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Abstract

A garbling scheme is used to garble a circuit C and an input x in a way that reveals the output
C(x) but hides everything else. In many settings, the circuit can be garbled off-line without strict
efficiency constraints, but the input must be garbled very efficiently on-line, with much lower complexity
than evaluating the circuit. Yao’s scheme has essentially optimal on-line complexity, but only achieves
selective security, where the adversary must choose the input x prior to seeing the garbled circuit. It has
remained an open problem to achieve adaptive security, where the adversary can choose x after seeing
the garbled circuit, while preserving on-line efficiency.

In this work, we modify Yao’s scheme in a way that allows us to prove adaptive security under one-way
functions. As our main instantiation, we get a scheme where the on-line complexity is only proportional
to the width w of the circuit, which corresponds to the space complexity of the computation, but is
independent of the circuit’s depth d. Alternately, we can also get an instantiation where the on-line
complexity is only proportional to the input/output size and the depth d of the circuit but independent
of its width w, albeit in this case we incur a 2O(d) security loss in our reduction. More broadly, we relate
the on-line complexity of adaptively secure garbling schemes in our framework to a certain type of pebble
complexity of the circuit.

As our main tool, of independent interest, we develop a new notion of somewhere equivocal encryption,
which allows us to efficiently equivocate on a small subset of the message bits.
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1 Introduction

Garbled Circuits. A garbling scheme (also referred to as a randomized encoding) can be used to garble

a circuit C and an input x to derive a garbled circuit C̃ and a garbled input x̃. It’s possible to evaluate C̃ on
x̃ and get the correct output C(x). However, the garbled values C̃, x̃ should not reveal anything else beyond

this. In particular, there is a simulator that can simulate C̃, x̃ given only C(x).
The notion of garbled circuits was introduced by Yao in (oral presentations of) [Yao82, Yao86], and can be

instantiated based on one-way functions. Garbled circuits have since found countless applications in diverse
areas of cryptography, most notably to secure function evaluation (SFE) starting with Yao’s work, but also in
parallel cryptography [AIK04, AIK05], verifiable computation [GGP10, AIK10], software protection [GKR08,
GIS+10], functional encryption [SS10, GVW12, GKP+13], key-dependent message security [BHHI10, App11],
obfuscation [App14] and many others. These applications rely on various efficiency/functionality properties
of garbled circuits and a comprehensive study of this primitive is explored in the work of Bellare, Hoang and
Rogaway [BHR12b].

On-line Complexity. In many applications, the garbled circuit C̃ can be computed in an off-line pre-
processing phase before the input is known, and therefore the efficiency of this procedure may not be of
paramount importance. On the other hand, once the input x becomes available in the on-line phase,
creating the garbled input x̃ should be extremely efficient. Therefore, the main efficiency measure that we
consider here is the on-line complexity, which is the time it takes to garble an input x, and hence also a bound
on the size of x̃. Ideally, the on-line complexity should only be linear in the input size |x| and independent
of the potentially much larger circuit size |C|.1

Yao’s Scheme. Yao’s garbling scheme already achieves essentially optimal on-line complexity, where the
time to garble an input x and the size of x̃ are only linear in the input size |x|, independent of the circuit size.2

However, it only realizes a weak notion of security called selective security, which corresponds to a setting
where adversary must choose the input x before seeing the garbled circuit C̃. In particular, the adversary
first chooses both C and x and then gets the garbled values C̃, x̃ which are either correctly computed using
the “real” garbling scheme or “simulated” using only C(x). The adversary should not be able to distinguish
between the real world and the simulated world.

Selective vs. Adaptive Security. Selective security is often unsatisfactory in precisely the scenarios
envisioned in the off-line/on-line setting, where the garbled circuit C̃ is given out first and the garbled input
x̃ is only given out later. In such settings, the adversary may be able to (partially) influence the choice of

the input x after seeing the garbled circuit C̃. Therefore, we need a stronger notion called adaptive security,
defined via the following two stage game:

1. The adversary chooses a circuit C and gets the garbled circuit C̃.

2. After seeing C̃ the adversary adaptively chooses an input x and gets the garbled input x̃.

In the real world C̃, x̃ are computed correctly using the garbling scheme, while in the simulated world they
are created by a simulator who only gets the output C(x) in step (2) of the game but does not get the input
x. The adversary should not be able to distinguish these two worlds.

The work of Bellare, Hoang and Rogaway [BHR12a] gave the first thorough treatment of adaptively
secure garbling schemes and showed that this notion is crucial in many applications. They point out that it
remains unknown whether Yao’s garbling scheme or any of its many variants can satisfy adaptive security,
and the proof techniques that work in the selective security setting do not extend to the adaptive setting.

1Note that, without any other restrictions on the structure of the garbling scheme, there is a trivial scheme where C̃ is empty
and x̃ = C(x), whose on-line complexity is proportional to |C|.

2More precisely, in Yao’s garbled circuits, the garbled input is of size |x| · poly(λ) where λ is the security parameter. The
work of [AIKW13] shows how to reduce this to |x|+ poly(λ) assuming stronger assumptions such as DDH, RSA or LWE.
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They left it as the main open problem to construct adaptively secure garbling schemes where the on-line
complexity is smaller than the circuit size.3,4

1.1 Prior Approaches to Adaptive Security

Lower Bound and Yao’s scheme. The work of Applebaum et al. [AIKW13] (see also [HW15]) gives a
lower bound on the on-line complexity of circuit garbling in the adaptive setting, showing that the size of
the garbled input x̃ must exceed the output size of the circuit. This is in contrast to the selective security
setting, where Yao’s garbling scheme achieves on-line complexity that depends only on the input size and not
the output size. In particular, this shows that Yao’s garbling scheme cannot directly be adaptively secure.

Complexity Leveraging. It turns out that there is a simple and natural modification of Yao’s garbling
scheme (i.e., by withholding the mapping of output-wire keys to output bits until the on-line phase) that
would match the above lower bound and could plausibly be conjectured to provide adaptive security. In
fact, one can prove that the above variant of Yao’s scheme is secure in the adaptive setting using complexity
leveraging, but only at a 2n security loss in the reduction, where n is the input size. There is no known proof
of security that avoids this loss.5

One-Time Pad and Random-Oracles. An alternate approach, suggested by [BHR12a], is to use one-
time pad encryption to encrypt a Yao garbled circuit in the off-line phase and then provide the decryption key
with the garbled input in the on-line phase. Intuitively, since a one-time pad encryption is “non-committing”
and the ciphertext can be equivocated to any possible message by providing a corresponding key, the adversary
does not gain any advantage in seeing such a ciphertext in the off-line phase. Unfortunately, this solution
blows up the on-line complexity to be at least as large as the circuit size.

The work of [BHR12a] also noted that one can replace the one-time pad encryption in the above solution
with a random-oracle based encryption scheme, which can be equivocated by programming random oracle
outputs. This gives an adaptively secure garbled circuit construction with optimal parameters in the random
oracle model. In fact, this approach can even be used to prove security in parameter regimes that beat the
lower bound of [AIKW13], and therefore we should be suspicious about it’s implications in the standard
model, when the random oracle is replaced by a hash function. In particular, the construction is using the
random oracle for equivocation in ways that we know to be uninstantiable in the standard model [Nie02].

Heavy Hammers. Lastly, we mention two approaches that get adaptively secure garbled circuits with
good on-line complexity under significantly stronger assumptions than one-way functions. The work of
Boneh et al. [BGG+14] implicitly provides such schemes where the on-line complexity is proportional to
the input/output size and the depth d of the circuit, under the learning with errors assumption with a
modulus-to-noise ratio of 2poly(d). This translates to assuming the hardness of lattice problems with 2poly(d)

approximation factors. The work of Ananth and Sahai [AS15] shows how to get an essentially optimal
schemes, where the on-line complexity is only proportional to the input/output size of the circuit, assuming
indistinguishability obfuscation. In terms of both assumptions and practical efficiency, these schemes are a
far cry from Yao’s original scheme.

1.2 Our results

In this work, we construct the first adaptively secure garbling scheme whose on-line complexity is smaller
than the circuit size and which only relies on the existence of one-way functions. Our construction is an
adaptation of Yao’ scheme that maintains essentially all of its desirable properties, such as having highly

3 The adaptive security notion we described, is denoted prv1 by [BHR12a]. They also consider a stronger variant called prv2,
where the adversary adaptively chooses bits of the input x one at a time and gets the corresponding bits of the garbled input x̃.
They show that there is an efficiency preserving transformation from prv1 to prv2 following the ideas from [GKR08]. Therefore,
in this work we can focus solely on achieving prv1.

4The problem of achieving adaptively secure garbled circuits is different from the problem of achieving adaptively secure
two-party computation (with constant rounds) using an approach based on garbled circuits. We do not address the latter.

5Even if we’re willing to assume exponentially secure primitives, the use of complexity leveraging blows up parameter sizes
so that the garbled input must be of size at least n2 · poly(λ) where λ is the security parameter to get any meaningful security.
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parallelizable circuit garbling and projective/decomposable input garbling.6 In particular, our construction
simply encrypts a Yao garbled circuit with a somewhere equivocal symmetric-key encryption scheme, which
is a new primitive that we define and construct from one-way functions. The encrypted Yao garbled circuit
is sent in the off-line phase, and the Yao garbled input along with the decryption key is sent in the on-line
phase. We get various provably secure instantiations of the above approach depending on how we set the
parameters of the encryption scheme.

As our main instantiation, we get a garbling scheme whose on-line complexity is w · poly(λ) where w
is the width of the circuit and λ is the security parameter, but is otherwise independent of the depth d of
the circuit.7 Note that, if we think of the circuit as representing a Turing Machine or RAM computation,
then the width w of the circuit corresponds to the maximum of the input size n, output size m, and space
complexity s of the computation, meaning that our on-line complexity is (n+m+ s) · poly(λ), but otherwise
independent of the run-time of the computation.

Alternately, we also get a different instantiation where the on-line complexity is only (n+m+d) ·poly(λ),
where n is the input size, m is the output size, and d is the depth of the circuit, but is otherwise independent
of the circuit’s width w. In this case, we also incur a 2O(d) security loss in our reduction, but this can be
a significant improvement over the naive complexity-leveraging approach which incurs a 2n security loss,
where n is the input size. In particular, in the case of NC1 circuits where d = O(log n), we get a polynomial
reduction and achieve optimal on-line complexity of (n+m) · poly(λ).

More broadly, we develop a connection between constructing adaptively secure schemes in our framework
and a certain type of pebble complexity of the given circuit. The size of the garbled input is proportional to
the maximal number of pebbles and the number of hybrids in our reduction is proportional to the number
of moves needed to pebble the circuit.

1.3 Applications of Our Results

We briefly mention how our results can be used to get concrete improvements in several applications of
garbled circuits in prior works.

On-line/Off-line Two-Party Computation. One of the main uses of garbled circuits is in two-party
secure computation protocols. In this setting, Alice holds an input xA, Bob holds an input xB and they
wish to compute f(xA, xB). To do so, Alice creates a garbled circuit C̃f for the function f and sends C̃f
along with her portion of the garbled input x̃A to Bob. Bob runs an oblivious transfer (OT) protocol to get
the garbled version of his input x̃B without revealing xB to Alice. This can be done if the garbling scheme
is projective/decomposable (see footnote 6) so that each bit of the garbled input only depends on one bit
of the original input. Security against fully malicious parties can be obtained via zero-knowledge proofs or
cut-and-choose techniques. It is possible to instantiate the above construction with selectively secure garbled
circuits, by having Bob commit to xB before he gets the garbled circuit C̃f . This ensures that the choice of
the input cannot depend on the garbled circuit.

However, in many cases, creating the garbled circuit C̃f for the function f is expensive and we would like
to do this off-line before the inputs xA, xB are known to Alice and Bob. Once the inputs become known, the
on-line phase should be extremely efficient, and ideally much smaller than the size of the circuit computing
f . This setting was recently explored in the work of Lindell and Ben Riva [LR14] who showed how to solve
this problem very efficiently using cut-and-choose techniques, given an adaptively secure garbling scheme
with low on-line complexity. To instantiate the latter primitive, they relied on the random oracle model.
Using our construction of adaptively secure garbled circuit, we can instantiate the scheme of [LR14] in the
standard model, where the on-line complexity of the two-party computation protocol would match that of
our garbling schemes.

One-Time Programs and Verifiable Computation. As noted by [BHR12a], two prior works from the
literature on one-time programs [GKR08] and verifiable computation [GGP10] implicitly require adaptively

6 Each bit of the garbled input only depends on one bit of the original input.
7We consider circuits made up of fan-in 2 gates with arbitrary fan-out. The circuit is composed of levels and wires can only

connect gates in level i with those at the next level i+ 1. The width of the circuit is the maximal number of gates in any level
and the depth is the number of levels.
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secure garbling.8 In both cases, we can plug in our construction of adaptively secure garbling to these
constructions.

In the case of one-time programs, the on-line complexity of the garbling scheme translates to the number
of hardware tokens needed to create the one-time program. In the case of verifiable computation, the on-line
complexity of the garbling scheme translates to the complexity of the verification protocol – it is essential
that this is smaller than the circuit size to make the verification protocol non-trivial.

Compact Functional Encryption. The recent work of [ABSV15] shows how to convert any selectively
secure functional encryption (FE) scheme into an adaptively secure FE. However, their transformation is
not compact and the ciphertext size is as large as the maximum circuit size of the allowed functions. This is
true even if the selectively secure FE that they start with is compact. Implicitly, the main bottleneck in the
transformation is having adaptively secure garbled circuits with low on-line complexity. The work of [AS15]
gives an alternate and modular transformation from a selectively secure compact FE to an adaptively secure
one using adaptively secure garbled circuits (actually, their main construction is for Turing Machines and
relies on garbling TMs which require heavier machinery – however, it can be scaled down to work for circuits
to get the above result). This transformation applies to both bounded-collusion schemes and unbounded-
collusion schemes. By plugging in our construction of adaptively secure garbled circuits into the above result
we get a transformation from compact selectively secure FE to adaptive FE where the ciphertext size is only
proportional to the on-line complexity of our garbling scheme.

1.4 Our Techniques

In order to explain our techniques, we must first explain the difficulties in proving the adaptive security of
Yao’s garbling schemes. Since these difficulties are subtle, we begin with a description of the scheme and
the proof of selective security, following Lindell and Pinkas [LP09]. This allows us to fix a precise notation
and terminology which will be needed to also explain our new construction and proof. We expect that the
reader is already familiar with the basics of Yao circuits and refer to [LP09] for further details.

