,E) is a graph with diameter D. For every t ≤
min {log n,D}, there exists an O(t)-PLS for acyclic with label and messages
of size O((log n)/t). Further, the verifier v uses space of size O((log n)/t).

Remark 9 In this subsection, we assume that each vertex has access to some
means of deciding (correctly) when t communication rounds have elapsed. This
can be achieved either by allowing each vertex a log t bit counter, or by giving each
vertex access to an oracle which alarms when (an integer multiple of) t rounds
have elapsed. We discuss the necessity of this assumption in Subsection 4.3,
and prove that such information is necessary for any distributed algorithm with
super-constant and sub-linear run-time in Appendix A.

The following scheme can be used to verify that the graph contains no cycles
using labels of size O(log n) in a single round. The label of a vertex v consists of
an integer d(v) which encodes the distance from v to a root vertex (which has
d(v) = 0). Vertices verify the correctness of the labels in a single communication
round. If v satisfies d(v) = 0 (i.e., v is a root), then it accepts the label if all of
its neighbors w satisfy d(w) = 1. If v satisfies d(v) 6= 0 then v verifies that v has
exactly one neighbor u with d(u) = d(v)− 1 while all other neighbors w satisfy
d(w) = b(v) + 1. This scheme is used, for example, in [3,13,2]. The correctness
of the scheme is a consequence of the following definition and lemma.



Definition 10 Suppose G = (V,E) is a graph and L = {0, 1, . . . , s− 1} with
s ≥ 3. We call function ` : V → L an s-cyclic labeling of G if for every v ∈ V ,
v has at most one neighbor P (v)—the parent of v—such that `(P (v)) ≡ `(v)−1
mod s, while the v’s other neighbors w satisfy `(w) ≡ `(v) + 1 mod s.

Remark 11 An s-cyclic labeling induces an orientation on G where an edge
(u, v) is oriented such that u = P (v). That is, each edge is oriented away from
the parent.

Lemma 12 Suppose G = (V,E) is a connected graph and ` an s-cyclic labeling.
Then either G is acyclic or G contains a unique cycle of length k, where s
divides k. Further, if G contains a cycle, C, then C is an oriented cycle in the
orientation induced by `, and all oriented paths in G are oriented away from
vertices in C.

Proof. Suppose C = (v0, v1, . . . , vk−1) is a cycle in G. In the orientation de-
scribed in Remark 11, every vertex has in-degree at most 1. Let degin(vi) denote
the in-degree of vi in C and similarly degout(vi) is vi’s out-degree in C. Then
degin(vi) − degout(vi) ≤ 0 for all vi. However, we must have

∑
i degin(vi) −

degout(vi) = 0, implying that in fact degin vi = degout(vi) = 1 for all i. Thus, C
is an oriented cycle. As a consequence, for all i, either `(vi) ≡ `(vi+1)+1 mod s
or `(vi) ≡ `(vi+1)−1 mod s. In the former case, we have `(vk−1)−`(v0) ≡ k ≡ 0
mod s, implying that s divides k. In the latter case, `(vk−1) − `(v0) ≡ −k ≡ 0
mod s, and the desired result holds.

Since every vertex vi ∈ C has in-degree 1 in C, all edges that leave C must be
oriented away from vertices in C. Similarly, any path w0, w1, . . . , wj with w0 ∈ C
and wi /∈ C for i ≥ 1 must be oriented away from C. Thus no such path may
lead to another cycle C ′, nor could another cycle C ′ share a path with C. Thus
since G is connected C must the unique cycle.

To achieve labels of lengthO((log n)/t) for acyclic, we simulate the “distance-
to-root” scheme described above. The idea is to break the O(log n)-bit labels
indicating the distance to the root into shares of size O((log n)/t). Unlike the
universal scheme described in Subsection 3.1, vertices do not reconstruct the
(log n)-bit distance-to-root labels directly, but check the labeling is correct dis-
tributively. Thus the verifier v only uses space linear in the label size.

Formally, for a vertex v, an acyclicity label consists of:

– an orientation label a(v) ∈ {0, 1, 2} which defines an orientation on edges
away from the root of the tree,

– a block label b(v) ∈ {head,mid,tail} which indicates v’s position within
a block,

– a block color c(v) ∈ {0, 1}, and

– a distance label d(v) ∈ {0, 1}(logn)/t
which encodes a share of a distance

to the root.