1.4.1 Yao’s Scheme and The Challenge of Adaptive Security

Yao’s Scheme. For each wire w in the circuit, we pick two keys k0
w, k

1
w for a symmetric-key encryption

scheme. For each gate in the circuit computing a function g : {0, 1}2 → {0, 1} and having input wires a, b
and output wire c we create a garbled gate consisting of 4 randomly ordered ciphertexts created as:

c0,0 = Enck0a(Enck0b (k
g(0,0)
c )) c1,0 = Enck1a(Enck0b (k

g(1,0)
c )),

c0,1 = Enck0a(Enck1b (k
g(0,1)
c )) c1,1 = Enck1a(Enck1b (k

g(1,1)
c ))

(1)

where (Enc,Dec) is a CPA-secure encryption scheme. The garbled circuit C̃ consists of all of the gabled
gates, along with an output mapping {k0

w → 0, k1
w → 1} which gives the correspondence between the keys

and the bits they represent for each output wire w . To garble an n-bit value x = x1x2 · · ·xn, the garbled
input x̃ consists of the keys kxiwi for the n input wires wi.

To evaluate the garbled circuit on the garbled input, it’s possible to decrypt (exactly) one ciphertext

in each garbled gate and get the key k
v(w)
w corresponding to the bit v(w) going over the wire w during the

computation C(x). Once the keys for the output wires are computed, it’s possible to recover the actual
output bits by looking them up in the output mapping.

Selective Security Simulator. To prove the selective security of Yao’s scheme, we need to define a
simulator that gets the output y = y1y2 · · · ym = C(x) and must produce C̃, x̃. The simulator picks random
keys k0

1, k
1
w for each wire w just like the real scheme, but it creates the garbled gates as follows:

c0,0 = Enck0a(Enck0b (k
0
c )) c1,0 = Enck1a(Enck0b (k

0
c )),

c0,1 = Enck0a(Enck1b (k
0
c )) c1,1 = Enck1a(Enck1b (k

0
c ))

(2)

8The work of [GKR08] requires an even stronger notion of adaptivity called prv2 but this can be generically achieved given
an adaptively secure scheme in our sense. See footnote 3.
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where all four ciphertext encrypt the same key k0
c . It creates the output mapping {k0

w → yw, k
1
w → 1− yw}

by “programming it” so that the key k0
w corresponds to the correct output bit yw for each output wire w.

This defines the simulated garbled circuit C̃. To create the simulated garbled input x̃ the simulator simply
gives out the keys k0

w for each input wire w. Note that, when evaluating the simulated garbled circuit on
the simulated garbled input, the adversary only sees the keys k0

w for every wire w.

Selective Security Hybrids. To prove indistinguishability between the real world and the simulation,
there is a series of carefully defined hybrid games that switch the distribution of one garbled gate at a
time, starting with the input level and proceeding up the circuit level by level. In each step we switch the
distribution of the ciphertexts in the targeted gate to:

c0,0 = Enck0a(Enck0b (k
v(c)
c )) c1,0 = Enck1a(Enck0b (k

v(c)
c )),

c0,1 = Enck0a(Enck1b (k
v(c)
c )) c1,1 = Enck1a(Enck1b (k

v(c)
c ))

(3)

where v(c) is the correct value of the bit going over the wire c during the computation of C(x).
Let us give names to the three modes for creating garbled gates that we defined above: (1) is called

RealGate mode, (2) is called SimGate mode, and (3) is called InputDepSimGate mode, since the way that it
is defined depends adaptively on the choice of the input x.

We can switch a gate from RealGate to InputDepSimGate mode if the gates in the previous level are in
InputDepSimGate mode (or we are in the input level) by CPA security of ecryption. In particular, we are not

changing the value contained in ciphertext cv(a),v(b) encrypted under the keys k
v(a)
a , k

v(b)
b that the adversary

obtains during evaluation, but we can change the values contained in all of the other ciphertexts since the
keys k1−v(a), k1−v(b) do not appear anywhere inside the garbled gates in the previous level.

At the end of the above sequence of hybrid games, all gates are switched from RealGate to InputDepSimGate
mode and the output mapping is computed as in the real world. The resulting distribution is statistically
identical to the simulation where all the gates are in SimGate mode and the output mapping is programmed.
This is because, at any level that’s not the output, the keys k0

c , k
1
c are used completely identically in the sub-

sequent level so there is no difference between always encrypting k
v(c)
c (InputDepSimGate) and k0

c (SimGate).

At the output level there is no difference between encrypting k
v(c)
c and giving the real mapping k

v(c)
c → yc

or encrypting k0
c and giving the programmed mapping k0

c → yc where yc is the output bit on wire c.

Challenges in Achieving adaptive security. There are two issues in using the above strategy in the
adaptive setting: an immediate but easy to fix problem and a more subtle but difficult to overcome problem.

The first immediate issue is that the selective simulator needs to know the output y = C(x) to create the

garbled circuit C̃ and in particular to program the output mapping {k0
w → yw, k

1
w → 1− yw} for the output

wires w. However, the adaptive simulator does not get the output y until after it creates the garbled circuit
C̃. Therefore, we cannot (even syntactically) use the selective security simulator in the adaptive setting.
This issue turns out to be easy to fix by modifying the construction to send the output-mapping as part of
the garbled input x̃ in the on-line phase, rather than as part of the garbled circuit C̃ in the off-line phase.
This modification raises on-line complexity to also being linear in the output size of the circuit, which we
know to be necessary by the lower bound of [AIKW13]. With this modification, the adaptive simulator can
program the output mapping after it learns the output y = C(x) in the on-line phase and therefore we get
a syntactically meaningful simulation strategy in the adaptive setting.

The second problem is where the true difficulty lies. Although we have a syntactically meaningful
simulation strategy, the previous proof of indistinguishability of the real world and the simulation completely
breaks down in the adaptive setting. Recall that the proof consisted of a sequence of hybrids where we
changed one garbled gate at a time (starting from the input level) from RealGate mode to the InputDepSimGate
mode. In the latter mode, the gate is created in a way that depends on the input x, but in the adaptive
setting the input x is chosen adaptively after the garbled circuit is created, leading to a circularity. In other
words, the distribution of InputDepSimGate as specified in equation (3) doesn’t even syntactically make
sense in the adaptive setting. Therefore, although we have a syntactically meaningful simulation strategy for
the adaptive setting, we do not have any syntactically meaningful sequence of intermediate hybrids to prove
indistinguishability between the real world and the simulated world.
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(One could hope to bypass InputDepSimGate mode altogether and define the hybrids by changing a gate
directly from RealGate mode to SimGate mode. Unfortunately, this change is easily distinguishable already
for the very first gate we would hope to change at the input level – the output value on the gate would no
longer be v(w) but 0 which may result in an overall incorrect output since we have not programmed the
output map yet. On the other hand, we cannot immediately jump to a hybrid where we program the output
map since all of the keys and their semantics are contained under encryption in prior levels of the circuit
and we haven’t argued about the security of the ciphertexts in these levels yet.)

1.4.2 Our Solution

Outer Encryption Layer. Our construction starts with the approach of [BHR12a] which is to encrypt
the entire garbled circuit with an additional outer encryption layer in the off-line phase (this is unrelated to
the encryption used to construct the garbled gates). Then, in the on-line phase, we give out the secret key
for this outer encryption scheme. The approach of [BHR12a] required a symmetric-key, one-time encryption
scheme which is equivocal, meaning that the ciphertext doesn’t determine the message and it is possible to
come up with a secret key that can open the ciphertext to any possible message. Unfortunately, any fully
equivocal encryption scheme where a ciphertext can be opened to any message (e.g., the one-time pad) must
necessarily have a secret key size which is as large as the message size. In our case, this is the entire garbled
circuit and therefore this ruins the on-line efficiency of the scheme. Our main idea is to use a new type of
partially equivocal encryption scheme, which we call somewhere equivocal.

Somewhere Equivocal Encryption. Intuitively, a somewhere equivocal encryption scheme allows us
to create a simulated ciphertext which contains “holes” in some small subset of the message bit positions
I chosen by the simulator, but all other message bits are fixed. The simulator can later equivocate this
ciphertext and “plug the holes” with any bits it wants by deriving a corresponding secret key. An adversary
cannot distinguish between seeing a real encryption of some message m = m1m2 · · ·mn and the real secret
key, from seeing a simulated encryption created using only (mi)i 6∈I with “holes” in positions I and an
equivocated secret key that later plugs the holes to the correct bits (mi)i∈I . We show how to construct
somewhere equivocal encryption using one-way functions. The size of the secret key is only proportional to
the maximum number of holes t = |I| that we allow, which we call the “equivocation parameter”, but can
be much smaller than the message size.9

Our proof of security departs significantly from that of [BHR12a]. In particular, our simulator does not
take advantage of the equivocation property of the encryption scheme at all, and in fact, our simulation
strategy is identical to the adaptive simulator we outlined above for the variant of Yao’s garbling where
the output map is sent in the on-line phase. However, we crucially rely on the equivocation property to
carefully define a meaningful sequence of hybrids that allows us to prove the indistinguishability of the real
and simulated worlds.

Hybrids for adaptive security. We define hybrid distributions where various garbled gates will be
created in one of three modes discussed above: RealGate,SimGate and InputDepSimGate. However, to make
the last option meaningful (even syntactically) in the adaptive setting, we rely on the somewhere equivocal
encryption scheme. For these hybrids, when we create the encrypted garbled circuit in the off-line phase,
we will simulate the outer encryption layer with a ciphertext that contains “holes” in place of all gates that
are in InputDepSimGate mode. Only when we open the outer encryption in the on-line phase after the input
x is chosen, we will “plug the holes” by sampling these gates correctly in InputDepSimGate mode in a way
that depends on the input x. Our equivocation parameter t for the somewhere equivocal encryption scheme
therefore needs to be large enough to support the maximum number of gates in InputDepSimGate mode that
we will have in any hybrid.

Sequence of hybrids. For our main result, we use the following sequence of hybrids to prove indisit-
nguishability of real and simulated worlds. We start by switching the first two levels of gates (starting with

9A different notion of partially equivocal encryption, called somewhat non-committing encryption, was introduced in
[GWZ09]. The latter notion allows a ciphertext to be opened to some small, polynomial size, set of messages which can
be chosen arbitrarily by the simulator at encryption time. The two notions are incomparable.
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the input level) to InputDepSimGate mode. We then switch the first level of gates to SimGate mode and
switch the third level InputDepSimGate mode. We continue this process, where in each step i we maintain
level i in InputDepSimGate mode but switch the previous level i − 1 from InputDepSimGate to SimGate and
then switch the next level i+ 1 from RealGate to InputDepSimGate. Eventually all gates will be in SimGate
mode as we wanted. We can switch a level i − 1 from InputDepSimGate to SimGate mode when the subse-
quent level i is in InputDepSimGate mode since the keys k0

c , k
1
c for wires c crossing from level i − 1 to i are

used identically in level i and therefore there is statistically no difference between encrypting the key k
v(c)
c

(InputDepSimGate) and k0
c (SimGate). We can also switch a level i + 1 from RealGate to InputDepSimGate

when the previous level i is InputDepSimGate (or i+ 1 is the input level) by CPA security following the same
argument as in the selective setting. With this strategy, at any point in time we have at most two levels
in InputDepSimGate mode and therefore our equivocation parameter only needs to be proportional to the
circuit width w.

Connection to pebbling. We can generalize the above idea and get other meaningful sequences of hybrids
with different parameters and implications. We can think of the process of switching between RealGate,
SimGate and InputDepSimGate modes as a new kind of graph pebbling game, where pebbles can be placed on
the graph representing the circuit according to certain rules. Initially, all gates are in RealGate mode, which
we associate with not having any pebble on them. We associate InputDepSimGate mode with having a black
pebble and SimGate mode with having a gray pebble. The rules of the game go as follows:

• We can place or remove a black pebble on a gate as long as both predecessors of that gate have black
pebbles on them (or the gate is an input gate).

• We can replace a black pebble with a gray pebble on a gate as long as all successors of that gate have
black or gray pebbles on them (or the gate is an output gate).

The goal of the game is to end up with a gray pebble on every gate. Any such pebbling strategy leads to
a sequence of hybrids that shows the indistinguishability between the real world and the simulation. The
number of moves needed to complete the pebbling corresponds to the number of hybrids in our proof, and
therefore the security loss of our reduction. The maximum number of black pebbles that are in play at
any given time corresponds to the equivocation parameter needed for our somewhere equivocal encryption
scheme.

For example, the sequence of hybrids discussed above corresponds to a pebbling strategy where the
number of black pebbles used is linear in the circuit width w (but independent of the depth) and the number
of moves is linear in the circuit size. We give an alternate recursive pebbling strategy where the number of
black pebbles used is linear in the circuit depth d (but independent of the width) and the number of moves
is 2O(d) times the circuit size.

Constructing somewhere equivocal encryption. Lastly, we briefly discuss our construction of some-
where equivocal encryption from one-way functions, which may be of independent interest. Recall that a
somewhere equivocal encryption provides a method for equivocating some small number (t out of n) of bits
of the message.

Our construction is based on the techniques developed in recent constructions of distributed point func-
tions [GI14, BGI15]. These techniques give us a way to construct a pseudorandom function (PRF) family
fk with the following equivocation property: for any input x, we can create two PRF keys k0, k1 that each
individually look uniformly random but such that fk0(x′) = fk1(x′) for all x′ 6= x and fk0(x) 6= fk1(x). The
construction is based on a clever adaptation of the Goldreich-Goldwasser-Micali (GGM) PRF [GGM84].

Using distributed point functions, we can immediately create a somewhere equivocal encryption with
equivocation parameter t = 1. We rely on a PRF family fk with the above equivocation property and
with one-bit output. To encrypt a message m = m1m2 · · ·mn ∈ {0, 1}n we create a ciphertext c = fk(1) ⊕
m1||fk(2)⊕m2|| · · · ||fk(n)⊕mn using the PRF outputs as a one-time pad. To create a simulated encryption
with a hole in position i, the simulator samples two PRF keys k0, k1 that only differ on input x = i. The
simulator encrypts the n-bit message by setting the unknown value in position i to mi := 0 and using k0. If
it later wants to open this value to 0, it sets the decryption key to k0 else k1.
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We can extend the above approach to an arbitrarily large equivocation parameter t, by using the XOR
of t independently chosen PRFs with the above equivocation property. The key size will be t · poly(λ).