See Figure 1 for an example of correctly formed labels. It is clear that an acyclic-
ity label can be recorded in O((log n)/t) bits. The semantics of acyclicity labels
are described below.



id = 0

a = 0

b = head

c = 0

d = 00

id = 44

a = 2

b = tail

c = 0

d = 10

id = 45

a = 0

b = head

c = 1

d = 01

id = 46

a = 1

b = mid

c = 1

d = 11

id = 47

a = 2

b = tail

c = 1

d = 10

id = 48

a = 0

b = head

c = 0

d = 00

Fig. 1. Acyclicity labels for a graph consisting of a path rooted at its left endpoint.
We have given the nodes identifiers 0, 1, . . . from left to right, although the labeling
need not include the id of the vertices. For this configuration, the orientation labels
a(v) simply count the distance from v to the root (with id 0) modulo 3. The nodes
with ids 45, 46, and 47 form a single block, whose head (45) and tail (47) are indictated
by the corresponding block labels. The color of this block is 1 because it is the 15th
block from the root (45/3 = 15), and 15 ≡ 1 mod 2. Finally, the concatination of the
distance labels in this block is d(47)d(46)d(45) = 101101, which encodes the distance
of the block’s head to the root (45) in binary.

Correct orientation labels The orientation labels a(v) are correct if every
v ∈ V has at most one neighbor P (v)—the parent of v—such that a(P (v)) ≡
a(v) − 1 mod 3. The remaining neighbors w of v—v’s children—satisfy
a(w) ≡ a(v) + 1 mod 3. If P (v) = ∅, we call v a root . Correct orientation
labels induce an orientation on G where the oriented edges (v, w) satisfy
a(w) ≡ a(v) + 1 mod 3. Thus, edges are oriented away from roots (if any).

Correct block labels Block labels must be assigned in the following manner

1. b(v) = head if and only if either P (v) = ∅ or b(P (v)) = tail
2. b(v) = tail if and only if there exists an oriented path of length t,
v0, v1, . . . , vt−1 = v such that b(v0) = head. We refer to such a path as
a block .

3. In all other cases, b(v) = mid.
4. For every v, there exists an oriented path w0, w1, . . . , wk−1 = v of length
k < t such that b(w0) = head.

Definition 13 Let B = (v0, v1, . . . , vt−1) be a block. We define the value of
B, denoted D(B), to be the integer whose binary expansion is the concatenation
d(vt−1)d(vt−2) · · · d(v0). That is, v0 holds the least significant bits of D(B), while
vt−1 holds the most significant bits. If B′ = (w0, w1, . . . , wt−1) is another block,
we say that B is the parent of B′ and B′ is a child of B if P (w0) = vt−1. If
there exists i such that vi = wi, we say that B and B′ overlap.

Correct block coloring The block coloring c is correct if

1. for every block B and v, w ∈ B we have c(v) = c(w), and
2. for every blocks B,B′ such that B is the parent of B′, and v ∈ B, w ∈ B′,

we have c(v) 6= c(w).

Correct distance labels The distance labels d are correct if



1. for every block, B = (v0, v1, . . . , vt−1), D(B) = 0 if and only if v0 is a
root, and

2. for every pair of blocks B and B′ with B the parent of B′, we have
D(B′) = D(B) + t.

Definition 14 (Correct acyclicity labeling) Suppose ` is a family of acyclic-
ity labels for a graph G = (V,E). We say that the family ` is correct if a, b, c,
and d are correct orientation labels, correct block labels, correct block colorings,
and correct distance labels as described above.

Remark 15 If blocks B = (v0, . . . , vt−1) and B′ = (w0, . . . , wt−1) overlap, then
we must have w0 = v0 and D(B) = D(B′). The first equality holds because
each vertex vi has at most one parent, so if wi = vi we must have wj = vj for
0 ≤ j ≤ i. The second equation holds because either B and B′ contain a root, in
which case D(B) = D(B′) = 0, or there is a B′′ which is the parent of both B
and B′. In the latter case, D(B) = D(B′′) + t = D(B′).

Proposition 16 Let G = (V,E) be a graph. Then G is acyclic if and only if it
admits a correct labeling `.

Proof. If G is acyclic, then we can form labels ` in the following way. Choose
an arbitrary vertex u to be the root. For all v define d′(v) = dist(v, u) (the
length of the unique path from v to u), and take a(v) = d′(v) mod 3. Define
b(v) by b(v) = head if d′(v) ≡ 0 mod t, b(v) = tail if d′(v) ≡ −1 mod t, and
d(v) = mid otherwise. Finally, assign distance labels d(v) in such a way that in
each block B with first element v0, D(B) = d′(v0). It is easy to verify that these
labels ` constructed in this way will satisfy all the provisions of Definition 14.

Conversely, suppose G admits a correct family of acyclicity labels. Suppose
towards a contradiction that C = (w0, w1, . . . , wk−1) is a cycle. Since the ori-
entation labels a(v) are correct (hence form a 3-cyclic labeling), C must be an
oriented cycle (as in the proof of Lemma 12). The final provision in the correct-
ness of b and the fact that each vertex wi has a unique parent guarantee some wi

must have b(wi) = head. Without loss of generality, assume that b(w0) = head,
and let B0 be the block containing w0 and contained in C. Inductively define
blocks B1, B2, . . . ⊆ C such that Bi+1 is a child of Bi. By the pigeonhole prin-
ciple, we must have Bi = Bj for some i < j. However, the correctness of the
distance labels implies that D(Bi) < D(Bi+1) < · · · < D(Bj) = D(Bi), a con-
tradiction.

In order to prove Theorem 8, by Proposition 16, it suffices to show there
is a verifier v for acyclicity labels which runs in time O(t) using messages and
memory of size O((log n)/t). Verification of the correctness of the orientation
labels a, block coloring c, and conditions 1 and 3 in the correctness of the block
labels b can be accomplished in a single communication round with constant
communication. Thus, we must verify conditions 2 and 4 in the correctness of
the block labels as well as the correctness of distance labels.



After the initial sharing of labels with neighbors in the first round, the veri-
fication algorithm Verify(v, a, b, c, d) continues as follows (see Algorithm 1 for
pseudo-code). For t− 1 steps, each vertex relays the message from its parent to
all of its children. At the end of t rounds, each vertex verifies that at some point,
it received a message from a head vertex. If a vertex v received a message from a
root vertex, it verifies that d(v) = 0. Otherwise, let b(w), c(w), and d(w) be la-
bels received by v in the t-th round. Then v checks that b(w) = b(v), c(w) 6= c(v).
The block heads increment the distance labels d(w) t times, sending carry bits
(if any) to their children. When children receive carry bits, they increment their
d(w)’s accordingly, sending further carry bits to their children. After this in-
crementation procedure, vertex v verifies that the incremented d(w)’s satisfy
d(v) = d(w).

Algorithm 1 Verify(v, a, b, c, d): Verifies correctness of acyclicity labels.

1: send a(v), b(v), and c(v) to all neigh-
bors

2: verify correctness of a and c, and con-
ditions 1 and 3 in correctness of b

3: head check← false
4: if b(v) = tail then
5: is zero← true
6: end if
7: for i = 1 to t-1 do
8: M ← (b(w), c(w), d(w)) or ∅ re-

ceived from P (v)
9: if b(w) = head then

10: head check← true
11: end if
12: if b(v) = tail then
13: if d(w) 6= 0 then
14: is zero← false
15: end if
16: if i = t− 1 then
17: assert: b(w) = head

18: end if
19: end if
20: send M to all children {if v is a leaf,

ignore}
21: end for
22: if M = ∅ then
23: assert: d(v) = 0 {head of v’s block

is root}
24: else
25: for i = 1 to t do
26: Increment(d(w), |d(w)| , 1)
27: end for
28: assert: b(w) = b(v)
29: assert: c(w) 6= c(v)
30: assert: d(w) = d(v)
31: if b(v) = tail then
32: assert: is zero = false
33: end if
34: end if
35: assert: head check = true

Lemma 17 Let ` be a family of acyclicity labels on a graph G = (V,E). Then
` is correct if and only if every vertex v accepts in Algorithm 1.