2 Preliminaries

General Notation. For a positive integer n, we define the set [n] := {1, . . . , n}. We use the notation x←
X for the process of sampling a value x according to the distribution X. For a vector m = (m1,m2, · · · ,mn),
and a subset P ⊂ [n], we use (mi)i∈P to denote a vector containing only the values mi in positions i ∈ P
and ⊥ symbols in all other positions. We use (mi)i/∈P as shorthand for (mi)i∈[n]\P .

Circuit Notation. A boolean circuit C consists of gates gate1, . . . , gateq and wires w1, w2, . . . , wp. A gate
is defined by the tuple gatei = (g, wa, wb, wc) where g : {0, 1}2 → {0, 1} is the function computed by the
gate, wa, wb are the incoming wires, and wc is the outgoing wire. Although each gate has a unique outgoing
wire wc, this wire can be used as an incoming wire to several different gates and therefore this models a
circuit with fan-in 2 and unbounded fan-out. We let q denote the number of gates in the circuit, n denotes
the number of input wires and m denote the number of output wires. The total number of wires is p = n+ q
(since each wire can either be input wire or an outgoing wire of some gate). For convenience, we denote the
n input wires by in1, . . . , inn and the m output wires by out1, . . . , outm. For x ∈ {0, 1}n we write C(x) to
denote the output of evaluating the circuit C on input x.

We say C is leveled, if each gate has an associated level and any gate at level l has incoming wires only
from gates at level l−1 and outgoing wires only to gates at level l+1. We let the depth d denote the number
of levels and the width w denote the maximum number of gates in any level.

A circuit C is fully specified by a list of gate tuples gatei = (g, wa, wb, wc). We use Φtopo(C) to refer to the
topology of a circuit– which indicates how gates are connected, without specifying the function implement
by each gate. In other words, Φtopo(C) is the list of sanitized gate tuples ĝatei = (⊥, wa, wb, wc) where the
function g that the gate implements is removed from the tuple.

3 Garbling Scheme

We now give a formal definition of a garbling scheme. There are many variants of such definitions in the
literature, and we refer the reader to [BHR12b] for a comprehensive treatment.

Definition 1. A Garbling Scheme is a tuple of PPT algorithms GC = (GCircuit,GInput,Eval) such that:

• (C̃, k)
$← GCircuit(1λ, C): takes as input a security parameter λ, a circuit C : {0, 1}n → {0, 1}m, and

outputs the garbled circuit C̃, and key k.

• x̃← GInput(k, x): takes as input, a string x ∈ {0, 1}n, and key k and outputs x̃.

• y = Eval(C̃, x̃): given a garbled circuit C̃ and a garbled input x̃ output y ∈ {0, 1}m.

Correctness There is a negligible function ν such that for any λ ∈ N, any circuit C and input x it holds
that Pr[C(x) = Eval(C̃, x̃)] = 1− ν(λ), where (C̃, k)← GCircuit(1λ, C), x̃← GInput(k, x).

Adaptive Security. There exists a PPT simulator Sim = (SimC,SimIn) such that, for any PPT adversary
A, there exists a negligible function ν such that:

Pr[ExpadaptiveA,GC,Sim(1λ, 0) = 1]− Pr[ExpadaptiveA,GC,Sim(1λ, 1) = 1] ≤ ν(λ)

where the experiment ExpadaptiveA,GC,Sim(1λ, b) is defined as follows:

1. The adversary A specifies C and gets C̃ where C̃ is created as follows:

• if b = 0: (C̃, k)← GCircuit(1λ, C),
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• if b = 1: (C̃, state)← SimC(1λ,Φtopo(C)), where Φtopo(C) reveals the topology of C.

2. The adversary A specifies x and gets x̃ created as follows:

• if b = 0, x̃← GInput(k, x),

• if b = 1, x̃← SimIn(C(x), state).

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

On-line Complexity. The time it takes to garble an input x, (i.e., time complexity of GInput(·, ·)) is the
on-line complexity of the scheme. Clearly the on-line complexity of the scheme gives a bound on the size of
the garbled input x̃. Ideally, the on-line complexity should be much smaller than the circuit size |C|.

Projective Scheme. We say a garbling scheme is projective if each bit of the garbled input x̃ only depends
on one bit of the actual input x. In other words, each bit of the input, is garbled independently of other
bits of the input. Projective schemes are essential for two-party computation where the garbled input is
transmitted using an oblivious transfer (OT) protocol. Our constructions will be projective.

Hiding Topology. A garbling scheme that satisfies the above security definition may reveal the topology
of the circuit C. However, there is a way to transform any such garbling scheme into one that hides
everything, including the topology of the circuit, without a significant asymptotic efficiency loss. More
precisely, we rely on the fact that there is a function HideTopo(·)that takes a circuit C as input and outputs
a functionally equivalent circuit C ′, such that for any two circuits C1, C2 of equal size, if C ′1 = HideTopo(C1)
and C ′2 = HideTopo(C2), then Φtopo(C

′
1) = Φtopo(C

′
2). An easy way to construct such function HideTopo is by

setting C ′ to be a universal circuit, with a hard-coded description of the actual circuit C. Therefore, to get
a topology-hiding garbling scheme, we can simply use a topology-revealing scheme but instead of garbling
the circuit C directly, we garble the circuit HideTopo(C).

4 Somewhere Equivocal Symmetric-Key Encryption

We introduce a new cryptographic primitive called somewhere equivocal encryption scheme. Intuitively, a
somewhere equivocal encryption scheme allows one to create a simulated ciphertext which contain “holes”
in some small subset of the messages in positions I chosen by the simulator, but all other messages are
fixed. The simulator can later equivocate this ciphertext and “plug the holes” with any message it wants by
deriving a corresponding secret key.

In more detail, encryptions can be computed in two modes: real mode and simulated mode. In the real
mode, a key key ← KeyGen(1λ) is generated using the honest key generation procedure and a vector of n
messages m = m1, . . . ,mn is encrypted using the honest encryption procedure c← Enc(key,m).

In the simulated mode, there is an encryption procedure SimEnc that gets in input a set I (set of holes)
and only a subset of messages (mi)i/∈I and outputs simulated ciphertext c that is equivocal in positions I.
In a later stage, upon learning the remaining messages (mi)i∈I , there exists a procedure SimKey that plugs
the holes by generating a key key′ that will decrypt c correctly according to m.

The security property that we require is that the distributions of {c, key} generated in the two modes
are indistinguishable. To capture this property, one could envision a non-adaptive security game where
and adversary A first selects the full vector m and the set I, then it receives the tuple (c, key) and needs
to distinguish which distribution it belongs to. However, such security definition is not sufficient for our
indistinguishability proof where instead we need an adversary to decide on the missing messages after she
receives the ciphertex c. Therefore, we consider an adaptive security definition where the security game is
defined in two stages: in the first stage, the adversary chooses I, an incomplete vector of messages (mi)i/∈I ,
and a challenge index j /∈ I and receives the ciphertex c. In the second stage, the adversary sends the
remaining messages (mi)i∈I and gets key. The adversary knows that all positions in I are equivocal and
are plugged to the values (mi)i∈I chosen in the second stage. The challenge is to distinguish whether the
position j is also equivocal or not. Note that this two-stage (adaptive) security definition is stronger than
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the non-adaptive security definition sketched above. For completeness, we give the simpler non-adaptive
definition and prove the above implication in Appendix C.

Definition 2. A somewhere equivocal encryption scheme with block-length s, message-length n (in blocks),
and equivocation-parameter t (all polynomials in the security parameter) is a tuple of probabilistic polynomial
algorithms Π = (KeyGen, Enc,Dec, SimEnc, SimKey) such that:

• The key generation algorithm KeyGen takes as input the security parameter 1λ and outputs a key:
key← KeyGen(1λ).

• The encryption algorithm Enc takes as input a vector of n messages m = m1, . . . ,mn, with mi ∈ {0, 1}s,
and a key key, and outputs ciphertext c← Enc(key,m).

• The decryption algorithm Dec takes as input ciphertext c and a key key and outputs a vector of messages
m = m1, . . . ,mn. Namely, m← Dec(key, c).

• The simulated encryption algorithm SimEnc takes as input a set of indexes I ⊂ [n], such that |I| ≤
t, and a vector of n − |I| messages (mi)i/∈I and outputs ciphertext c, and a state state. Namely,
(state, c)← SimEnc((mi)i/∈I , I).

• The simulated key algorithm SimKey, takes as input the variable state and messages (mi)i∈I and outputs
a key key′. Namely, key′ ← SimKey(state, (mi)i∈I).

and satisfies the following properties:

Correctness. For every key← KeyGen(1λ), for every m ∈ {0, 1}s×n it holds that:

Dec(key, (Enc(key,m)) = m

Simulation with No Holes. We require that the distribution of (c, key) computed via (c, state)← SimEnc(m, ∅)
and key← SimKey(state, ∅) to be identical to key← KeyGen(1λ) and c← Enc(key,m). In other words,
simulation when there are no holes (i.e., I = ∅) is identical to honest key generation and encryption.

Security. For any PPT adversary A, there exists a negligible function ν = ν(λ) such that:

Pr[Expsimenc
A,Π (1λ, 0) = 1]− Pr[Expsimenc

A,Π (1λ, 1) = 1] ≤ ν(λ)

where the experiment Expsimenc
A,Π is defined as follows:

Experiment Expsimenc
A,Π (1λ, b)

1. The adversary A on input 1λ outputs a set I ⊆ [n] s.t. |I| < t, vector (mi)i/∈I , and a challenge
index j ∈ [n] \ I. Let I ′ = I ∪ j.

2. – If b = 0, compute c as follows: (state, c)← SimEnc((mi)i/∈I , I).

– If b = 1, compute c as follows: (state, c)← SimEnc((mi)i/∈I′ , I
′).

3. Send c to the adversary A.

4. The adversary A outputs the set of remaining messages (mi)i∈I .

– If b = 0, compute key as follows: key← SimKey(state, (mi)i∈I).

– If b = 1, compute key as follows: key← SimKey(state, (mi)i∈I′).

5. Send key to the adversary A.

6. A outputs b′ which is the output of the experiment.

In Appendix B, we construct somewhere equivocal encryption from one-way functions, proving the fol-
lowing theorem.

Theorem 1. Assuming the existence of one-way functions, there exists a somewhere equivocal encryption
scheme for any polynomial message-length n, block-length s, and equivocation parameter t, having key size
t · s · poly(λ) and ciphertext of size n · s bits.
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5 Adaptively Secure Garbling Scheme and Simulator

In this section we describe our garbling scheme and the simulation strategy.

5.1 Construction

Our adaptively-secure garbling scheme consists in two simple steps: (1) garble the circuit using Yao’s gar-
bling scheme; (2) hide the garbled circuit (without the output tables) under an outer layer of encryption
instantiated with a somewhere-equivocal encryption scheme. In the on-line phase, the garbled input consists
of Yao’s garbled input plus the output tables. Next we provide the formal description of our scheme that
contains the details of Yao’s garbling scheme.

Let C be a leveled boolean circuit with fan-in 2 and unbounded fan-out, with inputs size n, output size
m, depth d and width w. Let q denote the number of gates in C. Recall that wires are uniquely identified
with labels w1, w2, . . . , wp, and a circuit C is specified by a list of gate tuples gate = (g, wa, wb, wc). The
topology of the circuit Φtopo(C) consists of the sanitized gate tuples ĝatei = (⊥, wa, wb, wc). For simplicity,
we implicitly assume that Φtopo(C) is public and known to the circuit evaluator without explicitly including

it as part of the garbled circuit C̃. To simplify the description of our construction, we first describe the
procedure for garbling a single gate, that we denote by GarbleGate.

Let Γ = (G,E,D) be a CPA-secure symmetric-key encryption scheme satisfying the special correctness
property defined in Appendix A. GarbleGate is defined as follows.

– g̃ ← GarbleGate(g, {kσa , kσb , kσc }σ∈{0,1}): This function computes 4 ciphertexts cσ0,σ1 : σ0, σ1 ∈ {0, 1}
as defined below and outputs them in a random order as g̃ = [c1, c2, c3, c4].

c0,0 ← Ek0a(Ek0b (k
g(0,0)
c )) c0,1 ← Ek0a(Ek1b (k

g(0,1)
c ))

c1,0 ← Ek1a(Ek0b (k
g(1,0)
c )) c1,1 ← Ek1a(Ek0b (k

g(1,1)
c ))

Let Π = (KeyGen, Enc,Dec, SimEnc, SimKey) be a somewhere-equivocal symmetric-encryption scheme as
defined in Sec. 4. Recall that in this primitive the plaintext is a vector of n blocks, each of which has s bits.
In our construction we use the following parameters: the vector size n = q is the number of gates and the
block size s = |g̃| is the size of a single garbled gate. The equivocation parameter t is defined by the strategy
used in the security proof and will be specified later. The garbling scheme is formally described in Fig. 1.

5.2 Adaptive Simulator

The adaptive security simulator for our garbling scheme is essentially the same as the static security simulator
for Yao’s scheme (as in [LP09]), with the only difference that the output table is sent in the on-line phase,
and is computed adaptively to map to the correct output. Note that the garbled circuit simulator does not
rely on the simulation properties of the somewhere equivocal encryption scheme - these are only used in the
proof of indistinguishability.

More specifically, the adaptive simulator (SimC,SimIn) works as follows. In the off-line phase, SimC
computes the garbled gates using procedure GarbleSimGate, that generates 4 ciphertexts that encrypt the
same output key. More precisely,

– GarbleSimGate({kσwa , k
σ
wb
}σ∈{0,1}, k′wc) takes both keys for input wires wa, wb and a single key for the

output wire wc, that we denote by k′wc . It then output g̃c = [c1, c2, c3, c4] where the ciphertexts,
arranged in random order, are computed as follows.

c0,0 ← Ek0a(Ek0b (k
′
c)) c1,0 ← Ek1a(Ek0b (k

′
c))

c0,1 ← Ek0a(Ek1b (k
′
c)) c1,1 ← Ek1a(Ek0b (k

′
c))

The simulator invokes GarbleSimGate on input k′c = k0
c . It then encrypts the garbled gates so obtained by

using the honest procedure for the somewhere equivocal encryption.

In the on-line phase, SimIn, on input y = C(x) adaptively computes the output tables so that the
evaluator obtains the correct output. This is easily achieved by associating each bit of the output, yj , to the
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GCircuit(1λ, C)

1. Garble Circuit (Yao’s scheme)
– (Wires) kσwi ← G(1λ) for i ∈ [p], σ ∈ {0, 1}.

(Input wires) K = (k0
ini
, k1

ini
)i∈[n].