Proof. By induction, each vertex receives the message from its (unique) i-th
ancestor in the i-th communication round. Therefore, every tail accepts at lines
16–18 if and only if every tail is at (oriented) distance t−1 from a head. Similarly,
every vertex v is at (oriented) distance iv < t from a head if and only if it accepts
at line 35 (see lines 9–11). Thus, the block labels are correct if and only if every
vertex accepts at lines 2, 17, and 35.



Note that b(w) = ∅ if and only if the head of the block containing v is a
root. Thus, every vertex accepts at line 23 if and only if all blocks B containing
a root satisfy D(B) = 0. Conversely, if B does not contain a root, then by the
assertion at line 32 (and the check at lines 13–15), then D(B) 6= 0. Thus the
checks at lines 23 and 32 are satisfied if and only if condition 1 in the correctness
of distance labels is satisfied.

Suppose block B = (w0, . . . , wt−1) is the parent of B′ = (v0, . . . , vt−1), then
the distance label received by each vi is d(wi). Thus, after incrementing the labels
d(w0)d(w1) · · · d(wt−1) t times, the incremented labels will have value D(B) + t.
Therefore, all vertices in B′ accept at line 31 if and only if D(B′) = D(B) + t,
if and only if condition 2 of correct distance labels is satisfied.

Proof (of Theorem 8). Lemma 17 implies that the Verify routine (Algorithm 1)
is a correct verifier for acyclicity labels. Thus we must only argue that Verify
achieves the claimed time, space, and communication bounds. In each commu-
nication round, each vertex broadcasts a single label (in line 20) or a single bit
(in Increment) to its neighbors. Thus, the communication in each round is
O((logD)/t) per edge. In each iteration of the algorithm, each vertex stores at
most a constant number of labels, hence the memory usage is O((logD)/t) as
well. Finally, the overall run-time is 3t. The label sending procedure in lines
7–21 is accomplished in t rounds, while the incrementation procedure in lines
25–7 requires at most 2t rounds: t rounds where the head vertices increment,
and another t to propagate carries. In particular, the run-time is O(t).

4.3 Recursive Acyclicity Checking

The scheme described in Subsection 4.2 gives asymptotically optimal label size
for t ≤ log n. Further, the communication per round and local memory usage
is linear in the label size. However, the scheme above crucially requires each
vertex to be given a truthful representation of the parameter t. In fact, for
ω(1) ≤ t ≤ o(n), it is necessary for the vertices to be given some truthful
information about t (see Appendix A). In this subsection, we describe a verifier
for acyclic that only assumes that the space provided to each processor is
O(log∗ n). The tradeoff is that our algorithm runs in time which may be linear
in n in the worst case.

Theorem 18 There exists a O(n)-PLS for acyclic which uses labels and space
of size O(log∗ n). In each round, the communication per-edge is O(1).

Remark 19 While verification time in Theorem 18 is O(n) in the worst case,
the actual time depends on the labels given to the vertices. In particular, for
every acyclic graph G there exists a correct labeling which will be accepted in
time O(logD). Thus there is a tradeoff between the time of the algorithm and
the amount of truthful information about t given to the vertices.

The idea of the algorithm is to simulate the verifier Verify (Algorithm 1)
without the benefit of truthful information about t. As before, the labels des-
ignate blocks of length t. Within each block, the vertices store shares of the



distance of that block to the root, where in this case, the shares consist of a
single bit. Since t (the length of the block) is not known to the vertices in ad-
vance, they must first compute t. However, storing t requires log t bits, so the
computed value of t is stored in shares in sub-blocks of length log t. In order to
verify the correctness of the sub-blocks, the vertices must count to log t using
log log t bits of memory. This value is again stored in shares in sub-sub-blocks of
length log log t. This process of recursively verifying the lengths of blocks con-
tinues until the block length is constant. Thus log∗ n levels of recursion suffice.

Formally, in our recursive scheme, recursive acyclicity labels closely re-
semble those in Subsection 4.2. For each vertex v and each level i = 1, 2, . . . , k =
log∗ n, we have an associated block label bi(v) and block color ci(v). We refer to
the labels associated to each i as a level , denoted Li. The top level L1 addition-
ally contains orientation labels, a(v) and distance labels d(v) for each vertex.
Each level i has an associated length, denoted by ti. We emphasize that the ti
are not initially known to the vertices at the beginning of an execution. The
semantics and correctness of the block labels bi and block colors ci are precisely
the same as those described in Subsection 4.2, where blocks at level i have length
ti. As before, the distance labels d(v) encode (a share of) the purported distance
of the L1 block containing v to the root.

Definition 20 Suppose ` is a family of recursive acyclicity labels for a graph
G = (V,E). We say that a family ` of recursive acyclicity labels is correct if the
L1 labels are correct as in Definition 14, and for i ≥ 2 the block labels in bi and
block colors ci are correct as in Definition 14 with ti = blog ti−1c.

Remark 21 For simplicity of presentation, we assume that for all i ≥ 2 that ti
divides ti−1. Thus, each block in Li−1 contains an integral number of sub-blocks.
The general case can be obtained by allowing “overlap” of the last sub-block of
B in level i with the first sub-block of B′ in i where B is the parent block of B′.

Analogously to Proposition 16, we obtain the following result.

Proposition 22 Let G = (V,E) be a graph. Then G is acyclic if and only if it
admits a correct family C of recursive acyclicity labels.

It is clear that recursive acyclicity labels are of length O(log∗ n). Indeed, each
of the labels in the log∗ n recursive levels has length O(1).

Lemma 23 Let G = (V,E) be a graph, and C a family of recursive acyclic-
ity labels on G. Suppose that for some i, the labels in Li+1 are correct. Then
there exists a verifier vi for the labels in Li with run-time O(2ti+1), constant
communication per round, and constant space.

We describe a verifier RVerify (Algorithm 2) for Li assuming Li+1 is correct.
Suppose B is a block in level i, and B1, B2, . . . , Bs its sub-blocks for s = ti/ti+1,
with Bj the parent of Bj+1. By assumption, the block labels for the Bj are
correct. The head v0 of B verifies that it is also the head of B1, and sends a



Algorithm 2 RVerify(i, Li)

1: verify a is correct
2: verify properties 1 and 3 of correctness

of bi correctness of ci
3: if i = log∗ n then
4: verify correctness of bi and ci
5: return
6: end if
7: tcounti+1 ← 0

8: Count(tcounti+1, 1, i)
9: Send(tcounti+1,rec, i + 1)

10: assert: reci+1 = tcounti+1

11: if i = 1 then
12: Add(d(v),tcount2,dcount, 1)
13: Send(dcount,dcount, 1)
14: assert: dcount = d(v)
15: end if

token Tcount to all of its children. The vertices in B bounce Tcount to the tail,
which then bounces Tcount back up to v0. Meanwhile, the vertices of each Bj

hold shares of a counter tcountj , which computes ti by incrementing itself until
Tcount returns to the head. If the counter tcountj ever exceeds 2ti+1 (i.e., if
the bit held by the tail of Bj is ever incremented twice), then the vertices in
Bj will halt and reject the label. It is clear that this step of the verification will
always halt in time O(2ti+1). After counting, the blocks in Li+1 verify that they
agree on tcountj . Further, tails of Bj verify that their share of tcount is 1,
implying that 2ti−1−1 < ti ≤ 2ti−1 .

There is a slight complication in the verification algorithm described above
that arises when a block B terminates prematurely in a leaf (a vertex of degree
1) which is not a tail. In correct block labels, if v0 is the head of overlapping
complete blocks (i.e., all have tails at distance ti from the head) then v0 should
receive Tcount from all of its children at the same time, 2ti. However, if some
block containing v0 is incomplete (terminates prematurely with a leaf) then v0
may receive messages from its children in different rounds. To avoid this problem,
leaves which are not labeled tail respond with a token Tleaf to their parent upon
receiving Tcount. The parent then knows not to expect a Tcount from this child.
Similarly, if an internal vertex receives Tleaf from all of its children (perhaps
in different rounds), it sends Tleaf to its parent. Then vertices check that they
receive Tcount from all children at the same time, except those which have sent
Tleaf if a previous round.