– (Gates) For each gatei = (g, wa, wb, wc) in C:

g̃i ← GarbleGate(g, {kσwa , k
σ
wb
, kσwc}σ∈{0,1}).

– (Output tables) For each output j ∈ [m]:

d̃j := [(k0
outj → 0), (k1

outj → 1)].

2. Outer Encryption

– key
$← KeyGen(1λ).

– C̃ ← Enc(key, (g̃1, . . . , g̃q)).

Output C̃, k = (K, key, (d̃j)j∈[m]).

GInput(x, k)

– (Select input keys) Kx = (kx1

in1
, . . . , kxninn).

– Output x̃ = (Kx, key, (d̃j)j∈[m]).

Eval(C̃, x̃)

1. Parse x̃ = (K, key, (d̃j)j∈[m]).

2. Decrypt Outer Encryption

(g̃i)i∈q ← Dec(key, C̃).

3. Evaluate Circuit.

Parse K = (kin1 , . . . , kinn).

For each level j = 1, . . . , d,

For each ĝatei = (⊥, wa, wb, wc) at level j:

– Let g̃i = [c1, c2, c3, c4];

– For δ ∈ [4] let k′wc ← Dkwa
(Dkwb

(cδ))

If k′wc 6= ⊥ then set kwc := k′wc .

4. Decrypt output.

For j ∈ [m]:

• Parse d̃j = [(k0
outj → 0), (k1

outj → 1)].

• Set yj = b iff koutj = kboutj .

Output y1, . . . , ym.

Figure 1: Adaptively-secure Garbling Scheme.

only key encrypted in the output gate goutj , which is k0
outj . For the input keys, SimIn just sends keys k0

ini
for

each i ∈ [n]. The detailed definition of (SimC,SimIn) is provided in Fig. 2.

5 Hybrid Games

We now need to prove the indistinguishability of our garbling scheme and the simulation. We devise a modular
approach for proving indistinguishability using different strategies that result in different parameters. We
first provide a template for defining hybrid games, where each such hybrid game is parametrized by a circuit
configuration, that is, a vector indicating the way the gates are garbled and encrypted. Then we define the
rules that allow us to indistinguishably move from one configuration to another. With this framework in
place, an indistinguishability proof consists of a strategy to move from the gate configuration of the real
game to the gate configuration of the simulated game, using the allowed rules.

5.1 Template for Defining Hybrid Games

Gate/Circuit Configuration. We start by defining a gate configuration. A gate configuration is a pair
(outer mode, garbling mode) indicating the way a gate is computed. The outer encryption mode can be
{EquivEnc,BindEnc} depending on whether the outer encryption contains a “hole” in place of that gate or
whether it is binding on that gate. The garbling mode can be {RealGate,SimGate, InputDepSimGate} which
corresponds to the distributions outlined in Figure 3. We stress that, if the garbling mode of a gate is
InputDepSimGate then we require that the outer encryption mode is EquivEnc. This means that there are 5
valid gate configurations for each gate.

A circuit configuration simply consists of the gate configuration for each gate in the circuit. More
specifically, we represent a circuit configuration by a tuple (I, (modei)i∈[q]) where

12



Simulator

SimC(1λ,Φtopo(C))

• (Wires) kσwi ← G(1λ) for i ∈ [p], σ ∈ {0, 1}.

• (Garbled gates) For each gate g̃atei = (⊥, wa, wb, wc) in Φtopo(C):
g̃i ← GarbleSimGate ({kσwa , k

σ
wb
}σ∈{0,1}, k0

wc).

• (Outer Encryption): key
$← KeyGen(1λ), C̃ ← Enc(key, g̃1, . . . , g̃q).

• Output C̃, state = ({kσwi}, key).

SimIn(y, state)

• Generate output table: s̃dj ← [(k
yj
outj → 0), (k

1−yj
outj → 1)]j∈[m]. // ensures k0

outj → yj

• Output x̃ = ((k0
ini

)i∈[n], key, (s̃dj)j∈[m]).

Figure 2: Simulator for Adaptive Security.

RealGate

c0,0 ← Ek0a(Ek0b (k
g(0,0)
c ))

c0,1 ← Ek0a(Ek1b (k
g(0,1)
c ))

c1,0 ← Ek1a(Ek0b (k
g(1,0)
c ))

c1,1 ← Ek1a(Ek1b (k
g(1,1)
c ))

SimGate

c0,0 ← Ek0a(Ek0b (k
0
c ))

c0,1 ← Ek0a(Ek1b (k
0
c ))

c1,0 ← Ek1a(Ek0b (k
0
c ))

c1,1 ← Ek1a(Ek1b (k
0
c ))

InputDepSimGate

c0,0 ← Ek0a(Ek0b (k
v(c)
c ))

c0,1 ← Ek0a(Ek1b (k
v(c)
c ))

c1,0 ← Ek1a(Ek0b (k
v(c)
c ))

c1,1 ← Ek1a(Ek1b (k
v(c)
c ))

Figure 3: Garbling Gate modes: RealGate (left), SimGate (center), InputDepSimGate (right). The value v(c)
depends on the input x and corresponds to the bit going over the wire c in the computation C(x).

• The set I ⊆ [q] contains the indexes of the gates i whose outer mode is EquivEnc.

• The value modei ∈ {RealGate,SimGate, InputDepSimGate} describes the garbling mode of gate i.

A valid circuit configuration is one where all indexes i such that modei = InputDepSimGate satisfy i ∈ I.

The Hybrid Game Hyb(I, (modei)i∈[q]). Every valid circuit configuration I, (modei)i∈[q] defines a hybrid
game Hyb(I, (modei)i∈[q]) as specified formally Figure 4 and described informally below. The hybrid game

consists of two procedures: GCircuit′ for creating the garbled circuit C̃ and GInput′ for creating the garbled
input x̃ respectively. The garbled circuit it created by picking random keys kσwj for each wire wj . For each
gate i, such that modei ∈ {RealGate,SimGate} it creates a garbled gate g̃i using the corresponding distribution

as described in Figure 3. The garbled circuit C̃ is then created by simulating the outer encryption using
the values g̃i in locations i 6∈ I and “holes” in the locations I. The garbled input is created by first sampling
the garbled gates g̃i for each i such that modei = InputDepSimGate using the corresponding distribution in
Figure 3 and using knowledge of the input x. Then the decryption key key is simulated by plugging in the
holes in locations I with the correctly sampled garbled gates g̃i. There is some subtlety about how the input
labels K[i] and the output label maps d̃j are created when computing x̃:

• If all of the gates having ini as an input wire are in SimGate mode, then K[i] := k0
ini

else K[i] := kxiini .

• If the unique gate having outj as an output wire is in SimGate mode, then we give the simulated output

map d̃j := [(k
yj
outj → 0), (k

1−yj
outj → 1)] else the real one d̃j := [(k0

outj → 0), (k1
outj → 1)].
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Game Hyb(I, (modei)i∈[q])

Garble circuit C:

– Garble Gates

(Wires) kσwi ← G(1λ) for i ∈ [p], σ ∈ {0, 1}.
(Gates) For each gatei = (g, wa, wb, wc) in C.

– If modei = RealGate:

run g̃i ← GarbleGate(g, {kσwa , k
σ
wb
, kσwc}σ∈{0,1}).

– if modei = SimGate:

run g̃i ← GarbleSimGate({kσwa , k
σ
wb
}σ∈{0,1}, k0wc ).

– Outer Encryption.

1. (state, C̃)← SimEnc((g̃i)i/∈I , I).

2. Output C̃.

Garble Input x:

(Compute adaptive gates)

For each i ∈ I s.t. modei = InputDepSimGate:

Let gatei = (gi, wa, wb, wc), and let v(c)

be the bit on the wire wc during the computation C(x).

Set g̃i ← GarbleSimGate((kσwa , k
σ
wb

)σ∈{0,1}, k
v(c)
wc ).

(Decryption key) key′ ← SimKey(state, (g̃i)i∈I)

(Output tables) Let y = C(x). For j = 1, . . . ,m:

Let i be the index of the gate with output wire outj .

– If modei 6= SimGate, set d̃j := [(k0outj → 0), (k1outj → 1)],

– else, set d̃j := [(k
yj
outj
→ 0), (k

1−yj
outj

→ 1)].

(Select input keys) For j = 1, . . . , n:

– If all gates i having inj as an input wire satisfy modei = SimGate, then set K[i] := k0ini ,

– else set K[i] := k
xi
ini

.

Output x̃17517 := (K, key′, {d̃j}j∈[m]).

Figure 4: The Hybrid Game.
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Real game and Simulated Game. If we look at the definition of adaptively secure garbled circuits
(Definition 1) then:

• The real game ExpadaptiveA,GC,Sim(1λ, 0) is equivalent to Hyb(I = ∅, (modei = RealGate)i∈[q]).

• The simulated game ExpadaptiveA,GC,Sim(1λ, 1) is equivalent to Hyb(I = ∅, (modei = SimGate)i∈[q]).

Therefore, the main aim is to show that these hybrids are indistinguishable.10

5.2 Rules for Indistinguishable Hybrids

Next, we provide rules that allow us to move from one configuration to another and prove that the corre-
sponding hybrid games are indistinguishable. We define three rules that allow us to do this. For convenience,

let us define mode
def
= (modei)i∈[q].

5.2.1 Indistinguishability Rule 1: Changing the Outer Encryption Mode BindEnc↔ EquivEnc.

This rule allows to change the outer encryption of a single gate. It says that one can move from a valid
circuit configuration (I,mode) to a circuit configuration (I ′,mode) where I ′ = I ∪ j. Thus one more gate is
now computed equivocally (and vice versa).

Lemma 1. Let (I,mode) be any valid circuit configuration, let j ∈ [q] \ I and let I ′ = I ∪ j. Then

Hyb(I,mode)
comp
≈ Hyb(I ′,mode) are computationally indistinguishable as long as Π = (KeyGen, Enc,Dec,

SimEnc, SimKey) is a somewhere equivocal encryption scheme with equivocation parameter t such that |I ′| ≤ t.

Proof. Towards a contradiction, assume there exists a PPT distinguisher A that distinguishes the distribu-
tions H0 = Hyb(I,mode) and H1 = Hyb(I ′,mode) as defined in the Lemma.

We construct a distinguisher B for the security of somewhere equivocal encryption scheme as follows.
Adversary B is formally described in Fig. 5. Informally, adversary B is playing in experiment Expsimenc

B,Π (1λ, b)
and uses her oracle access to SimEnc to reproduce the distribution of Hb. B, on input I, j and mode =
mode1, . . . ,modeq computes each garbled gate g̃i on its own exactly as in H0/ H1 accordingly to modei. B

computes the outer encryptions of the gates by sending the gates, along with sets I, j to Expsimenc.
In the on-line phase, after obtaining x from A, B computes the values for the missing gates (g̃i)i∈I and

send them to Expsimenc, and obtain a key key′. B uses such key to compute the garbled inputs x̃.
Now, if B is playing the game Expsimenc

B,Π (1λ, b) with a bit b, then the view generated by B is distributed
identically to Hb. Thus, B distinguishes whether it is playing the game with b = 0 or b = 1 with the same
probability that A distinguishes H0 from H1.

5.2.2 Indistinguishability Rule 2. Changing the Garbling Mode RealGate↔ InputDepSimGate

This rules allows us to change the mode of a gate j from RealGate to InputDepSimGate under the conditions
that j ∈ I and that gatej = (g, wa, wb, wc) has incoming wires wa, wb that are either input wires or are the
outgoing wires of some predecessor gates both of which are in InputDepSimGate mode.

Definition 3 (Predecessor/Successor/Sibling Gates). Given a circuit C and a gate j ∈ [q] of the form
gatej = (g, wa, wb, wc) with incoming wires wa, wb and outgoing wire wc:

• We define the predecessors of j, denoted by Pred(j), to be the set of gates whose outgoing wires are
either wa or wb. If wa, wb are input wires then Pred(j) = ∅, else |Pred(j)| = 2.

• We define the successors of j, denoted by Succ(j) to be the set of gates that contain wc as an incoming
wire. If wc is an output wires then Succ(j) = ∅.

10Note that, the games Hyb(· · · ) use the simulated encryption and key generation procedures of the somewhere equivocal

encryption, while the games ExpadaptiveA,GC,Sim(1λ, b) only use the real key generation and encryption procedures. However, by

definition, these are equivalent when I = ∅ (no “holes”).
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Adversary B (Reduction)

Input: (I, j, (modei)i∈[q]), s.t. |I| < t

Garble Circuit C:

– Garble Gates

(Wires) kσwi ← G(1λ) for i ∈ [p], σ ∈ {0, 1}.
(Gates) For each gatei = (g, wa, wb, wc) in C.

– If modei = RealGate:

run g̃i ← GarbleGate(g, {kσwa , k
σ
wb
, kσwc}σ∈{0,1}).

– if modei = SimGate:

run g̃i ← GarbleSimGate({kσwa , k
σ
wb
}σ∈{0,1}, k0wc ).

– Outer Encryption

1. Set (mi)i/∈I := (g̃i)i/∈I . Send I, j, (mi)i/∈I to the challenger in Expsimenc.

2. Obtain c = ci, . . . , cq from the challenger.

3. Set C̃ ← c.

Send C̃ to A. Obtain x from A.

Garble Input x:

(Compute adaptive gates)

For each i ∈ I s.t. modei = InputDepSimGate:

Let gatei = (gi, wa, wb, wc), and let v(c)

be the bit on the wire wc during the computation C(x).

Set g̃i ← GarbleSimGate((kσwa , k
σ
wb

)σ∈{0,1}, k
v(c)
wc ).

(Decryption key)

– Send (g̃i)i∈I to Expsimenc.

– Obtain key′.

(Output tables) Let y = C(x). For j = 1, . . . ,m:

Let i be the index of the gate with output wire outj .

– If modei 6= SimGate, set d̃j := [(k0outj → 0), (k1outj → 1)],

– else, set d̃j := [(k
yj
outj
→ 0), (k

1−yj
outj

→ 1)].

(Select input keys) For j = 1, . . . , n:

– If all gates i having inj as an input wire satisfy modei = SimGate, then set K[i] := k0ini ,

– else set K[i] := k
xi
ini

.

Set: x̃ := (K, key′, {d̃j}j∈[m]).

Send x̃ to A.

Output whatever A outputs. If A aborts, output b
$← {0, 1}.

Figure 5: Proof of security for rule 1: the reduction B uses an adversary A that distinguishes the hybrids
to play the security game Expsimenc of the somewhere equivocal encryption scheme.