Finally, if i = 1, the vertices must additionally verify the correctness of the
distance labels d(v). Suppose B = (v0, . . . , vt−1) and B′ = (w0, . . . , wt−1) are
blocks with B the parent of B′. The tail vt−1 sends b(vt−1), c(vt−1), and d(vt−1)
to its children, and sends the token Tstart to its parent, vt−2. The vertices
continue to echo any messages received from their parents to their children, and
if a vertex v receives Tstart from its children, it additionally sends b(v), c(v),
and d(v) to its children. When wt−1 (the tail of B′) receives d(vt−1), it saves this
value and sends Tstop to its parent. When a vertex w receives Tstop, it saves

the value d(v) in the message it received from its parent such that c(v) 6= d(v),
and echos Tstop to its parent. After 2t rounds, the procedure terminates, and

every wi holds d(vi). In a further 3t rounds, B′ distributively increments the



d(vi), and verify that the incremented d(vi) are equal to d(wi), thus ensuring
the distance labels are correct.

Proof (of Lemma 23). We prove that RVerify(i, Li) (Algorithm 2) is a verifier
for Li whenever Li+1 is a correct. As in the proof of Lemma 17, we focus on
verifying properties 2 and 4 in the correctness of bi. Properties 1 and 3 of the
correctness of bi, as well as the correctness of ci can be trivially verified in a
single communication round with constant communication. Let v0 be a root in
Li. By induction, every vertex at distance τ from v0 receives Tcount at time τ .
Thus, property 4 of the correctness of bi is satisfied if and only if no vertex fails
in a call to Count(tcounti+1, 1, i), which occurs if and only if each 2ti+1−1 <
tcounti+1 ≤ 2ti+1 (line 20 of Count ensures the first inequality, while the
check in lines 11–13 of Increment ensure the second inequality). Property 2 in
the correctness of bi holds if and only if all vertices accept the assertion at line
10 of RVerify(i, Li).

The proof that d is correct when i = 1 if and only if no vertex rejects
in lines 11–15 in RVerify(i, Li) is analogous to the argument in Lemma 17.
Finally, it is clear that the per-round communication is constant, as is the space
requirement (assuming that only levels Li and Li+1 are stored). As for the run-
time, notice that Count(ctr,m, i) always terminates in time at most 2mti+1 by
the verification at lines 11–13 of Increment. Further, if no vertex fails during
the call to count Count, then Add and Send will similarly halt after 2ti+1 ≤ ti
rounds.

Proof (of Theorem 18). By Proposition 22, it suffices to prove the existence of a
verifier v of recursive acyclicity labels with the claimed communication, space,
and time. We induct on k−i (where k = log∗ n) that the correctness of Li can be
verified in the desired run-time, using constant communication and space. When
i = k, the correctness of labels is a local property (independent of the size of
the network). Thus, each vertex v can verify the correctness of Lk by analyzing
the state of Lk labels in N(v,O(1)), which can be accomplished in constant
time, space, and communication. Now suppose the correctness of Li+1 can be
verified in time O(t) using constant communication and space. By Lemma 23,
RVerify(i, Li) (Algorithm 2) is a verifier for Li. Further, RVerify(i, Li) runs in
time O(ti) ≤ O(log(t1)), uses constant communication, and space. Theorem 18
the follows by running RVerify(k, Lk), followed by RVerify(k − 1, Lk−1) and
so on, up to RVerify(1, L1). The run-time is O(tk + tk−1 + · · ·+ t1) ≤ O(t1).

Remark 24 We can modify the recursive scheme described here to use only
finitely many levels of recursion, but with the tradeoff of using more memory
per-vertex. In particular, if only the labels of L1 are given, but each vertex has
access to a counter with log t bits of memory, we recover precisely the scheme
of Subsection 4.2 in the case where t = Ω(log n). If we give labels in L1 and
L2, and each vertex has a counter with log log t bits of memory, then the scheme
will still be correct. However, we get a greater degradation of run-time due to
round-off errors in log log t. Specifically, if we have m− 1 < log log t ≤ m, then



we obtain

22
m−1

< t ≤
(

22
m−1

)2
.

Thus, even if log log t is given truthfully as the size of the counter, the run-time
of RVerify may be quadratic in t if the L1 labels are improperly formed. Finally,
given labels L1, L2, and L3, and a counters of size log(3) t, the run-time may
vary exponentially from log n. Thus, our worst-case run-time is already only
O(n). The fully recursive scheme thus achieves the same worst-case run-time
with log∗ n memory per vertex.

References

1. Y. Afek, S. Kutten, and M. Yung. The local detection paradigm and its application
to self-stabilization. Theor. Comput. Sci., 186(1-2):199–229, 1997.

2. B. Awerbuch and R. Ostrovsky. Memory-efficient and self-stabilizing network reset
(extended abstract). In Proceedings of the Thirteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’94, pages 254–263, New York, NY,
USA, 1994. ACM.

3. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking
and correction. In 32nd Symposium on Foundations of Computer Science (FOCS),
pages 268–277. IEEE, 1991.

4. M. Baruch, P. Fraigniaud, and B. Patt-Shamir. Randomized proof-labeling
schemes. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC, pages 315–324, 2015.

5. M. Baruch, R. Ostrovsky, and W. Rosenbaum. Brief announcement: Space-time
tradeoffs for distributed verification. In Proceedings of the 2016 ACM Symposium
on Principles of Distributed Computing, PODC ’16, pages 357–359, New York, NY,
USA, 2016. ACM.

6. L. Blin, P. Fraigniaud, and B. Patt-Shamir. On proof-labeling schemes versus
silent self-stabilizing algorithms. In 16th Int. Symp. on Stabilization, Safety, and
Security of Distributed Systems (SSS), LNCS, pages 18–32. Springer, 2014.

7. A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan,
D. Peleg, and R. Wattenhofer. Distributed verification and hardness of distributed
approximation. SIAM J. Comput., 41(5):1235–1265, 2012.

8. L. Feuilloley and P. Fraigniaud. Survey of distributed decision. Bulletin of the
EATCS, 119, 2016.

9. K.-T. Foerster, T. Luedi, J. Seidel, and R. Wattenhofer. Local checkability, no
strings attached. In Proceedings of the 17th International Conference on Distributed
Computing and Networking, ICDCN ’16, pages 21:1–21:10, New York, NY, USA,
2016. ACM.

10. P. Fraigniaud, A. Korman, and D. Peleg. Towards a complexity theory for local
distributed computing. J. ACM, 60(5):35, 2013.

11. P. Fraigniaud, S. Rajsbaum, and C. Travers. Locality and checkability in wait-free
computing. Distributed Computing, 26(4):223–242, 2013.
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A Super-constant and sub-linear algorithms

In this section, we show that any algorithm A which has run-time which is ω(1)
and o(n) for all inputs must have access to some truthful global information
about G or t. Suppose G = (V,E) is a graph, S a (possibly infinite) set of states,
and ϕ : V → S an assignment of initial states. In the τ -th step of computation,
each vertex v learns the state of its neighbors up to distance τ , and must decide
to halt or continue. Thus, we can view an algorithm as a function f on from
labeled graphs to the set {halt,continue}. On the τ -th step, the vertex v
computes f(N(v, τ)) either halts or continues based on the value of f . We say
that A halts in time t on input (G,ϕ) if every vertex halts in time τ ≤ t and
some vertex v halts precisely at time t. We say that A has run-time t on G if for
all initial inputs ϕ for G, the run-time of (G,ϕ) is at most t, and there exists
some initial input for which the run-time is t. We denote the run-time of A on
G by t(G).

Proposition 25 Let C = {C3, C4, . . .} denote the family of cycle graphs. Sup-
pose the sequence of run-times t(C3), t(C4), . . . is unbounded. Then t(Cn) =
Ω(n).

Proof. Since t(Cn) is unbounded, define nk to be the smallest value of n for
which t(Cn) ≥ k. Suppose ϕ : Cnk

→ S gives initial states for which the run-
time is at least k, and in particular, that the vertex v does not halt after k − 1
rounds. Let v−k+1, . . . , v−1, v, v1, . . . , vk denote v’s k − 1 neighborhood.