16



• We define the siblings of j, denoted by Siblings(j) to be the set of gates that contain either wa or wb
as an incoming wire.

Lemma 2. Let (I,mode = (modei)i∈[q]) be a valid circuit configuration and let j ∈ I be an index such
that modej = RealGate and for all i ∈ Pred(j): modei = InputDepSimGate. Let mode′ = (mode′i)i∈[q] be

defined by mode′i = modei for all i 6= j and mode′j = InputDepSimGate. Then the games Hyb(I,mode)
comp
≈

Hyb(I,mode′) are computationally indistinguishable as long as Γ = (G,E,D) is an encryption scheme secure
under chosen double encryption as per Definition 5.

Proof. Let I,mode, j and mode′ be as in the statement of the Lemma. Towards a contradiction, assume
that there exists a PPT adversary A distinguishing distributions generated in H0 := Hyb(I,mode) and
H1 := Hyb(I,mode′).

We construct an adversary B that breaks the CPA-security of the inner encryption scheme Γ = (G,E,D)
which is used to garble gates. More specifically, we show that B wins the chosen double encryption security
game (Def. 5) which is implied by CPA security. The formal description of adversary B is provided in Fig. 6.

Informally, B, on input mode, I and target gate j aims to use her CPA-oracle access in Expdouble(1λ, b)
to generate a distribution Hb. Recall that the only difference between H0 and H1 is in the way that the
garble gate g̃j is computed. On a high level, the reduction B will compute all garbled gates g̃i for i 6= j,
according to experiment Hyb(I,mode), and will compute the garbled gate g̃j using the ciphertexts obtained

as a challenge in the experiment Expdouble(1λ, b).
In mored detail, let gatej = (g, wa, wb, wc) be the target gate. Recall j ∈ I and therefore the value g̃j is

only needed in the on-line phase. If the values going over the wires wa, wb during the computation C(x) are
α, β respectively, the reduction B will know all wire keys except for k1−α

wa , k1−β
wb

. To create the garbled gate

g̃j it will create the cihertext cα,β as an encryption of k
g(α,β)
wc on its own, but the remaining three cihertexts

cα′,β′ will come from the experiment Expdouble(1λ, b) as either encryptions of different values k
g(α′,β′)
wc (real)

or of the same value k
g(α,β)
wc .

The one subtlety is that reduction needs to create encryptions under the keys k1−α
wa , k1−β

wb
to create garbled

gates g̃i for gates i that are siblings of gate j. It can do that by using the encryption oracles which are given
to it as part of the experiment Expdouble(1λ, b). However, since some of the sibling gates i might be in RealGate
or SimGate modes, the reduction needs to create these encryptions already in the offline phase and therefore
needs to know the values of α, β in the offline phase before the input x is chosen. To deal with this, we
simply have the reduction guess the bits α, β randomly in the offline phase. If in the online phase it finds
out that the guess is incorrect it outputs a random bit and aborts, else continues. The formal description of
the reduction B is provided in Fig. 6.

Let Correct be the event that the reduction B guesses α and β correctly. Then

|Pr[ExpdoubleB (1λ, 0) = 1]− Pr[ExpdoubleB (1λ, 1) = 1]|

=
1

4
|Pr[ExpdoubleB (1λ, 0) = 1|Correct]− Pr[ExpdoubleB (1λ, 1) = 1|Correct]|

=
1

4
|Pr[H0

A(1λ) = 1]− Pr[H1
A(1λ)]|

Meaning that

|Pr[H0
A(1λ) = 1]− Pr[H1

A(1λ)]| ≤ 4|Pr[ExpdoubleB (1λ, 0) = 1]− Pr[ExpdoubleB (1λ, 1) = 1]| ≤ negl(λ)

which proves the Lemma.

5.2.3 Indistinguishability Rule 3. Changing the Garbling Mode: InputDepSimGate↔ SimGate.

This rule allows us to change the mode of a gate j from InputDepSimGate to SimGate under the condition
that all successor gates i ∈ Succ(j) satisfy that modei ∈ {InputDepSimGate,SimGate}.
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Adversary B (Reduction)

Input (I, mode), j.

Let gatej = (g, wa, wb, wc) the target gate.

Guess two bits α, β ← {0, 1} uniformly at random.

Garble circuit C:

(Wires) Sample kσwi ← G(1λ) for all i ∈ [p], σ ∈ {0, 1} except for the two keys k1−αwa , k1−βwb .

Let: x0 = k
g(α,1−β)
wc , y0 = k

g(1−α,β)
wc , z0 = k

g(1−α,1−β)
wc and x1 = y1 = z1 = k

g(α,β)
wc .

Give kαwa , k
β
wb and (x0, y0, z0), (x1, y1, z1) to the challenger of Expdouble(1λ, b).

The challenger of Expdouble(1λ, b) chooses two keys which we implicitly define as k1−αwa , k1−βwb .

It gives B the ciphertexts cx, cy , cz and oracle access to E
k1−αwa

(·) and E
k
1−β
wb

(·).

(Gates) For each gatei = (g′, w′a, w
′
b, w
′
c) in C such that i 6= j:

– If modei = RealGate:

run g̃i ← GarbleGate(g′, {kσ
w′a
, kσ
w′
b
, kσ
w′c
}σ∈{0,1}). a

– if modei = SimGate:

run g̃i ← GarbleSimGate({kσ
w′a
, kσ
w′
b
}σ∈{0,1}, k0w′c ). a

(Outer Encryption:) Sample (state, C̃)← SimEnc((g̃i)i/∈I , I).

Send C̃ to A. Obtain x from A.

Garble Input x:

If the values going over the wires wa, wb during the computation C(x) are not α, β respectively, then abort.

(Compute adaptive gates)

For each gatei = (g, w′a, w
′
bi
, w′ci ) in C s.t. modei = InputDepSimGate:

Let v be the bit going over wire w′c during the computation C(x).

Set g̃i ← GarbleSimGate((kσ
w′ai

, kσ
w′
bi

)σ∈{0,1}, k
v
w′c

). a,b

For the gate j:

• Compute cα,β ← Ekαwa
(E
k
β
wb

(k
g(α,β)
wc )). Set cα,1−β := cx, cα,1−β := cy , c1−α,1−β := cz .

• Let g̃j be a random ordering of [c0,0, c0,1, c1,0, c1,1]

(Decryption key) key′ ← SimKey(state, (g̃i)i∈I)

(Output tables) Let y = C(x). For j = 1, . . . ,m:

Let i be the index of the gate with output wire outj .

– If modei 6= SimGate, set d̃j := [(k0outj → 0), (k1outj → 1)],

– else, set d̃j := [(k
yj
outj
→ 0), (k

1−yj
outj

→ 1)].

(Select input keys) For j = 1, . . . , n:

– If all gates i having inj as an input wire satisfy modei = SimGate, then set K[i] := k0ini ,

– else set K[i] := k
xi
ini

.

Set x̃ := (K, key′, {d̃j}j∈[m]). Send x̃ to A and output whatever A outputs.

a To compute g̃i for gates i ∈ Siblings(j), the reduction B needs to create encryptions under unknown keys

k1−αwa , k1−βwb . It can do so by calling the encryption oracles E
k1−αwa

(·) and E
k
1−β
wb

(·).
bTo compute g̃i for gates i ∈ Pred(j), which are all in InputDepSimGate mode and for which w′c ∈ {wa, wb}, the

reduction B does not need to know k1−αwa , k1−βwb since the values going over the wires wa, wb are α, β respectively.

Figure 6: Proof of security for rule 2: the reduction B uses an adversary A that distinguishes the hybrids
to play the chosen double encryption security game (Def. 5) denoted by Expdouble.
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Lemma 3. Let (I,mode = (modei)i∈[q]) be a valid circuit configuration and let j ∈ I be an index such
that modej = InputDepSimGate and for all i ∈ Succ(j) we have modei ∈ {SimGate, InputDepSimGate}. Let
mode′ = (mode′i)i∈[q] be defined by mode′i = modei for all i 6= j and mode′j = SimGate. Then the games

Hyb(I,mode) ≡ Hyb(I,mode′) are identically distributed.

Proof. Define H0 := Hyb(I,mode) and H1 := Hyb(I,mode′). Let gatej = (g, wa, wb, wc), and let v(c) be the
bit on the wire wc during the computation C(x), which is defined in the on-line phase.

The main difference between the hybrids is how the garbled gate g̃j is created:

• In H0, we set g̃j ← GarbleSimGate((kσwa , k
σ
wb

)σ∈{0,1}, k
v(c)
wc ).

• In H1, we set g̃j ← GarbleSimGate((kσwa , k
σ
wb

)σ∈{0,1}, k
0
wc).

If j is not an output gate, and all successor gates i ∈ Succ(j) are in {InputDepSimGate,SimGate} modes
then the keys k0

wc and k1
wc are treated symmetrically everywhere in the game other than in g̃j . Therefore,

by symmetry, there is no difference between using k0
wc and k

v(c)
wc in g̃j

If j is an output gate then the keys k0
wc and k1

wc are only used in g̃j and in the output map d̃j . Therefore,

by symmetry, there is no difference between using k
yj
wc in g̃j and setting d̃j := [(k0

outj → 0), (k1
outj → 1)] (in

H0) versus using k0
wc in g̃j and setting d̃j := [(k

yj
outj → 0), (k

1−yj
outj → 1)] (in H1).

One last difference between the hybrids occurs if some wire ini becomes only connected to gates that are
in SimGate in H1. In this case, when we create the garbled input x̃, then in H0 we give K[i] := kxiini but in

H1 we give K[i] := k0
ini

. Since the keys k0
ini
, k1

ini
are treated symmetrically everywhere in the game (both in

H0 and H1) other than in K[i], there is no difference between setting K[i] := k0
ini

versus K[i] := kxiini .

6 Pebbling and Sequences of Hybrid Games

In the last section we defined hybrid games parameterized by a configuration (I,mode). We also gave 3 rules,
which describe ways that allow us to indisitnguishably move from one configuration to another. Now our
goal is to use the given rules so as to define a sequence of indistinguishable hybrid games that takes us from
the real game Hyb(I = ∅, (modei = RealGate)i∈[q]) to the simulation Hyb(I = ∅, (modei = SimGate)i∈[q]).

Pebbling Game. We show that the problem of finding such sequences of hybrid games can be captured
by a certain type of pebbling game on the circuit C. Each gate can either have no pebble, a black pebble,
or a gray pebble on it (this will correspond to RealGate, InputDepSimGate and SimGate modes respectively).
Initially, the circuit starts out with no pebbles on any gate. The game consist of the following possible moves:

Pebbling Rule A. We can place or remove a black pebble on a gate as long as both predecessors of that
gate have black pebbles on them (or the gate is an input gate).

Pebbling Rule B. We can replace a black pebble with a gray pebble on a gate as long as all successors of
that gate have black or gray pebbles on them (or the gate is an output gate).

A pebbling of a circuit C is a sequence of γ moves that follow rules A and B and that end up with a gray
pebble on every gate. We say that a pebbling uses t black pebbles if this is the maximal number of black
pebbles on the circuit at any point in time during the game.

From Pebbling to Sequence of Hybrids. In our next theorem we prove that any pebbling of a circuit
C results in a sequence of hybrids that shows indistinguishability of the real and simulated games. The
number of hybrids is proportional to the number of moves in the pebbling and the equivocation parameter
is proportional to the number of black pebbles it uses.

Theorem 2. Assume that there is a pebbling of the circuit C in γ moves. Then there is a sequence of
2 · γ + 1 hybrid games, starting with the real game Hyb(I = ∅, (modei = RealGate)i∈[q]) and ending with the
simulated game Hyb(I = ∅, (modei = SimGate)i∈[q]) such that any two adjacent hybrid games in the sequence
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are indistinguishable by rules 1,2 or 3 from the previous section. Furthermore if pebbling uses t∗ black pebbles
then every hybrid Hyb(I,mode) in the sequence satisfies |I| ≤ t∗. In particular, indistinguishability holds as
long as the equivocation parameter is at least t∗.

Proof. A pebble configuration specifies whether each gate contains no pebble, a black pebble, or a gray
pebble. A pebbling in γ moves gives rise to a sequence of γ + 1 pebble configurations starting with no
pebbles and ending with a gray pebble on each gate. Each pebble configuration follows from the preceding
one by a move that satisfies pebbling rules A or B.

We let each pebble configuration define a hybrid Hyb(I,mode) where:

• For every gate i ∈ [q], we set modei = RealGate if gate i has no pebble, modei = InputDepSimGate if
gate i has a black pebble, and modei = SimGate if gate i has a gray pebble.

• We set I to be the set of gates with black pebbles on them.

Therefore a pebbling defines a sequence of hybrids Hybα = Hyb(Iα,modeα) for α = 0, . . . , γ where Hyb0 =
Hyb(∅, (mode0

i = RealGate)i∈[q]) is the real game and Hybγ = Hyb(∅, (modeγi = SimGate)i∈[q]) is the simu-
lated game, and each Hybα is induced by the pebbling configuration after α moves. We will need to add
additional intermediate hybrids (which we call “half steps”) to ensure that each pair of consecutive hybrids
is indistinguishable by rules 1,2 or 3. We do this as follows:

• Assume that move α+ 1 of the pebbling applies rule A to place a black pebble on gate j.

Let Hybα = Hyb(Iα,modeα) and Hybα+1 = Hyb(Iα+1,modeα+1). Then Iα+1 = Iα ∪ {j}, modeα+1
i =

modeαi for all i 6= j, and modeαj = RealGate,modeα+1
j = InputDepSimGate.

Define the intermediate “half-step” hybrid Hybα+ 1
2

:= Hyb(Iα+1,modeα).

It holds that Hybα
comp
≈ Hybα+ 1

2
by rule 1, and Hybα+ 1

2

comp
≈ Hybα+1 by rule 2. The conditions needed

to apply rule 2 are implied by pebbling rule A.

• Assume that move α+ 1 of the pebbling applies rule A to remove a black pebble from gate j.

Let Hybα = Hyb(Iα,modeα) and Hybα+1 = Hyb(Iα+1,modeα+1). Then Iα+1 = Iα \ {j}, modeα+1
i =

modeαi for all i 6= j, and modeαj = InputDepSimGate,modeα+1
j = RealGate.

Define the intermediate “half-step” hybrid Hybα+ 1
2

:= Hyb(Iα,modeα+1).

It holds that Hybα
comp
≈ Hybα+ 1

2
by rule 2, and Hybα+ 1

2

comp
≈ Hybα+1 by rule 1. The conditions needed

to apply rule 2 are implied by pebbling rule A.