Now consider C = C2k. Fix w ∈ C and let w−k+1, . . . , wk−1 denote w’s
k − 1 neighborhood. Let ψ : C → S be an initial assignment which satisfies
ψ(wi) = ψ(vi) for all i = −k + 1, . . . , k − 1. Thus, N(v, k − 1) and N(w, k − 1)
are isomorphic. In particular, this implies that A will not halt at w in fewer than
k rounds. Thus, t(C2k) ≥ k. Therefore, for all n, we have t(Cn) ≥ n/2, which
gives the desired result.



B Pseudocode for Subroutines

Algorithm 3 Count(ctr,m, i): Computes the length of a block with shares of
the count ctr ∈ {0, 1}m.

1: firstPass← false
2: if bi(v) = head then
3: send T i

count to children
4: firstPass← true
5: end if
6: repeat
7: Increment(ctr,m, 1, i + 1)
8: Bounce(T i

count, i)
9: until firstPass = true

10: repeat
11: Increment(ctr,m, 1/2, i + 1)

12: Bounce(T i
count, i)

13: Echo(T i
stop)

14: if bi(v) = head and received
T i

count from children then

15: send T i
stop to children

16: return
17: end if
18: until receive T i

stop from P (v)

19: if bi(v) = tail then
20: assert: ctr > 2m−1 − 1
21: end if

Algorithm 4 Increment(ctr,m,val, i): Increments the counter ctr ∈
{0, 1}m by val, sending carry bits to children. Rejects if new count exceeds
capacity of block.

1: if b(v) = head then
2: carry← (ctr + val)/2m

3: ctr← (ctr + val) mod 2m

4: else if receive value val′ from parent
then

5: carry← (ctr + val′)/2m

6: ctr← ctr + val′

7: end if

8: if carry 6= 0 then
9: if b(v) = head or mid then

10: send carry to all children
11: else
12: reject
13: end if
14: end if



Algorithm 5 Bounce(T, i): bounces a token T from head to tail, and back to
the head. Fails if T is received from different children at different times.

1: leaves← ∅
2: if receive T from P (v) then
3: if bi(v) = tail then
4: send T to P (v)
5: else if v has no children then
6: send T i

leaf to P (v)
7: else
8: send T to all children
9: end if

10: end if
11: if receive T i

leaf from child w then

12: leaves← leaves ∪ {w}
13: end if
14: if leaves contains all children then
15: send T i

leaf to P (v)
16: else if receive T from all children

/∈ leaves then
17: send T to P (v)
18: else
19: fail
20: end if

Algorithm 6 Echo(T, i): sends a token T from head to tail

1: if receive T from P (v) then
2: if bi(v) = mid then
3: send T to all children
4: else if bi(v) = head then
5: fail

6: end if
7: else if receive T from any child then
8: fail
9: end if

Algorithm 7 Send(msg,rec, i): sends messages msg stored in block B to B′,
B’s child, stores message as rec

1: if bi(v) = tail then
2: send {msg, ci(v)} to all children
3: send T i

start to P (v)
4: repeat
5: snd← message from P (v)
6: if snd contains {msg(w), ci(w)}

with ci(w) 6= ci(v) then
7: rec← msg(w)
8: send T i

stop to P (v)

9: snd← snd \ {msg(w), ci(w)}
10: end if
11: send snd to all children
12: until receive T i

stop from P (v)

13: else
14: repeat
15: snd← message from P (v)

16: if receive T i
stop from all children

then
17: rec← msg(w) where ci(w) 6=

ci(v)
18: snd← snd \ {msg(w), ci(w)}
19: end if
20: send snd to all children
21: Bounce(T i

stop)

22: if received T i
stop from all chil-

dren and bi(v) = head then
23: send T i

stop to all children
24: return
25: end if
26: until receive T i

stop from P (v)

27: end if



Algorithm 8 Add(ctr1,ctr2,ctr3,m): adds ctr1 and ctr2 and stores result
as ctr3; all counters are in {0, 1}m

1: if b(v) = head then
2: carry← (ctr1 + ctr2)/2m

3: ctr3 ← (ctr1 + ctr2) mod 2m

4: send carry to all children
5: else if receive val from P (v) then

6: carry← (ctr1 +ctr2 +val)/2m

7: ctr3 = (ctr1 + ctr2 + val)
mod 2m

8: send carry to all children
9: end if
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