• Assume that move α + 1 of the pebbling applies rule B to replace a black pebble with a gray pebble
on gate j.

Let Hybα = Hyb(Iα,modeα) and Hybα+1 = Hyb(Iα+1,modeα+1). Then Iα+1 = Iα \ {j}, modeα+1
i =

modeαi for all i 6= j, and modeαj = InputDepSimGate,modeα+1
j = SimGate.

Define the intermediate “half-step” hybrid Hybα+ 1
2

:= Hyb(Iα,modeα+1).

It holds that Hybα
comp
≈ Hybα+ 1

2
by rule 3, and Hybα+ 1

2

comp
≈ Hybα+1 by rule 1. The conditions needed

to apply rule 3 are implied by pebbling rule B.

Therefore the sequence Hyb0,Hyb 1
2
,Hyb1,Hyb1+ 1

2
,Hyb2, . . . ,Hybγ consisting of 2γ + 1 hybrids satisfies

the conditions of the theorem.

Combining Theorem 2 and Theorem 1 we obtain the following corollary.

Corollary 1. There exists an adaptively secure garbling scheme such that the following holds.
Assuming the existence of one-way functions, there is an instantiation of the garbling scheme that has

on-line complexity (n+m+ t∗)poly(λ) for any circuit C that admits a pebbling with γ = poly(λ) moves and
t∗ black pebbles.
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Furthermore, assuming the existence of sub-exponentially secure one-way functions, there is an instanti-
ation of the garbling scheme that has on-line complexity (n+m+ t∗)poly(λ, log γ) for any circuit C admits
a pebbling strategy with γ = 2poly(λ) moves and t∗ black pebbles.

Proof. We instantiate our construction from Section 5 with a CPA-secure “inner encryption” Γ having
special correctness, and a somewhere-equivocal “outer encryption” Π from Section 4 using an equivocation
parameter t = t∗. Both components can be instantiated from one-way functions.

Assuming that γ = poly(λ), Theorem 2 tells us that the resulting garbling scheme is adaptively as long
as Γ,Π are. The on-line complexity consists of n + m keys for Γ along with the key of Π for a total of
(n+m)poly(λ) + t∗poly(λ) as claimed.

When γ = 2poly(λ), then Theorem 2 tells us that the resulting garbling scheme is adaptively as long as the
schemes Γ,Π provide a higher level of security so as to survive 2γ+1 hybrids, meaning that the distinguishing
advantage for each of the schemes needs to be 2−(2γ+1)negl(λ). This can be accomplished assuming sub-
exponentially secure one-way functions by setting the security parameter of Γ,Π to some λ′ = poly(λ, log γ)
and results in on-line complexity (n+m)poly(λ, log γ) + t∗poly(λ, γ) as claimed.

6.1 Pebbling Strategies

In this section we give two pebbling strategies for arbitrary circuit with width w, depth d, and q gates. The
first strategy uses O(q) moves and O(w) black pebbles. The second strategy uses O(q2d) moves and O(d)
black pebbles.

6.1.1 Strategy 1

To pebble the circuit proceed as follows:

Pebble(C):

1. Put a black pebble on each gate at the input level (level 1).

2. For i = 1 to d− 1, repeat:

(a) Put a black pebble on each gate at level i+ 1.

(b) For each gate at level i, replace the black pebble with a gray pebble.

(c) i← i+ 1

3. For each gate at level d, replace the black pebble with a gray pebble.

This strategy uses γ = 2q moves and t∗ = 2w black pebbles. By instantiating Corollary 1 with this
strategy, we obtain the following corollary.

Corollary 2. Assuming the existence of one-way functions there exists an adaptively secure garbling scheme
with on-line complexity w · poly(λ), where w is the width of the circuit.

6.1.2 Strategy 2

This is a recursive strategy defined as follows.

• Pebble(C):

– For each gate i in C starting with the gates at the top level moving to the bottom level:

1. RecPutBlack(C, i)

2. Replace the black pebble on gate i with a gray pebble.

• RecPutBlack(C, i): // Let LeftPred(C, i) and RightPred(C, i) are the two predecessors of gate i in C.

1. If gate i is an input gate, put a black pebble on i and return.

2. Run RecPutBlack(C, LeftPred(C, i)), RecPutBlack(C,RightPred(C, i))
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3. Put a black pebble on gate i.

4. Run RecRemoveBlack(C, LeftPred(C, i)) and RecRemoveBlack(C,RightPred(C, i)),

• RecRemoveBlack(C, i): This is the same as RecPutBlack, except that instead of putting a black pebble
on gate i, in steps 1 and 3, we remove it.

To analyze the correctness of this strategy, we note the following invariants: if the circuit C is in a
configuration where it does not contain any pebbles at any level below that of gate i, then (1) the procedure
RecPutBlack(C, i) results in a configuration where a single black pebble is added to gate i, but nothing else
changes, (2) the procedure RecRemoveBlack(C, i) results in a configuration where a single black pebble is
removed from gate i, but nothing else changes. Using these two invariants the correctness of of the entire
strategy follows.

To calculate the number of black pebbles used and the number of moves that the above strategy takes to
pebble C, we use the following simple recursive equations. Let #PebPut(d) and #PebRem(d) be the number
of black pebbles on gate i and below it used to execute RecPutBlack and RecRemoveBlack on a gate at level
d, respectively. We have,

#PebPut(1) = 1, #PebPut(d) ≤ max(#PebPut(d− 1),#PebRem(d− 1)) + 2

#PebRem(1) = 1, #PebRem(d) ≤ max(#PebPut(d− 1),#PebRem(d− 1)) + 2

Therefore the strategy requires at most 2d black pebbles to pebble the circuit.
To calculate the number of moves it takes run Pebble(C), we use the following recursive equations. Let

#Moves(d) be the number of moves it takes to put a black pebble on, or remove a black pebble from, a gate
at level d. Then

#Moves(1) = 1, #Moves(d) = 4(#Moves(d− 1)) + 1

Hence, each call of RecPutBlack takes at most 4d moves, and the total number of moves to pebble the circuit
is at most q4d.

In summary, the above gives us a strategy to pebble any circuit with at most γ = q4d moves and t∗ = 2d
black pebbles. By instantiating Corollary 1 with the above strategy, we obtain the following corollary.

Corollary 3. Assuming the existence of (standard) one-way functions, there exists an adaptively secure
garbling schemes that has on-line complexity (n+m)poly(λ) for all circuits having depth d = O(log λ).

Assuming the existence of sub-exponentially secure one-way functions, there exists an adaptively secure
garbling scheme that has on-line complexity (n+m)poly(λ, d), for arbitrary circuits of depth d = poly(λ).

7 Conclusions

We have shown how to achieve adaptively secure garbling schemes under one-way functions by augmenting
Yao’s construction with an additional layer of somewhere-equivocal encryption. The on-line complexity in
our constructions can be significantly smaller than the circuit size. In our main instantiation, the on-line
complexity only scales with the width w of the circuit, which corresponds to the space complexity of the
computation.

It remains as an open problem to get the optimal on-line complexity (n+m)poly(λ) which does not depend
on the circuit depth or width. Currently, this is only known assuming the existence of indistinguishability
obfuscation and therefore it remains open to achieve the above under one-way functions or even stronger
assumptions such as DDH or LWE. It also remains open if Yao’s scheme (or more precisely, a variant of it
where the output map is sent in the on-line phase) can already achieve adaptive security without relying on
somewhere-equivocal encryption. We have no proof nor a counter-example. It would be interesting to see
if there is some simple-to-state standard-model security assumption that one could make on the encryption
scheme used to create the garbled gates in Yao’s construction (e.g., circular security, key-dependent message
security, etc.), under which one could prove that the resulting garbling scheme is adaptively secure.
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A Symmetric-Key Encryption with Special Correctness [LP09]

In our construction of the garbling scheme, we use a symmetric-key encryption scheme Γ = (G,E,D) which
satisfies the standard definition of CPA security and an additional special correctness property below (this
is a simplified and sufficient variant of the property described in from [LP09]). We need this property to
ensure the correctness of our garbled circuit construction.

Definition 4 (Special Correctness). A CPA-secure symmetric-key encryption Γ = (G,E,D) satisfies special
correctness if there is some negligible function ν such that for any message m we have:

Pr[Dk2(Ek1(m)) 6= ⊥ : k1, k2 ← G(1λ)]] ≤ ν(λ).

Construction. Let F = {fk} be a family of pseudorandom functions where fk : {0, 1}λ → {0, 1}λ+s, for
k ∈ {0, 1}λ and s is a parameter denoting the message length. Define Ek(m) = (r, fk(r) ⊕ m0λ) where

m ∈ {0, 1}s, r $← {0, 1}λ and m0λ denotes the concatenation of m with a string of 0s of length λ. Define
Dk(c) which parses c = (r, z), computes w = z ⊕ fk(r) and if the last λ bits of w are 0’s it outputs the first
s bits of w, else it outputs ⊥.

It’s easy to see that this scheme is CPA secure and that it satisfies the special correctness property.

Double Encryption Encryption Security. For convenience, we define a notion of double encryption
security, following [LP09]. This notion is implied by standard CPA security but is more convenient to use
in our security proof of garbled circuit security.

Definition 5 (Double-encryption security.). An encryption scheme Γ = (G,E,D) is secure under chosen
double encryption if for every PPT machine A, there exists a negligible function ν = ν(λ) such that

Pr[ExpdoubleA (1λ, 0)− ExpdoubleA (1λ, 1)] ≤ ν(λ)

where the experiment ExpdoubleA is defined as follows.

Experiment ExpdoubleA (1λ, b)

1. The adversary A on input 1λ outputs two keys ka and kb of length λ and two triples of messages
(x0, y0, z0) and (x1, y1, z1) where all messages are of the same length.

2. Two keys k′a, k
′
b

$← G(1λ) are chosen.

3. AEk′a (·),Ek′
b
(·)

is given the challenge ciphertexts cx ← Eka(Ek′b(xb)), cy ← Ek′a(Ekb(yb)), cz ← Ek′a(Ek′b(zb))
as well as oracle access to Ek′a(·) and Ek′b(·).

4. A outputs b′ which is the output of the experiment.

The following lemma is essentially immediate - see [LP09] for a formal proof.

Lemma 4. If (G,E,D) is CPA-secure then it is secure under chosen double encryption.

B Constructing Somewhere Equivocal Encryption

In this section, we prove Theorem 1 and show how to construct a somewhere equivocal symmetric-key encryp-
tion scheme from OWFs. We do this by introducing two intermediate and successively simpler primitives.
First, in Section B.1 we introduce the notion of t-Point Somewhere Equivocal PRF (t-SEPRF, for short), and
we show that it implies somewhere equivocal symmetric-key encryption scheme with equivocation parameter
t. We also show that 1-SEPRF implies t-SEPRF. Then, in Section B.2 we define an even simpler primitive
called a Two-Key Equivocal PRF (TEPRF, for short) and show how to construct 1-SEPRFs from TEPRF.
We then show how to construct TEPRF from one-way functions, following the approach of [BGI15] previ-
ously used to construct distributed point functions. Finally, in Section B.3 we finish the proof of Theorem
1 and summarize the parameters of the construction.
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B.1 t-Point Somewhere Equivocal PRF (SEPRF)

B.1.1 Definition

We introduce the notion of a t-point Somewhere Equivocal PRF (t-SEPRF). Intuitively, in addition to the
usual way of sampling PRF keys, there is a simulated method that creates a PRF key which is equivocal on a
set of points X of size |X| ≤ t: for any assignment of values xi → ri for xi ∈ X we can later create a key key′

such that PRF(key, x) = PRF(key′, x) for all x 6∈ X and PRF(key′, xi) = ri for xi ∈ X. The security definition
is analogous to somewhere equivocal encryption. We want to make sure that even if an adversary knows
that the values X with |X| < t are being equivocated to some arbitrary outputs, he cannot tell whether an
additional point x is also being equivocated to a random output r or not.

Experiment Expequivprf2A,SEPRF(1λ)

1. The adversary A on input 1λ outputs a set X ⊆ {0, 1}d s.t. |X| < t, and a challenge
j ∈ {0, 1}d \X.

2. A uniform bit b← {0, 1} is chosen.

• If b = 0, pick (key, state)
$← Sim1(X); Set r∗j = PRF(key, j).

• If b = 1, pick r∗j
$← {0, 1}s; (key, state)

$← Sim1({X ∪ j}).

3. Send r∗j

4. The adversary APRFp(key,·) outputs values R = {x → r∗x}x∈X . Where here, the
adversary is given oracle access to the punctured oracle PRFp. The oracle is defined
as

PRFp(key, x) =

{
PRF(key, x) if x 6∈ X ∪ j
⊥ if x ∈ X ∪ j

5. Send key′ to the adversary A where:

• If b = 0, compute key′ as follows: key′
$← Sim2(state, R).

• If b = 1, compute key′ as follows: key′
$← Sim2(state, R ∪ {j → r∗j }).

6. A outputs b′.

7. Output b = b′ and halt.

Figure 7: Experiment Expequivprf2A,SEPRF(1λ)

Definition 6 (t-Point Somewhere Equivocal PRF). A tuple of polynomial-time algorithms (ObvGen,PRF,Sim1,Sim2)
is t-point Somewhere Equivocal PRF (t-SEPRF) with input size d and output size s if it satisfies the following:

Oblivious Key Generation: key← ObvGen(1λ) outputs a key such that PRF(key, ·) : {0, 1}d → {0, 1}s.

Equivocal Key Generation: Two alternate key generation algorithms Sim1,Sim2 work as follows

• On input X ⊂ {0, 1}d with |X| ≤ t, Sim1 outputs a key and a state (key, state)
$← Sim1(X).

• On input a mapping R = {xi → ri}xi∈X with ri ∈ {0, 1}s: key′
$← Sim2(state, {xi → ri}xi∈X)

outputs a key key′.

Simulation with no Holes: We require that the distribution of key′ sampled via (key, state) ← Sim1(∅),
key′ ← Sim2(state, ∅) is identical to key′ ← ObvGen(1λ).
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Correctness: If (key, state)
$← Sim1(X), and key′

$← Sim2(state, R),

PRF(key, x) = PRF(key′, x) for x 6∈ X
PRF(key′, xi) = ri for xi ∈ X and (xi → ri) ∈ R

Equivocation Security. For any PPT adversary A, there exists a negligible function ν = ν(λ) such that:

Pr[Expequivprf2A,Π (1λ) = 1] ≤ 1

2
+ ν(λ)

where the experiment Expequivprf2A,Π is defined in Fig. 7.

B.1.2 From SEPRF to Somewhere Equivocal encryption

We now show how to construct somewhere equivocal encryption with equivocation parameter t from a
t-SEPRF. The construction essentially uses the PRF outputs as a one-time pad and is shown in Fig. 8.

Somewhere Equivocal Encryption from Somewhere Equivocal PRF.

Let (Gen,PRF,Sim1,Sim2) be a t-point somewhere equivocal PRF as per Definition 6.

• KeyGen(1λ) runs key
$← Gen(1λ) and outputs key.

• Enc(key,m) for i in [n]: ci = (PRF(key, i)⊕mi). Return ciphertext c = (c1, . . . , cn).

• Dec(key, c) for i in [n], mi ← ci ⊕ PRF(key, i). Return plaintext m = (m1, . . . ,mn).

• SimEnc(I, (mi)i6∈I) Run (key, state)
$← Sim1(1λ, I):

ci ← (i,PRF(key, i)) for i ∈ [n] \ I :

ci ← ri; with ri
$← {0, 1}s for i ∈ I

c← (c1, . . . , cn)

Return ((state, I, (ri)i∈I), c).

• SimKey((state, I, (ri)i∈I), (mi)i∈I):

yi ← mi ⊕ ri for i ∈ I ; key′
$← Sim2(state, {i→ yi}i∈I)

Return key′.

Figure 8: Somewhere equivocal symmetric-key encryption scheme Π.

Claim 1. Assume that (Gen,PRF,Sim1,Sim2) is a t-SEPRF with input-length d, output length s and key-size
k as in Definition 6. Then for any message-length n ≤ 2d the encryption scheme described in Fig. 8 is a
somewhere equivocal encryption scheme with equivocation parameter t, block-length s, and key-size k.

Proof. The correctness and simulation with no holes properties of the encryption scheme follow from those of
the SEPRF. Assume that there is an adversary A for the t-somewhere equivocal security of Construction 8,
then we construct and adversary Aseprf as follows.

• Aseprf obtains sets I,(mi)i/∈I and the challenge index j from A. Let I ′ ← I ∪ j. It sets X = I and sends
X, j to her challenger.

• Aseprf receives value r∗j from the challenger and oracle access to PRFp. It queries the oracle on the
values i ∈ [n] \ I ′ and let us label the outputs (vi)i 6∈I′ . It computes the ciphertexts as follow.
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– for all i /∈ I ′, ci = vi ⊕mi.

– set cj = r∗j ⊕mj .

– for all i ∈ I set ci
$← {0, 1}s.

Send c to A.

• A sends the set of remaining messages (mi)i∈I to Aseprf .

• Aseprf sends the set R = {i→ r∗i }i∈I , where r∗i = ci ⊕mi, to her challenger and obtains key key.

• Aseprf forwards such key to A and outputs whatever A outputs. If A aborts, output a random bit b.

It’s easy to see that the advantage of Aseprf on the t-SEPRF is the same as the advantage of the adversary
A on the somewhere equivocal encryption.

B.1.3 From 1-SEPRF to t-SEPRF

In this section, we show how to amplify the equivocation parameter t. Indeed, starting with a 1-SEPRF,
we can construct a t-SEPRF for an arbitrary t. We simply XOR together the outputs of t independent
1-SEPRFs. Firstly, we note that the security definition for 1-SEPRF becomes simpler and in particular, the
experiment Expequivprf2A,SEPRF(1λ) becomes equivalent to the following game:

Definition 7 (Simplified 1-SEPRF Security). We can re-write the security requirement of a 1-SEPRF
from Definition 6, which syntactically simplifies to the following. For all PPT adversaries A there is some
negligible function ν such that∣∣∣∣∣∣∣∣∣Pr

[
x∗

$← A(1λ), key
$← ObvGen(1λ)

A(key) = 1

]
− Pr


x∗

$← A(1λ) , r∗
$← {0, 1}s

(key, state)
$← Sim1(x∗)

key′
$← Sim2(state, x∗ → r∗)
A(key′) = 1


∣∣∣∣∣∣∣∣∣ < ν(λ)

1-SEPRF is a Selectively-Secure PRF. As an aside (which we do not explicitly rely on in this paper),
we note that any scheme which is a 1-SEPRF is also necessarily a selectively secure PRF. In a selective secure
PRF, the distinguisher chooses a challenge point x∗ ∈ {0, 1}d in the domain of the PRF ahead of time and
obtains an answer r∗ which is either PRF(key, x∗) or uniformly random. The distinguisher can then query
the function PRF(key, ·) on arbitrary inputs x 6= x∗. The reason that this is implication holds is that the
distinguisher for 1-SEPRF can answer the queries of the PRF distinguisher by using its knowledge of key′.

Going from 1 to t. We now show how to go from a 1-SEPRF to a t-SEPRF for an arbitrary t.

Claim 2. If there exists a 1-SEPRFs with input-size d, outputs-size s and key size k, then for any polynomial
t there exist t-SEPRFs with the same input-size d and output-size s having key size t · k.

Proof. Let (ObvGen,PRF,Sim1,Sim2) be a 1-SEPRF. We define (ObvGen′,PRF′,Sim′1,Sim
′
2) by:

• K ← ObvGen′(1λ): Define K = key1, . . . , keyt where keyi ← ObvGen(1λ).

• PRF′(K,x) =
⊕

i∈[t] PRF(keyi, x).

• (K, state) ← Sim′1(X): Let X = {x1, . . . , xq}. For each i = 1, . . . , q, run (keyi, statei)
$← Sim1(xi) and

for i = q + 1, . . . , t run keyi ← ObvGen(1λ). Define K = key1, . . . , keyt and state = state1, . . . , stateq.
(Without loss of generality, we assume statei contains keyi).

• K ′ ← Sim′2(state, {xi → ri}xi∈X): For i = 1, . . . , q compute key′i ← Sim2(statei, {xi → vi}) where
vi = ri

⊕
j∈[t]\i PRF(keyj , xi). For i = q + 1, . . . , t set key′i = keyi. Output K ′ = key′1, . . . , key

′
t.
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The correctness properties follow immediately. Assume there is and adversary A for the t-point SEPRF
scheme constructed above. Then we construct an adversary B that breaks the security of the underlying
1-SEPRF. The high-level idea of the reduction is the following: an adversary for single-point SEPRF can
compute the PRF evaluations for and adversary of t-point SEPRF by running the simulator for all points
in I and by using its SEPRF challenger to compute the PRF evaluation for the challenge index j. Formally,
adversary B works as follows.

• A outputs set C = {x1, . . . , xq} s.t. |X| = q < t and a challenge index j.

• B gives j to its own challenger and gets back keyq+1. Let r∗j = PRF(key1, j). It chooses key1, . . . , keyq us-

ing (keyi, statei)← Sim1(xi) and keyq+1, . . . , keyt using keyi ← KeyGen(1λ). It sets K = (key1, . . . , keyt)
and uses K to simulate the PRF oracle for A.

• Eventually A outputs a mapping R = {xi → ri}xi∈X . B does the following. For i = 1, . . . , q it
computes key′i ← Sim2(statei, {xi → vi}) where vi = ri

⊕
j∈[t]\i PRF(keyj , xi), and for i = q + 1, . . . , t

it sets key′i = keyi. It gives K = key′1, . . . , key
′
t to A.

• B outputs what A outputs.

It’s easy to see that B breaks 1-SEPRF security with the same advantage that A break t-SEPRF security.

B.2 Two-Key Equivocal PRFs

We now introduce a notion which is weaker than 1-SEPRF and which we call a Two-Key Equivocal PRF
(TEPRF). Unlike an SEPRF, in a TEPRF, the simulator does not choose the value at the output. Instead,
it can just create two keys key and key′ which differ on a selected point x. We will consider TEPRFs that
only have a single-bit output. Therefore, this essentially allows the simulator to open the value on this point
to both bits.

B.2.1 Definition

Definition 8 (Two-Key Equivocal PRFs). A triple of polynomial-time algorithms (ObvGen,Gen,PRF) is a
Two-Key Equivocal PRFs (TEPRF) with input-size d and output size 1 if

Oblivious Key Generation: ObvGen outputs a key key
$← ObvGen(1λ) such that PRF(key, ·) : {0, 1}d →

{0, 1}.

Equivocal Key Generation: On inputs x∗ ∈ {0, 1}d, Gen outputs two keys (key, key′)
$← Gen(x∗)

Equality : If (key, key′)
$← Gen(x∗), then

PRF(key, x) = PRF(key′, x) for all x 6= x∗

Different Values on Target Path: If (key, key′)
$← Gen(x∗), then

PRF(key, x∗) 6= PRF(key′, x∗)

Indistinguishability: For all PPT adversaries A there is some negligible function ν such that∣∣∣∣∣∣∣Pr

 (x∗)
$← A(1λ)

key
$← ObvGen(1λ)
A(key) = 1

− Pr

 (x∗)
$← A(1λ)

(key, key′)
$← Gen(x∗)

A(key) = 1


∣∣∣∣∣∣∣ < ν(λ)

and ∣∣∣∣∣∣∣Pr

 (x∗)
$← A(1λ)

key
$← ObvGen(1λ)
A(key) = 1

− Pr

 (x∗)
$← A(1λ)

(key, key′)
$← Gen(x∗)

A(key′) = 1


∣∣∣∣∣∣∣ < ν(λ).
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B.2.2 From TEPRFs to 1-SEPRFs

In this section, we show how to construct a 1-SEPRF from a TEPRF. Recall that a TEPRF has 1-bit output
while a 1-SEPRF can have an arbitrary output length s. To build an SEPRF we simply concatenate s
independent copies of a TERPF.

Claim 3 (TEPRFs to 1-SEPRFs). Given any TEPRF with input-length d (output-length 1) and key-length
k, for any polynomial s there is a 1-SEPRF with input-length d, output length s and key length s · k.

Proof. Let (ObvGen,Gen,PRF) be a TEPRF as in the claim. We construct a 1-SEPRF (ObvGen,PRF,Sim1,Sim2)
defined formally in Algorithms 1 - 3 below.

Algorithm 1 SEPRF Key Generation

function ObvGen′(1λ)
for i = 1, . . . , s do

keyi
$← ObvGen(1λ)

end for
return K = (key1, . . . , keys)

end function

Algorithm 2 SEPRF Evaluation

function PRF′(K,x∗)
for i = 1, . . . , s do

yi ← PRF(keyi, x
∗)

end for
return y = (y1, . . . , ys)

end function

Algorithm 3 SEPRF Simulator

function Sim1(x∗)
for i = 1, . . . , s do

(key0
i , key

1
i )

$← Gen(x∗)
end for
state = (key0

1, key
1
1, . . . , key

0
s, key

1
s), K = (key0

1, . . . , key
0
s).

return state,K
end function

function Sim2(state, {x∗ → r∗})
Parse (key0

1, key
1
1, . . . , key

0
s, key

1
s)← state

for i = 1, . . . , s do
If PRF(key0

i , x
∗) = r∗i then key′i = key0

i else key′i = key1
i .

end for
return key′ = (key′1, . . . , key

′
s)

end function

(Technically, we also define Sim1(∅) to simply run (state = K,K)← ObvGen′(1λ) and K ← Sim2(state, ∅)
to outputs K = state.)

The fact that the resulting construction satisfies the properties of an SEPRF follows immediately from
the properties of the underlying TEPRF. Security follows from a simple hybrid argument.

B.2.3 Construction of TEPRF

Finally, we give a general construction of a TEPRF based on a pseudo-random generator G. Since PRGs can
be constructed from any one-way function [HILL99], this gives a black-box construction of TEPRFs from
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any one-way function. Our construction essentially follows the construction of distributed point functions
from [BGI15].

Claim 4 (TEPRF). Assuming the existence of a length-doubling PRG with seed-length λ, the algorithms
(ObvGen,Gen,PRF) defined in Algorithms 6,7 and 8 below form a TEPRF, with input-length d and key size
O(dλ).

The above claim is proved in below. The target value property is Claim 8. The indistinguishability is
Claim 9. The equality follows from Claims 6 and 7.

The Construction. The construction is a tree-based construction similar to the GGM construction of a
PRF from a PRG [GGM86]. To make the similarity clearer, we recall the GGM construction (Algorithm 4).

Algorithm 4 The GGM construction of a PRF from a PRG

function F (s, ~x) . G : {0, 1}λ → {0, 1}λ × {0, 1}λ
if ~x = ∅ then

return s
else

Parse x1 · · ·x`
$← ~x

Parse sparent ← F (s, (x1, . . . , x`1))
Parse s0, s1 ← G(sparent)

return sx`
end if

end function

Our construction of a TEPRF will rely on a more complex PRG than the basic GGM construction. We
will require: G : {0, 1}λ → {0, 1}λ × {0, 1}λ × {0, 1} × {0, 1}. In the GGM construction, each internal leaf
can be viewed as holding a seed in {0, 1}λ that is then expanded using the PRG to obtain the values for the
leaf’s children. Our tree will have two values on each internal leaf, a seed in {0, 1}λ and a tag in {0, 1}. The
key for our TEPRF will include an initial seed for the G, as well as layer masks for each level of the tree.
At level i in the tree there will be two types of masks “seed masks” sma,b[i] and “tag masks” tma,b[i], and
there will be four masks of each type. Which mask is applied will depend on which child is being evaluated
(left or right) and the value of the tag at the current leaf. To see the similarity with the GGM construction
contrast Algorithms 4 and 5.

To equivocate, we imagine two trees, corresponding to keys key and key′. We would like the property that
along the target path the two TEPRFs evaluate to different values, while along any other path, they are the
same. To ensure this property, the masks will be carefully chosen to maintain two properties: (1) Along the
target path, the tags corresponding to key and key′ are always different (2) At the first deviation from the
target path, the values on the internal nodes of the two trees become the same. Because the masks are the
same for the two keys, once the internal values become the same, they will never deviate again. Property
(1) is proven in Claim 5, and property (2) is proven in Claim 6.

The full specification of the Key Generation algorithm is given in Algorithm 6, while the evaluation
algorithm is given in Algorithm 8 (which relies on Algorithm 5).

Claim 5. Along the path given by ~x∗ the second output of F on key and key′ is different. More formally, for
any prefix ~y of ~x∗, if (sparent, tparent)← F (key, ~y), and (s′parent, t

′
parent)← F (key′, ~y), then tparent 6= t′parent.

Proof. We aim to show that tparent 6= t′parent. If ` = 1, then this follows immediately because tparent = t,
and t′parent = t′, and t 6= t′ (line 4 in Algorithm 6). Now, we proceed via induction. Assume that if

(sparent, tparent) ← F (key, (x∗1, . . . , x
∗
` )), and (s′parent, t

′
parent) ← F (key′, (x∗1, . . . , x

∗
` )), then tparent 6= t∗parent.

Now, we need to If ` > 1, then we proceed via induction. Let (A,B)← F (key, (x∗1, . . . , x
∗
`+1)), and (A′, B′)←

F (key′, (x∗1, . . . , x
∗
`+1)), We need to show that B = B′. From Algorithm 5, we have (S0, S1, T0, T1) ←

G(sparent), and (S′0, S
′
1, T

′
0, T

′
1)← G(s′parent), Then B = Tx`+1

⊕ tmx∗`+1,tparent
, and B′ = T ′x`+1

⊕ tmx∗`+1,t
′
parent

,

so by the definition of tmx∗`+1,0
and tmx∗`+1,1

(Line 12 in Algorithm 6) we conclude B = B′.

31



(sparent, tparent)

S0 ⊕ sm0,tparent [i]
T0 ⊕ tm0,tparent

[i]
S1 ⊕ sm1,tparent [i]
T1 ⊕ tm1,tparent [i]

sma,b[i− 1], tma,b[i− 1]

sma,b[i], tma,b[i]

(S0, S1, T0, T1)← G(sparent)

Figure 9: One step in the SEPRF tree

Algorithm 5 A Recursive Helper Function for the TEPRF

1: function F (s, t, ~sma,b, ~tma,b, ~x)
2: . s ∈ {0, 1}λ, t ∈ {0, 1}
3: . sma,b[i] ∈ {0, 1}λ for i = 1, . . . , ` and a, b ∈ {0, 1}
4: . tma,b[i] ∈ {0, 1} for i = 1, . . . , ` and a, b ∈ {0, 1}
5: . Length( ~sma,b) = Length( ~tma,b) = Length(~x)
6: if ~x = ∅ then
7: return s, t
8: else
9: Parse x1 · · ·x` ← ~x

10: Parse sma,b[1] · · · sma,b[`]← ~sma,b for a, b ∈ {0, 1}
11: Parse tma,b[1] · · · tma,b[`]← ~tma,b for a, b ∈ {0, 1}
12: (sparent, tparent)← F (s, t, (sma,b[1], . . . , sma,b[`− 1]), (tma,b[1], . . . , tma,b[`− 1]), (x1, . . . , x`−1))
13: (s0, s1, t0, t1)← G(sparent)
14: s← sx` ⊕ smx`,tparent

[`]
15: t← tx` ⊕ tmx`,tparent

[`]
16: return s, t
17: end if
18: end function
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Algorithm 6 Generating a pair of equivocable keys

1: function Gen(x∗)
2: . Target path x∗ ∈ {0, 1}d

3: Choose two random seeds, s, s′
$← {0, 1}λ

4: Choose a random tag, t
$← {0, 1}, set t′ = ¬t

5: for i = 1, . . . , d do
6: (sparent, tparent)← F (s, t, (sma,b[1], . . . , sma,b[i− 1]), (tma,b[1], . . . , tma,b[i− 1]), (x∗1, . . . , x

∗
i−1))

7: (s′parent, t
′
parent)← F (s′, t′, (sma,b[1], . . . , sma,b[i− 1]), (tma,b[1], . . . , tma,b[i− 1]), (x∗1, . . . , x

∗
i−1))

8: (S0, S1, T0, T1) = G(sparent)
9: (S′0, S

′
1, T

′
0, T

′
1) = G(s′parent)

10: Choose two uniformly random seed masks smx∗i ,0[i], smx∗i ,1[i]
$← {0, 1}λ

11: Choose two random seed masks subject to sm¬x∗i ,0[i]⊕ S¬x∗i = sm¬x∗i ,1[i]⊕ S′¬x∗i
12: Choose two random tag masks subject to tmx∗i ,0[i]⊕ T¬x∗i 6= tmx∗i ,1[i]⊕ T ′¬x∗i
13: Choose two random tag masks subject to tm¬x∗i ,0[i]⊕ T¬x∗i = tm¬x∗i ,1[i]⊕ T ′¬x∗i
14: end for
15: (s′final, t

′
final)← F (s′, t′, ~sma,b, ~tma,b, ~x

∗)
16: Let yfinal be the first bit of sfinal

17: Let y′final be the first bit of s′final

18: if y′final = yfinal then go to 3
19: end if
20: key = (s, t, ~sma,b, ~tma,b)
21: key′ = (s′, t′, ~sma,b, ~tma,b)
22: return key, key′

23: end function

Algorithm 7 Generating a single “honest” key

function ObvGen(1λ)

Choose random seed, s
$← {0, 1}λ

Choose a random tag, t
$← {0, 1}

for i = 1, . . . , d do
for a ∈ {0, 1} do

for b ∈ {0, 1} do

sma,b[i]
$← {0, 1}λ

tma,b[i]
$← {0, 1}

end for
end for

end for
key = (s, t, ~sma,b, ~tma,b)

return key
end function

Algorithm 8 A TEPRF

1: function PRF(key, ~x)
2: Parse key as (s, t, ~sma,b, ~tma,b)← key
3: (s, t)← F (s, t, ~sma,b, ~tma,b, ~x)
4: Parse s as (s1, . . . , sλ)← s
5: Set y = s1

6: end function
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Claim 6. Suppose (key, key′)
$← Gen(~x∗), and suppose ~x ∈ {0, 1}` satisfies (x1, . . . , x`−1) = (x∗1, . . . , x

∗
`−1)

and x` = ¬x`∗ . Then F (key, ~x) = F (key′, ~x).

Proof. Let ~y = (x1, . . . , x`−1). Thus, by hypothesis, ~y = (x∗1, . . . , x
∗
`−1) as well. Let (S, T ) = F (key, ~x), and

(S′, T ′) = F (key′, ~x). Thus our goal is to show that (S, T ) = (S′, T ′). When i = ` then (sparent, tparent) =
F (s, t, ~sma,b, ~tma,b, ~y) in Line 6 of Algorithm 6. Similarly, (s′parent, t

′
parent) = F (s′, t′, ~sma,b, ~tma,b, ~y) in Line 7

of Algorithm 6.
Now, from lines 13 - 15 in Algorithm 5, we have that (s0, s1, t0, t1)← G(sparent), and

S = sx` ⊕ smx`,tparent [`]

T = tx` ⊕ tmx`,tparent [`]

Similarly (s′0, s
′
1, t
′
0, t
′
1)← G(s′parent), and

S′ = s′x` ⊕ smx`,t′parent [`]

T ′ = t′x` ⊕ tmx`,t′parent [`]

Now, since x` = ¬x∗` , and tparent 6= t′parent (Claim 5), Line 11 in Algorithm 6 ensures that

S′ = s′x` ⊕ smx`,t′parent [`] = sx` ⊕ smx`,tparent [`] = S

Similarly, line 13 ensures that

T = tx` ⊕ tmx`,tparent [`] = t′x` ⊕ tmx`,t′parent [`] = T ′

Claim 7. If ~y is a prefix of ~x, and F (key, ~y) = F (key′, ~y), then F (key, ~x) = F (key′, ~x).

Proof. This follows immediately from the fact that key and key′ only differ in their initial values s, t and
s′, t′, and the function F is recursive (line 12 of Algorithm 5).

Claim 8. Suppose (key, key′)
$← Gen(x∗), Then PRF(key, x∗) 6= PRF(key′, x∗).

Proof. This follows immediately from Line 18 in Algorithm 6.

Claim 9. The distribution of the first outputs of ObvGen(1λ) and Gen(x∗) are computationally indistinguish-
able.

Proof. If key
$← ObvGen(1λ), and key = (s, t, ~sma,b, ~tma,b), then every component of key is uniformly random.

Thus it suffices to show that if If (key, key′)
$← ObvGen(x∗), and key = (s, t, ~sma,b, ~tma,b), then the components

are pseudorandom conditioned on x∗. But this follows immediately from Algorithm 6. From lines 3 and 4,
we see that s and t are uniformly random. From lines 10 and 11, we see that sma,b[i] are pseudorandom.
From lines 12 and 13, we see that tma,b[i] are pseudorandom.

B.3 Theorem 1: Parameters of Somewhere Equivocal Encryption

Combining the above constructions of TEPRF from PRG (Claim 4), 1-SEPRF from TEPRF (Claim 3),
t-SEPRF from 1-SEPRF (Claim 2) and finally somewhere equivocal encryption from t-SEPRF (Claim 1)
we get the proof of Theorem 1. Table 1 summarizes the key sizes of the resulting primitives, assuming the
existence of a length-doubling PRG with λ-bit seed, which follows from One-Way Functions.
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Scheme Key Size Reference
TEPRF O(d · λ) Claim 4

Single-point SEPRF O(d · s · λ) Claim 3
t-point SEPRF O(d · t · s · λ) Claim 2

Somewhere Equivocal Encryption O(t · s · λ · log n) Claim 1

Table 1: Key sizes in our generic constructions. Here d denotes the input-length of the PRF constructions,
λ denotes the security parameter, s denotes the output size of the PRF, and n denotes the message-length
(in blocks) of the encryption scheme.

C Non-adaptive Somewhere-Equivocal Encryption

For sake of completeness, in this section we formally describe a simple non-adaptive security definition
of somewhere equivocal encryption, as mentioned informally in Section 4. At first sight, it may not be
obvious that this definition is implied by the more complex definition of adaptive security (Definition 2)
and therefore we give a formal proof of this fact. We do not know of any simpler constructions that would
achieve non-adaptive security but would not achieve adaptive security.

Definition 9 (Non-adaptive somewhere-equivocal encryption). A non-adaptive somewhere equivocal encryp-
tion scheme, is defined as in Definition 2 except that the security property is defined as follows.

Non-adaptive Security. For any PPT adversary A, there exists a negligible function ν = ν(λ) such that:

Pr[Expsimenc-NA
A,Π (1λ, 0)]− Pr[Expsimenc-NA

A,Π (1λ, 1)] ≤ ν(λ)

where the experiment Expsimenc-NA
A,Π is defined as follows:

Experiment Expsimenc-NA
A,Π (1λ, b)

1. The adversary A on input 1λ outputs a vector m = m1, . . . ,mn with |mi| = s and a set I of size t.

2. – If b = 0, compute key, c as follows: key← KeyGen(1λ), c← Enc(key,m).

– If b = 1, compute key, c as follows: (state, c)← SimEnc((mi)i/∈I , I),
key← SimKey(state, (mi)i∈I).

3. Send key, c to the adversary A.

4. A outputs b′.

5. Output b = b′ and halt.

Proposition 1. If Π is an adaptive-secure somewhere-equivocal encryption scheme according to Definition 2,
then Π is also secure according to the non-adaptive security property of Definition 9.

Proof. Towards a contradiction, assume that the exists a scheme Π that is secure according to Definition 2
but it does not satisfy Definition 9. This means that there exists an PPT adversary A that wins experiment
Expsimenc-NA
A,Π (1λ, b) with non-negligible probability. A is able to distinguish the case where (c, key) are com-

puted with no holes (I = ∅) from the case where (c, key) are computed with t holes. We claim that there
must be an index j ∈ I for which A distinguishes if position j has a hole, and we can use such adversary to
win the security experiment Expsimenc

A,Π (1λ, b) with challenge index j. The proof goes by hybrids arguments.
We define hybrid experiment Hk as follows.
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Hybrid Experiment Hk(I, (m)i∈I).

Let Ik be the set containing the first k indexes in I.

– (c, state)← SimEnc(mi/∈Ik , Ik).

– Receive (mi)i∈Ik .

– key← SimKey((mi)i∈Ik , state).

– Output c, key.

Note that H0 = Expsimenc-NA
A,Π (1λ, 0), this is because in H0, k = 0 and I = ∅ (here we are implicitly using

the “simulation with no holes property”); similarly, Ht = Expsimenc-NA
A,Π (1λ, 1), because k = t and hence It = I.

We want to argue that, if there exists A distinguishing H0 from Ht then there must exist and index k
such that A distinguishes Hk from Hk+1. Such A can be used by an adversary B playing in Expsimenc

A,Π (1λ, b)
as follows.

Reduction B.

– Obtain I,m1, . . . ,mn from A.

– Let Ik ⊂ I be the set containing the first k positions of I. Let j ∈ I be the (k + 1)th position in I.

– B sends Ik, (mi)i/∈Ik and challenge index j to her challenger, and obtains c.

– B sends (mi)i∈Ik and obtains key from her challenger.

– B sends c, key to A.

– B outputs whatever A outputs, and halts.

Note that if B is playing in Expsimenc
B,Π (1λ, 0) then the distribution generated by B is identical to experi-

ment Hk, otherwise, if B is playing in Expsimenc
B,Π (1λ, 1) then the distribution generated by B is identical to

experiment Hk+1. Thus the existence of A would contradict the adaptive security of Π.

36


	Introduction
	Prior Approaches to Adaptive Security
	Our results
	Applications of Our Results
	Our Techniques
	Yao's Scheme and The Challenge of Adaptive Security
	Our Solution


	Preliminaries
	Garbling Scheme
	Somewhere Equivocal Symmetric-Key Encryption
	Adaptively Secure Garbling Scheme and Simulator
	Construction
	Adaptive Simulator
	Hybrid Games
	Template for Defining Hybrid Games
	Rules for Indistinguishable Hybrids
	Indistinguishability Rule 1: Changing the Outer Encryption Mode BindEncEquivEnc.
	Indistinguishability Rule 2. Changing the Garbling Mode RealGateInputDepSimGate
	Indistinguishability Rule 3. Changing the Garbling Mode: InputDepSimGateSimGate.

	Pebbling and Sequences of Hybrid Games
	Pebbling Strategies
	Strategy 1
	Strategy 2


	Conclusions

	Symmetric-Key Encryption with Special Correctness  JC:LinPin09
	Constructing Somewhere Equivocal Encryption
	t-Point Somewhere Equivocal PRF (SEPRF)
	Definition
	From SEPRF to Somewhere Equivocal encryption
	From 1-SEPRF to t-SEPRF

	Two-Key Equivocal PRFs
	Definition
	From TEPRFs to 1-SEPRFs
	Construction of TEPRF

	Theorem 1: Parameters of Somewhere Equivocal Encryption


	Non-adaptive Somewhere-Equivocal Encryption


